Home | History | Annotate | Line # | Download | only in include
vmparam.h revision 1.1
      1 /*	$NetBSD: vmparam.h,v 1.1 2001/05/14 18:23:16 drochner Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1988 University of Utah.
      5  * Copyright (c) 1982, 1986, 1990, 1993
      6  *	The Regents of the University of California.  All rights reserved.
      7  *
      8  * This code is derived from software contributed to Berkeley by
      9  * the Systems Programming Group of the University of Utah Computer
     10  * Science Department.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  * from: Utah $Hdr: vmparam.h 1.16 91/01/18$
     41  *
     42  *	@(#)vmparam.h	8.2 (Berkeley) 4/19/94
     43  */
     44 
     45 #ifndef _MACHINE_VMPARAM_H_
     46 #define	_MACHINE_VMPARAM_H_
     47 
     48 /*
     49  * Machine dependent constants for cesfic
     50  */
     51 
     52 /*
     53  * We use 4K pages on the cesfic.  Override the PAGE_* definitions
     54  * to be compile-time constants.
     55  */
     56 #define	PAGE_SHIFT	12
     57 #define	PAGE_SIZE	(1 << PAGE_SHIFT)
     58 #define	PAGE_MASK	(PAGE_SIZE - 1)
     59 
     60 /*
     61  * USRTEXT is the start of the user text/data space, while USRSTACK
     62  * is the top (end) of the user stack.  LOWPAGES and HIGHPAGES are
     63  * the number of pages from the beginning of the P0 region to the
     64  * beginning of the text and from the beginning of the P1 region to the
     65  * beginning of the stack respectively.
     66  *
     67  * NOTE: the ONLY reason that HIGHPAGES is 0x100 instead of UPAGES (3)
     68  * is for HPUX compatibility.  Why??  Because HPUX's debuggers
     69  * have the user's stack hard-wired at FFF00000 for post-mortems,
     70  * and we must be compatible...
     71  */
     72 #define	USRTEXT		8192			/* Must equal __LDPGSZ */
     73 #define	USRSTACK	(-HIGHPAGES*NBPG)	/* Start of user stack */
     74 #define	BTOPUSRSTACK	(0x100000-HIGHPAGES)	/* btop(USRSTACK) */
     75 #define P1PAGES		0x100000
     76 #define	LOWPAGES	0
     77 #define HIGHPAGES	(0x100000/NBPG)
     78 
     79 /*
     80  * Virtual memory related constants, all in bytes
     81  */
     82 #ifndef MAXTSIZ
     83 #define	MAXTSIZ		(8*1024*1024)		/* max text size */
     84 #endif
     85 #ifndef DFLDSIZ
     86 #define	DFLDSIZ		(32*1024*1024)		/* initial data size limit */
     87 #endif
     88 #ifndef MAXDSIZ
     89 #define	MAXDSIZ		(64*1024*1024)		/* max data size */
     90 #endif
     91 #ifndef	DFLSSIZ
     92 #define	DFLSSIZ		(512*1024)		/* initial stack size limit */
     93 #endif
     94 #ifndef	MAXSSIZ
     95 #define	MAXSSIZ		MAXDSIZ			/* max stack size */
     96 #endif
     97 
     98 /*
     99  * Default sizes of swap allocation chunks (see dmap.h).
    100  * The actual values may be changed in vminit() based on MAXDSIZ.
    101  * With MAXDSIZ of 16Mb and NDMAP of 38, dmmax will be 1024.
    102  * DMMIN should be at least ctod(1) so that vtod() works.
    103  * vminit() insures this.
    104  */
    105 #define	DMMIN	32			/* smallest swap allocation */
    106 #define	DMMAX	4096			/* largest potential swap allocation */
    107 
    108 /*
    109  * Sizes of the system and user portions of the system page table.
    110  */
    111 /* SYSPTSIZE IS SILLY; IT SHOULD BE COMPUTED AT BOOT TIME */
    112 #define	SYSPTSIZE	(2 * NPTEPG)	/* 8mb */
    113 #define	USRPTSIZE 	(1 * NPTEPG)	/* 4mb */
    114 
    115 /*
    116  * PTEs for mapping user space into the kernel for phyio operations.
    117  * One page is enough to handle 4Mb of simultaneous raw IO operations.
    118  */
    119 #ifndef USRIOSIZE
    120 #define USRIOSIZE	(1 * NPTEPG)	/* 4mb */
    121 #endif
    122 
    123 /*
    124  * PTEs for system V style shared memory.
    125  * This is basically slop for kmempt which we actually allocate (malloc) from.
    126  */
    127 #ifndef SHMMAXPGS
    128 #define SHMMAXPGS	1024		/* 4mb */
    129 #endif
    130 
    131 /*
    132  * Boundary at which to place first MAPMEM segment if not explicitly
    133  * specified.  Should be a power of two.  This allows some slop for
    134  * the data segment to grow underneath the first mapped segment.
    135  */
    136 #define MMSEG		0x200000
    137 
    138 /*
    139  * The size of the clock loop.
    140  */
    141 #define	LOOPPAGES	(maxfree - firstfree)
    142 
    143 /*
    144  * The time for a process to be blocked before being very swappable.
    145  * This is a number of seconds which the system takes as being a non-trivial
    146  * amount of real time.  You probably shouldn't change this;
    147  * it is used in subtle ways (fractions and multiples of it are, that is, like
    148  * half of a ``long time'', almost a long time, etc.)
    149  * It is related to human patience and other factors which don't really
    150  * change over time.
    151  */
    152 #define	MAXSLP 		20
    153 
    154 /*
    155  * A swapped in process is given a small amount of core without being bothered
    156  * by the page replacement algorithm.  Basically this says that if you are
    157  * swapped in you deserve some resources.  We protect the last SAFERSS
    158  * pages against paging and will just swap you out rather than paging you.
    159  * Note that each process has at least UPAGES+CLSIZE pages which are not
    160  * paged anyways (this is currently 8+2=10 pages or 5k bytes), so this
    161  * number just means a swapped in process is given around 25k bytes.
    162  * Just for fun: current memory prices are 4600$ a megabyte on VAX (4/22/81),
    163  * so we loan each swapped in process memory worth 100$, or just admit
    164  * that we don't consider it worthwhile and swap it out to disk which costs
    165  * $30/mb or about $0.75.
    166  */
    167 #define	SAFERSS		4		/* nominal ``small'' resident set size
    168 					   protected against replacement */
    169 
    170 /*
    171  * DISKRPM is used to estimate the number of paging i/o operations
    172  * which one can expect from a single disk controller.
    173  */
    174 #define	DISKRPM		60
    175 
    176 /*
    177  * Klustering constants.  Klustering is the gathering
    178  * of pages together for pagein/pageout, while clustering
    179  * is the treatment of hardware page size as though it were
    180  * larger than it really is.
    181  *
    182  * KLMAX gives maximum cluster size in CLSIZE page (cluster-page)
    183  * units.  Note that ctod(KLMAX*CLSIZE) must be <= DMMIN in dmap.h.
    184  * ctob(KLMAX) should also be less than MAXPHYS (in vm_swp.c)
    185  * unless you like "big push" panics.
    186  */
    187 
    188 #define	KLMAX	(4/CLSIZE)
    189 #define	KLSEQL	(2/CLSIZE)		/* in klust if vadvise(VA_SEQL) */
    190 #define	KLIN	(4/CLSIZE)		/* default data/stack in klust */
    191 #define	KLTXT	(4/CLSIZE)		/* default text in klust */
    192 #define	KLOUT	(4/CLSIZE)
    193 
    194 /*
    195  * KLSDIST is the advance or retard of the fifo reclaim for sequential
    196  * processes data space.
    197  */
    198 #define	KLSDIST	3		/* klusters advance/retard for seq. fifo */
    199 
    200 /*
    201  * Paging thresholds (see vm_sched.c).
    202  * Strategy of 1/19/85:
    203  *	lotsfree is 512k bytes, but at most 1/4 of memory
    204  *	desfree is 200k bytes, but at most 1/8 of memory
    205  */
    206 #define	LOTSFREE	(512 * 1024)
    207 #define	LOTSFREEFRACT	4
    208 #define	DESFREE		(200 * 1024)
    209 #define	DESFREEFRACT	8
    210 
    211 /*
    212  * There are two clock hands, initially separated by HANDSPREAD bytes
    213  * (but at most all of user memory).  The amount of time to reclaim
    214  * a page once the pageout process examines it increases with this
    215  * distance and decreases as the scan rate rises.
    216  */
    217 #define	HANDSPREAD	(2 * 1024 * 1024)
    218 
    219 /*
    220  * The number of times per second to recompute the desired paging rate
    221  * and poke the pagedaemon.
    222  */
    223 #define	RATETOSCHEDPAGING	4
    224 
    225 /*
    226  * Believed threshold (in megabytes) for which interleaved
    227  * swapping area is desirable.
    228  */
    229 #define	LOTSOFMEM	2
    230 
    231 /*
    232  * Mach derived constants
    233  */
    234 
    235 /* user/kernel map constants */
    236 #define VM_MIN_ADDRESS		((vm_offset_t)0)
    237 #define VM_MAXUSER_ADDRESS	((vm_offset_t)0xFFF00000)
    238 #define VM_MAX_ADDRESS		((vm_offset_t)0xFFF00000)
    239 #define VM_MIN_KERNEL_ADDRESS	((vm_offset_t)0x00002000)
    240 #define VM_MAX_KERNEL_ADDRESS	((vm_offset_t)0xFFFFF000)
    241 
    242 /* virtual sizes (bytes) for various kernel submaps */
    243 #define VM_PHYS_SIZE		(USRIOSIZE*NBPG)
    244 
    245 /* # of kernel PT pages (initial only, can grow dynamically) */
    246 #define VM_KERNEL_PT_PAGES	((vm_size_t)2)		/* XXX: SYSPTSIZE */
    247 
    248 /* pcb base */
    249 #define	pcbb(p)		((u_int)(p)->p_addr)
    250 
    251 /* Use new VM page bootstrap interface. */
    252 #define	MACHINE_NEW_NONCONTIG
    253 
    254 /*
    255  * Constants which control the way the VM system deals with memory segments.
    256  * The cesfic only has one usable physical memory segment.
    257  */
    258 #define	VM_PHYSSEG_MAX		1
    259 #define	VM_PHYSSEG_STRAT	VM_PSTRAT_BSEARCH
    260 #define	VM_PHYSSEG_NOADD
    261 
    262 #define	VM_NFREELIST		1
    263 #define	VM_FREELIST_DEFAULT	0
    264 
    265 #define	__HAVE_PMAP_PHYSSEG
    266 
    267 /*
    268  * pmap-specific data stored in the vm_physmem[] array.
    269  */
    270 struct pmap_physseg {
    271 	struct pv_entry *pvent;		/* pv table for this seg */
    272 	char *attrs;			/* page attributes for this seg */
    273 };
    274 
    275 #endif /* _MACHINE_VMPARAM_H_ */
    276