Home | History | Annotate | Line # | Download | only in adi_brh
brh_machdep.c revision 1.12
      1 /*	$NetBSD: brh_machdep.c,v 1.12 2003/05/21 02:38:29 briggs Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1997,1998 Mark Brinicombe.
     40  * Copyright (c) 1997,1998 Causality Limited.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by Mark Brinicombe
     54  *	for the NetBSD Project.
     55  * 4. The name of the company nor the name of the author may be used to
     56  *    endorse or promote products derived from this software without specific
     57  *    prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     60  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     61  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     62  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     63  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     64  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     65  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  * Machine dependant functions for kernel setup for the ADI Engineering
     72  * BRH i80200 evaluation platform.
     73  */
     74 
     75 #include "opt_ddb.h"
     76 #include "opt_pmap_debug.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/device.h>
     80 #include <sys/systm.h>
     81 #include <sys/kernel.h>
     82 #include <sys/exec.h>
     83 #include <sys/proc.h>
     84 #include <sys/msgbuf.h>
     85 #include <sys/reboot.h>
     86 #include <sys/termios.h>
     87 #include <sys/ksyms.h>
     88 
     89 #include <uvm/uvm_extern.h>
     90 
     91 #include <dev/cons.h>
     92 
     93 #include <machine/db_machdep.h>
     94 #include <ddb/db_sym.h>
     95 #include <ddb/db_extern.h>
     96 
     97 #include <machine/bootconfig.h>
     98 #include <machine/bus.h>
     99 #include <machine/cpu.h>
    100 #include <machine/frame.h>
    101 #include <arm/undefined.h>
    102 
    103 #include <arm/arm32/machdep.h>
    104 
    105 #include <arm/xscale/i80200reg.h>
    106 #include <arm/xscale/i80200var.h>
    107 
    108 #include <dev/pci/ppbreg.h>
    109 
    110 #include <arm/xscale/beccreg.h>
    111 #include <arm/xscale/beccvar.h>
    112 
    113 #include <evbarm/adi_brh/brhreg.h>
    114 #include <evbarm/adi_brh/brhvar.h>
    115 #include <evbarm/adi_brh/obiovar.h>
    116 
    117 #include "opt_ipkdb.h"
    118 #include "ksyms.h"
    119 
    120 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
    121 #define	KERNEL_TEXT_BASE	(KERNEL_BASE + 0x00200000)
    122 
    123 /*
    124  * Address to call from cpu_reset() to reset the machine.
    125  * This is machine architecture dependant as it varies depending
    126  * on where the ROM appears when you turn the MMU off.
    127  */
    128 
    129 u_int cpu_reset_address = 0x00000000;
    130 
    131 /* Define various stack sizes in pages */
    132 #define IRQ_STACK_SIZE	1
    133 #define ABT_STACK_SIZE	1
    134 #ifdef IPKDB
    135 #define UND_STACK_SIZE	2
    136 #else
    137 #define UND_STACK_SIZE	1
    138 #endif
    139 
    140 BootConfig bootconfig;		/* Boot config storage */
    141 char *boot_args = NULL;
    142 char *boot_file = NULL;
    143 
    144 vm_offset_t physical_start;
    145 vm_offset_t physical_freestart;
    146 vm_offset_t physical_freeend;
    147 vm_offset_t physical_end;
    148 u_int free_pages;
    149 vm_offset_t pagetables_start;
    150 int physmem = 0;
    151 
    152 /*int debug_flags;*/
    153 #ifndef PMAP_STATIC_L1S
    154 int max_processes = 64;			/* Default number */
    155 #endif	/* !PMAP_STATIC_L1S */
    156 
    157 /* Physical and virtual addresses for some global pages */
    158 pv_addr_t systempage;
    159 pv_addr_t irqstack;
    160 pv_addr_t undstack;
    161 pv_addr_t abtstack;
    162 pv_addr_t kernelstack;
    163 pv_addr_t minidataclean;
    164 
    165 vm_offset_t msgbufphys;
    166 
    167 extern u_int data_abort_handler_address;
    168 extern u_int prefetch_abort_handler_address;
    169 extern u_int undefined_handler_address;
    170 
    171 #ifdef PMAP_DEBUG
    172 extern int pmap_debug_level;
    173 #endif
    174 
    175 #define KERNEL_PT_SYS		0	/* L2 table for mapping zero page */
    176 
    177 #define KERNEL_PT_KERNEL	1	/* L2 table for mapping kernel */
    178 #define	KERNEL_PT_KERNEL_NUM	2
    179 
    180 					/* L2 tables for mapping kernel VM */
    181 #define KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
    182 #define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
    183 #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
    184 
    185 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
    186 
    187 struct user *proc0paddr;
    188 
    189 /* Prototypes */
    190 
    191 void	consinit(void);
    192 
    193 #include "com.h"
    194 #if NCOM > 0
    195 #include <dev/ic/comreg.h>
    196 #include <dev/ic/comvar.h>
    197 #endif
    198 
    199 /*
    200  * Define the default console speed for the board.  This is generally
    201  * what the firmware provided with the board defaults to.
    202  */
    203 #ifndef CONSPEED
    204 #define CONSPEED B57600
    205 #endif /* ! CONSPEED */
    206 
    207 #ifndef CONUNIT
    208 #define	CONUNIT	0
    209 #endif
    210 
    211 #ifndef CONMODE
    212 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
    213 #endif
    214 
    215 int comcnspeed = CONSPEED;
    216 int comcnmode = CONMODE;
    217 int comcnunit = CONUNIT;
    218 
    219 /*
    220  * void cpu_reboot(int howto, char *bootstr)
    221  *
    222  * Reboots the system
    223  *
    224  * Deal with any syncing, unmounting, dumping and shutdown hooks,
    225  * then reset the CPU.
    226  */
    227 void
    228 cpu_reboot(int howto, char *bootstr)
    229 {
    230 
    231 	/*
    232 	 * If we are still cold then hit the air brakes
    233 	 * and crash to earth fast
    234 	 */
    235 	if (cold) {
    236 		doshutdownhooks();
    237 		printf("The operating system has halted.\n");
    238 		printf("Please press any key to reboot.\n\n");
    239 		cngetc();
    240 		printf("rebooting...\n");
    241 		goto reset;
    242 	}
    243 
    244 	/* Disable console buffering */
    245 
    246 	/*
    247 	 * If RB_NOSYNC was not specified sync the discs.
    248 	 * Note: Unless cold is set to 1 here, syslogd will die during the
    249 	 * unmount.  It looks like syslogd is getting woken up only to find
    250 	 * that it cannot page part of the binary in as the filesystem has
    251 	 * been unmounted.
    252 	 */
    253 	if (!(howto & RB_NOSYNC))
    254 		bootsync();
    255 
    256 	/* Say NO to interrupts */
    257 	splhigh();
    258 
    259 	/* Do a dump if requested. */
    260 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
    261 		dumpsys();
    262 
    263 	/* Run any shutdown hooks */
    264 	doshutdownhooks();
    265 
    266 	/* Make sure IRQ's are disabled */
    267 	IRQdisable;
    268 
    269 	if (howto & RB_HALT) {
    270 		brh_7seg('8');
    271 		printf("The operating system has halted.\n");
    272 		printf("Please press any key to reboot.\n\n");
    273 		cngetc();
    274 	}
    275 
    276 	printf("rebooting...\n\r");
    277  reset:
    278 	cpu_reset();
    279 }
    280 
    281 /*
    282  * Mapping table for core kernel memory. This memory is mapped at init
    283  * time with section mappings.
    284  */
    285 struct l1_sec_map {
    286 	vaddr_t	va;
    287 	vaddr_t	pa;
    288 	vsize_t	size;
    289 	vm_prot_t prot;
    290 	int cache;
    291 } l1_sec_table[] = {
    292     {
    293 	BRH_PCI_CONF_VBASE,
    294 	BECC_PCI_CONF_BASE,
    295 	BRH_PCI_CONF_VSIZE,
    296 	VM_PROT_READ|VM_PROT_WRITE,
    297 	PTE_NOCACHE,
    298     },
    299     {
    300 	BRH_PCI_MEM1_VBASE,
    301 	BECC_PCI_MEM1_BASE,
    302 	BRH_PCI_MEM1_VSIZE,
    303 	VM_PROT_READ|VM_PROT_WRITE,
    304 	PTE_NOCACHE,
    305     },
    306     {
    307 	BRH_PCI_MEM2_VBASE,
    308 	BECC_PCI_MEM2_BASE,
    309 	BRH_PCI_MEM2_VSIZE,
    310 	VM_PROT_READ|VM_PROT_WRITE,
    311 	PTE_NOCACHE,
    312     },
    313     {
    314 	BRH_UART1_VBASE,
    315 	BRH_UART1_BASE,
    316 	BRH_UART1_VSIZE,
    317 	VM_PROT_READ|VM_PROT_WRITE,
    318 	PTE_NOCACHE,
    319     },
    320     {
    321 	BRH_UART2_VBASE,
    322 	BRH_UART2_BASE,
    323 	BRH_UART2_VSIZE,
    324 	VM_PROT_READ|VM_PROT_WRITE,
    325 	PTE_NOCACHE,
    326     },
    327     {
    328 	BRH_LED_VBASE,
    329 	BRH_LED_BASE,
    330 	BRH_LED_VSIZE,
    331 	VM_PROT_READ|VM_PROT_WRITE,
    332 	PTE_NOCACHE,
    333     },
    334     {
    335 	BRH_PCI_IO_VBASE,
    336 	BECC_PCI_IO_BASE,
    337 	BRH_PCI_IO_VSIZE,
    338 	VM_PROT_READ|VM_PROT_WRITE,
    339 	PTE_NOCACHE,
    340     },
    341     {
    342 	BRH_BECC_VBASE,
    343 	BECC_REG_BASE,
    344 	BRH_BECC_VSIZE,
    345 	VM_PROT_READ|VM_PROT_WRITE,
    346 	PTE_NOCACHE,
    347     },
    348     {
    349 	0,
    350 	0,
    351 	0,
    352 	0,
    353 	0,
    354     }
    355 };
    356 
    357 static void
    358 brh_hardclock_hook(void)
    359 {
    360 	static int snakefreq;
    361 
    362 	if ((snakefreq++ & 15) == 0)
    363 		brh_7seg_snake();
    364 }
    365 
    366 /*
    367  * u_int initarm(...)
    368  *
    369  * Initial entry point on startup. This gets called before main() is
    370  * entered.
    371  * It should be responsible for setting up everything that must be
    372  * in place when main is called.
    373  * This includes
    374  *   Taking a copy of the boot configuration structure.
    375  *   Initialising the physical console so characters can be printed.
    376  *   Setting up page tables for the kernel
    377  *   Relocating the kernel to the bottom of physical memory
    378  */
    379 u_int
    380 initarm(void *arg)
    381 {
    382 	extern vaddr_t xscale_cache_clean_addr;
    383 #ifdef DIAGNOSTIC
    384 	extern vsize_t xscale_minidata_clean_size;
    385 #endif
    386 	int loop;
    387 	int loop1;
    388 	u_int l1pagetable;
    389 	pv_addr_t kernel_l1pt;
    390 	paddr_t memstart;
    391 	psize_t memsize;
    392 
    393 	/*
    394 	 * Clear out the 7-segment display.  Whee, the first visual
    395 	 * indication that we're running kernel code.
    396 	 */
    397 	brh_7seg(' ');
    398 
    399 	/*
    400 	 * Since we have mapped the on-board devices at their permanent
    401 	 * locations already, it is possible for us to initialize
    402 	 * the console now.
    403 	 */
    404 	consinit();
    405 
    406 #ifdef VERBOSE_INIT_ARM
    407 	/* Talk to the user */
    408 	printf("\nNetBSD/evbarm (ADI BRH) booting ...\n");
    409 #endif
    410 
    411 	/* Calibrate the delay loop. */
    412 	becc_hardclock_hook = brh_hardclock_hook;
    413 
    414 	/*
    415 	 * Heads up ... Setup the CPU / MMU / TLB functions
    416 	 */
    417 	if (set_cpufuncs())
    418 		panic("cpu not recognized!");
    419 
    420 	/*
    421 	 * We are currently running with the MMU enabled and the
    422 	 * entire address space mapped VA==PA.  Memory conveniently
    423 	 * starts at 0xc0000000, which is where we want it.  Certain
    424 	 * on-board devices have already been mapped where we want
    425 	 * them to be.  There is an L1 page table at 0xc0004000.
    426 	 */
    427 
    428 	becc_icu_init();
    429 
    430 	/*
    431 	 * Memory always starts at 0xc0000000 on a BRH, and the
    432 	 * memory size is always 128M.
    433 	 */
    434 	memstart = 0xc0000000UL;
    435 	memsize = (128UL * 1024 * 1024);
    436 
    437 #ifdef VERBOSE_INIT_ARM
    438 	printf("initarm: Configuring system ...\n");
    439 #endif
    440 
    441 	/* Fake bootconfig structure for the benefit of pmap.c */
    442 	/* XXX must make the memory description h/w independant */
    443 	bootconfig.dramblocks = 1;
    444 	bootconfig.dram[0].address = memstart;
    445 	bootconfig.dram[0].pages = memsize / PAGE_SIZE;
    446 
    447 	/*
    448 	 * Set up the variables that define the availablilty of
    449 	 * physical memory.  For now, we're going to set
    450 	 * physical_freestart to 0xc0200000 (where the kernel
    451 	 * was loaded), and allocate the memory we need downwards.
    452 	 * If we get too close to the L1 table that we set up, we
    453 	 * will panic.  We will update physical_freestart and
    454 	 * physical_freeend later to reflect what pmap_bootstrap()
    455 	 * wants to see.
    456 	 *
    457 	 * XXX pmap_bootstrap() needs an enema.
    458 	 */
    459 	physical_start = bootconfig.dram[0].address;
    460 	physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
    461 
    462 	physical_freestart = 0xc0009000UL;
    463 	physical_freeend = 0xc0200000UL;
    464 
    465 #ifdef VERBOSE_INIT_ARM
    466 	/* Tell the user about the memory */
    467 	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
    468 	    physical_start, physical_end - 1);
    469 #endif
    470 
    471 	/*
    472 	 * Okay, the kernel starts 2MB in from the bottom of physical
    473 	 * memory.  We are going to allocate our bootstrap pages downwards
    474 	 * from there.
    475 	 *
    476 	 * We need to allocate some fixed page tables to get the kernel
    477 	 * going.  We allocate one page directory and a number of page
    478 	 * tables and store the physical addresses in the kernel_pt_table
    479 	 * array.
    480 	 *
    481 	 * The kernel page directory must be on a 16K boundary.  The page
    482 	 * tables must be on 4K bounaries.  What we do is allocate the
    483 	 * page directory on the first 16K boundary that we encounter, and
    484 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    485 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    486 	 * least one 16K aligned region.
    487 	 */
    488 
    489 #ifdef VERBOSE_INIT_ARM
    490 	printf("Allocating page tables\n");
    491 #endif
    492 
    493 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
    494 
    495 #ifdef VERBOSE_INIT_ARM
    496 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
    497 	       physical_freestart, free_pages, free_pages);
    498 #endif
    499 
    500 	/* Define a macro to simplify memory allocation */
    501 #define	valloc_pages(var, np)				\
    502 	alloc_pages((var).pv_pa, (np));			\
    503 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
    504 
    505 #define alloc_pages(var, np)				\
    506 	physical_freeend -= ((np) * PAGE_SIZE);		\
    507 	if (physical_freeend < physical_freestart)	\
    508 		panic("initarm: out of memory");	\
    509 	(var) = physical_freeend;			\
    510 	free_pages -= (np);				\
    511 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
    512 
    513 	loop1 = 0;
    514 	kernel_l1pt.pv_pa = 0;
    515 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
    516 		/* Are we 16KB aligned for an L1 ? */
    517 		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
    518 		    && kernel_l1pt.pv_pa == 0) {
    519 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
    520 		} else {
    521 			valloc_pages(kernel_pt_table[loop1],
    522 			    L2_TABLE_SIZE / PAGE_SIZE);
    523 			++loop1;
    524 		}
    525 	}
    526 
    527 	/* This should never be able to happen but better confirm that. */
    528 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
    529 		panic("initarm: Failed to align the kernel page directory\n");
    530 
    531 	/*
    532 	 * Allocate a page for the system page mapped to V0x00000000
    533 	 * This page will just contain the system vectors and can be
    534 	 * shared by all processes.
    535 	 */
    536 	alloc_pages(systempage.pv_pa, 1);
    537 
    538 	/* Allocate stacks for all modes */
    539 	valloc_pages(irqstack, IRQ_STACK_SIZE);
    540 	valloc_pages(abtstack, ABT_STACK_SIZE);
    541 	valloc_pages(undstack, UND_STACK_SIZE);
    542 	valloc_pages(kernelstack, UPAGES);
    543 
    544 	/* Allocate enough pages for cleaning the Mini-Data cache. */
    545 	KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
    546 	valloc_pages(minidataclean, 1);
    547 
    548 #ifdef VERBOSE_INIT_ARM
    549 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
    550 	    irqstack.pv_va);
    551 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
    552 	    abtstack.pv_va);
    553 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
    554 	    undstack.pv_va);
    555 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
    556 	    kernelstack.pv_va);
    557 #endif
    558 
    559 	/*
    560 	 * XXX Defer this to later so that we can reclaim the memory
    561 	 * XXX used by the RedBoot page tables.
    562 	 */
    563 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
    564 
    565 	/*
    566 	 * Ok we have allocated physical pages for the primary kernel
    567 	 * page tables
    568 	 */
    569 
    570 #ifdef VERBOSE_INIT_ARM
    571 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    572 #endif
    573 
    574 	/*
    575 	 * Now we start construction of the L1 page table
    576 	 * We start by mapping the L2 page tables into the L1.
    577 	 * This means that we can replace L1 mappings later on if necessary
    578 	 */
    579 	l1pagetable = kernel_l1pt.pv_pa;
    580 
    581 	/* Map the L2 pages tables in the L1 page table */
    582 	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
    583 	    &kernel_pt_table[KERNEL_PT_SYS]);
    584 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
    585 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
    586 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
    587 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
    588 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
    589 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
    590 
    591 	/* update the top of the kernel VM */
    592 	pmap_curmaxkvaddr =
    593 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
    594 
    595 #ifdef VERBOSE_INIT_ARM
    596 	printf("Mapping kernel\n");
    597 #endif
    598 
    599 	/* Now we fill in the L2 pagetable for the kernel static code/data */
    600 	{
    601 		extern char etext[], _end[];
    602 		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
    603 		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
    604 		u_int logical;
    605 
    606 		textsize = (textsize + PGOFSET) & ~PGOFSET;
    607 		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
    608 
    609 		logical = 0x00200000;	/* offset of kernel in RAM */
    610 
    611 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    612 		    physical_start + logical, textsize,
    613 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    614 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    615 		    physical_start + logical, totalsize - textsize,
    616 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    617 	}
    618 
    619 #ifdef VERBOSE_INIT_ARM
    620 	printf("Constructing L2 page tables\n");
    621 #endif
    622 
    623 	/* Map the stack pages */
    624 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
    625 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    626 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
    627 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    628 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
    629 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    630 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
    631 	    UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    632 
    633 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
    634 	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    635 
    636 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
    637 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
    638 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
    639 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    640 	}
    641 
    642 	/* Map the Mini-Data cache clean area. */
    643 	xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
    644 	    minidataclean.pv_pa);
    645 
    646 	/* Map the vector page. */
    647 	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
    648 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    649 
    650 	/*
    651 	 * Map devices we can map w/ section mappings.
    652 	 */
    653 	loop = 0;
    654 	while (l1_sec_table[loop].size) {
    655 		vm_size_t sz;
    656 
    657 #ifdef VERBOSE_INIT_ARM
    658 		printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
    659 		    l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
    660 		    l1_sec_table[loop].va);
    661 #endif
    662 		for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_S_SIZE)
    663 			pmap_map_section(l1pagetable,
    664 			    l1_sec_table[loop].va + sz,
    665 			    l1_sec_table[loop].pa + sz,
    666 			    l1_sec_table[loop].prot,
    667 			    l1_sec_table[loop].cache);
    668 		++loop;
    669 	}
    670 
    671 	/*
    672 	 * Give the XScale global cache clean code an appropriately
    673 	 * sized chunk of unmapped VA space starting at 0xff500000
    674 	 * (our device mappings end before this address).
    675 	 */
    676 	xscale_cache_clean_addr = 0xff500000U;
    677 
    678 	/*
    679 	 * Now we have the real page tables in place so we can switch to them.
    680 	 * Once this is done we will be running with the REAL kernel page
    681 	 * tables.
    682 	 */
    683 
    684 	/* Switch tables */
    685 #ifdef VERBOSE_INIT_ARM
    686 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
    687 #endif
    688 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    689 	setttb(kernel_l1pt.pv_pa);
    690 	cpu_tlb_flushID();
    691 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
    692 
    693 	/*
    694 	 * Move from cpu_startup() as data_abort_handler() references
    695 	 * this during uvm init
    696 	 */
    697 	proc0paddr = (struct user *)kernelstack.pv_va;
    698 	lwp0.l_addr = proc0paddr;
    699 
    700 #ifdef VERBOSE_INIT_ARM
    701 	printf("done!\n");
    702 #endif
    703 
    704 #ifdef VERBOSE_INIT_ARM
    705 	printf("bootstrap done.\n");
    706 #endif
    707 
    708 	/*
    709 	 * Inform the BECC code where the BECC is mapped.
    710 	 */
    711 	becc_vaddr = BRH_BECC_VBASE;
    712 
    713 	/*
    714 	 * Now that we have becc_vaddr set, calibrate delay.
    715 	 */
    716 	becc_calibrate_delay();
    717 
    718 	/*
    719 	 * BECC <= Rev7 can only address 64M through the inbound
    720 	 * PCI windows.  Limit memory to 64M on those revs.  (This
    721 	 * problem was fixed in Rev8 of the BECC; get an FPGA upgrade.)
    722 	 */
    723 	{
    724 		vaddr_t va = BRH_PCI_CONF_VBASE | (1U << BECC_IDSEL_BIT) |
    725 		    PCI_CLASS_REG;
    726 		uint32_t reg;
    727 
    728 		reg = *(__volatile uint32_t *) va;
    729 		becc_rev = PCI_REVISION(reg);
    730 		if (becc_rev <= BECC_REV_V7 &&
    731 		    memsize > (64UL * 1024 * 1024)) {
    732 			memsize = (64UL * 1024 * 1024);
    733 			bootconfig.dram[0].pages = memsize / PAGE_SIZE;
    734 			physical_end = physical_start +
    735 			    (bootconfig.dram[0].pages * PAGE_SIZE);
    736 			printf("BECC <= Rev7: memory truncated to 64M\n");
    737 		}
    738 	}
    739 
    740 	/*
    741 	 * Update the physical_freestart/physical_freeend/free_pages
    742 	 * variables.
    743 	 */
    744 	{
    745 		extern char _end[];
    746 
    747 		physical_freestart = physical_start +
    748 		    (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
    749 		     KERNEL_BASE);
    750 		physical_freeend = physical_end;
    751 		free_pages =
    752 		    (physical_freeend - physical_freestart) / PAGE_SIZE;
    753 	}
    754 #ifdef VERBOSE_INIT_ARM
    755 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
    756 	       physical_freestart, free_pages, free_pages);
    757 #endif
    758 
    759 	physmem = (physical_end - physical_start) / PAGE_SIZE;
    760 
    761 	arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
    762 
    763 	/*
    764 	 * Pages were allocated during the secondary bootstrap for the
    765 	 * stacks for different CPU modes.
    766 	 * We must now set the r13 registers in the different CPU modes to
    767 	 * point to these stacks.
    768 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
    769 	 * of the stack memory.
    770 	 */
    771 #ifdef VERBOSE_INIT_ARM
    772 	printf("init subsystems: stacks ");
    773 #endif
    774 
    775 	set_stackptr(PSR_IRQ32_MODE,
    776 	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
    777 	set_stackptr(PSR_ABT32_MODE,
    778 	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
    779 	set_stackptr(PSR_UND32_MODE,
    780 	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
    781 
    782 	/*
    783 	 * Well we should set a data abort handler.
    784 	 * Once things get going this will change as we will need a proper
    785 	 * handler.
    786 	 * Until then we will use a handler that just panics but tells us
    787 	 * why.
    788 	 * Initialisation of the vectors will just panic on a data abort.
    789 	 * This just fills in a slighly better one.
    790 	 */
    791 #ifdef VERBOSE_INIT_ARM
    792 	printf("vectors ");
    793 #endif
    794 	data_abort_handler_address = (u_int)data_abort_handler;
    795 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
    796 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
    797 
    798 	/* Initialise the undefined instruction handlers */
    799 #ifdef VERBOSE_INIT_ARM
    800 	printf("undefined ");
    801 #endif
    802 	undefined_init();
    803 
    804 	/* Load memory into UVM. */
    805 #ifdef VERBOSE_INIT_ARM
    806 	printf("page ");
    807 #endif
    808 	uvm_setpagesize();	/* initialize PAGE_SIZE-dependent variables */
    809 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
    810 	    atop(physical_freestart), atop(physical_freeend),
    811 	    VM_FREELIST_DEFAULT);
    812 
    813 	/* Boot strap pmap telling it where the kernel page table is */
    814 #ifdef VERBOSE_INIT_ARM
    815 	printf("pmap ");
    816 #endif
    817 	pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE,
    818 	    KERNEL_VM_BASE + KERNEL_VM_SIZE);
    819 
    820 	/* Setup the IRQ system */
    821 #ifdef VERBOSE_INIT_ARM
    822 	printf("irq ");
    823 #endif
    824 	becc_intr_init();
    825 #ifdef VERBOSE_INIT_ARM
    826 	printf("done.\n");
    827 #endif
    828 
    829 #ifdef IPKDB
    830 	/* Initialise ipkdb */
    831 	ipkdb_init();
    832 	if (boothowto & RB_KDB)
    833 		ipkdb_connect(0);
    834 #endif
    835 
    836 
    837 #if NKSYMS || defined(DDB) || defined(LKM)
    838 	/* Firmware doesn't load symbols. */
    839 	ksyms_init(0, NULL, NULL);
    840 #endif
    841 
    842 #ifdef DDB
    843 	db_machine_init();
    844 	if (boothowto & RB_KDB)
    845 		Debugger();
    846 #endif
    847 
    848 	/* We return the new stack pointer address */
    849 	return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
    850 }
    851 
    852 void
    853 consinit(void)
    854 {
    855 	static const bus_addr_t comcnaddrs[] = {
    856 		BRH_UART1_BASE,		/* com0 */
    857 		BRH_UART2_BASE,		/* com1 */
    858 	};
    859 	static int consinit_called;
    860 
    861 	if (consinit_called != 0)
    862 		return;
    863 
    864 	consinit_called = 1;
    865 
    866 #if NCOM > 0
    867 	if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed,
    868 	    BECC_PERIPH_CLOCK, comcnmode))
    869 		panic("can't init serial console @%lx", comcnaddrs[comcnunit]);
    870 #else
    871 	panic("serial console @%lx not configured", comcnaddrs[comcnunit]);
    872 #endif
    873 }
    874