Home | History | Annotate | Line # | Download | only in vme
if_le_vme.c revision 1.9
      1 /*	$NetBSD: if_le_vme.c,v 1.9 1998/12/10 15:55:25 leo Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998 maximum entropy.  All rights reserved.
      5  * Copyright (c) 1997 Leo Weppelman.  All rights reserved.
      6  * Copyright (c) 1995 Charles M. Hannum.  All rights reserved.
      7  * Copyright (c) 1992, 1993
      8  *	The Regents of the University of California.  All rights reserved.
      9  *
     10  * This code is derived from software contributed to Berkeley by
     11  * Ralph Campbell and Rick Macklem.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  * 3. All advertising materials mentioning features or use of this software
     22  *    must display the following acknowledgement:
     23  *	This product includes software developed by the University of
     24  *	California, Berkeley and its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)if_le.c	8.2 (Berkeley) 11/16/93
     42  */
     43 
     44 #include "opt_inet.h"
     45 #include "bpfilter.h"
     46 
     47 #include <sys/param.h>
     48 #include <sys/systm.h>
     49 #include <sys/mbuf.h>
     50 #include <sys/syslog.h>
     51 #include <sys/socket.h>
     52 #include <sys/device.h>
     53 
     54 #include <net/if.h>
     55 #include <net/if_media.h>
     56 #include <net/if_ether.h>
     57 
     58 #ifdef INET
     59 #include <netinet/in.h>
     60 #include <netinet/if_inarp.h>
     61 #endif
     62 
     63 #include <machine/cpu.h>
     64 #include <machine/bus.h>
     65 #include <machine/iomap.h>
     66 #include <machine/scu.h>
     67 
     68 #include <atari/atari/device.h>
     69 #include <atari/atari/intr.h>
     70 
     71 #include <dev/ic/lancereg.h>
     72 #include <dev/ic/lancevar.h>
     73 #include <dev/ic/am7990reg.h>
     74 #include <dev/ic/am7990var.h>
     75 
     76 #include <atari/vme/vmevar.h>
     77 #include <atari/vme/if_levar.h>
     78 
     79 /*
     80  * All cards except BVME410 have 64KB RAM. However.... On the Riebl cards the
     81  * area between the offsets 0xee70-0xeec0 is used to store config data.
     82  */
     83 struct le_addresses {
     84 	u_long	reg_addr;
     85 	u_long	mem_addr;
     86 	int	irq;
     87 	int	reg_size;
     88 	int	mem_size;
     89 	int	type_hint;
     90 } lestd[] = {
     91 	{ 0xfe00fff0, 0xfe010000, IRQUNK, 16, 64*1024,
     92 				LE_OLD_RIEBL|LE_NEW_RIEBL }, /* Riebl	*/
     93 	{ 0xffcffff0, 0xffcf0000,      5, 16, 64*1024,
     94 				LE_PAM },		     /* PAM	*/
     95 	{ 0xfecffff0, 0xfecf0000,      5, 16, 64*1024,
     96 				LE_ROTHRON },		     /* Rhotron	*/
     97 	{ 0xfeff4100, 0xfe000000,      4,  8, VMECF_MEMSIZ_DEFAULT,
     98 				LE_BVME410 }		     /* BVME410 */
     99 };
    100 
    101 #define	NLESTD	(sizeof(lestd) / sizeof(lestd[0]))
    102 
    103 /*
    104  * Default mac for RIEBL cards without a (working) battery. The first 4 bytes
    105  * are the manufacturer id.
    106  */
    107 static u_char riebl_def_mac[] = {
    108 	0x00, 0x00, 0x36, 0x04, 0x00, 0x00
    109 };
    110 
    111 static int le_intr __P((struct le_softc *, int));
    112 static void lepseudointr __P((struct le_softc *, void *));
    113 static int le_vme_match __P((struct device *, struct cfdata *, void *));
    114 static void le_vme_attach __P((struct device *, struct device *, void *));
    115 static int probe_addresses __P((bus_space_tag_t *, bus_space_tag_t *,
    116 				bus_space_handle_t *, bus_space_handle_t *));
    117 static void riebl_skip_reserved_area __P((struct lance_softc *));
    118 static int nm93c06_read __P((bus_space_tag_t, bus_space_handle_t, int));
    119 static int bvme410_probe __P((bus_space_tag_t, bus_space_handle_t));
    120 static int bvme410_mem_size __P((bus_space_tag_t, u_long));
    121 static void bvme410_copytobuf __P((struct lance_softc *, void *, int, int));
    122 static void bvme410_zerobuf __P((struct lance_softc *, int, int));
    123 
    124 struct cfattach le_vme_ca = {
    125 	sizeof(struct le_softc), le_vme_match, le_vme_attach
    126 };
    127 
    128 #if defined(_KERNEL) && !defined(_LKM)
    129 #include "opt_ddb.h"
    130 #endif
    131 
    132 #ifdef DDB
    133 #define	integrate
    134 #define hide
    135 #else
    136 #define	integrate	static __inline
    137 #define hide		static
    138 #endif
    139 
    140 hide void lewrcsr __P((struct lance_softc *, u_int16_t, u_int16_t));
    141 hide u_int16_t lerdcsr __P((struct lance_softc *, u_int16_t));
    142 
    143 hide void
    144 lewrcsr(sc, port, val)
    145 	struct lance_softc	*sc;
    146 	u_int16_t		port, val;
    147 {
    148 	struct le_softc		*lesc = (struct le_softc *)sc;
    149 	int			s;
    150 
    151 	s = splhigh();
    152 	bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RAP, port);
    153 	bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RDP, val);
    154 	splx(s);
    155 }
    156 
    157 hide u_int16_t
    158 lerdcsr(sc, port)
    159 	struct lance_softc	*sc;
    160 	u_int16_t		port;
    161 {
    162 	struct le_softc		*lesc = (struct le_softc *)sc;
    163 	u_int16_t		val;
    164 	int			s;
    165 
    166 	s = splhigh();
    167 	bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RAP, port);
    168 	val = bus_space_read_2(lesc->sc_iot, lesc->sc_ioh, LER_RDP);
    169 	splx(s);
    170 
    171 	return (val);
    172 }
    173 
    174 static int
    175 le_vme_match(parent, cfp, aux)
    176 	struct device	*parent;
    177 	struct cfdata	*cfp;
    178 	void		*aux;
    179 {
    180 	struct vme_attach_args	*va = aux;
    181 	int			i;
    182 	bus_space_tag_t		iot;
    183 	bus_space_tag_t		memt;
    184 	bus_space_handle_t	ioh;
    185 	bus_space_handle_t	memh;
    186 
    187 	iot  = va->va_iot;
    188 	memt = va->va_memt;
    189 
    190 	for (i = 0; i < NLESTD; i++) {
    191 		struct le_addresses	*le_ap = &lestd[i];
    192 		int			found  = 0;
    193 
    194 		if ((va->va_iobase != IOBASEUNK)
    195 		     && (va->va_iobase != le_ap->reg_addr))
    196 			continue;
    197 
    198 		if ((va->va_maddr != MADDRUNK)
    199 		     && (va->va_maddr != le_ap->mem_addr))
    200 			continue;
    201 
    202 		if ((le_ap->irq != IRQUNK) && (va->va_irq != le_ap->irq))
    203 			continue;
    204 
    205 		if (bus_space_map(iot, le_ap->reg_addr, le_ap->reg_size, 0, &ioh)) {
    206 			printf("leprobe: cannot map io-area\n");
    207 			return (0);
    208 		}
    209 		if (le_ap->mem_size == VMECF_MEMSIZ_DEFAULT) {
    210 			if (bvme410_probe(iot, ioh)) {
    211 				bus_space_write_2(iot, ioh, BVME410_BAR, 0x1); /* XXX */
    212 				le_ap->mem_size = bvme410_mem_size(memt, le_ap->mem_addr);
    213 			}
    214 		}
    215 		if (le_ap->mem_size == VMECF_MEMSIZ_DEFAULT) {
    216 			bus_space_unmap(iot, (caddr_t)le_ap->reg_addr, le_ap->reg_size);
    217 			continue;
    218 		}
    219 
    220 		if (bus_space_map(memt, le_ap->mem_addr, le_ap->mem_size, 0, &memh)) {
    221 			bus_space_unmap(iot, (caddr_t)le_ap->reg_addr, le_ap->reg_size);
    222 			printf("leprobe: cannot map memory-area\n");
    223 			return (0);
    224 		}
    225 		found = probe_addresses(&iot, &memt, &ioh, &memh);
    226 		bus_space_unmap(iot, (caddr_t)le_ap->reg_addr, le_ap->reg_size);
    227 		bus_space_unmap(memt, (caddr_t)le_ap->mem_addr, le_ap->mem_size);
    228 
    229 		if (found) {
    230 			va->va_iobase = le_ap->reg_addr;
    231 			va->va_iosize = le_ap->reg_size;
    232 			va->va_maddr  = le_ap->mem_addr;
    233 			va->va_msize  = le_ap->mem_size;
    234 			va->va_aux    = le_ap;
    235 			if (va->va_irq == IRQUNK)
    236 				va->va_irq = le_ap->irq;
    237 			return 1;
    238 		}
    239     }
    240     return (0);
    241 }
    242 
    243 static int
    244 probe_addresses(iot, memt, ioh, memh)
    245 bus_space_tag_t		*iot;
    246 bus_space_tag_t		*memt;
    247 bus_space_handle_t	*ioh;
    248 bus_space_handle_t	*memh;
    249 {
    250 	/*
    251 	 * Test accesibility of register and memory area
    252 	 */
    253 	if(!bus_space_peek_2(*iot, *ioh, LER_RDP))
    254 		return 0;
    255 	if(!bus_space_peek_1(*memt, *memh, 0))
    256 		return 0;
    257 
    258 	/*
    259 	 * Test for writable memory
    260 	 */
    261 	bus_space_write_2(*memt, *memh, 0, 0xa5a5);
    262 	if (bus_space_read_2(*memt, *memh, 0) != 0xa5a5)
    263 		return 0;
    264 
    265 	/*
    266 	 * Test writability of selector port.
    267 	 */
    268 	bus_space_write_2(*iot, *ioh, LER_RAP, LE_CSR1);
    269 	if (bus_space_read_2(*iot, *ioh, LER_RAP) != LE_CSR1)
    270 		return 0;
    271 
    272 	/*
    273 	 * Do a small register test
    274 	 */
    275 	bus_space_write_2(*iot, *ioh, LER_RAP, LE_CSR0);
    276 	bus_space_write_2(*iot, *ioh, LER_RDP, LE_C0_INIT | LE_C0_STOP);
    277 	if (bus_space_read_2(*iot, *ioh, LER_RDP) != LE_C0_STOP)
    278 		return 0;
    279 
    280 	bus_space_write_2(*iot, *ioh, LER_RDP, LE_C0_STOP);
    281 	if (bus_space_read_2(*iot, *ioh, LER_RDP) != LE_C0_STOP)
    282 		return 0;
    283 
    284 	return 1;
    285 }
    286 
    287 /*
    288  * Interrupt mess. Because the card's interrupt is hardwired to either
    289  * ipl5 or ipl3 (mostly on ipl5) and raising splnet to spl5() just won't do
    290  * (it kills the serial at the least), we use a 2-level interrupt sceme. The
    291  * card interrupt is routed to 'le_intr'. If the previous ipl was below
    292  * splnet, just call the mi-function. If not, save the interrupt status,
    293  * turn off card interrupts (the card is *very* persistent) and arrange
    294  * for a softint 'callback' through 'lepseudointr'.
    295  */
    296 static int
    297 le_intr(lesc, sr)
    298 	struct le_softc	*lesc;
    299 	int		 sr;
    300 {
    301 	struct lance_softc	*sc = &lesc->sc_am7990.lsc;
    302 	u_int16_t		csr0;
    303 
    304 	if ((sr & PSL_IPL) < IPL_NET)
    305 		am7990_intr(sc);
    306 	else {
    307 		sc->sc_saved_csr0 = csr0 = lerdcsr(sc, LE_CSR0);
    308 		lewrcsr(sc, LE_CSR0, csr0 & ~LE_C0_INEA);
    309 		add_sicallback((si_farg)lepseudointr, lesc, sc);
    310 	}
    311 	return 1;
    312 }
    313 
    314 
    315 static void
    316 lepseudointr(lesc, sc)
    317 struct le_softc	*lesc;
    318 void		*sc;
    319 {
    320 	int	s;
    321 
    322 	s = splx(lesc->sc_splval);
    323 	am7990_intr(sc);
    324 	splx(s);
    325 }
    326 
    327 static void
    328 le_vme_attach(parent, self, aux)
    329 	struct device *parent, *self;
    330 	void *aux;
    331 {
    332 	struct le_softc		*lesc = (struct le_softc *)self;
    333 	struct lance_softc	*sc = &lesc->sc_am7990.lsc;
    334 	struct vme_attach_args	*va = aux;
    335 	bus_space_handle_t	ioh;
    336 	bus_space_handle_t	memh;
    337 	struct le_addresses	*le_ap;
    338 	int			i;
    339 
    340 	printf("\n%s: ", sc->sc_dev.dv_xname);
    341 
    342 	if (bus_space_map(va->va_iot, va->va_iobase, va->va_iosize, 0, &ioh))
    343 		panic("leattach: cannot map io-area\n");
    344 	if (bus_space_map(va->va_memt, va->va_maddr, va->va_msize, 0, &memh))
    345 		panic("leattach: cannot map mem-area\n");
    346 
    347 	lesc->sc_iot    = va->va_iot;
    348 	lesc->sc_ioh    = ioh;
    349 	lesc->sc_memt   = va->va_memt;
    350 	lesc->sc_memh   = memh;
    351 	lesc->sc_splval = (va->va_irq << 8) | PSL_S; /* XXX */
    352 	le_ap           = (struct le_addresses *)va->va_aux;
    353 
    354 	/*
    355 	 * Go on to find board type
    356 	 */
    357 	if ((le_ap->type_hint & LE_PAM)
    358 		&& bus_space_peek_1(va->va_iot, ioh, LER_EEPROM)) {
    359 		printf("PAM card");
    360 		lesc->sc_type = LE_PAM;
    361 		bus_space_read_1(va->va_iot, ioh, LER_MEME);
    362 	}
    363 	else if((le_ap->type_hint & LE_BVME410)
    364 		&& bvme410_probe(va->va_iot, ioh)) {
    365 		printf("BVME410");
    366 		lesc->sc_type = LE_BVME410;
    367 	}
    368 	else if (le_ap->type_hint & (LE_NEW_RIEBL|LE_OLD_RIEBL)) {
    369 		printf("Riebl card");
    370 		if(bus_space_read_4(va->va_memt, memh, RIEBL_MAGIC_ADDR)
    371 								== RIEBL_MAGIC)
    372 			lesc->sc_type = LE_NEW_RIEBL;
    373 		else {
    374 			printf("(without battery) ");
    375 			lesc->sc_type = LE_OLD_RIEBL;
    376 		}
    377 	}
    378 	else printf("le_vme_attach: Unsupported card!");
    379 
    380 	switch (lesc->sc_type) {
    381 	    case LE_BVME410:
    382 		sc->sc_copytodesc   = bvme410_copytobuf;
    383 		sc->sc_copyfromdesc = lance_copyfrombuf_contig;
    384 		sc->sc_copytobuf    = bvme410_copytobuf;
    385 		sc->sc_copyfrombuf  = lance_copyfrombuf_contig;
    386 		sc->sc_zerobuf      = bvme410_zerobuf;
    387 		break;
    388 	    default:
    389 		sc->sc_copytodesc   = lance_copytobuf_contig;
    390 		sc->sc_copyfromdesc = lance_copyfrombuf_contig;
    391 		sc->sc_copytobuf    = lance_copytobuf_contig;
    392 		sc->sc_copyfrombuf  = lance_copyfrombuf_contig;
    393 		sc->sc_zerobuf      = lance_zerobuf_contig;
    394 		break;
    395 	}
    396 
    397 	sc->sc_rdcsr   = lerdcsr;
    398 	sc->sc_wrcsr   = lewrcsr;
    399 	sc->sc_hwinit  = NULL;
    400 	sc->sc_conf3   = LE_C3_BSWP;
    401 	sc->sc_addr    = 0;
    402 	sc->sc_memsize = va->va_msize;
    403 	sc->sc_mem     = (void *)memh; /* XXX */
    404 
    405 	/*
    406 	 * Get MAC address
    407 	 */
    408 	switch (lesc->sc_type) {
    409 	    case LE_OLD_RIEBL:
    410 		bcopy(riebl_def_mac, sc->sc_enaddr,
    411 					sizeof(sc->sc_enaddr));
    412 		break;
    413 	    case LE_NEW_RIEBL:
    414 		for (i = 0; i < sizeof(sc->sc_enaddr); i++)
    415 		    sc->sc_enaddr[i] =
    416 			bus_space_read_1(va->va_memt, memh, i + RIEBL_MAC_ADDR);
    417 			break;
    418 	    case LE_PAM:
    419 		i = bus_space_read_1(va->va_iot, ioh, LER_EEPROM);
    420 		for (i = 0; i < sizeof(sc->sc_enaddr); i++) {
    421 		    sc->sc_enaddr[i] =
    422 			(bus_space_read_2(va->va_memt, memh, 2 * i) << 4) |
    423 			(bus_space_read_2(va->va_memt, memh, 2 * i + 1) & 0xf);
    424 		}
    425 		i = bus_space_read_1(va->va_iot, ioh, LER_MEME);
    426 		break;
    427 	    case LE_BVME410:
    428 		for (i = 0; i < (sizeof(sc->sc_enaddr) >> 1); i++) {
    429 		    u_int16_t tmp;
    430 
    431 		    tmp = nm93c06_read(va->va_iot, ioh, i);
    432 		    sc->sc_enaddr[2 * i] = (tmp >> 8) & 0xff;
    433 		    sc->sc_enaddr[2 * i + 1] = tmp & 0xff;
    434 		}
    435 		bus_space_write_2(va->va_iot, ioh, BVME410_BAR, 0x1); /* XXX */
    436 	}
    437 
    438 	am7990_config(&lesc->sc_am7990);
    439 
    440 	if ((lesc->sc_type == LE_OLD_RIEBL) || (lesc->sc_type == LE_NEW_RIEBL))
    441 		riebl_skip_reserved_area(sc);
    442 
    443 	/*
    444 	 * XXX: We always use uservector 64....
    445 	 */
    446 	if ((lesc->sc_intr = intr_establish(64, USER_VEC, 0,
    447 				(hw_ifun_t)le_intr, lesc)) == NULL) {
    448 		printf("le_vme_attach: Can't establish interrupt\n");
    449 		return;
    450 	}
    451 
    452 	/*
    453 	 * Notify the card of the vector
    454 	 */
    455 	switch (lesc->sc_type) {
    456 		case LE_OLD_RIEBL:
    457 		case LE_NEW_RIEBL:
    458 			bus_space_write_2(va->va_memt, memh, RIEBL_IVEC_ADDR,
    459 								64 + 64);
    460 			break;
    461 		case LE_PAM:
    462 			bus_space_write_1(va->va_iot, ioh, LER_IVEC, 64 + 64);
    463 			break;
    464 		case LE_BVME410:
    465 			bus_space_write_2(va->va_iot, ioh, BVME410_IVEC, 64 + 64);
    466 			break;
    467 	}
    468 
    469 	/*
    470 	 * Unmask the VME-interrupt we're on
    471 	 */
    472 	if (machineid & ATARI_TT)
    473 		SCU->vme_mask |= 1 << va->va_irq;
    474 }
    475 
    476 /*
    477  * True if 'addr' containe within [start,len]
    478  */
    479 #define WITHIN(start, len, addr)	\
    480 		((addr >= start) && ((addr) <= ((start) + (len))))
    481 static void
    482 riebl_skip_reserved_area(sc)
    483 	struct lance_softc	*sc;
    484 {
    485 	int	offset = 0;
    486 	int	i;
    487 
    488 	for(i = 0; i < sc->sc_nrbuf; i++) {
    489 		if (WITHIN(sc->sc_rbufaddr[i], LEBLEN, RIEBL_RES_START)
    490 		    || WITHIN(sc->sc_rbufaddr[i], LEBLEN, RIEBL_RES_END)) {
    491 			offset = RIEBL_RES_END - sc->sc_rbufaddr[i];
    492 		}
    493 		sc->sc_rbufaddr[i] += offset;
    494 	}
    495 
    496 	for(i = 0; i < sc->sc_ntbuf; i++) {
    497 		if (WITHIN(sc->sc_tbufaddr[i], LEBLEN, RIEBL_RES_START)
    498 		    || WITHIN(sc->sc_tbufaddr[i], LEBLEN, RIEBL_RES_END)) {
    499 			offset = RIEBL_RES_END - sc->sc_tbufaddr[i];
    500 		}
    501 		sc->sc_tbufaddr[i] += offset;
    502 	}
    503 }
    504 
    505 static int
    506 nm93c06_read(iot, ioh, nm93c06reg)
    507 	bus_space_tag_t iot;
    508 	bus_space_handle_t ioh;
    509 	int nm93c06reg;
    510 {
    511 	int bar;
    512 	int shift;
    513 	int bits = 0x180 | (nm93c06reg & 0xf);
    514 	int data = 0;
    515 
    516 	bar = 1<<BVME410_CS_SHIFT;
    517 	bus_space_write_2(iot, ioh, BVME410_BAR, bar);
    518 	delay(1); /* tCSS = 1 us */
    519 	for (shift = 9; shift >= 0; shift--) {
    520 		if (((bits >> shift) & 1) == 1)
    521 			bar |= 1<<BVME410_DIN_SHIFT;
    522 		else
    523 			bar &= ~(1<<BVME410_DIN_SHIFT);
    524 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
    525 		delay(1); /* tDIS = 0.4 us */
    526 		bar |= 1<<BVME410_CLK_SHIFT;
    527 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
    528 		delay(2); /* tSKH = 1 us, tSKH + tSKL >= 4 us */
    529 		bar &= ~(1<<BVME410_CLK_SHIFT);
    530 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
    531 		delay(2); /* tSKL = 1 us, tSKH + tSKL >= 4 us */
    532 	}
    533 	bar &= ~(1<<BVME410_DIN_SHIFT);
    534 	for (shift = 15; shift >= 0; shift--) {
    535 		delay(1); /* tDIS = 100 ns, BVM manual says 0.4 us */
    536 		bar |= 1<<BVME410_CLK_SHIFT;
    537 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
    538 		delay(2); /* tSKH = 1 us, tSKH + tSKL >= 4 us */
    539 		data |= (bus_space_read_2(iot, ioh, BVME410_BAR) & 1) << shift;
    540 		bar &= ~(1<<BVME410_CLK_SHIFT);
    541 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
    542 		delay(2); /* tSKL = 1 us, tSKH + tSKL >= 4 us */
    543 	}
    544 	bar &= ~(1<<BVME410_CS_SHIFT);
    545 	bus_space_write_2(iot, ioh, BVME410_BAR, bar);
    546 	delay(1); /* tCS = 1 us */
    547 	return data;
    548 }
    549 
    550 static int
    551 bvme410_probe(iot, ioh)
    552 	bus_space_tag_t iot;
    553 	bus_space_handle_t ioh;
    554 {
    555 	if (!bus_space_peek_2(iot, ioh, BVME410_IVEC))
    556 		return 0;
    557 
    558 	bus_space_write_2(iot, ioh, BVME410_IVEC, 0x0000);
    559 	if (bus_space_read_2(iot, ioh, BVME410_IVEC) != 0xff00)
    560 		return 0;
    561 
    562 	bus_space_write_2(iot, ioh, BVME410_IVEC, 0xffff);
    563 	if (bus_space_read_2(iot, ioh, BVME410_IVEC) != 0xffff)
    564 		return 0;
    565 
    566 	bus_space_write_2(iot, ioh, BVME410_IVEC, 0xa5a5);
    567 	if (bus_space_read_2(iot, ioh, BVME410_IVEC) != 0xffa5)
    568 		return 0;
    569 
    570 	return 1;
    571 }
    572 
    573 static int
    574 bvme410_mem_size(memt, mem_addr)
    575 	bus_space_tag_t memt;
    576 	u_long mem_addr;
    577 {
    578 	bus_space_handle_t memh;
    579 	int r;
    580 
    581 	if (bus_space_map(memt, mem_addr, 256*1024, 0, &memh))
    582 		return VMECF_MEMSIZ_DEFAULT;
    583 	if (!bus_space_peek_1(memt, memh, 0)) {
    584 		bus_space_unmap(memt, (caddr_t)mem_addr, 256*1024);
    585 		return VMECF_MEMSIZ_DEFAULT;
    586 	}
    587 	bus_space_write_1(memt, memh, 0, 128);
    588 	bus_space_write_1(memt, memh, 64*1024, 32);
    589 	bus_space_write_1(memt, memh, 32*1024, 8);
    590 	r = (int)(bus_space_read_1(memt, memh, 0) * 2048);
    591 	bus_space_unmap(memt, (caddr_t)mem_addr, 256*1024);
    592 	return r;
    593 }
    594 
    595 /*
    596  * Need to be careful when writing to the bvme410 dual port memory.
    597  * Continue writing each byte until it reads back the same.
    598  */
    599 
    600 static void
    601 bvme410_copytobuf(sc, from, boff, len)
    602 	struct lance_softc *sc;
    603 	void *from;
    604 	int boff, len;
    605 {
    606 	volatile char *buf = (volatile char *) sc->sc_mem;
    607 	char *f = (char *) from;
    608 
    609 	for (buf += boff; len; buf++,f++,len--)
    610 		do {
    611  			*buf = *f;
    612 		} while (*buf != *f);
    613 }
    614 
    615 static void
    616 bvme410_zerobuf(sc, boff, len)
    617 	struct lance_softc *sc;
    618 	int boff, len;
    619 {
    620 	volatile char *buf = (volatile char *)sc->sc_mem;
    621 
    622 	for (buf += boff; len; buf++,len--)
    623 		do {
    624  			*buf = '\0';
    625 		} while (*buf != '\0');
    626 }
    627 
    628