Home | History | Annotate | Line # | Download | only in adi_brh
brh_machdep.c revision 1.15
      1 /*	$NetBSD: brh_machdep.c,v 1.15 2003/06/14 17:01:09 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1997,1998 Mark Brinicombe.
     40  * Copyright (c) 1997,1998 Causality Limited.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by Mark Brinicombe
     54  *	for the NetBSD Project.
     55  * 4. The name of the company nor the name of the author may be used to
     56  *    endorse or promote products derived from this software without specific
     57  *    prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     60  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     61  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     62  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     63  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     64  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     65  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  * Machine dependant functions for kernel setup for the ADI Engineering
     72  * BRH i80200 evaluation platform.
     73  */
     74 
     75 #include "opt_ddb.h"
     76 #include "opt_pmap_debug.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/device.h>
     80 #include <sys/systm.h>
     81 #include <sys/kernel.h>
     82 #include <sys/exec.h>
     83 #include <sys/proc.h>
     84 #include <sys/msgbuf.h>
     85 #include <sys/reboot.h>
     86 #include <sys/termios.h>
     87 #include <sys/ksyms.h>
     88 
     89 #include <uvm/uvm_extern.h>
     90 
     91 #include <dev/cons.h>
     92 
     93 #include <machine/db_machdep.h>
     94 #include <ddb/db_sym.h>
     95 #include <ddb/db_extern.h>
     96 
     97 #include <machine/bootconfig.h>
     98 #include <machine/bus.h>
     99 #include <machine/cpu.h>
    100 #include <machine/frame.h>
    101 #include <arm/undefined.h>
    102 
    103 #include <arm/arm32/machdep.h>
    104 
    105 #include <arm/xscale/i80200reg.h>
    106 #include <arm/xscale/i80200var.h>
    107 
    108 #include <dev/pci/ppbreg.h>
    109 
    110 #include <arm/xscale/beccreg.h>
    111 #include <arm/xscale/beccvar.h>
    112 
    113 #include <evbarm/adi_brh/brhreg.h>
    114 #include <evbarm/adi_brh/brhvar.h>
    115 #include <evbarm/adi_brh/obiovar.h>
    116 
    117 #include "opt_ipkdb.h"
    118 #include "ksyms.h"
    119 
    120 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
    121 #define	KERNEL_TEXT_BASE	(KERNEL_BASE + 0x00200000)
    122 #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
    123 
    124 /*
    125  * The range 0xc1000000 - 0xccffffff is available for kernel VM space
    126  * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
    127  */
    128 #define KERNEL_VM_SIZE		0x0C000000
    129 
    130 /*
    131  * Address to call from cpu_reset() to reset the machine.
    132  * This is machine architecture dependant as it varies depending
    133  * on where the ROM appears when you turn the MMU off.
    134  */
    135 
    136 u_int cpu_reset_address = 0x00000000;
    137 
    138 /* Define various stack sizes in pages */
    139 #define IRQ_STACK_SIZE	1
    140 #define ABT_STACK_SIZE	1
    141 #ifdef IPKDB
    142 #define UND_STACK_SIZE	2
    143 #else
    144 #define UND_STACK_SIZE	1
    145 #endif
    146 
    147 BootConfig bootconfig;		/* Boot config storage */
    148 char *boot_args = NULL;
    149 char *boot_file = NULL;
    150 
    151 vm_offset_t physical_start;
    152 vm_offset_t physical_freestart;
    153 vm_offset_t physical_freeend;
    154 vm_offset_t physical_end;
    155 u_int free_pages;
    156 vm_offset_t pagetables_start;
    157 int physmem = 0;
    158 
    159 /*int debug_flags;*/
    160 #ifndef PMAP_STATIC_L1S
    161 int max_processes = 64;			/* Default number */
    162 #endif	/* !PMAP_STATIC_L1S */
    163 
    164 /* Physical and virtual addresses for some global pages */
    165 pv_addr_t systempage;
    166 pv_addr_t irqstack;
    167 pv_addr_t undstack;
    168 pv_addr_t abtstack;
    169 pv_addr_t kernelstack;
    170 pv_addr_t minidataclean;
    171 
    172 vm_offset_t msgbufphys;
    173 
    174 extern u_int data_abort_handler_address;
    175 extern u_int prefetch_abort_handler_address;
    176 extern u_int undefined_handler_address;
    177 
    178 #ifdef PMAP_DEBUG
    179 extern int pmap_debug_level;
    180 #endif
    181 
    182 #define KERNEL_PT_SYS		0	/* L2 table for mapping zero page */
    183 
    184 #define KERNEL_PT_KERNEL	1	/* L2 table for mapping kernel */
    185 #define	KERNEL_PT_KERNEL_NUM	2
    186 
    187 					/* L2 tables for mapping kernel VM */
    188 #define KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
    189 #define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
    190 #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
    191 
    192 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
    193 
    194 struct user *proc0paddr;
    195 
    196 /* Prototypes */
    197 
    198 void	consinit(void);
    199 
    200 #include "com.h"
    201 #if NCOM > 0
    202 #include <dev/ic/comreg.h>
    203 #include <dev/ic/comvar.h>
    204 #endif
    205 
    206 /*
    207  * Define the default console speed for the board.  This is generally
    208  * what the firmware provided with the board defaults to.
    209  */
    210 #ifndef CONSPEED
    211 #define CONSPEED B57600
    212 #endif /* ! CONSPEED */
    213 
    214 #ifndef CONUNIT
    215 #define	CONUNIT	0
    216 #endif
    217 
    218 #ifndef CONMODE
    219 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
    220 #endif
    221 
    222 int comcnspeed = CONSPEED;
    223 int comcnmode = CONMODE;
    224 int comcnunit = CONUNIT;
    225 
    226 /*
    227  * void cpu_reboot(int howto, char *bootstr)
    228  *
    229  * Reboots the system
    230  *
    231  * Deal with any syncing, unmounting, dumping and shutdown hooks,
    232  * then reset the CPU.
    233  */
    234 void
    235 cpu_reboot(int howto, char *bootstr)
    236 {
    237 
    238 	/*
    239 	 * If we are still cold then hit the air brakes
    240 	 * and crash to earth fast
    241 	 */
    242 	if (cold) {
    243 		doshutdownhooks();
    244 		printf("The operating system has halted.\n");
    245 		printf("Please press any key to reboot.\n\n");
    246 		cngetc();
    247 		printf("rebooting...\n");
    248 		goto reset;
    249 	}
    250 
    251 	/* Disable console buffering */
    252 
    253 	/*
    254 	 * If RB_NOSYNC was not specified sync the discs.
    255 	 * Note: Unless cold is set to 1 here, syslogd will die during the
    256 	 * unmount.  It looks like syslogd is getting woken up only to find
    257 	 * that it cannot page part of the binary in as the filesystem has
    258 	 * been unmounted.
    259 	 */
    260 	if (!(howto & RB_NOSYNC))
    261 		bootsync();
    262 
    263 	/* Say NO to interrupts */
    264 	splhigh();
    265 
    266 	/* Do a dump if requested. */
    267 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
    268 		dumpsys();
    269 
    270 	/* Run any shutdown hooks */
    271 	doshutdownhooks();
    272 
    273 	/* Make sure IRQ's are disabled */
    274 	IRQdisable;
    275 
    276 	if (howto & RB_HALT) {
    277 		brh_7seg('8');
    278 		printf("The operating system has halted.\n");
    279 		printf("Please press any key to reboot.\n\n");
    280 		cngetc();
    281 	}
    282 
    283 	printf("rebooting...\n\r");
    284  reset:
    285 	cpu_reset();
    286 }
    287 
    288 /*
    289  * Mapping table for core kernel memory. This memory is mapped at init
    290  * time with section mappings.
    291  */
    292 struct l1_sec_map {
    293 	vaddr_t	va;
    294 	vaddr_t	pa;
    295 	vsize_t	size;
    296 	vm_prot_t prot;
    297 	int cache;
    298 } l1_sec_table[] = {
    299     {
    300 	BRH_PCI_CONF_VBASE,
    301 	BECC_PCI_CONF_BASE,
    302 	BRH_PCI_CONF_VSIZE,
    303 	VM_PROT_READ|VM_PROT_WRITE,
    304 	PTE_NOCACHE,
    305     },
    306     {
    307 	BRH_PCI_MEM1_VBASE,
    308 	BECC_PCI_MEM1_BASE,
    309 	BRH_PCI_MEM1_VSIZE,
    310 	VM_PROT_READ|VM_PROT_WRITE,
    311 	PTE_NOCACHE,
    312     },
    313     {
    314 	BRH_PCI_MEM2_VBASE,
    315 	BECC_PCI_MEM2_BASE,
    316 	BRH_PCI_MEM2_VSIZE,
    317 	VM_PROT_READ|VM_PROT_WRITE,
    318 	PTE_NOCACHE,
    319     },
    320     {
    321 	BRH_UART1_VBASE,
    322 	BRH_UART1_BASE,
    323 	BRH_UART1_VSIZE,
    324 	VM_PROT_READ|VM_PROT_WRITE,
    325 	PTE_NOCACHE,
    326     },
    327     {
    328 	BRH_UART2_VBASE,
    329 	BRH_UART2_BASE,
    330 	BRH_UART2_VSIZE,
    331 	VM_PROT_READ|VM_PROT_WRITE,
    332 	PTE_NOCACHE,
    333     },
    334     {
    335 	BRH_LED_VBASE,
    336 	BRH_LED_BASE,
    337 	BRH_LED_VSIZE,
    338 	VM_PROT_READ|VM_PROT_WRITE,
    339 	PTE_NOCACHE,
    340     },
    341     {
    342 	BRH_PCI_IO_VBASE,
    343 	BECC_PCI_IO_BASE,
    344 	BRH_PCI_IO_VSIZE,
    345 	VM_PROT_READ|VM_PROT_WRITE,
    346 	PTE_NOCACHE,
    347     },
    348     {
    349 	BRH_BECC_VBASE,
    350 	BECC_REG_BASE,
    351 	BRH_BECC_VSIZE,
    352 	VM_PROT_READ|VM_PROT_WRITE,
    353 	PTE_NOCACHE,
    354     },
    355     {
    356 	0,
    357 	0,
    358 	0,
    359 	0,
    360 	0,
    361     }
    362 };
    363 
    364 static void
    365 brh_hardclock_hook(void)
    366 {
    367 	static int snakefreq;
    368 
    369 	if ((snakefreq++ & 15) == 0)
    370 		brh_7seg_snake();
    371 }
    372 
    373 /*
    374  * u_int initarm(...)
    375  *
    376  * Initial entry point on startup. This gets called before main() is
    377  * entered.
    378  * It should be responsible for setting up everything that must be
    379  * in place when main is called.
    380  * This includes
    381  *   Taking a copy of the boot configuration structure.
    382  *   Initialising the physical console so characters can be printed.
    383  *   Setting up page tables for the kernel
    384  *   Relocating the kernel to the bottom of physical memory
    385  */
    386 u_int
    387 initarm(void *arg)
    388 {
    389 	extern vaddr_t xscale_cache_clean_addr;
    390 #ifdef DIAGNOSTIC
    391 	extern vsize_t xscale_minidata_clean_size;
    392 #endif
    393 	int loop;
    394 	int loop1;
    395 	u_int l1pagetable;
    396 	pv_addr_t kernel_l1pt;
    397 	paddr_t memstart;
    398 	psize_t memsize;
    399 
    400 	/*
    401 	 * Clear out the 7-segment display.  Whee, the first visual
    402 	 * indication that we're running kernel code.
    403 	 */
    404 	brh_7seg(' ');
    405 
    406 	/*
    407 	 * Since we have mapped the on-board devices at their permanent
    408 	 * locations already, it is possible for us to initialize
    409 	 * the console now.
    410 	 */
    411 	consinit();
    412 
    413 #ifdef VERBOSE_INIT_ARM
    414 	/* Talk to the user */
    415 	printf("\nNetBSD/evbarm (ADI BRH) booting ...\n");
    416 #endif
    417 
    418 	/* Calibrate the delay loop. */
    419 	becc_hardclock_hook = brh_hardclock_hook;
    420 
    421 	/*
    422 	 * Heads up ... Setup the CPU / MMU / TLB functions
    423 	 */
    424 	if (set_cpufuncs())
    425 		panic("cpu not recognized!");
    426 
    427 	/*
    428 	 * We are currently running with the MMU enabled and the
    429 	 * entire address space mapped VA==PA.  Memory conveniently
    430 	 * starts at 0xc0000000, which is where we want it.  Certain
    431 	 * on-board devices have already been mapped where we want
    432 	 * them to be.  There is an L1 page table at 0xc0004000.
    433 	 */
    434 
    435 	becc_icu_init();
    436 
    437 	/*
    438 	 * Memory always starts at 0xc0000000 on a BRH, and the
    439 	 * memory size is always 128M.
    440 	 */
    441 	memstart = 0xc0000000UL;
    442 	memsize = (128UL * 1024 * 1024);
    443 
    444 #ifdef VERBOSE_INIT_ARM
    445 	printf("initarm: Configuring system ...\n");
    446 #endif
    447 
    448 	/* Fake bootconfig structure for the benefit of pmap.c */
    449 	/* XXX must make the memory description h/w independant */
    450 	bootconfig.dramblocks = 1;
    451 	bootconfig.dram[0].address = memstart;
    452 	bootconfig.dram[0].pages = memsize / PAGE_SIZE;
    453 
    454 	/*
    455 	 * Set up the variables that define the availablilty of
    456 	 * physical memory.  For now, we're going to set
    457 	 * physical_freestart to 0xc0200000 (where the kernel
    458 	 * was loaded), and allocate the memory we need downwards.
    459 	 * If we get too close to the L1 table that we set up, we
    460 	 * will panic.  We will update physical_freestart and
    461 	 * physical_freeend later to reflect what pmap_bootstrap()
    462 	 * wants to see.
    463 	 *
    464 	 * XXX pmap_bootstrap() needs an enema.
    465 	 */
    466 	physical_start = bootconfig.dram[0].address;
    467 	physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
    468 
    469 	physical_freestart = 0xc0009000UL;
    470 	physical_freeend = 0xc0200000UL;
    471 
    472 #ifdef VERBOSE_INIT_ARM
    473 	/* Tell the user about the memory */
    474 	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
    475 	    physical_start, physical_end - 1);
    476 #endif
    477 
    478 	/*
    479 	 * Okay, the kernel starts 2MB in from the bottom of physical
    480 	 * memory.  We are going to allocate our bootstrap pages downwards
    481 	 * from there.
    482 	 *
    483 	 * We need to allocate some fixed page tables to get the kernel
    484 	 * going.  We allocate one page directory and a number of page
    485 	 * tables and store the physical addresses in the kernel_pt_table
    486 	 * array.
    487 	 *
    488 	 * The kernel page directory must be on a 16K boundary.  The page
    489 	 * tables must be on 4K bounaries.  What we do is allocate the
    490 	 * page directory on the first 16K boundary that we encounter, and
    491 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    492 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    493 	 * least one 16K aligned region.
    494 	 */
    495 
    496 #ifdef VERBOSE_INIT_ARM
    497 	printf("Allocating page tables\n");
    498 #endif
    499 
    500 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
    501 
    502 #ifdef VERBOSE_INIT_ARM
    503 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
    504 	       physical_freestart, free_pages, free_pages);
    505 #endif
    506 
    507 	/* Define a macro to simplify memory allocation */
    508 #define	valloc_pages(var, np)				\
    509 	alloc_pages((var).pv_pa, (np));			\
    510 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
    511 
    512 #define alloc_pages(var, np)				\
    513 	physical_freeend -= ((np) * PAGE_SIZE);		\
    514 	if (physical_freeend < physical_freestart)	\
    515 		panic("initarm: out of memory");	\
    516 	(var) = physical_freeend;			\
    517 	free_pages -= (np);				\
    518 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
    519 
    520 	loop1 = 0;
    521 	kernel_l1pt.pv_pa = 0;
    522 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
    523 		/* Are we 16KB aligned for an L1 ? */
    524 		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
    525 		    && kernel_l1pt.pv_pa == 0) {
    526 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
    527 		} else {
    528 			valloc_pages(kernel_pt_table[loop1],
    529 			    L2_TABLE_SIZE / PAGE_SIZE);
    530 			++loop1;
    531 		}
    532 	}
    533 
    534 	/* This should never be able to happen but better confirm that. */
    535 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
    536 		panic("initarm: Failed to align the kernel page directory\n");
    537 
    538 	/*
    539 	 * Allocate a page for the system page mapped to V0x00000000
    540 	 * This page will just contain the system vectors and can be
    541 	 * shared by all processes.
    542 	 */
    543 	alloc_pages(systempage.pv_pa, 1);
    544 
    545 	/* Allocate stacks for all modes */
    546 	valloc_pages(irqstack, IRQ_STACK_SIZE);
    547 	valloc_pages(abtstack, ABT_STACK_SIZE);
    548 	valloc_pages(undstack, UND_STACK_SIZE);
    549 	valloc_pages(kernelstack, UPAGES);
    550 
    551 	/* Allocate enough pages for cleaning the Mini-Data cache. */
    552 	KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
    553 	valloc_pages(minidataclean, 1);
    554 
    555 #ifdef VERBOSE_INIT_ARM
    556 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
    557 	    irqstack.pv_va);
    558 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
    559 	    abtstack.pv_va);
    560 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
    561 	    undstack.pv_va);
    562 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
    563 	    kernelstack.pv_va);
    564 #endif
    565 
    566 	/*
    567 	 * XXX Defer this to later so that we can reclaim the memory
    568 	 * XXX used by the RedBoot page tables.
    569 	 */
    570 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
    571 
    572 	/*
    573 	 * Ok we have allocated physical pages for the primary kernel
    574 	 * page tables
    575 	 */
    576 
    577 #ifdef VERBOSE_INIT_ARM
    578 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    579 #endif
    580 
    581 	/*
    582 	 * Now we start construction of the L1 page table
    583 	 * We start by mapping the L2 page tables into the L1.
    584 	 * This means that we can replace L1 mappings later on if necessary
    585 	 */
    586 	l1pagetable = kernel_l1pt.pv_pa;
    587 
    588 	/* Map the L2 pages tables in the L1 page table */
    589 	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
    590 	    &kernel_pt_table[KERNEL_PT_SYS]);
    591 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
    592 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
    593 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
    594 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
    595 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
    596 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
    597 
    598 	/* update the top of the kernel VM */
    599 	pmap_curmaxkvaddr =
    600 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
    601 
    602 #ifdef VERBOSE_INIT_ARM
    603 	printf("Mapping kernel\n");
    604 #endif
    605 
    606 	/* Now we fill in the L2 pagetable for the kernel static code/data */
    607 	{
    608 		extern char etext[], _end[];
    609 		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
    610 		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
    611 		u_int logical;
    612 
    613 		textsize = (textsize + PGOFSET) & ~PGOFSET;
    614 		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
    615 
    616 		logical = 0x00200000;	/* offset of kernel in RAM */
    617 
    618 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    619 		    physical_start + logical, textsize,
    620 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    621 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    622 		    physical_start + logical, totalsize - textsize,
    623 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    624 	}
    625 
    626 #ifdef VERBOSE_INIT_ARM
    627 	printf("Constructing L2 page tables\n");
    628 #endif
    629 
    630 	/* Map the stack pages */
    631 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
    632 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    633 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
    634 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    635 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
    636 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    637 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
    638 	    UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    639 
    640 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
    641 	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    642 
    643 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
    644 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
    645 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
    646 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    647 	}
    648 
    649 	/* Map the Mini-Data cache clean area. */
    650 	xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
    651 	    minidataclean.pv_pa);
    652 
    653 	/* Map the vector page. */
    654 	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
    655 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    656 
    657 	/*
    658 	 * Map devices we can map w/ section mappings.
    659 	 */
    660 	loop = 0;
    661 	while (l1_sec_table[loop].size) {
    662 		vm_size_t sz;
    663 
    664 #ifdef VERBOSE_INIT_ARM
    665 		printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
    666 		    l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
    667 		    l1_sec_table[loop].va);
    668 #endif
    669 		for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_S_SIZE)
    670 			pmap_map_section(l1pagetable,
    671 			    l1_sec_table[loop].va + sz,
    672 			    l1_sec_table[loop].pa + sz,
    673 			    l1_sec_table[loop].prot,
    674 			    l1_sec_table[loop].cache);
    675 		++loop;
    676 	}
    677 
    678 	/*
    679 	 * Give the XScale global cache clean code an appropriately
    680 	 * sized chunk of unmapped VA space starting at 0xff500000
    681 	 * (our device mappings end before this address).
    682 	 */
    683 	xscale_cache_clean_addr = 0xff500000U;
    684 
    685 	/*
    686 	 * Now we have the real page tables in place so we can switch to them.
    687 	 * Once this is done we will be running with the REAL kernel page
    688 	 * tables.
    689 	 */
    690 
    691 	/* Switch tables */
    692 #ifdef VERBOSE_INIT_ARM
    693 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
    694 #endif
    695 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    696 	setttb(kernel_l1pt.pv_pa);
    697 	cpu_tlb_flushID();
    698 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
    699 
    700 	/*
    701 	 * Move from cpu_startup() as data_abort_handler() references
    702 	 * this during uvm init
    703 	 */
    704 	proc0paddr = (struct user *)kernelstack.pv_va;
    705 	lwp0.l_addr = proc0paddr;
    706 
    707 #ifdef VERBOSE_INIT_ARM
    708 	printf("done!\n");
    709 #endif
    710 
    711 #ifdef VERBOSE_INIT_ARM
    712 	printf("bootstrap done.\n");
    713 #endif
    714 
    715 	/*
    716 	 * Inform the BECC code where the BECC is mapped.
    717 	 */
    718 	becc_vaddr = BRH_BECC_VBASE;
    719 
    720 	/*
    721 	 * Now that we have becc_vaddr set, calibrate delay.
    722 	 */
    723 	becc_calibrate_delay();
    724 
    725 	/*
    726 	 * BECC <= Rev7 can only address 64M through the inbound
    727 	 * PCI windows.  Limit memory to 64M on those revs.  (This
    728 	 * problem was fixed in Rev8 of the BECC; get an FPGA upgrade.)
    729 	 */
    730 	{
    731 		vaddr_t va = BRH_PCI_CONF_VBASE | (1U << BECC_IDSEL_BIT) |
    732 		    PCI_CLASS_REG;
    733 		uint32_t reg;
    734 
    735 		reg = *(__volatile uint32_t *) va;
    736 		becc_rev = PCI_REVISION(reg);
    737 		if (becc_rev <= BECC_REV_V7 &&
    738 		    memsize > (64UL * 1024 * 1024)) {
    739 			memsize = (64UL * 1024 * 1024);
    740 			bootconfig.dram[0].pages = memsize / PAGE_SIZE;
    741 			physical_end = physical_start +
    742 			    (bootconfig.dram[0].pages * PAGE_SIZE);
    743 			printf("BECC <= Rev7: memory truncated to 64M\n");
    744 		}
    745 	}
    746 
    747 	/*
    748 	 * Update the physical_freestart/physical_freeend/free_pages
    749 	 * variables.
    750 	 */
    751 	{
    752 		extern char _end[];
    753 
    754 		physical_freestart = physical_start +
    755 		    (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
    756 		     KERNEL_BASE);
    757 		physical_freeend = physical_end;
    758 		free_pages =
    759 		    (physical_freeend - physical_freestart) / PAGE_SIZE;
    760 	}
    761 #ifdef VERBOSE_INIT_ARM
    762 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
    763 	       physical_freestart, free_pages, free_pages);
    764 #endif
    765 
    766 	physmem = (physical_end - physical_start) / PAGE_SIZE;
    767 
    768 	arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
    769 
    770 	/*
    771 	 * Pages were allocated during the secondary bootstrap for the
    772 	 * stacks for different CPU modes.
    773 	 * We must now set the r13 registers in the different CPU modes to
    774 	 * point to these stacks.
    775 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
    776 	 * of the stack memory.
    777 	 */
    778 #ifdef VERBOSE_INIT_ARM
    779 	printf("init subsystems: stacks ");
    780 #endif
    781 
    782 	set_stackptr(PSR_IRQ32_MODE,
    783 	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
    784 	set_stackptr(PSR_ABT32_MODE,
    785 	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
    786 	set_stackptr(PSR_UND32_MODE,
    787 	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
    788 
    789 	/*
    790 	 * Well we should set a data abort handler.
    791 	 * Once things get going this will change as we will need a proper
    792 	 * handler.
    793 	 * Until then we will use a handler that just panics but tells us
    794 	 * why.
    795 	 * Initialisation of the vectors will just panic on a data abort.
    796 	 * This just fills in a slighly better one.
    797 	 */
    798 #ifdef VERBOSE_INIT_ARM
    799 	printf("vectors ");
    800 #endif
    801 	data_abort_handler_address = (u_int)data_abort_handler;
    802 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
    803 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
    804 
    805 	/* Initialise the undefined instruction handlers */
    806 #ifdef VERBOSE_INIT_ARM
    807 	printf("undefined ");
    808 #endif
    809 	undefined_init();
    810 
    811 	/* Load memory into UVM. */
    812 #ifdef VERBOSE_INIT_ARM
    813 	printf("page ");
    814 #endif
    815 	uvm_setpagesize();	/* initialize PAGE_SIZE-dependent variables */
    816 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
    817 	    atop(physical_freestart), atop(physical_freeend),
    818 	    VM_FREELIST_DEFAULT);
    819 
    820 	/* Boot strap pmap telling it where the kernel page table is */
    821 #ifdef VERBOSE_INIT_ARM
    822 	printf("pmap ");
    823 #endif
    824 	pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE,
    825 	    KERNEL_VM_BASE + KERNEL_VM_SIZE);
    826 
    827 	/* Setup the IRQ system */
    828 #ifdef VERBOSE_INIT_ARM
    829 	printf("irq ");
    830 #endif
    831 	becc_intr_init();
    832 #ifdef VERBOSE_INIT_ARM
    833 	printf("done.\n");
    834 #endif
    835 
    836 #ifdef IPKDB
    837 	/* Initialise ipkdb */
    838 	ipkdb_init();
    839 	if (boothowto & RB_KDB)
    840 		ipkdb_connect(0);
    841 #endif
    842 
    843 
    844 #if NKSYMS || defined(DDB) || defined(LKM)
    845 	/* Firmware doesn't load symbols. */
    846 	ksyms_init(0, NULL, NULL);
    847 #endif
    848 
    849 #ifdef DDB
    850 	db_machine_init();
    851 	if (boothowto & RB_KDB)
    852 		Debugger();
    853 #endif
    854 
    855 	/* We return the new stack pointer address */
    856 	return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
    857 }
    858 
    859 void
    860 consinit(void)
    861 {
    862 	static const bus_addr_t comcnaddrs[] = {
    863 		BRH_UART1_BASE,		/* com0 */
    864 		BRH_UART2_BASE,		/* com1 */
    865 	};
    866 	static int consinit_called;
    867 
    868 	if (consinit_called != 0)
    869 		return;
    870 
    871 	consinit_called = 1;
    872 
    873 #if NCOM > 0
    874 	if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed,
    875 	    BECC_PERIPH_CLOCK, COM_TYPE_NORMAL, comcnmode))
    876 		panic("can't init serial console @%lx", comcnaddrs[comcnunit]);
    877 #else
    878 	panic("serial console @%lx not configured", comcnaddrs[comcnunit]);
    879 #endif
    880 }
    881