Home | History | Annotate | Line # | Download | only in vme
if_le_vme.c revision 1.8
      1 /*	$NetBSD: if_le_vme.c,v 1.8 1998/12/09 08:51:12 leo Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997 Leo Weppelman.  All rights reserved.
      5  * Copyright (c) 1995 Charles M. Hannum.  All rights reserved.
      6  * Copyright (c) 1992, 1993
      7  *	The Regents of the University of California.  All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * Ralph Campbell and Rick Macklem.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  *	@(#)if_le.c	8.2 (Berkeley) 11/16/93
     41  */
     42 
     43 #include "opt_inet.h"
     44 #include "bpfilter.h"
     45 
     46 #include <sys/param.h>
     47 #include <sys/systm.h>
     48 #include <sys/mbuf.h>
     49 #include <sys/syslog.h>
     50 #include <sys/socket.h>
     51 #include <sys/device.h>
     52 
     53 #include <net/if.h>
     54 #include <net/if_media.h>
     55 #include <net/if_ether.h>
     56 
     57 #ifdef INET
     58 #include <netinet/in.h>
     59 #include <netinet/if_inarp.h>
     60 #endif
     61 
     62 #include <machine/cpu.h>
     63 #include <machine/bus.h>
     64 #include <machine/iomap.h>
     65 #include <machine/scu.h>
     66 
     67 #include <atari/atari/device.h>
     68 #include <atari/atari/intr.h>
     69 
     70 #include <dev/ic/lancereg.h>
     71 #include <dev/ic/lancevar.h>
     72 #include <dev/ic/am7990reg.h>
     73 #include <dev/ic/am7990var.h>
     74 
     75 #include <atari/vme/vmevar.h>
     76 #include <atari/vme/if_levar.h>
     77 
     78 /*
     79  * All cards except BVME410 have 64KB RAM. However.... On the Riebl cards the
     80  * area between the offsets 0xee70-0xeec0 is used to store config data.
     81  */
     82 struct le_addresses {
     83 	u_long	reg_addr;
     84 	u_long	mem_addr;
     85 	int	irq;
     86 	int	reg_size;
     87 	int	mem_size;
     88 	int	type_hint;
     89 } lestd[] = {
     90 	{ 0xfe00fff0, 0xfe010000, IRQUNK, 16, 64*1024,
     91 				LE_OLD_RIEBL|LE_NEW_RIEBL }, /* Riebl	*/
     92 	{ 0xffcffff0, 0xffcf0000,      5, 16, 64*1024,
     93 				LE_PAM },		     /* PAM	*/
     94 	{ 0xfecffff0, 0xfecf0000,      5, 16, 64*1024,
     95 				LE_ROTHRON },		     /* Rhotron	*/
     96 	{ 0xfeff4100, 0xfe000000,      4,  8, VMECF_MEMSIZ_DEFAULT,
     97 				LE_BVME410 }		     /* BVME410 */
     98 };
     99 
    100 #define	NLESTD	(sizeof(lestd) / sizeof(lestd[0]))
    101 
    102 /*
    103  * Default mac for RIEBL cards without a (working) battery. The first 4 bytes
    104  * are the manufacturer id.
    105  */
    106 static u_char riebl_def_mac[] = {
    107 	0x00, 0x00, 0x36, 0x04, 0x00, 0x00
    108 };
    109 
    110 static int le_intr __P((struct le_softc *, int));
    111 static void lepseudointr __P((struct le_softc *, void *));
    112 static int le_vme_match __P((struct device *, struct cfdata *, void *));
    113 static void le_vme_attach __P((struct device *, struct device *, void *));
    114 static int probe_addresses __P((bus_space_tag_t *, bus_space_tag_t *,
    115 				bus_space_handle_t *, bus_space_handle_t *));
    116 static void riebl_skip_reserved_area __P((struct lance_softc *));
    117 static int nm93c06_read __P((bus_space_tag_t, bus_space_handle_t, int));
    118 static int bvme410_mem_size __P((bus_space_tag_t, u_long));
    119 static void bvme410_copytobuf __P((struct lance_softc *, void *, int, int));
    120 static void bvme410_zerobuf __P((struct lance_softc *, int, int));
    121 
    122 struct cfattach le_vme_ca = {
    123 	sizeof(struct le_softc), le_vme_match, le_vme_attach
    124 };
    125 
    126 #if defined(_KERNEL) && !defined(_LKM)
    127 #include "opt_ddb.h"
    128 #endif
    129 
    130 #ifdef DDB
    131 #define	integrate
    132 #define hide
    133 #else
    134 #define	integrate	static __inline
    135 #define hide		static
    136 #endif
    137 
    138 hide void lewrcsr __P((struct lance_softc *, u_int16_t, u_int16_t));
    139 hide u_int16_t lerdcsr __P((struct lance_softc *, u_int16_t));
    140 
    141 hide void
    142 lewrcsr(sc, port, val)
    143 	struct lance_softc	*sc;
    144 	u_int16_t		port, val;
    145 {
    146 	struct le_softc		*lesc = (struct le_softc *)sc;
    147 	int			s;
    148 
    149 	s = splhigh();
    150 	bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RAP, port);
    151 	bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RDP, val);
    152 	splx(s);
    153 }
    154 
    155 hide u_int16_t
    156 lerdcsr(sc, port)
    157 	struct lance_softc	*sc;
    158 	u_int16_t		port;
    159 {
    160 	struct le_softc		*lesc = (struct le_softc *)sc;
    161 	u_int16_t		val;
    162 	int			s;
    163 
    164 	s = splhigh();
    165 	bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RAP, port);
    166 	val = bus_space_read_2(lesc->sc_iot, lesc->sc_ioh, LER_RDP);
    167 	splx(s);
    168 
    169 	return (val);
    170 }
    171 
    172 static int
    173 le_vme_match(parent, cfp, aux)
    174 	struct device	*parent;
    175 	struct cfdata	*cfp;
    176 	void		*aux;
    177 {
    178 	struct vme_attach_args	*va = aux;
    179 	int			i;
    180 	bus_space_tag_t		iot;
    181 	bus_space_tag_t		memt;
    182 	bus_space_handle_t	ioh;
    183 	bus_space_handle_t	memh;
    184 
    185 	iot  = va->va_iot;
    186 	memt = va->va_memt;
    187 
    188 	for (i = 0; i < NLESTD; i++) {
    189 		struct le_addresses	*le_ap = &lestd[i];
    190 		int			found  = 0;
    191 
    192 		if ((va->va_iobase != IOBASEUNK)
    193 		     && (va->va_iobase != le_ap->reg_addr))
    194 			continue;
    195 
    196 		if ((va->va_maddr != MADDRUNK)
    197 		     && (va->va_maddr != le_ap->mem_addr))
    198 			continue;
    199 
    200 		if ((le_ap->irq != IRQUNK) && (va->va_irq != le_ap->irq))
    201 			continue;
    202 
    203 		if (bus_space_map(iot, le_ap->reg_addr, le_ap->reg_size, 0, &ioh)) {
    204 			printf("leprobe: cannot map io-area\n");
    205 			return (0);
    206 		}
    207 		if (le_ap->mem_size == VMECF_MEMSIZ_DEFAULT) {
    208 			if (bus_space_peek_2(iot, ioh, BVME410_IVEC)) {
    209 				bus_space_write_2(iot, ioh, BVME410_BAR, 0x1); /* XXX */
    210 				le_ap->mem_size = bvme410_mem_size(memt, le_ap->mem_addr);
    211 			}
    212 		}
    213 		if (le_ap->mem_size == VMECF_MEMSIZ_DEFAULT) {
    214 			bus_space_unmap(iot, (caddr_t)le_ap->reg_addr, le_ap->reg_size);
    215 			continue;
    216 		}
    217 
    218 		if (bus_space_map(memt, le_ap->mem_addr, le_ap->mem_size, 0, &memh)) {
    219 			bus_space_unmap(iot, (caddr_t)le_ap->reg_addr, le_ap->reg_size);
    220 			printf("leprobe: cannot map memory-area\n");
    221 			return (0);
    222 		}
    223 		found = probe_addresses(&iot, &memt, &ioh, &memh);
    224 		bus_space_unmap(iot, (caddr_t)le_ap->reg_addr, le_ap->reg_size);
    225 		bus_space_unmap(memt, (caddr_t)le_ap->mem_addr, le_ap->mem_size);
    226 
    227 		if (found) {
    228 			va->va_iobase = le_ap->reg_addr;
    229 			va->va_iosize = le_ap->reg_size;
    230 			va->va_maddr  = le_ap->mem_addr;
    231 			va->va_msize  = le_ap->mem_size;
    232 			va->va_aux    = le_ap;
    233 			if (va->va_irq == IRQUNK)
    234 				va->va_irq = le_ap->irq;
    235 			return 1;
    236 		}
    237     }
    238     return (0);
    239 }
    240 
    241 static int
    242 probe_addresses(iot, memt, ioh, memh)
    243 bus_space_tag_t		*iot;
    244 bus_space_tag_t		*memt;
    245 bus_space_handle_t	*ioh;
    246 bus_space_handle_t	*memh;
    247 {
    248 	/*
    249 	 * Test accesibility of register and memory area
    250 	 */
    251 	if(!bus_space_peek_2(*iot, *ioh, LER_RDP))
    252 		return 0;
    253 	if(!bus_space_peek_1(*memt, *memh, 0))
    254 		return 0;
    255 
    256 	/*
    257 	 * Test for writable memory
    258 	 */
    259 	bus_space_write_2(*memt, *memh, 0, 0xa5a5);
    260 	if (bus_space_read_2(*memt, *memh, 0) != 0xa5a5)
    261 		return 0;
    262 
    263 	/*
    264 	 * Test writability of selector port.
    265 	 */
    266 	bus_space_write_2(*iot, *ioh, LER_RAP, LE_CSR1);
    267 	if (bus_space_read_2(*iot, *ioh, LER_RAP) != LE_CSR1)
    268 		return 0;
    269 
    270 	/*
    271 	 * Do a small register test
    272 	 */
    273 	bus_space_write_2(*iot, *ioh, LER_RAP, LE_CSR0);
    274 	bus_space_write_2(*iot, *ioh, LER_RDP, LE_C0_INIT | LE_C0_STOP);
    275 	if (bus_space_read_2(*iot, *ioh, LER_RDP) != LE_C0_STOP)
    276 		return 0;
    277 
    278 	bus_space_write_2(*iot, *ioh, LER_RDP, LE_C0_STOP);
    279 	if (bus_space_read_2(*iot, *ioh, LER_RDP) != LE_C0_STOP)
    280 		return 0;
    281 
    282 	return 1;
    283 }
    284 
    285 /*
    286  * Interrupt mess. Because the card's interrupt is hardwired to either
    287  * ipl5 or ipl3 (mostly on ipl5) and raising splnet to spl5() just won't do
    288  * (it kills the serial at the least), we use a 2-level interrupt sceme. The
    289  * card interrupt is routed to 'le_intr'. If the previous ipl was below
    290  * splnet, just call the mi-function. If not, save the interrupt status,
    291  * turn off card interrupts (the card is *very* persistent) and arrange
    292  * for a softint 'callback' through 'lepseudointr'.
    293  */
    294 static int
    295 le_intr(lesc, sr)
    296 	struct le_softc	*lesc;
    297 	int		 sr;
    298 {
    299 	struct lance_softc	*sc = &lesc->sc_am7990.lsc;
    300 	u_int16_t		csr0;
    301 
    302 	if ((sr & PSL_IPL) < IPL_NET)
    303 		am7990_intr(sc);
    304 	else {
    305 		sc->sc_saved_csr0 = csr0 = lerdcsr(sc, LE_CSR0);
    306 		lewrcsr(sc, LE_CSR0, csr0 & ~LE_C0_INEA);
    307 		add_sicallback((si_farg)lepseudointr, lesc, sc);
    308 	}
    309 	return 1;
    310 }
    311 
    312 
    313 static void
    314 lepseudointr(lesc, sc)
    315 struct le_softc	*lesc;
    316 void		*sc;
    317 {
    318 	int	s;
    319 
    320 	s = splx(lesc->sc_splval);
    321 	am7990_intr(sc);
    322 	splx(s);
    323 }
    324 
    325 static void
    326 le_vme_attach(parent, self, aux)
    327 	struct device *parent, *self;
    328 	void *aux;
    329 {
    330 	struct le_softc		*lesc = (struct le_softc *)self;
    331 	struct lance_softc	*sc = &lesc->sc_am7990.lsc;
    332 	struct vme_attach_args	*va = aux;
    333 	bus_space_handle_t	ioh;
    334 	bus_space_handle_t	memh;
    335 	struct le_addresses	*le_ap;
    336 	int			i;
    337 
    338 	printf("\n%s: ", sc->sc_dev.dv_xname);
    339 
    340 	if (bus_space_map(va->va_iot, va->va_iobase, va->va_iosize, 0, &ioh))
    341 		panic("leattach: cannot map io-area\n");
    342 	if (bus_space_map(va->va_memt, va->va_maddr, va->va_msize, 0, &memh))
    343 		panic("leattach: cannot map mem-area\n");
    344 
    345 	lesc->sc_iot    = va->va_iot;
    346 	lesc->sc_ioh    = ioh;
    347 	lesc->sc_memt   = va->va_memt;
    348 	lesc->sc_memh   = memh;
    349 	lesc->sc_splval = (va->va_irq << 8) | PSL_S; /* XXX */
    350 	le_ap           = (struct le_addresses *)va->va_aux;
    351 
    352 	/*
    353 	 * Go on to find board type
    354 	 */
    355 	if ((le_ap->type_hint & LE_PAM)
    356 		&& bus_space_peek_1(va->va_iot, ioh, LER_EEPROM)) {
    357 		printf("PAM card");
    358 		lesc->sc_type = LE_PAM;
    359 		bus_space_read_1(va->va_iot, ioh, LER_MEME);
    360 	}
    361 	else if((le_ap->type_hint & LE_BVME410)
    362 		&& bus_space_peek_2(va->va_iot, ioh, BVME410_IVEC)) {
    363 		printf("BVME410");
    364 		lesc->sc_type = LE_BVME410;
    365 	}
    366 	else if (le_ap->type_hint & (LE_NEW_RIEBL|LE_OLD_RIEBL)) {
    367 		printf("Riebl card");
    368 		if(bus_space_read_4(va->va_memt, memh, RIEBL_MAGIC_ADDR)
    369 								== RIEBL_MAGIC)
    370 			lesc->sc_type = LE_NEW_RIEBL;
    371 		else {
    372 			printf("(without battery) ");
    373 			lesc->sc_type = LE_OLD_RIEBL;
    374 		}
    375 	}
    376 	else printf("le_vme_attach: Unsupported card!");
    377 
    378 	switch (lesc->sc_type) {
    379 	    case LE_BVME410:
    380 		sc->sc_copytodesc   = bvme410_copytobuf;
    381 		sc->sc_copyfromdesc = lance_copyfrombuf_contig;
    382 		sc->sc_copytobuf    = bvme410_copytobuf;
    383 		sc->sc_copyfrombuf  = lance_copyfrombuf_contig;
    384 		sc->sc_zerobuf      = bvme410_zerobuf;
    385 		break;
    386 	    default:
    387 		sc->sc_copytodesc   = lance_copytobuf_contig;
    388 		sc->sc_copyfromdesc = lance_copyfrombuf_contig;
    389 		sc->sc_copytobuf    = lance_copytobuf_contig;
    390 		sc->sc_copyfrombuf  = lance_copyfrombuf_contig;
    391 		sc->sc_zerobuf      = lance_zerobuf_contig;
    392 		break;
    393 	}
    394 
    395 	sc->sc_rdcsr   = lerdcsr;
    396 	sc->sc_wrcsr   = lewrcsr;
    397 	sc->sc_hwinit  = NULL;
    398 	sc->sc_conf3   = LE_C3_BSWP;
    399 	sc->sc_addr    = 0;
    400 	sc->sc_memsize = va->va_msize;
    401 	sc->sc_mem     = (void *)memh; /* XXX */
    402 
    403 	/*
    404 	 * Get MAC address
    405 	 */
    406 	switch (lesc->sc_type) {
    407 	    case LE_OLD_RIEBL:
    408 		bcopy(riebl_def_mac, sc->sc_enaddr,
    409 					sizeof(sc->sc_enaddr));
    410 		break;
    411 	    case LE_NEW_RIEBL:
    412 		for (i = 0; i < sizeof(sc->sc_enaddr); i++)
    413 		    sc->sc_enaddr[i] =
    414 			bus_space_read_1(va->va_memt, memh, i + RIEBL_MAC_ADDR);
    415 			break;
    416 	    case LE_PAM:
    417 		i = bus_space_read_1(va->va_iot, ioh, LER_EEPROM);
    418 		for (i = 0; i < sizeof(sc->sc_enaddr); i++) {
    419 		    sc->sc_enaddr[i] =
    420 			(bus_space_read_2(va->va_memt, memh, 2 * i) << 4) |
    421 			(bus_space_read_2(va->va_memt, memh, 2 * i + 1) & 0xf);
    422 		}
    423 		i = bus_space_read_1(va->va_iot, ioh, LER_MEME);
    424 		break;
    425 	    case LE_BVME410:
    426 		for (i = 0; i < (sizeof(sc->sc_enaddr) >> 1); i++) {
    427 		    u_int16_t tmp;
    428 
    429 		    tmp = nm93c06_read(va->va_iot, ioh, i);
    430 		    sc->sc_enaddr[2 * i] = (tmp >> 8) & 0xff;
    431 		    sc->sc_enaddr[2 * i + 1] = tmp & 0xff;
    432 		}
    433 		bus_space_write_2(va->va_iot, ioh, BVME410_BAR, 0x1); /* XXX */
    434 	}
    435 
    436 	am7990_config(&lesc->sc_am7990);
    437 
    438 	if ((lesc->sc_type == LE_OLD_RIEBL) || (lesc->sc_type == LE_NEW_RIEBL))
    439 		riebl_skip_reserved_area(sc);
    440 
    441 	/*
    442 	 * XXX: We always use uservector 64....
    443 	 */
    444 	if ((lesc->sc_intr = intr_establish(64, USER_VEC, 0,
    445 				(hw_ifun_t)le_intr, lesc)) == NULL) {
    446 		printf("le_vme_attach: Can't establish interrupt\n");
    447 		return;
    448 	}
    449 
    450 	/*
    451 	 * Notify the card of the vector
    452 	 */
    453 	switch (lesc->sc_type) {
    454 		case LE_OLD_RIEBL:
    455 		case LE_NEW_RIEBL:
    456 			bus_space_write_2(va->va_memt, memh, RIEBL_IVEC_ADDR,
    457 								64 + 64);
    458 			break;
    459 		case LE_PAM:
    460 			bus_space_write_1(va->va_iot, ioh, LER_IVEC, 64 + 64);
    461 			break;
    462 		case LE_BVME410:
    463 			bus_space_write_2(va->va_iot, ioh, BVME410_IVEC, 64 + 64);
    464 			break;
    465 	}
    466 
    467 	/*
    468 	 * Unmask the VME-interrupt we're on
    469 	 */
    470 	if (machineid & ATARI_TT)
    471 		SCU->vme_mask |= 1 << va->va_irq;
    472 }
    473 
    474 /*
    475  * True if 'addr' containe within [start,len]
    476  */
    477 #define WITHIN(start, len, addr)	\
    478 		((addr >= start) && ((addr) <= ((start) + (len))))
    479 static void
    480 riebl_skip_reserved_area(sc)
    481 	struct lance_softc	*sc;
    482 {
    483 	int	offset = 0;
    484 	int	i;
    485 
    486 	for(i = 0; i < sc->sc_nrbuf; i++) {
    487 		if (WITHIN(sc->sc_rbufaddr[i], LEBLEN, RIEBL_RES_START)
    488 		    || WITHIN(sc->sc_rbufaddr[i], LEBLEN, RIEBL_RES_END)) {
    489 			offset = RIEBL_RES_END - sc->sc_rbufaddr[i];
    490 		}
    491 		sc->sc_rbufaddr[i] += offset;
    492 	}
    493 
    494 	for(i = 0; i < sc->sc_ntbuf; i++) {
    495 		if (WITHIN(sc->sc_tbufaddr[i], LEBLEN, RIEBL_RES_START)
    496 		    || WITHIN(sc->sc_tbufaddr[i], LEBLEN, RIEBL_RES_END)) {
    497 			offset = RIEBL_RES_END - sc->sc_tbufaddr[i];
    498 		}
    499 		sc->sc_tbufaddr[i] += offset;
    500 	}
    501 }
    502 
    503 static int
    504 nm93c06_read(iot, ioh, nm93c06reg)
    505 	bus_space_tag_t iot;
    506 	bus_space_handle_t ioh;
    507 	int nm93c06reg;
    508 {
    509 	int bar;
    510 	int shift;
    511 	int bits = 0x180 | (nm93c06reg & 0xf);
    512 	int data = 0;
    513 
    514 	bar = 1<<BVME410_CS_SHIFT;
    515 	bus_space_write_2(iot, ioh, BVME410_BAR, bar);
    516 	delay(1); /* tCSS = 1 us */
    517 	for (shift = 9; shift >= 0; shift--) {
    518 		if (((bits >> shift) & 1) == 1)
    519 			bar |= 1<<BVME410_DIN_SHIFT;
    520 		else
    521 			bar &= ~(1<<BVME410_DIN_SHIFT);
    522 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
    523 		delay(1); /* tDIS = 0.4 us */
    524 		bar |= 1<<BVME410_CLK_SHIFT;
    525 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
    526 		delay(2); /* tSKH = 1 us, tSKH + tSKL >= 4 us */
    527 		bar &= ~(1<<BVME410_CLK_SHIFT);
    528 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
    529 		delay(2); /* tSKL = 1 us, tSKH + tSKL >= 4 us */
    530 	}
    531 	bar &= ~(1<<BVME410_DIN_SHIFT);
    532 	for (shift = 15; shift >= 0; shift--) {
    533 		delay(1); /* tDIS = 100 ns, BVM manual says 0.4 us */
    534 		bar |= 1<<BVME410_CLK_SHIFT;
    535 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
    536 		delay(2); /* tSKH = 1 us, tSKH + tSKL >= 4 us */
    537 		data |= (bus_space_read_2(iot, ioh, BVME410_BAR) & 1) << shift;
    538 		bar &= ~(1<<BVME410_CLK_SHIFT);
    539 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
    540 		delay(2); /* tSKL = 1 us, tSKH + tSKL >= 4 us */
    541 	}
    542 	bar &= ~(1<<BVME410_CS_SHIFT);
    543 	bus_space_write_2(iot, ioh, BVME410_BAR, bar);
    544 	delay(1); /* tCS = 1 us */
    545 	return data;
    546 }
    547 
    548 static int
    549 bvme410_mem_size(memt, mem_addr)
    550 	bus_space_tag_t memt;
    551 	u_long mem_addr;
    552 {
    553 	bus_space_handle_t memh;
    554 	int r;
    555 
    556 	if (bus_space_map(memt, mem_addr, 256*1024, 0, &memh))
    557 		return VMECF_MEMSIZ_DEFAULT;
    558 	if (!bus_space_peek_1(memt, memh, 0)) {
    559 		bus_space_unmap(memt, (caddr_t)mem_addr, 256*1024);
    560 		return VMECF_MEMSIZ_DEFAULT;
    561 	}
    562 	bus_space_write_1(memt, memh, 0, 128);
    563 	bus_space_write_1(memt, memh, 64*1024, 32);
    564 	bus_space_write_1(memt, memh, 32*1024, 8);
    565 	r = (int)(bus_space_read_1(memt, memh, 0) * 2048);
    566 	bus_space_unmap(memt, (caddr_t)mem_addr, 256*1024);
    567 	return r;
    568 }
    569 
    570 /*
    571  * Need to be careful when writing to the bvme410 dual port memory.
    572  * Continue writing each byte until it reads back the same.
    573  */
    574 
    575 static void
    576 bvme410_copytobuf(sc, from, boff, len)
    577 	struct lance_softc *sc;
    578 	void *from;
    579 	int boff, len;
    580 {
    581 	volatile char *buf = (volatile char *) sc->sc_mem;
    582 	char *f = (char *) from;
    583 
    584 	for (buf += boff; len; buf++,f++,len--)
    585 		while (*buf != *f)
    586 			*buf = *f;
    587 }
    588 
    589 static void
    590 bvme410_zerobuf(sc, boff, len)
    591 	struct lance_softc *sc;
    592 	int boff, len;
    593 {
    594 	volatile char *buf = (volatile char *)sc->sc_mem;
    595 
    596 	for (buf += boff; len; buf++,len--)
    597 		while (*buf != '\0')
    598 			*buf = '\0';
    599 }
    600 
    601