Home | History | Annotate | Line # | Download | only in vme
if_le_vme.c revision 1.35
      1 /*	$NetBSD: if_le_vme.c,v 1.35 2023/01/06 10:28:28 tsutsui Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998 maximum entropy.  All rights reserved.
      5  * Copyright (c) 1997 Leo Weppelman.  All rights reserved.
      6  * Copyright (c) 1992, 1993
      7  *	The Regents of the University of California.  All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * Ralph Campbell and Rick Macklem.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)if_le.c	8.2 (Berkeley) 11/16/93
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1995 Charles M. Hannum.  All rights reserved.
     41  *
     42  * This code is derived from software contributed to Berkeley by
     43  * Ralph Campbell and Rick Macklem.
     44  *
     45  * Redistribution and use in source and binary forms, with or without
     46  * modification, are permitted provided that the following conditions
     47  * are met:
     48  * 1. Redistributions of source code must retain the above copyright
     49  *    notice, this list of conditions and the following disclaimer.
     50  * 2. Redistributions in binary form must reproduce the above copyright
     51  *    notice, this list of conditions and the following disclaimer in the
     52  *    documentation and/or other materials provided with the distribution.
     53  * 3. All advertising materials mentioning features or use of this software
     54  *    must display the following acknowledgement:
     55  *	This product includes software developed by the University of
     56  *	California, Berkeley and its contributors.
     57  * 4. Neither the name of the University nor the names of its contributors
     58  *    may be used to endorse or promote products derived from this software
     59  *    without specific prior written permission.
     60  *
     61  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     62  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     63  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     64  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     65  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     66  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     67  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     68  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     69  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     70  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     71  * SUCH DAMAGE.
     72  *
     73  *	@(#)if_le.c	8.2 (Berkeley) 11/16/93
     74  */
     75 
     76 #include <sys/cdefs.h>
     77 __KERNEL_RCSID(0, "$NetBSD: if_le_vme.c,v 1.35 2023/01/06 10:28:28 tsutsui Exp $");
     78 
     79 #include "opt_inet.h"
     80 
     81 #include <sys/param.h>
     82 #include <sys/systm.h>
     83 #include <sys/mbuf.h>
     84 #include <sys/syslog.h>
     85 #include <sys/socket.h>
     86 #include <sys/device.h>
     87 
     88 #include <net/if.h>
     89 #include <net/if_media.h>
     90 #include <net/if_ether.h>
     91 
     92 #ifdef INET
     93 #include <netinet/in.h>
     94 #include <netinet/if_inarp.h>
     95 #endif
     96 
     97 #include <machine/cpu.h>
     98 #include <sys/bus.h>
     99 #include <machine/iomap.h>
    100 #include <machine/scu.h>
    101 #include <machine/intr.h>
    102 
    103 #include <atari/atari/device.h>
    104 
    105 #include <dev/ic/lancereg.h>
    106 #include <dev/ic/lancevar.h>
    107 #include <dev/ic/am7990reg.h>
    108 #include <dev/ic/am7990var.h>
    109 
    110 #include <atari/vme/vmevar.h>
    111 #include <atari/vme/if_levar.h>
    112 
    113 /*
    114  * All cards except BVME410 have 64KB RAM. However,
    115  *  - On the Riebl cards the area between the offsets 0xee70-0xeec0 is used
    116  *    to store config data.
    117  *  - On PAM and ROTHRON, mem_addr cannot be mapped if reg_addr is already
    118  *    mapped because they are overwrapped. Just use 32KB as Linux does.
    119  */
    120 static struct le_addresses {
    121 	u_long	reg_addr;
    122 	u_long	mem_addr;
    123 	int	irq;
    124 	int	reg_size;
    125 	int	mem_size;
    126 	int	type_hint;
    127 } lestd[] = {
    128 	{ 0xfe00fff0, 0xfe010000, IRQUNK, 16, 64*1024,
    129 				LE_OLD_RIEBL|LE_NEW_RIEBL }, /* Riebl	*/
    130 	{ 0xfecffff0, 0xfecf0000,      5, 16, 32*1024,
    131 				LE_PAM },		     /* PAM	*/
    132 	{ 0xfecffff0, 0xfecf0000,      5, 16, 32*1024,
    133 				LE_ROTHRON },		     /* Rhotron	*/
    134 	{ 0xfeff4100, 0xfe000000,      4,  8, VMECF_MEMSIZ_DEFAULT,
    135 				LE_BVME410 }		     /* BVME410 */
    136 };
    137 
    138 #define	NLESTD	__arraycount(lestd)
    139 
    140 /*
    141  * Default mac for RIEBL cards without a (working) battery. The first 4 bytes
    142  * are the manufacturer id.
    143  */
    144 static const uint8_t riebl_def_mac[] = {
    145 	0x00, 0x00, 0x36, 0x04, 0x00, 0x00
    146 };
    147 
    148 static int le_intr(struct le_softc *, int);
    149 static void lepseudointr(struct le_softc *, void *);
    150 static int le_vme_match(device_t, cfdata_t, void *);
    151 static void le_vme_attach(device_t, device_t, void *);
    152 static int probe_addresses(bus_space_tag_t *, bus_space_tag_t *,
    153 			   bus_space_handle_t *, bus_space_handle_t *);
    154 static void riebl_skip_reserved_area(struct lance_softc *);
    155 static int nm93c06_read(bus_space_tag_t, bus_space_handle_t, int);
    156 static int bvme410_probe(bus_space_tag_t, bus_space_handle_t);
    157 static int bvme410_mem_size(bus_space_tag_t, u_long);
    158 static void bvme410_copytobuf(struct lance_softc *, void *, int, int);
    159 static void bvme410_zerobuf(struct lance_softc *, int, int);
    160 
    161 CFATTACH_DECL_NEW(le_vme, sizeof(struct le_softc),
    162     le_vme_match, le_vme_attach, NULL, NULL);
    163 
    164 #if defined(_KERNEL_OPT)
    165 #include "opt_ddb.h"
    166 #endif
    167 
    168 static void lewrcsr(struct lance_softc *, uint16_t, uint16_t);
    169 static uint16_t lerdcsr(struct lance_softc *, uint16_t);
    170 
    171 static void
    172 lewrcsr(struct lance_softc *sc, uint16_t port, uint16_t val)
    173 {
    174 	struct le_softc *lesc = (struct le_softc *)sc;
    175 	int s;
    176 
    177 	s = splhigh();
    178 	bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RAP, port);
    179 	bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RDP, val);
    180 	splx(s);
    181 }
    182 
    183 static uint16_t
    184 lerdcsr(struct lance_softc *sc, uint16_t port)
    185 {
    186 	struct le_softc *lesc = (struct le_softc *)sc;
    187 	uint16_t val;
    188 	int s;
    189 
    190 	s = splhigh();
    191 	bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RAP, port);
    192 	val = bus_space_read_2(lesc->sc_iot, lesc->sc_ioh, LER_RDP);
    193 	splx(s);
    194 
    195 	return val;
    196 }
    197 
    198 static int
    199 le_vme_match(device_t parent, cfdata_t cfp, void *aux)
    200 {
    201 	struct vme_attach_args *va = aux;
    202 	int i;
    203 	bus_space_tag_t iot, memt;
    204 	bus_space_handle_t ioh, memh;
    205 
    206 	iot  = va->va_iot;
    207 	memt = va->va_memt;
    208 
    209 	for (i = 0; i < NLESTD; i++) {
    210 		struct le_addresses *le_ap = &lestd[i];
    211 		int found;
    212 
    213 		if ((va->va_iobase != IOBASEUNK)
    214 		     && (va->va_iobase != le_ap->reg_addr))
    215 			continue;
    216 
    217 		if ((va->va_maddr != MADDRUNK)
    218 		     && (va->va_maddr != le_ap->mem_addr))
    219 			continue;
    220 
    221 		if ((le_ap->irq != IRQUNK) && (va->va_irq != le_ap->irq))
    222 			continue;
    223 
    224 		if (bus_space_map(iot, le_ap->reg_addr, le_ap->reg_size, 0,
    225 		    &ioh)) {
    226 			continue;
    227 		}
    228 		if (le_ap->mem_size == VMECF_MEMSIZ_DEFAULT) {
    229 			if (bvme410_probe(iot, ioh)) {
    230 				bus_space_write_2(iot, ioh,
    231 				    BVME410_BAR, 0x1); /* XXX */
    232 				le_ap->mem_size =
    233 				    bvme410_mem_size(memt, le_ap->mem_addr);
    234 			}
    235 		}
    236 		if (le_ap->mem_size == VMECF_MEMSIZ_DEFAULT) {
    237 			bus_space_unmap(iot, ioh, le_ap->reg_size);
    238 			continue;
    239 		}
    240 
    241 		if (bus_space_map(memt, le_ap->mem_addr, le_ap->mem_size, 0,
    242 		    &memh)) {
    243 			bus_space_unmap(iot, ioh, le_ap->reg_size);
    244 			continue;
    245 		}
    246 		found = probe_addresses(&iot, &memt, &ioh, &memh);
    247 		bus_space_unmap(iot, ioh, le_ap->reg_size);
    248 		bus_space_unmap(memt, memh, le_ap->mem_size);
    249 
    250 		if (found) {
    251 			va->va_iobase = le_ap->reg_addr;
    252 			va->va_iosize = le_ap->reg_size;
    253 			va->va_maddr  = le_ap->mem_addr;
    254 			va->va_msize  = le_ap->mem_size;
    255 			va->va_aux    = le_ap;
    256 			if (va->va_irq == IRQUNK)
    257 				va->va_irq = le_ap->irq;
    258 			return 1;
    259 		}
    260 	}
    261 	return 0;
    262 }
    263 
    264 static int
    265 probe_addresses(bus_space_tag_t	*iot, bus_space_tag_t *memt,
    266     bus_space_handle_t *ioh, bus_space_handle_t *memh)
    267 {
    268 
    269 	/*
    270 	 * Test accesibility of register and memory area
    271 	 */
    272 	if (!bus_space_peek_2(*iot, *ioh, LER_RDP))
    273 		return 0;
    274 	if (!bus_space_peek_1(*memt, *memh, 0))
    275 		return 0;
    276 
    277 	/*
    278 	 * Test for writable memory
    279 	 */
    280 	bus_space_write_2(*memt, *memh, 0, 0xa5a5);
    281 	if (bus_space_read_2(*memt, *memh, 0) != 0xa5a5)
    282 		return 0;
    283 
    284 	/*
    285 	 * Test writability of selector port.
    286 	 */
    287 	bus_space_write_2(*iot, *ioh, LER_RAP, LE_CSR1);
    288 	if (bus_space_read_2(*iot, *ioh, LER_RAP) != LE_CSR1)
    289 		return 0;
    290 
    291 	/*
    292 	 * Do a small register test
    293 	 */
    294 	bus_space_write_2(*iot, *ioh, LER_RAP, LE_CSR0);
    295 	bus_space_write_2(*iot, *ioh, LER_RDP, LE_C0_INIT | LE_C0_STOP);
    296 	if (bus_space_read_2(*iot, *ioh, LER_RDP) != LE_C0_STOP)
    297 		return 0;
    298 
    299 	bus_space_write_2(*iot, *ioh, LER_RDP, LE_C0_STOP);
    300 	if (bus_space_read_2(*iot, *ioh, LER_RDP) != LE_C0_STOP)
    301 		return 0;
    302 
    303 	return 1;
    304 }
    305 
    306 /*
    307  * Interrupt mess. Because the card's interrupt is hardwired to either
    308  * ipl5 or ipl3 (mostly on ipl5) and raising splnet to spl5() just won't do
    309  * (it kills the serial at the least), we use a 2-level interrupt scheme. The
    310  * card interrupt is routed to 'le_intr'. If the previous ipl was below
    311  * splnet, just call the mi-function. If not, save the interrupt status,
    312  * turn off card interrupts (the card is *very* persistent) and arrange
    313  * for a softint 'callback' through 'lepseudointr'.
    314  */
    315 static int
    316 le_intr(struct le_softc *lesc, int sr)
    317 {
    318 	struct lance_softc *sc = &lesc->sc_am7990.lsc;
    319 	uint16_t csr0;
    320 
    321 	if ((sr & PSL_IPL) < (ipl2psl_table[IPL_NET] & PSL_IPL))
    322 		am7990_intr(sc);
    323 	else {
    324 		sc->sc_saved_csr0 = csr0 = lerdcsr(sc, LE_CSR0);
    325 		lewrcsr(sc, LE_CSR0, csr0 & ~LE_C0_INEA);
    326 		add_sicallback((si_farg)lepseudointr, lesc, sc);
    327 	}
    328 	return 1;
    329 }
    330 
    331 
    332 static void
    333 lepseudointr(struct le_softc *lesc, void *sc)
    334 {
    335 	int s;
    336 
    337 	s = splx(lesc->sc_splval);
    338 	am7990_intr(sc);
    339 	splx(s);
    340 }
    341 
    342 static void
    343 le_vme_attach(device_t parent, device_t self, void *aux)
    344 {
    345 	struct le_softc *lesc = device_private(self);
    346 	struct lance_softc *sc = &lesc->sc_am7990.lsc;
    347 	struct vme_attach_args *va = aux;
    348 	bus_space_tag_t iot, memt;
    349 	bus_space_handle_t ioh, memh;
    350 	struct le_addresses *le_ap;
    351 	int i;
    352 
    353 	sc->sc_dev = self;
    354 	aprint_normal("\n%s: ", device_xname(self));
    355 
    356 	iot  = va->va_iot;
    357 	memt = va->va_memt;
    358 	if (bus_space_map(iot, va->va_iobase, va->va_iosize, 0, &ioh))
    359 		panic("%s: cannot map io-area", __func__);
    360 	if (bus_space_map(memt, va->va_maddr, va->va_msize, 0, &memh))
    361 		panic("%s: cannot map mem-area", __func__);
    362 
    363 	lesc->sc_iot    = iot;
    364 	lesc->sc_ioh    = ioh;
    365 	lesc->sc_memt   = memt;
    366 	lesc->sc_memh   = memh;
    367 	lesc->sc_splval = (va->va_irq << 8) | PSL_S; /* XXX */
    368 	le_ap           = (struct le_addresses *)va->va_aux;
    369 
    370 	/*
    371 	 * Go on to find board type
    372 	 */
    373 	if ((le_ap->type_hint & LE_PAM) != 0 &&
    374 	    bus_space_peek_1(iot, ioh, LER_EEPROM)) {
    375 		aprint_normal("PAM card");
    376 		lesc->sc_type = LE_PAM;
    377 		bus_space_read_1(iot, ioh, LER_MEME);
    378 	} else if ((le_ap->type_hint & LE_BVME410) != 0 &&
    379 	    bvme410_probe(iot, ioh)) {
    380 		aprint_normal("BVME410");
    381 		lesc->sc_type = LE_BVME410;
    382 	} else if ((le_ap->type_hint & (LE_NEW_RIEBL|LE_OLD_RIEBL)) != 0) {
    383 		aprint_normal("Riebl card");
    384 		if (bus_space_read_4(memt, memh, RIEBL_MAGIC_ADDR) ==
    385 		    RIEBL_MAGIC)
    386 			lesc->sc_type = LE_NEW_RIEBL;
    387 		else {
    388 			aprint_normal("(without battery) ");
    389 			lesc->sc_type = LE_OLD_RIEBL;
    390 		}
    391 	} else {
    392 		aprint_error("Unsupported card!\n");
    393 		return;
    394 	}
    395 
    396 	switch (lesc->sc_type) {
    397 	case LE_BVME410:
    398 		sc->sc_copytodesc   = bvme410_copytobuf;
    399 		sc->sc_copyfromdesc = lance_copyfrombuf_contig;
    400 		sc->sc_copytobuf    = bvme410_copytobuf;
    401 		sc->sc_copyfrombuf  = lance_copyfrombuf_contig;
    402 		sc->sc_zerobuf      = bvme410_zerobuf;
    403 		break;
    404 	default:
    405 		sc->sc_copytodesc   = lance_copytobuf_contig;
    406 		sc->sc_copyfromdesc = lance_copyfrombuf_contig;
    407 		sc->sc_copytobuf    = lance_copytobuf_contig;
    408 		sc->sc_copyfrombuf  = lance_copyfrombuf_contig;
    409 		sc->sc_zerobuf      = lance_zerobuf_contig;
    410 		break;
    411 	}
    412 
    413 	sc->sc_rdcsr   = lerdcsr;
    414 	sc->sc_wrcsr   = lewrcsr;
    415 	sc->sc_hwinit  = NULL;
    416 	sc->sc_conf3   = LE_C3_BSWP;
    417 	sc->sc_addr    = 0;
    418 	sc->sc_memsize = va->va_msize;
    419 	sc->sc_mem     = (void *)memh; /* XXX */
    420 
    421 	/*
    422 	 * Get MAC address
    423 	 */
    424 	switch (lesc->sc_type) {
    425 	case LE_OLD_RIEBL:
    426 		memcpy(sc->sc_enaddr, riebl_def_mac, sizeof(sc->sc_enaddr));
    427 		break;
    428 	case LE_NEW_RIEBL:
    429 		for (i = 0; i < sizeof(sc->sc_enaddr); i++)
    430 			sc->sc_enaddr[i] =
    431 			    bus_space_read_1(memt, memh, i + RIEBL_MAC_ADDR);
    432 		break;
    433 	case LE_PAM:
    434 		i = bus_space_read_1(iot, ioh, LER_EEPROM);
    435 		for (i = 0; i < sizeof(sc->sc_enaddr); i++) {
    436 			sc->sc_enaddr[i] =
    437 			    (bus_space_read_2(memt, memh, 2 * i) << 4) |
    438 			    (bus_space_read_2(memt, memh, 2 * i + 1) & 0xf);
    439 		}
    440 		i = bus_space_read_1(iot, ioh, LER_MEME);
    441 		break;
    442 	case LE_BVME410:
    443 		for (i = 0; i < (sizeof(sc->sc_enaddr) >> 1); i++) {
    444 			uint16_t tmp;
    445 
    446 			tmp = nm93c06_read(iot, ioh, i);
    447 			sc->sc_enaddr[2 * i] = (tmp >> 8) & 0xff;
    448 			sc->sc_enaddr[2 * i + 1] = tmp & 0xff;
    449 		}
    450 		bus_space_write_2(iot, ioh, BVME410_BAR, 0x1); /* XXX */
    451 	}
    452 
    453 	am7990_config(&lesc->sc_am7990);
    454 
    455 	if ((lesc->sc_type == LE_OLD_RIEBL) || (lesc->sc_type == LE_NEW_RIEBL))
    456 		riebl_skip_reserved_area(sc);
    457 
    458 	/*
    459 	 * XXX: We always use uservector 64....
    460 	 */
    461 	if ((lesc->sc_intr = intr_establish(64, USER_VEC, 0,
    462 	    (hw_ifun_t)le_intr, lesc)) == NULL) {
    463 		aprint_error("le_vme_attach: Can't establish interrupt\n");
    464 		return;
    465 	}
    466 
    467 	/*
    468 	 * Notify the card of the vector
    469 	 */
    470 	switch (lesc->sc_type) {
    471 	case LE_OLD_RIEBL:
    472 	case LE_NEW_RIEBL:
    473 		bus_space_write_2(memt, memh, RIEBL_IVEC_ADDR, 64 + 64);
    474 		break;
    475 	case LE_PAM:
    476 		bus_space_write_1(iot, ioh, LER_IVEC, 64 + 64);
    477 		break;
    478 	case LE_BVME410:
    479 		bus_space_write_2(iot, ioh, BVME410_IVEC, 64 + 64);
    480 		break;
    481 	}
    482 
    483 	/*
    484 	 * Unmask the VME-interrupt we're on
    485 	 */
    486 	if ((machineid & ATARI_TT) != 0)
    487 		SCU->vme_mask |= 1 << va->va_irq;
    488 }
    489 
    490 /*
    491  * True if 'addr' containe within [start,len]
    492  */
    493 #define WITHIN(start, len, addr)	\
    494 		((addr >= start) && ((addr) <= ((start) + (len))))
    495 static void
    496 riebl_skip_reserved_area(struct lance_softc *sc)
    497 {
    498 	int offset = 0;
    499 	int i;
    500 
    501 	for (i = 0; i < sc->sc_nrbuf; i++) {
    502 		if (WITHIN(sc->sc_rbufaddr[i], LEBLEN, RIEBL_RES_START) ||
    503 		    WITHIN(sc->sc_rbufaddr[i], LEBLEN, RIEBL_RES_END)) {
    504 			offset = RIEBL_RES_END - sc->sc_rbufaddr[i];
    505 		}
    506 		sc->sc_rbufaddr[i] += offset;
    507 	}
    508 
    509 	for (i = 0; i < sc->sc_ntbuf; i++) {
    510 		if (WITHIN(sc->sc_tbufaddr[i], LEBLEN, RIEBL_RES_START) ||
    511 		    WITHIN(sc->sc_tbufaddr[i], LEBLEN, RIEBL_RES_END)) {
    512 			offset = RIEBL_RES_END - sc->sc_tbufaddr[i];
    513 		}
    514 		sc->sc_tbufaddr[i] += offset;
    515 	}
    516 }
    517 
    518 static int
    519 nm93c06_read(bus_space_tag_t iot, bus_space_handle_t ioh, int nm93c06reg)
    520 {
    521 	int bar;
    522 	int shift;
    523 	int bits = 0x180 | (nm93c06reg & 0xf);
    524 	int data = 0;
    525 
    526 	bar = 1 << BVME410_CS_SHIFT;
    527 	bus_space_write_2(iot, ioh, BVME410_BAR, bar);
    528 	delay(1); /* tCSS = 1 us */
    529 	for (shift = 9; shift >= 0; shift--) {
    530 		if (((bits >> shift) & 1) == 1)
    531 			bar |= 1 << BVME410_DIN_SHIFT;
    532 		else
    533 			bar &= ~(1 << BVME410_DIN_SHIFT);
    534 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
    535 		delay(1); /* tDIS = 0.4 us */
    536 		bar |= 1 << BVME410_CLK_SHIFT;
    537 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
    538 		delay(2); /* tSKH = 1 us, tSKH + tSKL >= 4 us */
    539 		bar &= ~(1 << BVME410_CLK_SHIFT);
    540 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
    541 		delay(2); /* tSKL = 1 us, tSKH + tSKL >= 4 us */
    542 	}
    543 	bar &= ~(1 << BVME410_DIN_SHIFT);
    544 	for (shift = 15; shift >= 0; shift--) {
    545 		delay(1); /* tDIS = 100 ns, BVM manual says 0.4 us */
    546 		bar |= 1 << BVME410_CLK_SHIFT;
    547 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
    548 		delay(2); /* tSKH = 1 us, tSKH + tSKL >= 4 us */
    549 		data |= (bus_space_read_2(iot, ioh, BVME410_BAR) & 1) << shift;
    550 		bar &= ~(1 << BVME410_CLK_SHIFT);
    551 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
    552 		delay(2); /* tSKL = 1 us, tSKH + tSKL >= 4 us */
    553 	}
    554 	bar &= ~(1 << BVME410_CS_SHIFT);
    555 	bus_space_write_2(iot, ioh, BVME410_BAR, bar);
    556 	delay(1); /* tCS = 1 us */
    557 	return data;
    558 }
    559 
    560 static int
    561 bvme410_probe(bus_space_tag_t iot, bus_space_handle_t ioh)
    562 {
    563 
    564 	if (!bus_space_peek_2(iot, ioh, BVME410_IVEC))
    565 		return 0;
    566 
    567 	bus_space_write_2(iot, ioh, BVME410_IVEC, 0x0000);
    568 	if (bus_space_read_2(iot, ioh, BVME410_IVEC) != 0xff00)
    569 		return 0;
    570 
    571 	bus_space_write_2(iot, ioh, BVME410_IVEC, 0xffff);
    572 	if (bus_space_read_2(iot, ioh, BVME410_IVEC) != 0xffff)
    573 		return 0;
    574 
    575 	bus_space_write_2(iot, ioh, BVME410_IVEC, 0xa5a5);
    576 	if (bus_space_read_2(iot, ioh, BVME410_IVEC) != 0xffa5)
    577 		return 0;
    578 
    579 	return 1;
    580 }
    581 
    582 static int
    583 bvme410_mem_size(bus_space_tag_t memt, u_long mem_addr)
    584 {
    585 	bus_space_handle_t memh;
    586 	int r;
    587 
    588 	if (bus_space_map(memt, mem_addr, 256 * 1024, 0, &memh))
    589 		return VMECF_MEMSIZ_DEFAULT;
    590 	if (!bus_space_peek_1(memt, memh, 0)) {
    591 		bus_space_unmap(memt, memh, 256 * 1024);
    592 		return VMECF_MEMSIZ_DEFAULT;
    593 	}
    594 	bus_space_write_1(memt, memh, 0, 128);
    595 	bus_space_write_1(memt, memh, 64 * 1024, 32);
    596 	bus_space_write_1(memt, memh, 32 * 1024, 8);
    597 	r = (int)(bus_space_read_1(memt, memh, 0) * 2048);
    598 	bus_space_unmap(memt, memh, 256 * 1024);
    599 	return r;
    600 }
    601 
    602 /*
    603  * Need to be careful when writing to the bvme410 dual port memory.
    604  * Continue writing each byte until it reads back the same.
    605  */
    606 
    607 static void
    608 bvme410_copytobuf(struct lance_softc *sc, void *from, int boff, int len)
    609 {
    610 	volatile uint8_t *buf = (volatile uint8_t *)sc->sc_mem;
    611 	uint8_t *f = (uint8_t *)from;
    612 
    613 	for (buf += boff; len != 0; buf++, f++, len--) {
    614 		do {
    615 			*buf = *f;
    616 		} while (*buf != *f);
    617 	}
    618 }
    619 
    620 static void
    621 bvme410_zerobuf(struct lance_softc *sc, int boff, int len)
    622 {
    623 	volatile uint8_t *buf = (volatile uint8_t *)sc->sc_mem;
    624 
    625 	for (buf += boff; len != 0; buf++, len--) {
    626 		do {
    627 			*buf = '\0';
    628 		} while (*buf != '\0');
    629 	}
    630 }
    631