zs.c revision 1.1 1 /* $NetBSD: zs.c,v 1.1 2008/03/27 15:21:46 tsutsui Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Zilog Z8530 Dual UART driver (machine-dependent part)
41 *
42 * Runs two serial lines per chip using slave drivers.
43 * Plain tty/async lines use the zs_async slave.
44 */
45
46 #include <sys/cdefs.h>
47 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.1 2008/03/27 15:21:46 tsutsui Exp $");
48
49 #include "opt_ddb.h"
50
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/conf.h>
54 #include <sys/device.h>
55 #include <sys/tty.h>
56 #include <sys/intr.h>
57
58 #include <dev/cons.h>
59 #include <dev/ic/z8530reg.h>
60
61 #include <machine/autoconf.h>
62 #include <machine/z8530var.h>
63
64 #include <cobalt/cobalt/console.h>
65
66 #include "ioconf.h"
67
68 /*
69 * Some warts needed by z8530tty.c -
70 * The default parity REALLY needs to be the same as the PROM uses,
71 * or you can not see messages done with printf during boot-up...
72 */
73 int zs_def_cflag = (CREAD | CS8 | HUPCL);
74
75 #define ZS_DEFSPEED 115200
76 #define PCLK (115200 * 96) /* 11.0592MHz */
77
78 #define ZS_DELAY() delay(2)
79
80 /* The layout of this is hardware-dependent (padding, order). */
81 /* A/~B (Channel A/Channel B) pin is connected to DAdr0 */
82 #define ZS_CHAN_A 0x01
83 #define ZS_CHAN_B 0x00
84
85 /* D/~C (Data/Control) pin is connected to DAdr1 */
86 #define ZS_CSR 0x00 /* ctrl, status, and indirect access */
87 #define ZS_DATA 0x02 /* data */
88
89
90 /* Definition of the driver for autoconfig. */
91 static int zs_match(struct device *, struct cfdata *, void *);
92 static void zs_attach(struct device *, struct device *, void *);
93 static int zs_print(void *, const char *name);
94
95 CFATTACH_DECL(zsc, sizeof(struct zsc_softc),
96 zs_match, zs_attach, NULL, NULL);
97
98 static int zshard(void *);
99 #if 0
100 static int zs_get_speed(struct zs_chanstate *);
101 #endif
102 static int zs_getc(void *);
103 static void zs_putc(void *, int);
104
105 /* console status from cninit */
106 static struct zs_chanstate zs_conschan_store;
107 static struct zs_chanstate *zs_conschan;
108 static uint8_t *zs_cons;
109
110 /* default speed for all channels */
111 static int zs_defspeed = ZS_DEFSPEED;
112
113 static u_char zs_init_reg[16] = {
114 0, /* 0: CMD (reset, etc.) */
115 0, /* 1: No interrupts yet. */
116 0, /* 2: no IVECT */
117 ZSWR3_RX_8 | ZSWR3_RX_ENABLE, /* 3: RX params and ctrl */
118 ZSWR4_CLK_X16 | ZSWR4_ONESB, /* 4: TX/RX misc params */
119 ZSWR5_TX_8 | ZSWR5_TX_ENABLE, /* 5: TX params and ctrl */
120 0, /* 6: TXSYNC/SYNCLO */
121 0, /* 7: RXSYNC/SYNCHI */
122 0, /* 8: alias for data port */
123 ZSWR9_MASTER_IE, /* 9: Master interrupt ctrl */
124 0, /*10: Misc TX/RX ctrl */
125 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD, /*11: Clock Mode ctrl */
126 BPS_TO_TCONST((PCLK/16), ZS_DEFSPEED), /*12: BAUDLO */
127 0, /*13: BAUDHI */
128 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK, /*14: Misc ctrl */
129 ZSWR15_BREAK_IE, /*15: Ext/Status intr ctrl */
130 };
131
132 /* register address offset for each channel */
133 static const int chanoff[] = { ZS_CHAN_A, ZS_CHAN_B };
134
135
136 static int
137 zs_match(struct device *parent, struct cfdata *cf, void *aux)
138 {
139 static int matched;
140
141 /* only one zs */
142 if (matched)
143 return 0;
144
145 /* only Qube 2700 could have Z85C30 serial */
146 if (cobalt_id != COBALT_ID_QUBE2700)
147 return 0;
148
149 if (!console_present)
150 return 0;
151
152 matched = 1;
153 return 1;
154 }
155
156 /*
157 * Attach a found zs.
158 */
159 static void
160 zs_attach(struct device *parent, struct device *self, void *aux)
161 {
162 struct zsc_softc *zsc = device_private(self);
163 struct mainbus_attach_args *maa = aux;
164 struct zsc_attach_args zsc_args;
165 uint8_t *zs_base;
166 struct zs_chanstate *cs;
167 int s, channel;
168
169 /* XXX: MI z8530 doesn't use bus_space(9) yet */
170 zs_base = (void *)MIPS_PHYS_TO_KSEG1(maa->ma_addr);
171
172 aprint_normal(": optional Z85C30 serial port\n");
173
174 /*
175 * Initialize software state for each channel.
176 */
177 for (channel = 0; channel < 2; channel++) {
178 zsc_args.channel = channel;
179 cs = &zsc->zsc_cs_store[channel];
180
181 zsc->zsc_cs[channel] = cs;
182
183 zs_init_reg[2] = 0;
184
185 if ((zs_base + chanoff[channel]) == zs_cons) {
186 memcpy(cs, zs_conschan, sizeof(struct zs_chanstate));
187 zs_conschan = cs;
188 zsc_args.hwflags = ZS_HWFLAG_CONSOLE;
189 } else {
190 cs->cs_reg_csr = zs_base + chanoff[channel] + ZS_CSR;
191 cs->cs_reg_data = zs_base + chanoff[channel] + ZS_DATA;
192 memcpy(cs->cs_creg, zs_init_reg, 16);
193 memcpy(cs->cs_preg, zs_init_reg, 16);
194 cs->cs_defspeed = zs_defspeed;
195 zsc_args.hwflags = 0;
196 }
197
198 zs_lock_init(cs);
199 cs->cs_defcflag = zs_def_cflag;
200
201 cs->cs_channel = channel;
202 cs->cs_private = NULL;
203 cs->cs_ops = &zsops_null;
204 cs->cs_brg_clk = PCLK / 16;
205
206 /* Make these correspond to cs_defcflag (-crtscts) */
207 cs->cs_rr0_dcd = ZSRR0_DCD;
208 cs->cs_rr0_cts = 0;
209 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
210 cs->cs_wr5_rts = 0;
211
212 /*
213 * Clear the master interrupt enable.
214 * The INTENA is common to both channels,
215 * so just do it on the A channel.
216 */
217 if (channel == 0) {
218 s = splhigh();
219 zs_write_reg(cs, 9, 0);
220 splx(s);
221 }
222
223 /*
224 * Look for a child driver for this channel.
225 * The child attach will setup the hardware.
226 */
227 if (!config_found(self, (void *)&zsc_args, zs_print)) {
228 /* No sub-driver. Just reset it. */
229 uint8_t reset = (channel == 0) ?
230 ZSWR9_A_RESET : ZSWR9_B_RESET;
231 s = splhigh();
232 zs_write_reg(cs, 9, reset);
233 splx(s);
234 }
235 }
236
237 /*
238 * Now safe to install interrupt handlers.
239 */
240 icu_intr_establish(maa->ma_irq, IST_EDGE, IPL_SERIAL, zshard, zsc);
241 zsc->zsc_softintr_cookie = softint_establish(SOFTINT_SERIAL,
242 (void (*)(void *))zsc_intr_soft, zsc);
243
244 /*
245 * Set the master interrupt enable and interrupt vector.
246 * (common to both channels, do it on A)
247 */
248 cs = zsc->zsc_cs[0];
249 s = splhigh();
250 /* interrupt vector */
251 zs_write_reg(cs, 2, 0);
252 /* master interrupt control (enable) */
253 zs_write_reg(cs, 9, zs_init_reg[9]);
254 splx(s);
255 }
256
257 static int
258 zs_print(void *aux, const char *name)
259 {
260 struct zsc_attach_args *args = aux;
261
262 if (name != NULL)
263 aprint_normal("%s: ", name);
264
265 if (args->channel != -1)
266 aprint_normal(" channel %d", args->channel);
267
268 return UNCONF;
269 }
270
271 static int
272 zshard(void *arg)
273 {
274 struct zsc_softc *zsc = arg;
275 int rval;
276
277 rval = zsc_intr_hard(zsc);
278
279 #if 1
280 /* XXX: there is some race condition? */
281 if (rval)
282 while (zsc_intr_hard(zsc))
283 ;
284 #endif
285
286 /* We are at splzs here, so no need to lock. */
287 if (zsc->zsc_cs[0]->cs_softreq || zsc->zsc_cs[1]->cs_softreq)
288 softint_schedule(zsc->zsc_softintr_cookie);
289
290 return rval;
291 }
292
293 /*
294 * Compute the current baud rate given a ZS channel.
295 */
296 #if 0
297 static int
298 zs_get_speed(struct zs_chanstate *cs)
299 {
300 int tconst;
301
302 tconst = zs_read_reg(cs, 12);
303 tconst |= zs_read_reg(cs, 13) << 8;
304 return TCONST_TO_BPS(cs->cs_brg_clk, tconst);
305 }
306 #endif
307
308 /*
309 * MD functions for setting the baud rate and control modes.
310 */
311 int
312 zs_set_speed(struct zs_chanstate *cs, int bps)
313 {
314 int tconst, real_bps;
315
316 if (bps == 0)
317 return 0;
318
319 #ifdef DIAGNOSTIC
320 if (cs->cs_brg_clk == 0)
321 panic("zs_set_speed");
322 #endif
323
324 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
325 if (tconst < 0)
326 return EINVAL;
327
328 /* Convert back to make sure we can do it. */
329 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
330
331 /* Allow ~4% tolerance here */
332 if (abs(real_bps - bps) >= bps * 4 / 100)
333 return EINVAL;
334
335 cs->cs_preg[12] = tconst;
336 cs->cs_preg[13] = tconst >> 8;
337
338 /* Caller will stuff the pending registers. */
339 return 0;
340 }
341
342 int
343 zs_set_modes(struct zs_chanstate *cs, int cflag)
344 {
345 int s;
346
347 /*
348 * Output hardware flow control on the chip is horrendous:
349 * if carrier detect drops, the receiver is disabled, and if
350 * CTS drops, the transmitter is stoped IN MID CHARACTER!
351 * Therefore, NEVER set the HFC bit, and instead use the
352 * status interrupt to detect CTS changes.
353 */
354 s = splzs();
355 cs->cs_rr0_pps = 0;
356 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
357 cs->cs_rr0_dcd = 0;
358 if ((cflag & MDMBUF) == 0)
359 cs->cs_rr0_pps = ZSRR0_DCD;
360 } else
361 cs->cs_rr0_dcd = ZSRR0_DCD;
362 if ((cflag & CRTSCTS) != 0) {
363 cs->cs_wr5_dtr = ZSWR5_DTR;
364 cs->cs_wr5_rts = ZSWR5_RTS;
365 cs->cs_rr0_cts = ZSRR0_CTS;
366 } else if ((cflag & MDMBUF) != 0) {
367 cs->cs_wr5_dtr = 0;
368 cs->cs_wr5_rts = ZSWR5_DTR;
369 cs->cs_rr0_cts = ZSRR0_DCD;
370 } else {
371 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
372 cs->cs_wr5_rts = 0;
373 cs->cs_rr0_cts = 0;
374 }
375 splx(s);
376
377 /* Caller will stuff the pending registers. */
378 return 0;
379 }
380
381
382 /*
383 * Read or write the chip with suitable delays.
384 */
385
386 u_char
387 zs_read_reg(struct zs_chanstate *cs, uint8_t reg)
388 {
389 uint8_t val;
390
391 *cs->cs_reg_csr = reg;
392 ZS_DELAY();
393 val = *cs->cs_reg_csr;
394 ZS_DELAY();
395 return val;
396 }
397
398 void
399 zs_write_reg(struct zs_chanstate *cs, uint8_t reg, uint8_t val)
400 {
401
402 *cs->cs_reg_csr = reg;
403 ZS_DELAY();
404 *cs->cs_reg_csr = val;
405 ZS_DELAY();
406 }
407
408 u_char
409 zs_read_csr(struct zs_chanstate *cs)
410 {
411 uint8_t val;
412
413 val = *cs->cs_reg_csr;
414 ZS_DELAY();
415 return val;
416 }
417
418 void
419 zs_write_csr(struct zs_chanstate *cs, uint8_t val)
420 {
421
422 *cs->cs_reg_csr = val;
423 ZS_DELAY();
424 }
425
426 uint8_t
427 zs_read_data(struct zs_chanstate *cs)
428 {
429 uint8_t val;
430
431 val = *cs->cs_reg_data;
432 ZS_DELAY();
433 return val;
434 }
435
436 void
437 zs_write_data(struct zs_chanstate *cs, uint8_t val)
438 {
439
440 *cs->cs_reg_data = val;
441 ZS_DELAY();
442 }
443
444 void
445 zs_abort(struct zs_chanstate *cs)
446 {
447
448 #ifdef DDB
449 Debugger();
450 #endif
451 }
452
453 /*
454 * Polled input char.
455 */
456 int
457 zs_getc(void *arg)
458 {
459 struct zs_chanstate *cs = arg;
460 int s, c;
461 uint8_t rr0;
462
463 s = splhigh();
464 /* Wait for a character to arrive. */
465 do {
466 rr0 = *cs->cs_reg_csr;
467 ZS_DELAY();
468 } while ((rr0 & ZSRR0_RX_READY) == 0);
469
470 c = *cs->cs_reg_data;
471 ZS_DELAY();
472 splx(s);
473
474 return c;
475 }
476
477 /*
478 * Polled output char.
479 */
480 void
481 zs_putc(void *arg, int c)
482 {
483 struct zs_chanstate *cs = arg;
484 int s;
485 uint8_t rr0;
486
487 s = splhigh();
488 /* Wait for transmitter to become ready. */
489 do {
490 rr0 = *cs->cs_reg_csr;
491 ZS_DELAY();
492 } while ((rr0 & ZSRR0_TX_READY) == 0);
493
494 *cs->cs_reg_data = c;
495 ZS_DELAY();
496 splx(s);
497 }
498
499 void
500 zscnprobe(struct consdev *cn)
501 {
502
503 cn->cn_pri = (console_present != 0 && cobalt_id == COBALT_ID_QUBE2700)
504 ? CN_NORMAL : CN_DEAD;
505 }
506
507 void
508 zscninit(struct consdev *cn)
509 {
510 struct zs_chanstate *cs;
511
512 extern const struct cdevsw zstty_cdevsw;
513
514 cn->cn_dev = makedev(cdevsw_lookup_major(&zstty_cdevsw), 0);
515
516 zs_cons = (uint8_t *)MIPS_PHYS_TO_KSEG1(ZS_BASE) + ZS_CHAN_A; /* XXX */
517
518 zs_conschan = cs = &zs_conschan_store;
519
520 /* Setup temporary chanstate. */
521 cs->cs_reg_csr = zs_cons + ZS_CSR;
522 cs->cs_reg_data = zs_cons + ZS_DATA;
523
524 /* Initialize the pending registers. */
525 memcpy(cs->cs_preg, zs_init_reg, 16);
526 cs->cs_preg[5] |= ZSWR5_DTR | ZSWR5_RTS;
527
528 cs->cs_preg[12] = BPS_TO_TCONST(PCLK / 16, ZS_DEFSPEED);
529 cs->cs_preg[13] = 0;
530 cs->cs_defspeed = ZS_DEFSPEED;
531
532 /* Clear the master interrupt enable. */
533 zs_write_reg(cs, 9, 0);
534
535 /* Reset the whole SCC chip. */
536 zs_write_reg(cs, 9, ZSWR9_HARD_RESET);
537
538 /* Copy "pending" to "current" and H/W */
539 zs_loadchannelregs(cs);
540 }
541
542 int
543 zscngetc(dev_t dev)
544 {
545
546 return zs_getc((void *)zs_conschan);
547 }
548
549 void
550 zscnputc(dev_t dev, int c)
551 {
552
553 zs_putc((void *)zs_conschan, c);
554 }
555