zs.c revision 1.2 1 /* $NetBSD: zs.c,v 1.2 2008/03/29 19:15:34 tsutsui Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Zilog Z8530 Dual UART driver (machine-dependent part)
41 *
42 * Runs two serial lines per chip using slave drivers.
43 * Plain tty/async lines use the zs_async slave.
44 */
45
46 #include <sys/cdefs.h>
47 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.2 2008/03/29 19:15:34 tsutsui Exp $");
48
49 #include "opt_ddb.h"
50
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/conf.h>
54 #include <sys/device.h>
55 #include <sys/tty.h>
56 #include <sys/intr.h>
57
58 #include <dev/cons.h>
59 #include <dev/ic/z8530reg.h>
60
61 #include <machine/autoconf.h>
62 #include <machine/z8530var.h>
63
64 #include <cobalt/cobalt/console.h>
65
66 #include "ioconf.h"
67
68 /*
69 * Some warts needed by z8530tty.c -
70 * The default parity REALLY needs to be the same as the PROM uses,
71 * or you can not see messages done with printf during boot-up...
72 */
73 int zs_def_cflag = (CREAD | CS8 | HUPCL);
74
75 #define ZS_DEFSPEED 115200
76 #define PCLK (115200 * 96) /* 11.0592MHz */
77
78 #define ZS_DELAY() delay(2)
79
80 /* The layout of this is hardware-dependent (padding, order). */
81 /* A/~B (Channel A/Channel B) pin is connected to DAdr0 */
82 #define ZS_CHAN_A 0x01
83 #define ZS_CHAN_B 0x00
84
85 /* D/~C (Data/Control) pin is connected to DAdr1 */
86 #define ZS_CSR 0x00 /* ctrl, status, and indirect access */
87 #define ZS_DATA 0x02 /* data */
88
89
90 /* Definition of the driver for autoconfig. */
91 static int zs_match(device_t, cfdata_t, void *);
92 static void zs_attach(device_t, device_t, void *);
93 static int zs_print(void *, const char *name);
94
95 CFATTACH_DECL_NEW(zsc, sizeof(struct zsc_softc),
96 zs_match, zs_attach, NULL, NULL);
97
98 static int zshard(void *);
99 #if 0
100 static int zs_get_speed(struct zs_chanstate *);
101 #endif
102 static int zs_getc(void *);
103 static void zs_putc(void *, int);
104
105 /* console status from cninit */
106 static struct zs_chanstate zs_conschan_store;
107 static struct zs_chanstate *zs_conschan;
108 static uint8_t *zs_cons;
109
110 /* default speed for all channels */
111 static int zs_defspeed = ZS_DEFSPEED;
112
113 static uint8_t zs_init_reg[16] = {
114 0, /* 0: CMD (reset, etc.) */
115 0, /* 1: No interrupts yet. */
116 0, /* 2: no IVECT */
117 ZSWR3_RX_8 | ZSWR3_RX_ENABLE, /* 3: RX params and ctrl */
118 ZSWR4_CLK_X16 | ZSWR4_ONESB, /* 4: TX/RX misc params */
119 ZSWR5_TX_8 | ZSWR5_TX_ENABLE, /* 5: TX params and ctrl */
120 0, /* 6: TXSYNC/SYNCLO */
121 0, /* 7: RXSYNC/SYNCHI */
122 0, /* 8: alias for data port */
123 ZSWR9_MASTER_IE, /* 9: Master interrupt ctrl */
124 0, /*10: Misc TX/RX ctrl */
125 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD, /*11: Clock Mode ctrl */
126 BPS_TO_TCONST((PCLK/16), ZS_DEFSPEED), /*12: BAUDLO */
127 0, /*13: BAUDHI */
128 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK, /*14: Misc ctrl */
129 ZSWR15_BREAK_IE, /*15: Ext/Status intr ctrl */
130 };
131
132 /* register address offset for each channel */
133 static const int chanoff[] = { ZS_CHAN_A, ZS_CHAN_B };
134
135
136 static int
137 zs_match(device_t parent, cfdata_t cf, void *aux)
138 {
139 static int matched;
140
141 /* only one zs */
142 if (matched)
143 return 0;
144
145 /* only Qube 2700 could have Z85C30 serial */
146 if (cobalt_id != COBALT_ID_QUBE2700)
147 return 0;
148
149 if (!console_present)
150 return 0;
151
152 matched = 1;
153 return 1;
154 }
155
156 /*
157 * Attach a found zs.
158 */
159 static void
160 zs_attach(device_t parent, device_t self, void *aux)
161 {
162 struct zsc_softc *zsc = device_private(self);
163 struct mainbus_attach_args *maa = aux;
164 struct zsc_attach_args zsc_args;
165 uint8_t *zs_base;
166 struct zs_chanstate *cs;
167 int s, channel;
168
169 zsc->zsc_dev = self;
170
171 /* XXX: MI z8530 doesn't use bus_space(9) yet */
172 zs_base = (void *)MIPS_PHYS_TO_KSEG1(maa->ma_addr);
173
174 aprint_normal(": optional Z85C30 serial port\n");
175
176 /*
177 * Initialize software state for each channel.
178 */
179 for (channel = 0; channel < 2; channel++) {
180 zsc_args.channel = channel;
181 cs = &zsc->zsc_cs_store[channel];
182
183 zsc->zsc_cs[channel] = cs;
184
185 zs_init_reg[2] = 0;
186
187 if ((zs_base + chanoff[channel]) == zs_cons) {
188 memcpy(cs, zs_conschan, sizeof(struct zs_chanstate));
189 zs_conschan = cs;
190 zsc_args.hwflags = ZS_HWFLAG_CONSOLE;
191 } else {
192 cs->cs_reg_csr = zs_base + chanoff[channel] + ZS_CSR;
193 cs->cs_reg_data = zs_base + chanoff[channel] + ZS_DATA;
194 memcpy(cs->cs_creg, zs_init_reg, 16);
195 memcpy(cs->cs_preg, zs_init_reg, 16);
196 cs->cs_defspeed = zs_defspeed;
197 zsc_args.hwflags = 0;
198 }
199
200 zs_lock_init(cs);
201 cs->cs_defcflag = zs_def_cflag;
202
203 cs->cs_channel = channel;
204 cs->cs_private = NULL;
205 cs->cs_ops = &zsops_null;
206 cs->cs_brg_clk = PCLK / 16;
207
208 /* Make these correspond to cs_defcflag (-crtscts) */
209 cs->cs_rr0_dcd = ZSRR0_DCD;
210 cs->cs_rr0_cts = 0;
211 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
212 cs->cs_wr5_rts = 0;
213
214 /*
215 * Clear the master interrupt enable.
216 * The INTENA is common to both channels,
217 * so just do it on the A channel.
218 */
219 if (channel == 0) {
220 s = splhigh();
221 zs_write_reg(cs, 9, 0);
222 splx(s);
223 }
224
225 /*
226 * Look for a child driver for this channel.
227 * The child attach will setup the hardware.
228 */
229 if (!config_found(self, (void *)&zsc_args, zs_print)) {
230 /* No sub-driver. Just reset it. */
231 uint8_t reset = (channel == 0) ?
232 ZSWR9_A_RESET : ZSWR9_B_RESET;
233 s = splhigh();
234 zs_write_reg(cs, 9, reset);
235 splx(s);
236 }
237 }
238
239 /*
240 * Now safe to install interrupt handlers.
241 */
242 icu_intr_establish(maa->ma_irq, IST_EDGE, IPL_SERIAL, zshard, zsc);
243 zsc->zsc_softintr_cookie = softint_establish(SOFTINT_SERIAL,
244 (void (*)(void *))zsc_intr_soft, zsc);
245
246 /*
247 * Set the master interrupt enable and interrupt vector.
248 * (common to both channels, do it on A)
249 */
250 cs = zsc->zsc_cs[0];
251 s = splhigh();
252 /* interrupt vector */
253 zs_write_reg(cs, 2, 0);
254 /* master interrupt control (enable) */
255 zs_write_reg(cs, 9, zs_init_reg[9]);
256 splx(s);
257 }
258
259 static int
260 zs_print(void *aux, const char *name)
261 {
262 struct zsc_attach_args *args = aux;
263
264 if (name != NULL)
265 aprint_normal("%s: ", name);
266
267 if (args->channel != -1)
268 aprint_normal(" channel %d", args->channel);
269
270 return UNCONF;
271 }
272
273 static int
274 zshard(void *arg)
275 {
276 struct zsc_softc *zsc = arg;
277 int rval;
278
279 rval = zsc_intr_hard(zsc);
280
281 #if 1
282 /* XXX: there is some race condition? */
283 if (rval)
284 while (zsc_intr_hard(zsc))
285 ;
286 #endif
287
288 /* We are at splzs here, so no need to lock. */
289 if (zsc->zsc_cs[0]->cs_softreq || zsc->zsc_cs[1]->cs_softreq)
290 softint_schedule(zsc->zsc_softintr_cookie);
291
292 return rval;
293 }
294
295 /*
296 * Compute the current baud rate given a ZS channel.
297 */
298 #if 0
299 static int
300 zs_get_speed(struct zs_chanstate *cs)
301 {
302 int tconst;
303
304 tconst = zs_read_reg(cs, 12);
305 tconst |= zs_read_reg(cs, 13) << 8;
306 return TCONST_TO_BPS(cs->cs_brg_clk, tconst);
307 }
308 #endif
309
310 /*
311 * MD functions for setting the baud rate and control modes.
312 */
313 int
314 zs_set_speed(struct zs_chanstate *cs, int bps)
315 {
316 int tconst, real_bps;
317
318 if (bps == 0)
319 return 0;
320
321 #ifdef DIAGNOSTIC
322 if (cs->cs_brg_clk == 0)
323 panic("zs_set_speed");
324 #endif
325
326 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
327 if (tconst < 0)
328 return EINVAL;
329
330 /* Convert back to make sure we can do it. */
331 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
332
333 /* Allow ~4% tolerance here */
334 if (abs(real_bps - bps) >= bps * 4 / 100)
335 return EINVAL;
336
337 cs->cs_preg[12] = tconst;
338 cs->cs_preg[13] = tconst >> 8;
339
340 /* Caller will stuff the pending registers. */
341 return 0;
342 }
343
344 int
345 zs_set_modes(struct zs_chanstate *cs, int cflag)
346 {
347 int s;
348
349 /*
350 * Output hardware flow control on the chip is horrendous:
351 * if carrier detect drops, the receiver is disabled, and if
352 * CTS drops, the transmitter is stoped IN MID CHARACTER!
353 * Therefore, NEVER set the HFC bit, and instead use the
354 * status interrupt to detect CTS changes.
355 */
356 s = splzs();
357 cs->cs_rr0_pps = 0;
358 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
359 cs->cs_rr0_dcd = 0;
360 if ((cflag & MDMBUF) == 0)
361 cs->cs_rr0_pps = ZSRR0_DCD;
362 } else
363 cs->cs_rr0_dcd = ZSRR0_DCD;
364 if ((cflag & CRTSCTS) != 0) {
365 cs->cs_wr5_dtr = ZSWR5_DTR;
366 cs->cs_wr5_rts = ZSWR5_RTS;
367 cs->cs_rr0_cts = ZSRR0_CTS;
368 } else if ((cflag & MDMBUF) != 0) {
369 cs->cs_wr5_dtr = 0;
370 cs->cs_wr5_rts = ZSWR5_DTR;
371 cs->cs_rr0_cts = ZSRR0_DCD;
372 } else {
373 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
374 cs->cs_wr5_rts = 0;
375 cs->cs_rr0_cts = 0;
376 }
377 splx(s);
378
379 /* Caller will stuff the pending registers. */
380 return 0;
381 }
382
383
384 /*
385 * Read or write the chip with suitable delays.
386 */
387
388 uint8_t
389 zs_read_reg(struct zs_chanstate *cs, uint8_t reg)
390 {
391 uint8_t val;
392
393 *cs->cs_reg_csr = reg;
394 ZS_DELAY();
395 val = *cs->cs_reg_csr;
396 ZS_DELAY();
397 return val;
398 }
399
400 void
401 zs_write_reg(struct zs_chanstate *cs, uint8_t reg, uint8_t val)
402 {
403
404 *cs->cs_reg_csr = reg;
405 ZS_DELAY();
406 *cs->cs_reg_csr = val;
407 ZS_DELAY();
408 }
409
410 uint8_t
411 zs_read_csr(struct zs_chanstate *cs)
412 {
413 uint8_t val;
414
415 val = *cs->cs_reg_csr;
416 ZS_DELAY();
417 return val;
418 }
419
420 void
421 zs_write_csr(struct zs_chanstate *cs, uint8_t val)
422 {
423
424 *cs->cs_reg_csr = val;
425 ZS_DELAY();
426 }
427
428 uint8_t
429 zs_read_data(struct zs_chanstate *cs)
430 {
431 uint8_t val;
432
433 val = *cs->cs_reg_data;
434 ZS_DELAY();
435 return val;
436 }
437
438 void
439 zs_write_data(struct zs_chanstate *cs, uint8_t val)
440 {
441
442 *cs->cs_reg_data = val;
443 ZS_DELAY();
444 }
445
446 void
447 zs_abort(struct zs_chanstate *cs)
448 {
449
450 #ifdef DDB
451 Debugger();
452 #endif
453 }
454
455 /*
456 * Polled input char.
457 */
458 int
459 zs_getc(void *arg)
460 {
461 struct zs_chanstate *cs = arg;
462 int s, c;
463 uint8_t rr0;
464
465 s = splhigh();
466 /* Wait for a character to arrive. */
467 do {
468 rr0 = *cs->cs_reg_csr;
469 ZS_DELAY();
470 } while ((rr0 & ZSRR0_RX_READY) == 0);
471
472 c = *cs->cs_reg_data;
473 ZS_DELAY();
474 splx(s);
475
476 return c;
477 }
478
479 /*
480 * Polled output char.
481 */
482 void
483 zs_putc(void *arg, int c)
484 {
485 struct zs_chanstate *cs = arg;
486 int s;
487 uint8_t rr0;
488
489 s = splhigh();
490 /* Wait for transmitter to become ready. */
491 do {
492 rr0 = *cs->cs_reg_csr;
493 ZS_DELAY();
494 } while ((rr0 & ZSRR0_TX_READY) == 0);
495
496 *cs->cs_reg_data = c;
497 ZS_DELAY();
498 splx(s);
499 }
500
501 void
502 zscnprobe(struct consdev *cn)
503 {
504
505 cn->cn_pri = (console_present != 0 && cobalt_id == COBALT_ID_QUBE2700)
506 ? CN_NORMAL : CN_DEAD;
507 }
508
509 void
510 zscninit(struct consdev *cn)
511 {
512 struct zs_chanstate *cs;
513
514 extern const struct cdevsw zstty_cdevsw;
515
516 cn->cn_dev = makedev(cdevsw_lookup_major(&zstty_cdevsw), 0);
517
518 zs_cons = (uint8_t *)MIPS_PHYS_TO_KSEG1(ZS_BASE) + ZS_CHAN_A; /* XXX */
519
520 zs_conschan = cs = &zs_conschan_store;
521
522 /* Setup temporary chanstate. */
523 cs->cs_reg_csr = zs_cons + ZS_CSR;
524 cs->cs_reg_data = zs_cons + ZS_DATA;
525
526 /* Initialize the pending registers. */
527 memcpy(cs->cs_preg, zs_init_reg, 16);
528 cs->cs_preg[5] |= ZSWR5_DTR | ZSWR5_RTS;
529
530 cs->cs_preg[12] = BPS_TO_TCONST(PCLK / 16, ZS_DEFSPEED);
531 cs->cs_preg[13] = 0;
532 cs->cs_defspeed = ZS_DEFSPEED;
533
534 /* Clear the master interrupt enable. */
535 zs_write_reg(cs, 9, 0);
536
537 /* Reset the whole SCC chip. */
538 zs_write_reg(cs, 9, ZSWR9_HARD_RESET);
539
540 /* Copy "pending" to "current" and H/W */
541 zs_loadchannelregs(cs);
542 }
543
544 int
545 zscngetc(dev_t dev)
546 {
547
548 return zs_getc((void *)zs_conschan);
549 }
550
551 void
552 zscnputc(dev_t dev, int c)
553 {
554
555 zs_putc((void *)zs_conschan, c);
556 }
557