Home | History | Annotate | Line # | Download | only in adi_brh
brh_machdep.c revision 1.13
      1 /*	$NetBSD: brh_machdep.c,v 1.13 2003/05/21 22:48:21 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1997,1998 Mark Brinicombe.
     40  * Copyright (c) 1997,1998 Causality Limited.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by Mark Brinicombe
     54  *	for the NetBSD Project.
     55  * 4. The name of the company nor the name of the author may be used to
     56  *    endorse or promote products derived from this software without specific
     57  *    prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     60  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     61  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     62  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     63  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     64  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     65  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  * Machine dependant functions for kernel setup for the ADI Engineering
     72  * BRH i80200 evaluation platform.
     73  */
     74 
     75 #include "opt_ddb.h"
     76 #include "opt_pmap_debug.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/device.h>
     80 #include <sys/systm.h>
     81 #include <sys/kernel.h>
     82 #include <sys/exec.h>
     83 #include <sys/proc.h>
     84 #include <sys/msgbuf.h>
     85 #include <sys/reboot.h>
     86 #include <sys/termios.h>
     87 #include <sys/ksyms.h>
     88 
     89 #include <uvm/uvm_extern.h>
     90 
     91 #include <dev/cons.h>
     92 
     93 #include <machine/db_machdep.h>
     94 #include <ddb/db_sym.h>
     95 #include <ddb/db_extern.h>
     96 
     97 #include <machine/bootconfig.h>
     98 #include <machine/bus.h>
     99 #include <machine/cpu.h>
    100 #include <machine/frame.h>
    101 #include <arm/undefined.h>
    102 
    103 #include <arm/arm32/machdep.h>
    104 
    105 #include <arm/xscale/i80200reg.h>
    106 #include <arm/xscale/i80200var.h>
    107 
    108 #include <dev/pci/ppbreg.h>
    109 
    110 #include <arm/xscale/beccreg.h>
    111 #include <arm/xscale/beccvar.h>
    112 
    113 #include <evbarm/adi_brh/brhreg.h>
    114 #include <evbarm/adi_brh/brhvar.h>
    115 #include <evbarm/adi_brh/obiovar.h>
    116 
    117 #include "opt_ipkdb.h"
    118 #include "ksyms.h"
    119 
    120 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
    121 #define	KERNEL_TEXT_BASE	(KERNEL_BASE + 0x00200000)
    122 #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
    123 
    124 /*
    125  * Address to call from cpu_reset() to reset the machine.
    126  * This is machine architecture dependant as it varies depending
    127  * on where the ROM appears when you turn the MMU off.
    128  */
    129 
    130 u_int cpu_reset_address = 0x00000000;
    131 
    132 /* Define various stack sizes in pages */
    133 #define IRQ_STACK_SIZE	1
    134 #define ABT_STACK_SIZE	1
    135 #ifdef IPKDB
    136 #define UND_STACK_SIZE	2
    137 #else
    138 #define UND_STACK_SIZE	1
    139 #endif
    140 
    141 BootConfig bootconfig;		/* Boot config storage */
    142 char *boot_args = NULL;
    143 char *boot_file = NULL;
    144 
    145 vm_offset_t physical_start;
    146 vm_offset_t physical_freestart;
    147 vm_offset_t physical_freeend;
    148 vm_offset_t physical_end;
    149 u_int free_pages;
    150 vm_offset_t pagetables_start;
    151 int physmem = 0;
    152 
    153 /*int debug_flags;*/
    154 #ifndef PMAP_STATIC_L1S
    155 int max_processes = 64;			/* Default number */
    156 #endif	/* !PMAP_STATIC_L1S */
    157 
    158 /* Physical and virtual addresses for some global pages */
    159 pv_addr_t systempage;
    160 pv_addr_t irqstack;
    161 pv_addr_t undstack;
    162 pv_addr_t abtstack;
    163 pv_addr_t kernelstack;
    164 pv_addr_t minidataclean;
    165 
    166 vm_offset_t msgbufphys;
    167 
    168 extern u_int data_abort_handler_address;
    169 extern u_int prefetch_abort_handler_address;
    170 extern u_int undefined_handler_address;
    171 
    172 #ifdef PMAP_DEBUG
    173 extern int pmap_debug_level;
    174 #endif
    175 
    176 #define KERNEL_PT_SYS		0	/* L2 table for mapping zero page */
    177 
    178 #define KERNEL_PT_KERNEL	1	/* L2 table for mapping kernel */
    179 #define	KERNEL_PT_KERNEL_NUM	2
    180 
    181 					/* L2 tables for mapping kernel VM */
    182 #define KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
    183 #define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
    184 #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
    185 
    186 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
    187 
    188 struct user *proc0paddr;
    189 
    190 /* Prototypes */
    191 
    192 void	consinit(void);
    193 
    194 #include "com.h"
    195 #if NCOM > 0
    196 #include <dev/ic/comreg.h>
    197 #include <dev/ic/comvar.h>
    198 #endif
    199 
    200 /*
    201  * Define the default console speed for the board.  This is generally
    202  * what the firmware provided with the board defaults to.
    203  */
    204 #ifndef CONSPEED
    205 #define CONSPEED B57600
    206 #endif /* ! CONSPEED */
    207 
    208 #ifndef CONUNIT
    209 #define	CONUNIT	0
    210 #endif
    211 
    212 #ifndef CONMODE
    213 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
    214 #endif
    215 
    216 int comcnspeed = CONSPEED;
    217 int comcnmode = CONMODE;
    218 int comcnunit = CONUNIT;
    219 
    220 /*
    221  * void cpu_reboot(int howto, char *bootstr)
    222  *
    223  * Reboots the system
    224  *
    225  * Deal with any syncing, unmounting, dumping and shutdown hooks,
    226  * then reset the CPU.
    227  */
    228 void
    229 cpu_reboot(int howto, char *bootstr)
    230 {
    231 
    232 	/*
    233 	 * If we are still cold then hit the air brakes
    234 	 * and crash to earth fast
    235 	 */
    236 	if (cold) {
    237 		doshutdownhooks();
    238 		printf("The operating system has halted.\n");
    239 		printf("Please press any key to reboot.\n\n");
    240 		cngetc();
    241 		printf("rebooting...\n");
    242 		goto reset;
    243 	}
    244 
    245 	/* Disable console buffering */
    246 
    247 	/*
    248 	 * If RB_NOSYNC was not specified sync the discs.
    249 	 * Note: Unless cold is set to 1 here, syslogd will die during the
    250 	 * unmount.  It looks like syslogd is getting woken up only to find
    251 	 * that it cannot page part of the binary in as the filesystem has
    252 	 * been unmounted.
    253 	 */
    254 	if (!(howto & RB_NOSYNC))
    255 		bootsync();
    256 
    257 	/* Say NO to interrupts */
    258 	splhigh();
    259 
    260 	/* Do a dump if requested. */
    261 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
    262 		dumpsys();
    263 
    264 	/* Run any shutdown hooks */
    265 	doshutdownhooks();
    266 
    267 	/* Make sure IRQ's are disabled */
    268 	IRQdisable;
    269 
    270 	if (howto & RB_HALT) {
    271 		brh_7seg('8');
    272 		printf("The operating system has halted.\n");
    273 		printf("Please press any key to reboot.\n\n");
    274 		cngetc();
    275 	}
    276 
    277 	printf("rebooting...\n\r");
    278  reset:
    279 	cpu_reset();
    280 }
    281 
    282 /*
    283  * Mapping table for core kernel memory. This memory is mapped at init
    284  * time with section mappings.
    285  */
    286 struct l1_sec_map {
    287 	vaddr_t	va;
    288 	vaddr_t	pa;
    289 	vsize_t	size;
    290 	vm_prot_t prot;
    291 	int cache;
    292 } l1_sec_table[] = {
    293     {
    294 	BRH_PCI_CONF_VBASE,
    295 	BECC_PCI_CONF_BASE,
    296 	BRH_PCI_CONF_VSIZE,
    297 	VM_PROT_READ|VM_PROT_WRITE,
    298 	PTE_NOCACHE,
    299     },
    300     {
    301 	BRH_PCI_MEM1_VBASE,
    302 	BECC_PCI_MEM1_BASE,
    303 	BRH_PCI_MEM1_VSIZE,
    304 	VM_PROT_READ|VM_PROT_WRITE,
    305 	PTE_NOCACHE,
    306     },
    307     {
    308 	BRH_PCI_MEM2_VBASE,
    309 	BECC_PCI_MEM2_BASE,
    310 	BRH_PCI_MEM2_VSIZE,
    311 	VM_PROT_READ|VM_PROT_WRITE,
    312 	PTE_NOCACHE,
    313     },
    314     {
    315 	BRH_UART1_VBASE,
    316 	BRH_UART1_BASE,
    317 	BRH_UART1_VSIZE,
    318 	VM_PROT_READ|VM_PROT_WRITE,
    319 	PTE_NOCACHE,
    320     },
    321     {
    322 	BRH_UART2_VBASE,
    323 	BRH_UART2_BASE,
    324 	BRH_UART2_VSIZE,
    325 	VM_PROT_READ|VM_PROT_WRITE,
    326 	PTE_NOCACHE,
    327     },
    328     {
    329 	BRH_LED_VBASE,
    330 	BRH_LED_BASE,
    331 	BRH_LED_VSIZE,
    332 	VM_PROT_READ|VM_PROT_WRITE,
    333 	PTE_NOCACHE,
    334     },
    335     {
    336 	BRH_PCI_IO_VBASE,
    337 	BECC_PCI_IO_BASE,
    338 	BRH_PCI_IO_VSIZE,
    339 	VM_PROT_READ|VM_PROT_WRITE,
    340 	PTE_NOCACHE,
    341     },
    342     {
    343 	BRH_BECC_VBASE,
    344 	BECC_REG_BASE,
    345 	BRH_BECC_VSIZE,
    346 	VM_PROT_READ|VM_PROT_WRITE,
    347 	PTE_NOCACHE,
    348     },
    349     {
    350 	0,
    351 	0,
    352 	0,
    353 	0,
    354 	0,
    355     }
    356 };
    357 
    358 static void
    359 brh_hardclock_hook(void)
    360 {
    361 	static int snakefreq;
    362 
    363 	if ((snakefreq++ & 15) == 0)
    364 		brh_7seg_snake();
    365 }
    366 
    367 /*
    368  * u_int initarm(...)
    369  *
    370  * Initial entry point on startup. This gets called before main() is
    371  * entered.
    372  * It should be responsible for setting up everything that must be
    373  * in place when main is called.
    374  * This includes
    375  *   Taking a copy of the boot configuration structure.
    376  *   Initialising the physical console so characters can be printed.
    377  *   Setting up page tables for the kernel
    378  *   Relocating the kernel to the bottom of physical memory
    379  */
    380 u_int
    381 initarm(void *arg)
    382 {
    383 	extern vaddr_t xscale_cache_clean_addr;
    384 #ifdef DIAGNOSTIC
    385 	extern vsize_t xscale_minidata_clean_size;
    386 #endif
    387 	int loop;
    388 	int loop1;
    389 	u_int l1pagetable;
    390 	pv_addr_t kernel_l1pt;
    391 	paddr_t memstart;
    392 	psize_t memsize;
    393 
    394 	/*
    395 	 * Clear out the 7-segment display.  Whee, the first visual
    396 	 * indication that we're running kernel code.
    397 	 */
    398 	brh_7seg(' ');
    399 
    400 	/*
    401 	 * Since we have mapped the on-board devices at their permanent
    402 	 * locations already, it is possible for us to initialize
    403 	 * the console now.
    404 	 */
    405 	consinit();
    406 
    407 #ifdef VERBOSE_INIT_ARM
    408 	/* Talk to the user */
    409 	printf("\nNetBSD/evbarm (ADI BRH) booting ...\n");
    410 #endif
    411 
    412 	/* Calibrate the delay loop. */
    413 	becc_hardclock_hook = brh_hardclock_hook;
    414 
    415 	/*
    416 	 * Heads up ... Setup the CPU / MMU / TLB functions
    417 	 */
    418 	if (set_cpufuncs())
    419 		panic("cpu not recognized!");
    420 
    421 	/*
    422 	 * We are currently running with the MMU enabled and the
    423 	 * entire address space mapped VA==PA.  Memory conveniently
    424 	 * starts at 0xc0000000, which is where we want it.  Certain
    425 	 * on-board devices have already been mapped where we want
    426 	 * them to be.  There is an L1 page table at 0xc0004000.
    427 	 */
    428 
    429 	becc_icu_init();
    430 
    431 	/*
    432 	 * Memory always starts at 0xc0000000 on a BRH, and the
    433 	 * memory size is always 128M.
    434 	 */
    435 	memstart = 0xc0000000UL;
    436 	memsize = (128UL * 1024 * 1024);
    437 
    438 #ifdef VERBOSE_INIT_ARM
    439 	printf("initarm: Configuring system ...\n");
    440 #endif
    441 
    442 	/* Fake bootconfig structure for the benefit of pmap.c */
    443 	/* XXX must make the memory description h/w independant */
    444 	bootconfig.dramblocks = 1;
    445 	bootconfig.dram[0].address = memstart;
    446 	bootconfig.dram[0].pages = memsize / PAGE_SIZE;
    447 
    448 	/*
    449 	 * Set up the variables that define the availablilty of
    450 	 * physical memory.  For now, we're going to set
    451 	 * physical_freestart to 0xc0200000 (where the kernel
    452 	 * was loaded), and allocate the memory we need downwards.
    453 	 * If we get too close to the L1 table that we set up, we
    454 	 * will panic.  We will update physical_freestart and
    455 	 * physical_freeend later to reflect what pmap_bootstrap()
    456 	 * wants to see.
    457 	 *
    458 	 * XXX pmap_bootstrap() needs an enema.
    459 	 */
    460 	physical_start = bootconfig.dram[0].address;
    461 	physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
    462 
    463 	physical_freestart = 0xc0009000UL;
    464 	physical_freeend = 0xc0200000UL;
    465 
    466 #ifdef VERBOSE_INIT_ARM
    467 	/* Tell the user about the memory */
    468 	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
    469 	    physical_start, physical_end - 1);
    470 #endif
    471 
    472 	/*
    473 	 * Okay, the kernel starts 2MB in from the bottom of physical
    474 	 * memory.  We are going to allocate our bootstrap pages downwards
    475 	 * from there.
    476 	 *
    477 	 * We need to allocate some fixed page tables to get the kernel
    478 	 * going.  We allocate one page directory and a number of page
    479 	 * tables and store the physical addresses in the kernel_pt_table
    480 	 * array.
    481 	 *
    482 	 * The kernel page directory must be on a 16K boundary.  The page
    483 	 * tables must be on 4K bounaries.  What we do is allocate the
    484 	 * page directory on the first 16K boundary that we encounter, and
    485 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    486 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    487 	 * least one 16K aligned region.
    488 	 */
    489 
    490 #ifdef VERBOSE_INIT_ARM
    491 	printf("Allocating page tables\n");
    492 #endif
    493 
    494 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
    495 
    496 #ifdef VERBOSE_INIT_ARM
    497 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
    498 	       physical_freestart, free_pages, free_pages);
    499 #endif
    500 
    501 	/* Define a macro to simplify memory allocation */
    502 #define	valloc_pages(var, np)				\
    503 	alloc_pages((var).pv_pa, (np));			\
    504 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
    505 
    506 #define alloc_pages(var, np)				\
    507 	physical_freeend -= ((np) * PAGE_SIZE);		\
    508 	if (physical_freeend < physical_freestart)	\
    509 		panic("initarm: out of memory");	\
    510 	(var) = physical_freeend;			\
    511 	free_pages -= (np);				\
    512 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
    513 
    514 	loop1 = 0;
    515 	kernel_l1pt.pv_pa = 0;
    516 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
    517 		/* Are we 16KB aligned for an L1 ? */
    518 		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
    519 		    && kernel_l1pt.pv_pa == 0) {
    520 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
    521 		} else {
    522 			valloc_pages(kernel_pt_table[loop1],
    523 			    L2_TABLE_SIZE / PAGE_SIZE);
    524 			++loop1;
    525 		}
    526 	}
    527 
    528 	/* This should never be able to happen but better confirm that. */
    529 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
    530 		panic("initarm: Failed to align the kernel page directory\n");
    531 
    532 	/*
    533 	 * Allocate a page for the system page mapped to V0x00000000
    534 	 * This page will just contain the system vectors and can be
    535 	 * shared by all processes.
    536 	 */
    537 	alloc_pages(systempage.pv_pa, 1);
    538 
    539 	/* Allocate stacks for all modes */
    540 	valloc_pages(irqstack, IRQ_STACK_SIZE);
    541 	valloc_pages(abtstack, ABT_STACK_SIZE);
    542 	valloc_pages(undstack, UND_STACK_SIZE);
    543 	valloc_pages(kernelstack, UPAGES);
    544 
    545 	/* Allocate enough pages for cleaning the Mini-Data cache. */
    546 	KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
    547 	valloc_pages(minidataclean, 1);
    548 
    549 #ifdef VERBOSE_INIT_ARM
    550 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
    551 	    irqstack.pv_va);
    552 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
    553 	    abtstack.pv_va);
    554 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
    555 	    undstack.pv_va);
    556 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
    557 	    kernelstack.pv_va);
    558 #endif
    559 
    560 	/*
    561 	 * XXX Defer this to later so that we can reclaim the memory
    562 	 * XXX used by the RedBoot page tables.
    563 	 */
    564 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
    565 
    566 	/*
    567 	 * Ok we have allocated physical pages for the primary kernel
    568 	 * page tables
    569 	 */
    570 
    571 #ifdef VERBOSE_INIT_ARM
    572 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    573 #endif
    574 
    575 	/*
    576 	 * Now we start construction of the L1 page table
    577 	 * We start by mapping the L2 page tables into the L1.
    578 	 * This means that we can replace L1 mappings later on if necessary
    579 	 */
    580 	l1pagetable = kernel_l1pt.pv_pa;
    581 
    582 	/* Map the L2 pages tables in the L1 page table */
    583 	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
    584 	    &kernel_pt_table[KERNEL_PT_SYS]);
    585 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
    586 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
    587 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
    588 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
    589 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
    590 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
    591 
    592 	/* update the top of the kernel VM */
    593 	pmap_curmaxkvaddr =
    594 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
    595 
    596 #ifdef VERBOSE_INIT_ARM
    597 	printf("Mapping kernel\n");
    598 #endif
    599 
    600 	/* Now we fill in the L2 pagetable for the kernel static code/data */
    601 	{
    602 		extern char etext[], _end[];
    603 		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
    604 		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
    605 		u_int logical;
    606 
    607 		textsize = (textsize + PGOFSET) & ~PGOFSET;
    608 		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
    609 
    610 		logical = 0x00200000;	/* offset of kernel in RAM */
    611 
    612 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    613 		    physical_start + logical, textsize,
    614 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    615 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    616 		    physical_start + logical, totalsize - textsize,
    617 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    618 	}
    619 
    620 #ifdef VERBOSE_INIT_ARM
    621 	printf("Constructing L2 page tables\n");
    622 #endif
    623 
    624 	/* Map the stack pages */
    625 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
    626 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    627 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
    628 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    629 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
    630 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    631 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
    632 	    UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    633 
    634 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
    635 	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    636 
    637 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
    638 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
    639 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
    640 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    641 	}
    642 
    643 	/* Map the Mini-Data cache clean area. */
    644 	xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
    645 	    minidataclean.pv_pa);
    646 
    647 	/* Map the vector page. */
    648 	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
    649 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    650 
    651 	/*
    652 	 * Map devices we can map w/ section mappings.
    653 	 */
    654 	loop = 0;
    655 	while (l1_sec_table[loop].size) {
    656 		vm_size_t sz;
    657 
    658 #ifdef VERBOSE_INIT_ARM
    659 		printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
    660 		    l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
    661 		    l1_sec_table[loop].va);
    662 #endif
    663 		for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_S_SIZE)
    664 			pmap_map_section(l1pagetable,
    665 			    l1_sec_table[loop].va + sz,
    666 			    l1_sec_table[loop].pa + sz,
    667 			    l1_sec_table[loop].prot,
    668 			    l1_sec_table[loop].cache);
    669 		++loop;
    670 	}
    671 
    672 	/*
    673 	 * Give the XScale global cache clean code an appropriately
    674 	 * sized chunk of unmapped VA space starting at 0xff500000
    675 	 * (our device mappings end before this address).
    676 	 */
    677 	xscale_cache_clean_addr = 0xff500000U;
    678 
    679 	/*
    680 	 * Now we have the real page tables in place so we can switch to them.
    681 	 * Once this is done we will be running with the REAL kernel page
    682 	 * tables.
    683 	 */
    684 
    685 	/* Switch tables */
    686 #ifdef VERBOSE_INIT_ARM
    687 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
    688 #endif
    689 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    690 	setttb(kernel_l1pt.pv_pa);
    691 	cpu_tlb_flushID();
    692 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
    693 
    694 	/*
    695 	 * Move from cpu_startup() as data_abort_handler() references
    696 	 * this during uvm init
    697 	 */
    698 	proc0paddr = (struct user *)kernelstack.pv_va;
    699 	lwp0.l_addr = proc0paddr;
    700 
    701 #ifdef VERBOSE_INIT_ARM
    702 	printf("done!\n");
    703 #endif
    704 
    705 #ifdef VERBOSE_INIT_ARM
    706 	printf("bootstrap done.\n");
    707 #endif
    708 
    709 	/*
    710 	 * Inform the BECC code where the BECC is mapped.
    711 	 */
    712 	becc_vaddr = BRH_BECC_VBASE;
    713 
    714 	/*
    715 	 * Now that we have becc_vaddr set, calibrate delay.
    716 	 */
    717 	becc_calibrate_delay();
    718 
    719 	/*
    720 	 * BECC <= Rev7 can only address 64M through the inbound
    721 	 * PCI windows.  Limit memory to 64M on those revs.  (This
    722 	 * problem was fixed in Rev8 of the BECC; get an FPGA upgrade.)
    723 	 */
    724 	{
    725 		vaddr_t va = BRH_PCI_CONF_VBASE | (1U << BECC_IDSEL_BIT) |
    726 		    PCI_CLASS_REG;
    727 		uint32_t reg;
    728 
    729 		reg = *(__volatile uint32_t *) va;
    730 		becc_rev = PCI_REVISION(reg);
    731 		if (becc_rev <= BECC_REV_V7 &&
    732 		    memsize > (64UL * 1024 * 1024)) {
    733 			memsize = (64UL * 1024 * 1024);
    734 			bootconfig.dram[0].pages = memsize / PAGE_SIZE;
    735 			physical_end = physical_start +
    736 			    (bootconfig.dram[0].pages * PAGE_SIZE);
    737 			printf("BECC <= Rev7: memory truncated to 64M\n");
    738 		}
    739 	}
    740 
    741 	/*
    742 	 * Update the physical_freestart/physical_freeend/free_pages
    743 	 * variables.
    744 	 */
    745 	{
    746 		extern char _end[];
    747 
    748 		physical_freestart = physical_start +
    749 		    (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
    750 		     KERNEL_BASE);
    751 		physical_freeend = physical_end;
    752 		free_pages =
    753 		    (physical_freeend - physical_freestart) / PAGE_SIZE;
    754 	}
    755 #ifdef VERBOSE_INIT_ARM
    756 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
    757 	       physical_freestart, free_pages, free_pages);
    758 #endif
    759 
    760 	physmem = (physical_end - physical_start) / PAGE_SIZE;
    761 
    762 	arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
    763 
    764 	/*
    765 	 * Pages were allocated during the secondary bootstrap for the
    766 	 * stacks for different CPU modes.
    767 	 * We must now set the r13 registers in the different CPU modes to
    768 	 * point to these stacks.
    769 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
    770 	 * of the stack memory.
    771 	 */
    772 #ifdef VERBOSE_INIT_ARM
    773 	printf("init subsystems: stacks ");
    774 #endif
    775 
    776 	set_stackptr(PSR_IRQ32_MODE,
    777 	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
    778 	set_stackptr(PSR_ABT32_MODE,
    779 	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
    780 	set_stackptr(PSR_UND32_MODE,
    781 	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
    782 
    783 	/*
    784 	 * Well we should set a data abort handler.
    785 	 * Once things get going this will change as we will need a proper
    786 	 * handler.
    787 	 * Until then we will use a handler that just panics but tells us
    788 	 * why.
    789 	 * Initialisation of the vectors will just panic on a data abort.
    790 	 * This just fills in a slighly better one.
    791 	 */
    792 #ifdef VERBOSE_INIT_ARM
    793 	printf("vectors ");
    794 #endif
    795 	data_abort_handler_address = (u_int)data_abort_handler;
    796 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
    797 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
    798 
    799 	/* Initialise the undefined instruction handlers */
    800 #ifdef VERBOSE_INIT_ARM
    801 	printf("undefined ");
    802 #endif
    803 	undefined_init();
    804 
    805 	/* Load memory into UVM. */
    806 #ifdef VERBOSE_INIT_ARM
    807 	printf("page ");
    808 #endif
    809 	uvm_setpagesize();	/* initialize PAGE_SIZE-dependent variables */
    810 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
    811 	    atop(physical_freestart), atop(physical_freeend),
    812 	    VM_FREELIST_DEFAULT);
    813 
    814 	/* Boot strap pmap telling it where the kernel page table is */
    815 #ifdef VERBOSE_INIT_ARM
    816 	printf("pmap ");
    817 #endif
    818 	pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE,
    819 	    KERNEL_VM_BASE + KERNEL_VM_SIZE);
    820 
    821 	/* Setup the IRQ system */
    822 #ifdef VERBOSE_INIT_ARM
    823 	printf("irq ");
    824 #endif
    825 	becc_intr_init();
    826 #ifdef VERBOSE_INIT_ARM
    827 	printf("done.\n");
    828 #endif
    829 
    830 #ifdef IPKDB
    831 	/* Initialise ipkdb */
    832 	ipkdb_init();
    833 	if (boothowto & RB_KDB)
    834 		ipkdb_connect(0);
    835 #endif
    836 
    837 
    838 #if NKSYMS || defined(DDB) || defined(LKM)
    839 	/* Firmware doesn't load symbols. */
    840 	ksyms_init(0, NULL, NULL);
    841 #endif
    842 
    843 #ifdef DDB
    844 	db_machine_init();
    845 	if (boothowto & RB_KDB)
    846 		Debugger();
    847 #endif
    848 
    849 	/* We return the new stack pointer address */
    850 	return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
    851 }
    852 
    853 void
    854 consinit(void)
    855 {
    856 	static const bus_addr_t comcnaddrs[] = {
    857 		BRH_UART1_BASE,		/* com0 */
    858 		BRH_UART2_BASE,		/* com1 */
    859 	};
    860 	static int consinit_called;
    861 
    862 	if (consinit_called != 0)
    863 		return;
    864 
    865 	consinit_called = 1;
    866 
    867 #if NCOM > 0
    868 	if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed,
    869 	    BECC_PERIPH_CLOCK, comcnmode))
    870 		panic("can't init serial console @%lx", comcnaddrs[comcnunit]);
    871 #else
    872 	panic("serial console @%lx not configured", comcnaddrs[comcnunit]);
    873 #endif
    874 }
    875