if_le_vme.c revision 1.7 1 /* $NetBSD: if_le_vme.c,v 1.7 1998/12/09 07:33:59 leo Exp $ */
2
3 /*-
4 * Copyright (c) 1997 Leo Weppelman. All rights reserved.
5 * Copyright (c) 1995 Charles M. Hannum. All rights reserved.
6 * Copyright (c) 1992, 1993
7 * The Regents of the University of California. All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * Ralph Campbell and Rick Macklem.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * @(#)if_le.c 8.2 (Berkeley) 11/16/93
41 */
42
43 #include "opt_inet.h"
44 #include "bpfilter.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/mbuf.h>
49 #include <sys/syslog.h>
50 #include <sys/socket.h>
51 #include <sys/device.h>
52
53 #include <net/if.h>
54 #include <net/if_media.h>
55 #include <net/if_ether.h>
56
57 #ifdef INET
58 #include <netinet/in.h>
59 #include <netinet/if_inarp.h>
60 #endif
61
62 #include <machine/cpu.h>
63 #include <machine/bus.h>
64 #include <machine/iomap.h>
65 #include <machine/scu.h>
66
67 #include <atari/atari/device.h>
68 #include <atari/atari/intr.h>
69
70 #include <dev/ic/lancereg.h>
71 #include <dev/ic/lancevar.h>
72 #include <dev/ic/am7990reg.h>
73 #include <dev/ic/am7990var.h>
74
75 #include <atari/vme/vmevar.h>
76 #include <atari/vme/if_levar.h>
77
78 /*
79 * All cards except BVME410 have 64KB RAM. However.... On the Riebl cards the
80 * area between the offsets 0xee70-0xeec0 is used to store config data.
81 */
82 struct le_addresses {
83 u_long reg_addr;
84 u_long mem_addr;
85 int irq;
86 int reg_size;
87 int mem_size;
88 } lestd[] = {
89 { 0xfe00fff0, 0xfe010000, IRQUNK, 16, 64*1024 }, /* Riebl */
90 { 0xffcffff0, 0xffcf0000, 5, 16, 64*1024 }, /* PAM */
91 { 0xfecffff0, 0xfecf0000, 5, 16, 64*1024 }, /* Rhotron */
92 { 0xfeff4100, 0xfe000000, 4, 8, VMECF_MEMSIZ_DEFAULT } /*BVME410*/
93 };
94
95 #define NLESTD (sizeof(lestd) / sizeof(lestd[0]))
96
97 /*
98 * Default mac for RIEBL cards without a (working) battery. The first 4 bytes
99 * are the manufacturer id.
100 */
101 static u_char riebl_def_mac[] = {
102 0x00, 0x00, 0x36, 0x04, 0x00, 0x00
103 };
104
105 static int le_intr __P((struct le_softc *, int));
106 static void lepseudointr __P((struct le_softc *, void *));
107 static int le_vme_match __P((struct device *, struct cfdata *, void *));
108 static void le_vme_attach __P((struct device *, struct device *, void *));
109 static int probe_addresses __P((bus_space_tag_t *, bus_space_tag_t *,
110 bus_space_handle_t *, bus_space_handle_t *));
111 static void riebl_skip_reserved_area __P((struct lance_softc *));
112 static int nm93c06_read __P((bus_space_tag_t, bus_space_handle_t, int));
113 static int bvme410_mem_size __P((bus_space_tag_t, u_long));
114 static void bvme410_copytobuf __P((struct lance_softc *, void *, int, int));
115 static void bvme410_zerobuf __P((struct lance_softc *, int, int));
116
117 struct cfattach le_vme_ca = {
118 sizeof(struct le_softc), le_vme_match, le_vme_attach
119 };
120
121 #if defined(_KERNEL) && !defined(_LKM)
122 #include "opt_ddb.h"
123 #endif
124
125 #ifdef DDB
126 #define integrate
127 #define hide
128 #else
129 #define integrate static __inline
130 #define hide static
131 #endif
132
133 hide void lewrcsr __P((struct lance_softc *, u_int16_t, u_int16_t));
134 hide u_int16_t lerdcsr __P((struct lance_softc *, u_int16_t));
135
136 hide void
137 lewrcsr(sc, port, val)
138 struct lance_softc *sc;
139 u_int16_t port, val;
140 {
141 struct le_softc *lesc = (struct le_softc *)sc;
142 int s;
143
144 s = splhigh();
145 bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RAP, port);
146 bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RDP, val);
147 splx(s);
148 }
149
150 hide u_int16_t
151 lerdcsr(sc, port)
152 struct lance_softc *sc;
153 u_int16_t port;
154 {
155 struct le_softc *lesc = (struct le_softc *)sc;
156 u_int16_t val;
157 int s;
158
159 s = splhigh();
160 bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RAP, port);
161 val = bus_space_read_2(lesc->sc_iot, lesc->sc_ioh, LER_RDP);
162 splx(s);
163
164 return (val);
165 }
166
167 static int
168 le_vme_match(parent, cfp, aux)
169 struct device *parent;
170 struct cfdata *cfp;
171 void *aux;
172 {
173 struct vme_attach_args *va = aux;
174 int i;
175 bus_space_tag_t iot;
176 bus_space_tag_t memt;
177 bus_space_handle_t ioh;
178 bus_space_handle_t memh;
179
180 iot = va->va_iot;
181 memt = va->va_memt;
182
183 for (i = 0; i < NLESTD; i++) {
184 struct le_addresses *le_ap = &lestd[i];
185 int found = 0;
186
187 if ((va->va_iobase != IOBASEUNK)
188 && (va->va_iobase != le_ap->reg_addr))
189 continue;
190
191 if ((va->va_maddr != MADDRUNK)
192 && (va->va_maddr != le_ap->mem_addr))
193 continue;
194
195 if ((le_ap->irq != IRQUNK) && (va->va_irq != le_ap->irq))
196 continue;
197
198 if (bus_space_map(iot, le_ap->reg_addr, le_ap->reg_size, 0, &ioh)) {
199 printf("leprobe: cannot map io-area\n");
200 return (0);
201 }
202 if (le_ap->mem_size == VMECF_MEMSIZ_DEFAULT) {
203 if (bus_space_peek_2(iot, ioh, BVME410_IVEC)) {
204 bus_space_write_2(iot, ioh, BVME410_BAR, 0x1); /* XXX */
205 le_ap->mem_size = bvme410_mem_size(memt, le_ap->mem_addr);
206 }
207 }
208 if (le_ap->mem_size == VMECF_MEMSIZ_DEFAULT) {
209 bus_space_unmap(iot, (caddr_t)le_ap->reg_addr, le_ap->reg_size);
210 continue;
211 }
212
213 if (bus_space_map(memt, le_ap->mem_addr, le_ap->mem_size, 0, &memh)) {
214 bus_space_unmap(iot, (caddr_t)le_ap->reg_addr, le_ap->reg_size);
215 printf("leprobe: cannot map memory-area\n");
216 return (0);
217 }
218 found = probe_addresses(&iot, &memt, &ioh, &memh);
219 bus_space_unmap(iot, (caddr_t)le_ap->reg_addr, le_ap->reg_size);
220 bus_space_unmap(memt, (caddr_t)le_ap->mem_addr, le_ap->mem_size);
221
222 if (found) {
223 va->va_iobase = le_ap->reg_addr;
224 va->va_iosize = le_ap->reg_size;
225 va->va_maddr = le_ap->mem_addr;
226 va->va_msize = le_ap->mem_size;
227 if (va->va_irq == IRQUNK)
228 va->va_irq = le_ap->irq;
229 return 1;
230 }
231 }
232 return (0);
233 }
234
235 static int
236 probe_addresses(iot, memt, ioh, memh)
237 bus_space_tag_t *iot;
238 bus_space_tag_t *memt;
239 bus_space_handle_t *ioh;
240 bus_space_handle_t *memh;
241 {
242 /*
243 * Test accesibility of register and memory area
244 */
245 if(!bus_space_peek_2(*iot, *ioh, LER_RDP))
246 return 0;
247 if(!bus_space_peek_1(*memt, *memh, 0))
248 return 0;
249
250 /*
251 * Test for writable memory
252 */
253 bus_space_write_2(*memt, *memh, 0, 0xa5a5);
254 if (bus_space_read_2(*memt, *memh, 0) != 0xa5a5)
255 return 0;
256
257 /*
258 * Test writability of selector port.
259 */
260 bus_space_write_2(*iot, *ioh, LER_RAP, LE_CSR1);
261 if (bus_space_read_2(*iot, *ioh, LER_RAP) != LE_CSR1)
262 return 0;
263
264 /*
265 * Do a small register test
266 */
267 bus_space_write_2(*iot, *ioh, LER_RAP, LE_CSR0);
268 bus_space_write_2(*iot, *ioh, LER_RDP, LE_C0_INIT | LE_C0_STOP);
269 if (bus_space_read_2(*iot, *ioh, LER_RDP) != LE_C0_STOP)
270 return 0;
271
272 bus_space_write_2(*iot, *ioh, LER_RDP, LE_C0_STOP);
273 if (bus_space_read_2(*iot, *ioh, LER_RDP) != LE_C0_STOP)
274 return 0;
275
276 return 1;
277 }
278
279 /*
280 * Interrupt mess. Because the card's interrupt is hardwired to either
281 * ipl5 or ipl3 (mostly on ipl5) and raising splnet to spl5() just won't do
282 * (it kills the serial at the least), we use a 2-level interrupt sceme. The
283 * card interrupt is routed to 'le_intr'. If the previous ipl was below
284 * splnet, just call the mi-function. If not, save the interrupt status,
285 * turn off card interrupts (the card is *very* persistent) and arrange
286 * for a softint 'callback' through 'lepseudointr'.
287 */
288 static int
289 le_intr(lesc, sr)
290 struct le_softc *lesc;
291 int sr;
292 {
293 struct lance_softc *sc = &lesc->sc_am7990.lsc;
294 u_int16_t csr0;
295
296 if ((sr & PSL_IPL) < IPL_NET)
297 am7990_intr(sc);
298 else {
299 sc->sc_saved_csr0 = csr0 = lerdcsr(sc, LE_CSR0);
300 lewrcsr(sc, LE_CSR0, csr0 & ~LE_C0_INEA);
301 add_sicallback((si_farg)lepseudointr, lesc, sc);
302 }
303 return 1;
304 }
305
306
307 static void
308 lepseudointr(lesc, sc)
309 struct le_softc *lesc;
310 void *sc;
311 {
312 int s;
313
314 s = splx(lesc->sc_splval);
315 am7990_intr(sc);
316 splx(s);
317 }
318
319 static void
320 le_vme_attach(parent, self, aux)
321 struct device *parent, *self;
322 void *aux;
323 {
324 struct le_softc *lesc = (struct le_softc *)self;
325 struct lance_softc *sc = &lesc->sc_am7990.lsc;
326 struct vme_attach_args *va = aux;
327 bus_space_handle_t ioh;
328 bus_space_handle_t memh;
329 int i;
330
331 printf("\n%s: ", sc->sc_dev.dv_xname);
332
333 if (bus_space_map(va->va_iot, va->va_iobase, va->va_iosize, 0, &ioh))
334 panic("leattach: cannot map io-area\n");
335 if (bus_space_map(va->va_memt, va->va_maddr, va->va_msize, 0, &memh))
336 panic("leattach: cannot map mem-area\n");
337
338 lesc->sc_iot = va->va_iot;
339 lesc->sc_ioh = ioh;
340 lesc->sc_memt = va->va_memt;
341 lesc->sc_memh = memh;
342 lesc->sc_splval = (va->va_irq << 8) | PSL_S; /* XXX */
343
344 /*
345 * Go on to find board type
346 */
347 if (bus_space_peek_1(va->va_iot, ioh, LER_EEPROM)) {
348 printf("PAM card");
349 lesc->sc_type = LE_PAM;
350 bus_space_read_1(va->va_iot, ioh, LER_MEME);
351 }
352 else if (bus_space_peek_2(va->va_iot, ioh, BVME410_IVEC)) {
353 printf("BVME410");
354 lesc->sc_type = LE_BVME410;
355 }
356 else {
357 printf("Riebl card");
358 if(bus_space_read_4(va->va_memt, memh, RIEBL_MAGIC_ADDR)
359 == RIEBL_MAGIC)
360 lesc->sc_type = LE_NEW_RIEBL;
361 else {
362 printf("(without battery) ");
363 lesc->sc_type = LE_OLD_RIEBL;
364 }
365 }
366
367 switch (lesc->sc_type) {
368 case LE_BVME410:
369 sc->sc_copytodesc = bvme410_copytobuf;
370 sc->sc_copyfromdesc = lance_copyfrombuf_contig;
371 sc->sc_copytobuf = bvme410_copytobuf;
372 sc->sc_copyfrombuf = lance_copyfrombuf_contig;
373 sc->sc_zerobuf = bvme410_zerobuf;
374 break;
375 default:
376 sc->sc_copytodesc = lance_copytobuf_contig;
377 sc->sc_copyfromdesc = lance_copyfrombuf_contig;
378 sc->sc_copytobuf = lance_copytobuf_contig;
379 sc->sc_copyfrombuf = lance_copyfrombuf_contig;
380 sc->sc_zerobuf = lance_zerobuf_contig;
381 break;
382 }
383
384 sc->sc_rdcsr = lerdcsr;
385 sc->sc_wrcsr = lewrcsr;
386 sc->sc_hwinit = NULL;
387 sc->sc_conf3 = LE_C3_BSWP;
388 sc->sc_addr = 0;
389 sc->sc_memsize = va->va_msize;
390 sc->sc_mem = (void *)memh; /* XXX */
391
392 /*
393 * Get MAC address
394 */
395 switch (lesc->sc_type) {
396 case LE_OLD_RIEBL:
397 bcopy(riebl_def_mac, sc->sc_enaddr,
398 sizeof(sc->sc_enaddr));
399 break;
400 case LE_NEW_RIEBL:
401 for (i = 0; i < sizeof(sc->sc_enaddr); i++)
402 sc->sc_enaddr[i] =
403 bus_space_read_1(va->va_memt, memh, i + RIEBL_MAC_ADDR);
404 break;
405 case LE_PAM:
406 i = bus_space_read_1(va->va_iot, ioh, LER_EEPROM);
407 for (i = 0; i < sizeof(sc->sc_enaddr); i++) {
408 sc->sc_enaddr[i] =
409 (bus_space_read_2(va->va_memt, memh, 2 * i) << 4) |
410 (bus_space_read_2(va->va_memt, memh, 2 * i + 1) & 0xf);
411 }
412 i = bus_space_read_1(va->va_iot, ioh, LER_MEME);
413 break;
414 case LE_BVME410:
415 for (i = 0; i < (sizeof(sc->sc_enaddr) >> 1); i++) {
416 u_int16_t tmp;
417
418 tmp = nm93c06_read(va->va_iot, ioh, i);
419 sc->sc_enaddr[2 * i] = (tmp >> 8) & 0xff;
420 sc->sc_enaddr[2 * i + 1] = tmp & 0xff;
421 }
422 bus_space_write_2(va->va_iot, ioh, BVME410_BAR, 0x1); /* XXX */
423 }
424
425 am7990_config(&lesc->sc_am7990);
426
427 if ((lesc->sc_type == LE_OLD_RIEBL) || (lesc->sc_type == LE_NEW_RIEBL))
428 riebl_skip_reserved_area(sc);
429
430 /*
431 * XXX: We always use uservector 64....
432 */
433 if ((lesc->sc_intr = intr_establish(64, USER_VEC, 0,
434 (hw_ifun_t)le_intr, lesc)) == NULL) {
435 printf("le_vme_attach: Can't establish interrupt\n");
436 return;
437 }
438
439 /*
440 * Notify the card of the vector
441 */
442 switch (lesc->sc_type) {
443 case LE_OLD_RIEBL:
444 case LE_NEW_RIEBL:
445 bus_space_write_2(va->va_memt, memh, RIEBL_IVEC_ADDR,
446 64 + 64);
447 break;
448 case LE_PAM:
449 bus_space_write_1(va->va_iot, ioh, LER_IVEC, 64 + 64);
450 break;
451 case LE_BVME410:
452 bus_space_write_2(va->va_iot, ioh, BVME410_IVEC, 64 + 64);
453 break;
454 }
455
456 /*
457 * Unmask the VME-interrupt we're on
458 */
459 if (machineid & ATARI_TT)
460 SCU->vme_mask |= 1 << va->va_irq;
461 }
462
463 /*
464 * True if 'addr' containe within [start,len]
465 */
466 #define WITHIN(start, len, addr) \
467 ((addr >= start) && ((addr) <= ((start) + (len))))
468 static void
469 riebl_skip_reserved_area(sc)
470 struct lance_softc *sc;
471 {
472 int offset = 0;
473 int i;
474
475 for(i = 0; i < sc->sc_nrbuf; i++) {
476 if (WITHIN(sc->sc_rbufaddr[i], LEBLEN, RIEBL_RES_START)
477 || WITHIN(sc->sc_rbufaddr[i], LEBLEN, RIEBL_RES_END)) {
478 offset = RIEBL_RES_END - sc->sc_rbufaddr[i];
479 }
480 sc->sc_rbufaddr[i] += offset;
481 }
482
483 for(i = 0; i < sc->sc_ntbuf; i++) {
484 if (WITHIN(sc->sc_tbufaddr[i], LEBLEN, RIEBL_RES_START)
485 || WITHIN(sc->sc_tbufaddr[i], LEBLEN, RIEBL_RES_END)) {
486 offset = RIEBL_RES_END - sc->sc_tbufaddr[i];
487 }
488 sc->sc_tbufaddr[i] += offset;
489 }
490 }
491
492 static int
493 nm93c06_read(iot, ioh, nm93c06reg)
494 bus_space_tag_t iot;
495 bus_space_handle_t ioh;
496 int nm93c06reg;
497 {
498 int bar;
499 int shift;
500 int bits = 0x180 | (nm93c06reg & 0xf);
501 int data = 0;
502
503 bar = 1<<BVME410_CS_SHIFT;
504 bus_space_write_2(iot, ioh, BVME410_BAR, bar);
505 delay(1); /* tCSS = 1 us */
506 for (shift = 9; shift >= 0; shift--) {
507 if (((bits >> shift) & 1) == 1)
508 bar |= 1<<BVME410_DIN_SHIFT;
509 else
510 bar &= ~(1<<BVME410_DIN_SHIFT);
511 bus_space_write_2(iot, ioh, BVME410_BAR, bar);
512 delay(1); /* tDIS = 0.4 us */
513 bar |= 1<<BVME410_CLK_SHIFT;
514 bus_space_write_2(iot, ioh, BVME410_BAR, bar);
515 delay(2); /* tSKH = 1 us, tSKH + tSKL >= 4 us */
516 bar &= ~(1<<BVME410_CLK_SHIFT);
517 bus_space_write_2(iot, ioh, BVME410_BAR, bar);
518 delay(2); /* tSKL = 1 us, tSKH + tSKL >= 4 us */
519 }
520 bar &= ~(1<<BVME410_DIN_SHIFT);
521 for (shift = 15; shift >= 0; shift--) {
522 delay(1); /* tDIS = 100 ns, BVM manual says 0.4 us */
523 bar |= 1<<BVME410_CLK_SHIFT;
524 bus_space_write_2(iot, ioh, BVME410_BAR, bar);
525 delay(2); /* tSKH = 1 us, tSKH + tSKL >= 4 us */
526 data |= (bus_space_read_2(iot, ioh, BVME410_BAR) & 1) << shift;
527 bar &= ~(1<<BVME410_CLK_SHIFT);
528 bus_space_write_2(iot, ioh, BVME410_BAR, bar);
529 delay(2); /* tSKL = 1 us, tSKH + tSKL >= 4 us */
530 }
531 bar &= ~(1<<BVME410_CS_SHIFT);
532 bus_space_write_2(iot, ioh, BVME410_BAR, bar);
533 delay(1); /* tCS = 1 us */
534 return data;
535 }
536
537 static int
538 bvme410_mem_size(memt, mem_addr)
539 bus_space_tag_t memt;
540 u_long mem_addr;
541 {
542 bus_space_handle_t memh;
543 int r;
544
545 if (bus_space_map(memt, mem_addr, 256*1024, 0, &memh))
546 return VMECF_MEMSIZ_DEFAULT;
547 if (!bus_space_peek_1(memt, memh, 0)) {
548 bus_space_unmap(memt, (caddr_t)mem_addr, 256*1024);
549 return VMECF_MEMSIZ_DEFAULT;
550 }
551 bus_space_write_1(memt, memh, 0, 128);
552 bus_space_write_1(memt, memh, 64*1024, 32);
553 bus_space_write_1(memt, memh, 32*1024, 8);
554 r = (int)(bus_space_read_1(memt, memh, 0) * 2048);
555 bus_space_unmap(memt, (caddr_t)mem_addr, 256*1024);
556 return r;
557 }
558
559 /*
560 * Need to be careful when writing to the bvme410 dual port memory.
561 * Continue writing each byte until it reads back the same.
562 */
563
564 static void
565 bvme410_copytobuf(sc, from, boff, len)
566 struct lance_softc *sc;
567 void *from;
568 int boff, len;
569 {
570 volatile char *buf = (volatile char *) sc->sc_mem;
571 char *f = (char *) from;
572
573 for (buf += boff; len; buf++,f++,len--)
574 while (*buf != *f)
575 *buf = *f;
576 }
577
578 static void
579 bvme410_zerobuf(sc, boff, len)
580 struct lance_softc *sc;
581 int boff, len;
582 {
583 volatile char *buf = (volatile char *)sc->sc_mem;
584
585 for (buf += boff; len; buf++,len--)
586 while (*buf != '\0')
587 *buf = '\0';
588 }
589
590