brh_machdep.c revision 1.28.6.1 1 /* $NetBSD: brh_machdep.c,v 1.28.6.1 2008/12/13 01:13:06 haad Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1997,1998 Mark Brinicombe.
40 * Copyright (c) 1997,1998 Causality Limited.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by Mark Brinicombe
54 * for the NetBSD Project.
55 * 4. The name of the company nor the name of the author may be used to
56 * endorse or promote products derived from this software without specific
57 * prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
60 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * Machine dependant functions for kernel setup for the ADI Engineering
72 * BRH i80200 evaluation platform.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: brh_machdep.c,v 1.28.6.1 2008/12/13 01:13:06 haad Exp $");
77
78 #include "opt_ddb.h"
79 #include "opt_pmap_debug.h"
80
81 #include <sys/param.h>
82 #include <sys/device.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/exec.h>
86 #include <sys/proc.h>
87 #include <sys/msgbuf.h>
88 #include <sys/reboot.h>
89 #include <sys/termios.h>
90 #include <sys/ksyms.h>
91
92 #include <uvm/uvm_extern.h>
93
94 #include <dev/cons.h>
95
96 #include <machine/db_machdep.h>
97 #include <ddb/db_sym.h>
98 #include <ddb/db_extern.h>
99
100 #include <machine/bootconfig.h>
101 #include <machine/bus.h>
102 #include <machine/cpu.h>
103 #include <machine/frame.h>
104 #include <arm/undefined.h>
105
106 #include <arm/arm32/machdep.h>
107
108 #include <arm/xscale/i80200reg.h>
109 #include <arm/xscale/i80200var.h>
110
111 #include <dev/pci/ppbreg.h>
112
113 #include <arm/xscale/beccreg.h>
114 #include <arm/xscale/beccvar.h>
115
116 #include <evbarm/adi_brh/brhreg.h>
117 #include <evbarm/adi_brh/brhvar.h>
118 #include <evbarm/adi_brh/obiovar.h>
119
120 #include "ksyms.h"
121
122 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
123 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
124 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
125
126 /*
127 * The range 0xc1000000 - 0xccffffff is available for kernel VM space
128 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
129 */
130 #define KERNEL_VM_SIZE 0x0C000000
131
132 /*
133 * Address to call from cpu_reset() to reset the machine.
134 * This is machine architecture dependant as it varies depending
135 * on where the ROM appears when you turn the MMU off.
136 */
137
138 u_int cpu_reset_address = 0x00000000;
139
140 /* Define various stack sizes in pages */
141 #define IRQ_STACK_SIZE 1
142 #define ABT_STACK_SIZE 1
143 #define UND_STACK_SIZE 1
144
145 BootConfig bootconfig; /* Boot config storage */
146 char *boot_args = NULL;
147 char *boot_file = NULL;
148
149 vm_offset_t physical_start;
150 vm_offset_t physical_freestart;
151 vm_offset_t physical_freeend;
152 vm_offset_t physical_end;
153 u_int free_pages;
154 vm_offset_t pagetables_start;
155 int physmem = 0;
156
157 /*int debug_flags;*/
158 #ifndef PMAP_STATIC_L1S
159 int max_processes = 64; /* Default number */
160 #endif /* !PMAP_STATIC_L1S */
161
162 /* Physical and virtual addresses for some global pages */
163 pv_addr_t irqstack;
164 pv_addr_t undstack;
165 pv_addr_t abtstack;
166 pv_addr_t kernelstack;
167 pv_addr_t minidataclean;
168
169 vm_offset_t msgbufphys;
170
171 extern u_int data_abort_handler_address;
172 extern u_int prefetch_abort_handler_address;
173 extern u_int undefined_handler_address;
174
175 #ifdef PMAP_DEBUG
176 extern int pmap_debug_level;
177 #endif
178
179 #define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */
180
181 #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */
182 #define KERNEL_PT_KERNEL_NUM 2
183
184 /* L2 tables for mapping kernel VM */
185 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
186 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
187 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
188
189 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
190
191 struct user *proc0paddr;
192
193 /* Prototypes */
194
195 void consinit(void);
196
197 #include "com.h"
198 #if NCOM > 0
199 #include <dev/ic/comreg.h>
200 #include <dev/ic/comvar.h>
201 #endif
202
203 /*
204 * Define the default console speed for the board. This is generally
205 * what the firmware provided with the board defaults to.
206 */
207 #ifndef CONSPEED
208 #define CONSPEED B57600
209 #endif /* ! CONSPEED */
210
211 #ifndef CONUNIT
212 #define CONUNIT 0
213 #endif
214
215 #ifndef CONMODE
216 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
217 #endif
218
219 int comcnspeed = CONSPEED;
220 int comcnmode = CONMODE;
221 int comcnunit = CONUNIT;
222
223 /*
224 * void cpu_reboot(int howto, char *bootstr)
225 *
226 * Reboots the system
227 *
228 * Deal with any syncing, unmounting, dumping and shutdown hooks,
229 * then reset the CPU.
230 */
231 void
232 cpu_reboot(int howto, char *bootstr)
233 {
234
235 /*
236 * If we are still cold then hit the air brakes
237 * and crash to earth fast
238 */
239 if (cold) {
240 doshutdownhooks();
241 pmf_system_shutdown(boothowto);
242 printf("The operating system has halted.\n");
243 printf("Please press any key to reboot.\n\n");
244 cngetc();
245 printf("rebooting...\n");
246 goto reset;
247 }
248
249 /* Disable console buffering */
250
251 /*
252 * If RB_NOSYNC was not specified sync the discs.
253 * Note: Unless cold is set to 1 here, syslogd will die during the
254 * unmount. It looks like syslogd is getting woken up only to find
255 * that it cannot page part of the binary in as the filesystem has
256 * been unmounted.
257 */
258 if (!(howto & RB_NOSYNC))
259 bootsync();
260
261 /* Say NO to interrupts */
262 splhigh();
263
264 /* Do a dump if requested. */
265 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
266 dumpsys();
267
268 /* Run any shutdown hooks */
269 doshutdownhooks();
270
271 pmf_system_shutdown(boothowto);
272
273 /* Make sure IRQ's are disabled */
274 IRQdisable;
275
276 if (howto & RB_HALT) {
277 brh_7seg('8');
278 printf("The operating system has halted.\n");
279 printf("Please press any key to reboot.\n\n");
280 cngetc();
281 }
282
283 printf("rebooting...\n\r");
284 reset:
285 cpu_reset();
286 }
287
288 /* Static device mappings. */
289 static const struct pmap_devmap brh_devmap[] = {
290 {
291 BRH_PCI_CONF_VBASE,
292 BECC_PCI_CONF_BASE,
293 BRH_PCI_CONF_VSIZE,
294 VM_PROT_READ|VM_PROT_WRITE,
295 PTE_NOCACHE,
296 },
297 {
298 BRH_PCI_MEM1_VBASE,
299 BECC_PCI_MEM1_BASE,
300 BRH_PCI_MEM1_VSIZE,
301 VM_PROT_READ|VM_PROT_WRITE,
302 PTE_NOCACHE,
303 },
304 {
305 BRH_PCI_MEM2_VBASE,
306 BECC_PCI_MEM2_BASE,
307 BRH_PCI_MEM2_VSIZE,
308 VM_PROT_READ|VM_PROT_WRITE,
309 PTE_NOCACHE,
310 },
311 {
312 BRH_UART1_VBASE,
313 BRH_UART1_BASE,
314 BRH_UART1_VSIZE,
315 VM_PROT_READ|VM_PROT_WRITE,
316 PTE_NOCACHE,
317 },
318 {
319 BRH_UART2_VBASE,
320 BRH_UART2_BASE,
321 BRH_UART2_VSIZE,
322 VM_PROT_READ|VM_PROT_WRITE,
323 PTE_NOCACHE,
324 },
325 {
326 BRH_LED_VBASE,
327 BRH_LED_BASE,
328 BRH_LED_VSIZE,
329 VM_PROT_READ|VM_PROT_WRITE,
330 PTE_NOCACHE,
331 },
332 {
333 BRH_PCI_IO_VBASE,
334 BECC_PCI_IO_BASE,
335 BRH_PCI_IO_VSIZE,
336 VM_PROT_READ|VM_PROT_WRITE,
337 PTE_NOCACHE,
338 },
339 {
340 BRH_BECC_VBASE,
341 BECC_REG_BASE,
342 BRH_BECC_VSIZE,
343 VM_PROT_READ|VM_PROT_WRITE,
344 PTE_NOCACHE,
345 },
346 {
347 0,
348 0,
349 0,
350 0,
351 0,
352 }
353 };
354
355 static void
356 brh_hardclock_hook(void)
357 {
358 static int snakefreq;
359
360 if ((snakefreq++ & 15) == 0)
361 brh_7seg_snake();
362 }
363
364 /*
365 * u_int initarm(...)
366 *
367 * Initial entry point on startup. This gets called before main() is
368 * entered.
369 * It should be responsible for setting up everything that must be
370 * in place when main is called.
371 * This includes
372 * Taking a copy of the boot configuration structure.
373 * Initialising the physical console so characters can be printed.
374 * Setting up page tables for the kernel
375 * Relocating the kernel to the bottom of physical memory
376 */
377 u_int
378 initarm(void *arg)
379 {
380 extern vaddr_t xscale_cache_clean_addr;
381 #ifdef DIAGNOSTIC
382 extern vsize_t xscale_minidata_clean_size;
383 #endif
384 int loop;
385 int loop1;
386 u_int l1pagetable;
387 paddr_t memstart;
388 psize_t memsize;
389
390 /*
391 * Clear out the 7-segment display. Whee, the first visual
392 * indication that we're running kernel code.
393 */
394 brh_7seg(' ');
395
396 /*
397 * Since we have mapped the on-board devices at their permanent
398 * locations already, it is possible for us to initialize
399 * the console now.
400 */
401 consinit();
402
403 #ifdef VERBOSE_INIT_ARM
404 /* Talk to the user */
405 printf("\nNetBSD/evbarm (ADI BRH) booting ...\n");
406 #endif
407
408 /* Calibrate the delay loop. */
409 becc_hardclock_hook = brh_hardclock_hook;
410
411 /*
412 * Heads up ... Setup the CPU / MMU / TLB functions
413 */
414 if (set_cpufuncs())
415 panic("CPU not recognized!");
416
417 /*
418 * We are currently running with the MMU enabled and the
419 * entire address space mapped VA==PA. Memory conveniently
420 * starts at 0xc0000000, which is where we want it. Certain
421 * on-board devices have already been mapped where we want
422 * them to be. There is an L1 page table at 0xc0004000.
423 */
424
425 becc_icu_init();
426
427 /*
428 * Memory always starts at 0xc0000000 on a BRH, and the
429 * memory size is always 128M.
430 */
431 memstart = 0xc0000000UL;
432 memsize = (128UL * 1024 * 1024);
433
434 #ifdef VERBOSE_INIT_ARM
435 printf("initarm: Configuring system ...\n");
436 #endif
437
438 /* Fake bootconfig structure for the benefit of pmap.c */
439 /* XXX must make the memory description h/w independent */
440 bootconfig.dramblocks = 1;
441 bootconfig.dram[0].address = memstart;
442 bootconfig.dram[0].pages = memsize / PAGE_SIZE;
443
444 /*
445 * Set up the variables that define the availablilty of
446 * physical memory. For now, we're going to set
447 * physical_freestart to 0xc0200000 (where the kernel
448 * was loaded), and allocate the memory we need downwards.
449 * If we get too close to the L1 table that we set up, we
450 * will panic. We will update physical_freestart and
451 * physical_freeend later to reflect what pmap_bootstrap()
452 * wants to see.
453 *
454 * XXX pmap_bootstrap() needs an enema.
455 */
456 physical_start = bootconfig.dram[0].address;
457 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
458
459 physical_freestart = 0xc0009000UL;
460 physical_freeend = 0xc0200000UL;
461
462 #ifdef VERBOSE_INIT_ARM
463 /* Tell the user about the memory */
464 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
465 physical_start, physical_end - 1);
466 #endif
467
468 /*
469 * Okay, the kernel starts 2MB in from the bottom of physical
470 * memory. We are going to allocate our bootstrap pages downwards
471 * from there.
472 *
473 * We need to allocate some fixed page tables to get the kernel
474 * going. We allocate one page directory and a number of page
475 * tables and store the physical addresses in the kernel_pt_table
476 * array.
477 *
478 * The kernel page directory must be on a 16K boundary. The page
479 * tables must be on 4K boundaries. What we do is allocate the
480 * page directory on the first 16K boundary that we encounter, and
481 * the page tables on 4K boundaries otherwise. Since we allocate
482 * at least 3 L2 page tables, we are guaranteed to encounter at
483 * least one 16K aligned region.
484 */
485
486 #ifdef VERBOSE_INIT_ARM
487 printf("Allocating page tables\n");
488 #endif
489
490 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
491
492 #ifdef VERBOSE_INIT_ARM
493 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
494 physical_freestart, free_pages, free_pages);
495 #endif
496
497 /* Define a macro to simplify memory allocation */
498 #define valloc_pages(var, np) \
499 alloc_pages((var).pv_pa, (np)); \
500 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
501
502 #define alloc_pages(var, np) \
503 physical_freeend -= ((np) * PAGE_SIZE); \
504 if (physical_freeend < physical_freestart) \
505 panic("initarm: out of memory"); \
506 (var) = physical_freeend; \
507 free_pages -= (np); \
508 memset((char *)(var), 0, ((np) * PAGE_SIZE));
509
510 loop1 = 0;
511 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
512 /* Are we 16KB aligned for an L1 ? */
513 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
514 && kernel_l1pt.pv_pa == 0) {
515 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
516 } else {
517 valloc_pages(kernel_pt_table[loop1],
518 L2_TABLE_SIZE / PAGE_SIZE);
519 ++loop1;
520 }
521 }
522
523 /* This should never be able to happen but better confirm that. */
524 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
525 panic("initarm: Failed to align the kernel page directory\n");
526
527 /*
528 * Allocate a page for the system page mapped to V0x00000000
529 * This page will just contain the system vectors and can be
530 * shared by all processes.
531 */
532 alloc_pages(systempage.pv_pa, 1);
533
534 /* Allocate stacks for all modes */
535 valloc_pages(irqstack, IRQ_STACK_SIZE);
536 valloc_pages(abtstack, ABT_STACK_SIZE);
537 valloc_pages(undstack, UND_STACK_SIZE);
538 valloc_pages(kernelstack, UPAGES);
539
540 /* Allocate enough pages for cleaning the Mini-Data cache. */
541 KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
542 valloc_pages(minidataclean, 1);
543
544 #ifdef VERBOSE_INIT_ARM
545 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
546 irqstack.pv_va);
547 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
548 abtstack.pv_va);
549 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
550 undstack.pv_va);
551 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
552 kernelstack.pv_va);
553 #endif
554
555 /*
556 * XXX Defer this to later so that we can reclaim the memory
557 * XXX used by the RedBoot page tables.
558 */
559 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
560
561 /*
562 * Ok we have allocated physical pages for the primary kernel
563 * page tables
564 */
565
566 #ifdef VERBOSE_INIT_ARM
567 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
568 #endif
569
570 /*
571 * Now we start construction of the L1 page table
572 * We start by mapping the L2 page tables into the L1.
573 * This means that we can replace L1 mappings later on if necessary
574 */
575 l1pagetable = kernel_l1pt.pv_pa;
576
577 /* Map the L2 pages tables in the L1 page table */
578 pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
579 &kernel_pt_table[KERNEL_PT_SYS]);
580 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
581 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
582 &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
583 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
584 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
585 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
586
587 /* update the top of the kernel VM */
588 pmap_curmaxkvaddr =
589 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
590
591 #ifdef VERBOSE_INIT_ARM
592 printf("Mapping kernel\n");
593 #endif
594
595 /* Now we fill in the L2 pagetable for the kernel static code/data */
596 {
597 extern char etext[], _end[];
598 size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
599 size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
600 u_int logical;
601
602 textsize = (textsize + PGOFSET) & ~PGOFSET;
603 totalsize = (totalsize + PGOFSET) & ~PGOFSET;
604
605 logical = 0x00200000; /* offset of kernel in RAM */
606
607 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
608 physical_start + logical, textsize,
609 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
610 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
611 physical_start + logical, totalsize - textsize,
612 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
613 }
614
615 #ifdef VERBOSE_INIT_ARM
616 printf("Constructing L2 page tables\n");
617 #endif
618
619 /* Map the stack pages */
620 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
621 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
622 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
623 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
624 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
625 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
626 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
627 UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
628
629 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
630 L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
631
632 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
633 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
634 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
635 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
636 }
637
638 /* Map the Mini-Data cache clean area. */
639 xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
640 minidataclean.pv_pa);
641
642 /* Map the vector page. */
643 pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
644 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
645
646 /* Map the statically mapped devices. */
647 pmap_devmap_bootstrap(l1pagetable, brh_devmap);
648
649 /*
650 * Give the XScale global cache clean code an appropriately
651 * sized chunk of unmapped VA space starting at 0xff500000
652 * (our device mappings end before this address).
653 */
654 xscale_cache_clean_addr = 0xff500000U;
655
656 /*
657 * Now we have the real page tables in place so we can switch to them.
658 * Once this is done we will be running with the REAL kernel page
659 * tables.
660 */
661
662 /* Switch tables */
663 #ifdef VERBOSE_INIT_ARM
664 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
665 #endif
666 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
667 setttb(kernel_l1pt.pv_pa);
668 cpu_tlb_flushID();
669 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
670
671 /*
672 * Move from cpu_startup() as data_abort_handler() references
673 * this during uvm init
674 */
675 proc0paddr = (struct user *)kernelstack.pv_va;
676 lwp0.l_addr = proc0paddr;
677
678 #ifdef VERBOSE_INIT_ARM
679 printf("done!\n");
680 #endif
681
682 #ifdef VERBOSE_INIT_ARM
683 printf("bootstrap done.\n");
684 #endif
685
686 /*
687 * Inform the BECC code where the BECC is mapped.
688 */
689 becc_vaddr = BRH_BECC_VBASE;
690
691 /*
692 * Now that we have becc_vaddr set, calibrate delay.
693 */
694 becc_calibrate_delay();
695
696 /*
697 * BECC <= Rev7 can only address 64M through the inbound
698 * PCI windows. Limit memory to 64M on those revs. (This
699 * problem was fixed in Rev8 of the BECC; get an FPGA upgrade.)
700 */
701 {
702 vaddr_t va = BRH_PCI_CONF_VBASE | (1U << BECC_IDSEL_BIT) |
703 PCI_CLASS_REG;
704 uint32_t reg;
705
706 reg = *(volatile uint32_t *) va;
707 becc_rev = PCI_REVISION(reg);
708 if (becc_rev <= BECC_REV_V7 &&
709 memsize > (64UL * 1024 * 1024)) {
710 memsize = (64UL * 1024 * 1024);
711 bootconfig.dram[0].pages = memsize / PAGE_SIZE;
712 physical_end = physical_start +
713 (bootconfig.dram[0].pages * PAGE_SIZE);
714 printf("BECC <= Rev7: memory truncated to 64M\n");
715 }
716 }
717
718 /*
719 * Update the physical_freestart/physical_freeend/free_pages
720 * variables.
721 */
722 {
723 extern char _end[];
724
725 physical_freestart = physical_start +
726 (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
727 KERNEL_BASE);
728 physical_freeend = physical_end;
729 free_pages =
730 (physical_freeend - physical_freestart) / PAGE_SIZE;
731 }
732 #ifdef VERBOSE_INIT_ARM
733 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
734 physical_freestart, free_pages, free_pages);
735 #endif
736
737 physmem = (physical_end - physical_start) / PAGE_SIZE;
738
739 arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
740
741 /*
742 * Pages were allocated during the secondary bootstrap for the
743 * stacks for different CPU modes.
744 * We must now set the r13 registers in the different CPU modes to
745 * point to these stacks.
746 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
747 * of the stack memory.
748 */
749 #ifdef VERBOSE_INIT_ARM
750 printf("init subsystems: stacks ");
751 #endif
752
753 set_stackptr(PSR_IRQ32_MODE,
754 irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
755 set_stackptr(PSR_ABT32_MODE,
756 abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
757 set_stackptr(PSR_UND32_MODE,
758 undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
759
760 /*
761 * Well we should set a data abort handler.
762 * Once things get going this will change as we will need a proper
763 * handler.
764 * Until then we will use a handler that just panics but tells us
765 * why.
766 * Initialisation of the vectors will just panic on a data abort.
767 * This just fills in a slightly better one.
768 */
769 #ifdef VERBOSE_INIT_ARM
770 printf("vectors ");
771 #endif
772 data_abort_handler_address = (u_int)data_abort_handler;
773 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
774 undefined_handler_address = (u_int)undefinedinstruction_bounce;
775
776 /* Initialise the undefined instruction handlers */
777 #ifdef VERBOSE_INIT_ARM
778 printf("undefined ");
779 #endif
780 undefined_init();
781
782 /* Load memory into UVM. */
783 #ifdef VERBOSE_INIT_ARM
784 printf("page ");
785 #endif
786 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
787 uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
788 atop(physical_freestart), atop(physical_freeend),
789 VM_FREELIST_DEFAULT);
790
791 /* Boot strap pmap telling it where the kernel page table is */
792 #ifdef VERBOSE_INIT_ARM
793 printf("pmap ");
794 #endif
795 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
796
797 /* Setup the IRQ system */
798 #ifdef VERBOSE_INIT_ARM
799 printf("irq ");
800 #endif
801 becc_intr_init();
802 #ifdef VERBOSE_INIT_ARM
803 printf("done.\n");
804 #endif
805
806 #ifdef DDB
807 db_machine_init();
808 if (boothowto & RB_KDB)
809 Debugger();
810 #endif
811
812 /* We return the new stack pointer address */
813 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
814 }
815
816 void
817 consinit(void)
818 {
819 static const bus_addr_t comcnaddrs[] = {
820 BRH_UART1_BASE, /* com0 */
821 BRH_UART2_BASE, /* com1 */
822 };
823 static int consinit_called;
824
825 if (consinit_called != 0)
826 return;
827
828 consinit_called = 1;
829
830 /*
831 * brh_start() has mapped the console devices for us per
832 * the devmap, so register it now so drivers can map the
833 * console device.
834 */
835 pmap_devmap_register(brh_devmap);
836
837 #if NCOM > 0
838 if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed,
839 BECC_PERIPH_CLOCK, COM_TYPE_NORMAL, comcnmode))
840 panic("can't init serial console @%lx", comcnaddrs[comcnunit]);
841 #else
842 panic("serial console @%lx not configured", comcnaddrs[comcnunit]);
843 #endif
844 }
845