Home | History | Annotate | Line # | Download | only in adi_brh
brh_machdep.c revision 1.3
      1 /*	$NetBSD: brh_machdep.c,v 1.3 2003/04/02 03:49:25 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1997,1998 Mark Brinicombe.
     40  * Copyright (c) 1997,1998 Causality Limited.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by Mark Brinicombe
     54  *	for the NetBSD Project.
     55  * 4. The name of the company nor the name of the author may be used to
     56  *    endorse or promote products derived from this software without specific
     57  *    prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     60  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     61  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     62  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     63  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     64  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     65  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  * Machine dependant functions for kernel setup for the ADI Engineering
     72  * BRH i80200 evaluation platform.
     73  */
     74 
     75 #include "opt_ddb.h"
     76 #include "opt_pmap_debug.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/device.h>
     80 #include <sys/systm.h>
     81 #include <sys/kernel.h>
     82 #include <sys/exec.h>
     83 #include <sys/proc.h>
     84 #include <sys/msgbuf.h>
     85 #include <sys/reboot.h>
     86 #include <sys/termios.h>
     87 
     88 #include <uvm/uvm_extern.h>
     89 
     90 #include <dev/cons.h>
     91 
     92 #include <machine/db_machdep.h>
     93 #include <ddb/db_sym.h>
     94 #include <ddb/db_extern.h>
     95 
     96 #include <machine/bootconfig.h>
     97 #include <machine/bus.h>
     98 #include <machine/cpu.h>
     99 #include <machine/frame.h>
    100 #include <arm/undefined.h>
    101 
    102 #include <arm/arm32/machdep.h>
    103 
    104 #include <arm/xscale/i80200reg.h>
    105 #include <arm/xscale/i80200var.h>
    106 
    107 #include <dev/pci/ppbreg.h>
    108 
    109 #include <arm/xscale/beccreg.h>
    110 #include <arm/xscale/beccvar.h>
    111 
    112 #include <evbarm/adi_brh/brhreg.h>
    113 #include <evbarm/adi_brh/brhvar.h>
    114 #include <evbarm/adi_brh/obiovar.h>
    115 
    116 #include "opt_ipkdb.h"
    117 
    118 /*
    119  * Address to call from cpu_reset() to reset the machine.
    120  * This is machine architecture dependant as it varies depending
    121  * on where the ROM appears when you turn the MMU off.
    122  */
    123 
    124 u_int cpu_reset_address = 0x00000000;
    125 
    126 /* Define various stack sizes in pages */
    127 #define IRQ_STACK_SIZE	1
    128 #define ABT_STACK_SIZE	1
    129 #ifdef IPKDB
    130 #define UND_STACK_SIZE	2
    131 #else
    132 #define UND_STACK_SIZE	1
    133 #endif
    134 
    135 BootConfig bootconfig;		/* Boot config storage */
    136 char *boot_args = NULL;
    137 char *boot_file = NULL;
    138 
    139 vm_offset_t physical_start;
    140 vm_offset_t physical_freestart;
    141 vm_offset_t physical_freeend;
    142 vm_offset_t physical_end;
    143 u_int free_pages;
    144 vm_offset_t pagetables_start;
    145 int physmem = 0;
    146 
    147 /*int debug_flags;*/
    148 #ifndef PMAP_STATIC_L1S
    149 int max_processes = 64;			/* Default number */
    150 #endif	/* !PMAP_STATIC_L1S */
    151 
    152 /* Physical and virtual addresses for some global pages */
    153 pv_addr_t systempage;
    154 pv_addr_t irqstack;
    155 pv_addr_t undstack;
    156 pv_addr_t abtstack;
    157 pv_addr_t kernelstack;
    158 pv_addr_t minidataclean;
    159 
    160 vm_offset_t msgbufphys;
    161 
    162 extern u_int data_abort_handler_address;
    163 extern u_int prefetch_abort_handler_address;
    164 extern u_int undefined_handler_address;
    165 
    166 #ifdef PMAP_DEBUG
    167 extern int pmap_debug_level;
    168 #endif
    169 
    170 #define KERNEL_PT_SYS		0	/* L2 table for mapping zero page */
    171 
    172 #define KERNEL_PT_KERNEL	1	/* L2 table for mapping kernel */
    173 #define	KERNEL_PT_KERNEL_NUM	2
    174 
    175 					/* L2 tables for mapping kernel VM */
    176 #define KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
    177 #define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
    178 #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
    179 
    180 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
    181 
    182 struct user *proc0paddr;
    183 
    184 /* Prototypes */
    185 
    186 void	consinit(void);
    187 
    188 #include "com.h"
    189 #if NCOM > 0
    190 #include <dev/ic/comreg.h>
    191 #include <dev/ic/comvar.h>
    192 #endif
    193 
    194 /*
    195  * Define the default console speed for the board.  This is generally
    196  * what the firmware provided with the board defaults to.
    197  */
    198 #ifndef CONSPEED
    199 #define CONSPEED B57600
    200 #endif /* ! CONSPEED */
    201 
    202 #ifndef CONUNIT
    203 #define	CONUNIT	0
    204 #endif
    205 
    206 #ifndef CONMODE
    207 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
    208 #endif
    209 
    210 int comcnspeed = CONSPEED;
    211 int comcnmode = CONMODE;
    212 int comcnunit = CONUNIT;
    213 
    214 /*
    215  * void cpu_reboot(int howto, char *bootstr)
    216  *
    217  * Reboots the system
    218  *
    219  * Deal with any syncing, unmounting, dumping and shutdown hooks,
    220  * then reset the CPU.
    221  */
    222 void
    223 cpu_reboot(int howto, char *bootstr)
    224 {
    225 #ifdef DIAGNOSTIC
    226 	/* info */
    227 	printf("boot: howto=%08x curproc=%p\n", howto, curproc);
    228 #endif
    229 
    230 	/*
    231 	 * If we are still cold then hit the air brakes
    232 	 * and crash to earth fast
    233 	 */
    234 	if (cold) {
    235 		doshutdownhooks();
    236 		printf("The operating system has halted.\n");
    237 		printf("Please press any key to reboot.\n\n");
    238 		cngetc();
    239 		printf("rebooting...\n");
    240 		goto reset;
    241 	}
    242 
    243 	/* Disable console buffering */
    244 
    245 	/*
    246 	 * If RB_NOSYNC was not specified sync the discs.
    247 	 * Note: Unless cold is set to 1 here, syslogd will die during the
    248 	 * unmount.  It looks like syslogd is getting woken up only to find
    249 	 * that it cannot page part of the binary in as the filesystem has
    250 	 * been unmounted.
    251 	 */
    252 	if (!(howto & RB_NOSYNC))
    253 		bootsync();
    254 
    255 	/* Say NO to interrupts */
    256 	splhigh();
    257 
    258 	/* Do a dump if requested. */
    259 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
    260 		dumpsys();
    261 
    262 	/* Run any shutdown hooks */
    263 	doshutdownhooks();
    264 
    265 	/* Make sure IRQ's are disabled */
    266 	IRQdisable;
    267 
    268 	if (howto & RB_HALT) {
    269 		brh_7seg('8');
    270 		printf("The operating system has halted.\n");
    271 		printf("Please press any key to reboot.\n\n");
    272 		cngetc();
    273 	}
    274 
    275 	printf("rebooting...\n\r");
    276  reset:
    277 	cpu_reset();
    278 }
    279 
    280 /*
    281  * Mapping table for core kernel memory. This memory is mapped at init
    282  * time with section mappings.
    283  */
    284 struct l1_sec_map {
    285 	vaddr_t	va;
    286 	vaddr_t	pa;
    287 	vsize_t	size;
    288 	vm_prot_t prot;
    289 	int cache;
    290 } l1_sec_table[] = {
    291     {
    292 	BRH_PCI_CONF_VBASE,
    293 	BECC_PCI_CONF_BASE,
    294 	BRH_PCI_CONF_VSIZE,
    295 	VM_PROT_READ|VM_PROT_WRITE,
    296 	PTE_NOCACHE,
    297     },
    298     {
    299 	BRH_PCI_MEM1_VBASE,
    300 	BECC_PCI_MEM1_BASE,
    301 	BRH_PCI_MEM1_VSIZE,
    302 	VM_PROT_READ|VM_PROT_WRITE,
    303 	PTE_NOCACHE,
    304     },
    305     {
    306 	BRH_PCI_MEM2_VBASE,
    307 	BECC_PCI_MEM2_BASE,
    308 	BRH_PCI_MEM2_VSIZE,
    309 	VM_PROT_READ|VM_PROT_WRITE,
    310 	PTE_NOCACHE,
    311     },
    312     {
    313 	BRH_UART1_VBASE,
    314 	BRH_UART1_BASE,
    315 	BRH_UART1_VSIZE,
    316 	VM_PROT_READ|VM_PROT_WRITE,
    317 	PTE_NOCACHE,
    318     },
    319     {
    320 	BRH_UART2_VBASE,
    321 	BRH_UART2_BASE,
    322 	BRH_UART2_VSIZE,
    323 	VM_PROT_READ|VM_PROT_WRITE,
    324 	PTE_NOCACHE,
    325     },
    326     {
    327 	BRH_LED_VBASE,
    328 	BRH_LED_BASE,
    329 	BRH_LED_VSIZE,
    330 	VM_PROT_READ|VM_PROT_WRITE,
    331 	PTE_NOCACHE,
    332     },
    333     {
    334 	BRH_PCI_IO_VBASE,
    335 	BECC_PCI_IO_BASE,
    336 	BRH_PCI_IO_VSIZE,
    337 	VM_PROT_READ|VM_PROT_WRITE,
    338 	PTE_NOCACHE,
    339     },
    340     {
    341 	BRH_BECC_VBASE,
    342 	BECC_REG_BASE,
    343 	BRH_BECC_VSIZE,
    344 	VM_PROT_READ|VM_PROT_WRITE,
    345 	PTE_NOCACHE,
    346     },
    347     {
    348 	0,
    349 	0,
    350 	0,
    351 	0,
    352 	0,
    353     }
    354 };
    355 
    356 static void
    357 brh_hardclock_hook(void)
    358 {
    359 	static int snakefreq;
    360 
    361 	if ((snakefreq++ & 15) == 0)
    362 		brh_7seg_snake();
    363 }
    364 
    365 /*
    366  * u_int initarm(...)
    367  *
    368  * Initial entry point on startup. This gets called before main() is
    369  * entered.
    370  * It should be responsible for setting up everything that must be
    371  * in place when main is called.
    372  * This includes
    373  *   Taking a copy of the boot configuration structure.
    374  *   Initialising the physical console so characters can be printed.
    375  *   Setting up page tables for the kernel
    376  *   Relocating the kernel to the bottom of physical memory
    377  */
    378 u_int
    379 initarm(void *arg)
    380 {
    381 	extern vaddr_t xscale_cache_clean_addr;
    382 #ifdef DIAGNOSTIC
    383 	extern vsize_t xscale_minidata_clean_size;
    384 #endif
    385 	int loop;
    386 	int loop1;
    387 	u_int l1pagetable;
    388 	pv_addr_t kernel_l1pt;
    389 	pv_addr_t kernel_ptpt;
    390 	paddr_t memstart;
    391 	psize_t memsize;
    392 
    393 	/*
    394 	 * Clear out the 7-segment display.  Whee, the first visual
    395 	 * indication that we're running kernel code.
    396 	 */
    397 	brh_7seg(' ');
    398 
    399 	/*
    400 	 * Since we have mapped the on-board devices at their permanent
    401 	 * locations already, it is possible for us to initialize
    402 	 * the console now.
    403 	 */
    404 	consinit();
    405 
    406 	/* Talk to the user */
    407 	printf("\nNetBSD/evbarm (ADI BRH) booting ...\n");
    408 
    409 	/* Calibrate the delay loop. */
    410 	becc_calibrate_delay();
    411 	becc_hardclock_hook = brh_hardclock_hook;
    412 
    413 	/*
    414 	 * Heads up ... Setup the CPU / MMU / TLB functions
    415 	 */
    416 	if (set_cpufuncs())
    417 		panic("cpu not recognized!");
    418 
    419 	/*
    420 	 * We are currently running with the MMU enabled and the
    421 	 * entire address space mapped VA==PA.  Memory conveniently
    422 	 * starts at 0xc0000000, which is where we want it.  Certain
    423 	 * on-board devices have already been mapped where we want
    424 	 * them to be.  There is an L1 page table at 0xc0004000.
    425 	 */
    426 
    427 	becc_icu_init();
    428 
    429 	/*
    430 	 * Memory always starts at 0xc0000000 on a BRH, and the
    431 	 * memory size is always 128M.
    432 	 */
    433 	memstart = 0xc0000000UL;
    434 	memsize = (128UL * 1024 * 1024);
    435 
    436 	printf("initarm: Configuring system ...\n");
    437 
    438 	/* Fake bootconfig structure for the benefit of pmap.c */
    439 	/* XXX must make the memory description h/w independant */
    440 	bootconfig.dramblocks = 1;
    441 	bootconfig.dram[0].address = memstart;
    442 	bootconfig.dram[0].pages = memsize / PAGE_SIZE;
    443 
    444 	/*
    445 	 * Set up the variables that define the availablilty of
    446 	 * physical memory.  For now, we're going to set
    447 	 * physical_freestart to 0xc0200000 (where the kernel
    448 	 * was loaded), and allocate the memory we need downwards.
    449 	 * If we get too close to the L1 table that we set up, we
    450 	 * will panic.  We will update physical_freestart and
    451 	 * physical_freeend later to reflect what pmap_bootstrap()
    452 	 * wants to see.
    453 	 *
    454 	 * XXX pmap_bootstrap() needs an enema.
    455 	 */
    456 	physical_start = bootconfig.dram[0].address;
    457 	physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
    458 
    459 	physical_freestart = 0xc0009000UL;
    460 	physical_freeend = 0xc0200000UL;
    461 
    462 	/* Tell the user about the memory */
    463 	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
    464 	    physical_start, physical_end - 1);
    465 
    466 	/*
    467 	 * Okay, the kernel starts 2MB in from the bottom of physical
    468 	 * memory.  We are going to allocate our bootstrap pages downwards
    469 	 * from there.
    470 	 *
    471 	 * We need to allocate some fixed page tables to get the kernel
    472 	 * going.  We allocate one page directory and a number of page
    473 	 * tables and store the physical addresses in the kernel_pt_table
    474 	 * array.
    475 	 *
    476 	 * The kernel page directory must be on a 16K boundary.  The page
    477 	 * tables must be on 4K bounaries.  What we do is allocate the
    478 	 * page directory on the first 16K boundary that we encounter, and
    479 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    480 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    481 	 * least one 16K aligned region.
    482 	 */
    483 
    484 #ifdef VERBOSE_INIT_ARM
    485 	printf("Allocating page tables\n");
    486 #endif
    487 
    488 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
    489 
    490 #ifdef VERBOSE_INIT_ARM
    491 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
    492 	       physical_freestart, free_pages, free_pages);
    493 #endif
    494 
    495 	/* Define a macro to simplify memory allocation */
    496 #define	valloc_pages(var, np)				\
    497 	alloc_pages((var).pv_pa, (np));			\
    498 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
    499 
    500 #define alloc_pages(var, np)				\
    501 	physical_freeend -= ((np) * PAGE_SIZE);		\
    502 	if (physical_freeend < physical_freestart)	\
    503 		panic("initarm: out of memory");	\
    504 	(var) = physical_freeend;			\
    505 	free_pages -= (np);				\
    506 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
    507 
    508 	loop1 = 0;
    509 	kernel_l1pt.pv_pa = 0;
    510 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
    511 		/* Are we 16KB aligned for an L1 ? */
    512 		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
    513 		    && kernel_l1pt.pv_pa == 0) {
    514 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
    515 		} else {
    516 			alloc_pages(kernel_pt_table[loop1].pv_pa,
    517 			    L2_TABLE_SIZE / PAGE_SIZE);
    518 			kernel_pt_table[loop1].pv_va =
    519 			    kernel_pt_table[loop1].pv_pa;
    520 			++loop1;
    521 		}
    522 	}
    523 
    524 	/* This should never be able to happen but better confirm that. */
    525 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
    526 		panic("initarm: Failed to align the kernel page directory\n");
    527 
    528 	/*
    529 	 * Allocate a page for the system page mapped to V0x00000000
    530 	 * This page will just contain the system vectors and can be
    531 	 * shared by all processes.
    532 	 */
    533 	alloc_pages(systempage.pv_pa, 1);
    534 
    535 	/* Allocate a page for the page table to map kernel page tables. */
    536 	valloc_pages(kernel_ptpt, L2_TABLE_SIZE / PAGE_SIZE);
    537 
    538 	/* Allocate stacks for all modes */
    539 	valloc_pages(irqstack, IRQ_STACK_SIZE);
    540 	valloc_pages(abtstack, ABT_STACK_SIZE);
    541 	valloc_pages(undstack, UND_STACK_SIZE);
    542 	valloc_pages(kernelstack, UPAGES);
    543 
    544 	/* Allocate enough pages for cleaning the Mini-Data cache. */
    545 	KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
    546 	valloc_pages(minidataclean, 1);
    547 
    548 #ifdef VERBOSE_INIT_ARM
    549 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
    550 	    irqstack.pv_va);
    551 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
    552 	    abtstack.pv_va);
    553 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
    554 	    undstack.pv_va);
    555 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
    556 	    kernelstack.pv_va);
    557 #endif
    558 
    559 	/*
    560 	 * XXX Defer this to later so that we can reclaim the memory
    561 	 * XXX used by the RedBoot page tables.
    562 	 */
    563 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
    564 
    565 	/*
    566 	 * Ok we have allocated physical pages for the primary kernel
    567 	 * page tables
    568 	 */
    569 
    570 #ifdef VERBOSE_INIT_ARM
    571 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    572 #endif
    573 
    574 	/*
    575 	 * Now we start construction of the L1 page table
    576 	 * We start by mapping the L2 page tables into the L1.
    577 	 * This means that we can replace L1 mappings later on if necessary
    578 	 */
    579 	l1pagetable = kernel_l1pt.pv_pa;
    580 
    581 	/* Map the L2 pages tables in the L1 page table */
    582 	pmap_link_l2pt(l1pagetable, 0x00000000,
    583 	    &kernel_pt_table[KERNEL_PT_SYS]);
    584 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
    585 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
    586 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
    587 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
    588 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
    589 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
    590 	pmap_link_l2pt(l1pagetable, PTE_BASE, &kernel_ptpt);
    591 
    592 	/* update the top of the kernel VM */
    593 	pmap_curmaxkvaddr =
    594 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
    595 
    596 #ifdef VERBOSE_INIT_ARM
    597 	printf("Mapping kernel\n");
    598 #endif
    599 
    600 	/* Now we fill in the L2 pagetable for the kernel static code/data */
    601 	{
    602 		extern char etext[], _end[];
    603 		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
    604 		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
    605 		u_int logical;
    606 
    607 		textsize = (textsize + PGOFSET) & ~PGOFSET;
    608 		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
    609 
    610 		logical = 0x00200000;	/* offset of kernel in RAM */
    611 
    612 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    613 		    physical_start + logical, textsize,
    614 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    615 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    616 		    physical_start + logical, totalsize - textsize,
    617 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    618 	}
    619 
    620 #ifdef VERBOSE_INIT_ARM
    621 	printf("Constructing L2 page tables\n");
    622 #endif
    623 
    624 	/* Map the stack pages */
    625 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
    626 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    627 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
    628 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    629 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
    630 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    631 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
    632 	    UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    633 
    634 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
    635 	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    636 
    637 	/* Map the Mini-Data cache clean area. */
    638 	xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
    639 	    minidataclean.pv_pa);
    640 
    641 	/* Map the page table that maps the kernel pages */
    642 	pmap_map_entry(l1pagetable, kernel_ptpt.pv_va, kernel_ptpt.pv_pa,
    643 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
    644 
    645 	/*
    646 	 * Map entries in the page table used to map PTE's
    647 	 * Basically every kernel page table gets mapped here
    648 	 */
    649 	/* The -2 is slightly bogus, it should be -log2(sizeof(pt_entry_t)) */
    650 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) {
    651 		pmap_map_entry(l1pagetable,
    652 		    PTE_BASE + ((KERNEL_BASE +
    653 		    (loop * 0x00400000)) >> (PGSHIFT-2)),
    654 		    kernel_pt_table[KERNEL_PT_KERNEL + loop].pv_pa,
    655 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    656 	}
    657 	pmap_map_entry(l1pagetable,
    658 	    PTE_BASE + (PTE_BASE >> (PGSHIFT-2)),
    659 	    kernel_ptpt.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
    660 	pmap_map_entry(l1pagetable,
    661 	    PTE_BASE + (0x00000000 >> (PGSHIFT-2)),
    662 	    kernel_pt_table[KERNEL_PT_SYS].pv_pa,
    663 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    664 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
    665 		pmap_map_entry(l1pagetable,
    666 		    PTE_BASE + ((KERNEL_VM_BASE +
    667 		    (loop * 0x00400000)) >> (PGSHIFT-2)),
    668 		    kernel_pt_table[KERNEL_PT_VMDATA + loop].pv_pa,
    669 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    670 
    671 	/* Map the vector page. */
    672 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
    673 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    674 
    675 	/*
    676 	 * Map devices we can map w/ section mappings.
    677 	 */
    678 	loop = 0;
    679 	while (l1_sec_table[loop].size) {
    680 		vm_size_t sz;
    681 
    682 #ifdef VERBOSE_INIT_ARM
    683 		printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
    684 		    l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
    685 		    l1_sec_table[loop].va);
    686 #endif
    687 		for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_S_SIZE)
    688 			pmap_map_section(l1pagetable,
    689 			    l1_sec_table[loop].va + sz,
    690 			    l1_sec_table[loop].pa + sz,
    691 			    l1_sec_table[loop].prot,
    692 			    l1_sec_table[loop].cache);
    693 		++loop;
    694 	}
    695 
    696 	/*
    697 	 * Give the XScale global cache clean code an appropriately
    698 	 * sized chunk of unmapped VA space starting at 0xff500000
    699 	 * (our device mappings end before this address).
    700 	 */
    701 	xscale_cache_clean_addr = 0xff500000U;
    702 
    703 	/*
    704 	 * Now we have the real page tables in place so we can switch to them.
    705 	 * Once this is done we will be running with the REAL kernel page
    706 	 * tables.
    707 	 */
    708 
    709 	/* Switch tables */
    710 #ifdef VERBOSE_INIT_ARM
    711 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
    712 #endif
    713 	setttb(kernel_l1pt.pv_pa);
    714 	cpu_tlb_flushID();
    715 
    716 #ifdef VERBOSE_INIT_ARM
    717 	printf("done!\n");
    718 #endif
    719 
    720 #ifdef VERBOSE_INIT_ARM
    721 	printf("bootstrap done.\n");
    722 #endif
    723 
    724 	/*
    725 	 * Inform the BECC code where the BECC is mapped.
    726 	 */
    727 	becc_vaddr = BRH_BECC_VBASE;
    728 
    729 	/*
    730 	 * BECC <= Rev7 can only address 64M through the inbound
    731 	 * PCI windows.  Limit memory to 64M on those revs.  (This
    732 	 * problem was fixed in Rev8 of the BECC; get an FPGA upgrade.)
    733 	 */
    734 	{
    735 		vaddr_t va = BRH_PCI_CONF_VBASE | (1U << BECC_IDSEL_BIT) |
    736 		    PCI_CLASS_REG;
    737 		uint32_t reg;
    738 
    739 		reg = *(__volatile uint32_t *) va;
    740 		becc_rev = PCI_REVISION(reg);
    741 		if (becc_rev <= BECC_REV_V7 &&
    742 		    memsize > (64UL * 1024 * 1024)) {
    743 			memsize = (64UL * 1024 * 1024);
    744 			bootconfig.dram[0].pages = memsize / PAGE_SIZE;
    745 			physical_end = physical_start +
    746 			    (bootconfig.dram[0].pages * PAGE_SIZE);
    747 			printf("BECC <= Rev7: memory truncated to 64M\n");
    748 		}
    749 	}
    750 
    751 	/*
    752 	 * Update the physical_freestart/physical_freeend/free_pages
    753 	 * variables.
    754 	 */
    755 	{
    756 		extern char _end[];
    757 
    758 		physical_freestart = physical_start +
    759 		    (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
    760 		     KERNEL_BASE);
    761 		physical_freeend = physical_end;
    762 		free_pages =
    763 		    (physical_freeend - physical_freestart) / PAGE_SIZE;
    764 	}
    765 #ifdef VERBOSE_INIT_ARM
    766 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
    767 	       physical_freestart, free_pages, free_pages);
    768 #endif
    769 
    770 	physmem = (physical_end - physical_start) / PAGE_SIZE;
    771 
    772 	arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
    773 
    774 	/*
    775 	 * Pages were allocated during the secondary bootstrap for the
    776 	 * stacks for different CPU modes.
    777 	 * We must now set the r13 registers in the different CPU modes to
    778 	 * point to these stacks.
    779 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
    780 	 * of the stack memory.
    781 	 */
    782 	printf("init subsystems: stacks ");
    783 
    784 	set_stackptr(PSR_IRQ32_MODE,
    785 	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
    786 	set_stackptr(PSR_ABT32_MODE,
    787 	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
    788 	set_stackptr(PSR_UND32_MODE,
    789 	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
    790 
    791 	/*
    792 	 * Well we should set a data abort handler.
    793 	 * Once things get going this will change as we will need a proper
    794 	 * handler.
    795 	 * Until then we will use a handler that just panics but tells us
    796 	 * why.
    797 	 * Initialisation of the vectors will just panic on a data abort.
    798 	 * This just fills in a slighly better one.
    799 	 */
    800 	printf("vectors ");
    801 	data_abort_handler_address = (u_int)data_abort_handler;
    802 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
    803 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
    804 
    805 	/* Initialise the undefined instruction handlers */
    806 	printf("undefined ");
    807 	undefined_init();
    808 
    809 	/* Load memory into UVM. */
    810 	printf("page ");
    811 	uvm_setpagesize();	/* initialize PAGE_SIZE-dependent variables */
    812 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
    813 	    atop(physical_freestart), atop(physical_freeend),
    814 	    VM_FREELIST_DEFAULT);
    815 
    816 	/* Boot strap pmap telling it where the kernel page table is */
    817 	printf("pmap ");
    818 	pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, kernel_ptpt);
    819 
    820 	/* Setup the IRQ system */
    821 	printf("irq ");
    822 	becc_intr_init();
    823 	printf("done.\n");
    824 
    825 #ifdef IPKDB
    826 	/* Initialise ipkdb */
    827 	ipkdb_init();
    828 	if (boothowto & RB_KDB)
    829 		ipkdb_connect(0);
    830 #endif
    831 
    832 #ifdef DDB
    833 	db_machine_init();
    834 
    835 	/* Firmware doesn't load symbols. */
    836 	ddb_init(0, NULL, NULL);
    837 
    838 	if (boothowto & RB_KDB)
    839 		Debugger();
    840 #endif
    841 
    842 	/* We return the new stack pointer address */
    843 	return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
    844 }
    845 
    846 void
    847 consinit(void)
    848 {
    849 	static const bus_addr_t comcnaddrs[] = {
    850 		BRH_UART1_BASE,		/* com0 */
    851 		BRH_UART2_BASE,		/* com1 */
    852 	};
    853 	static int consinit_called;
    854 
    855 	if (consinit_called != 0)
    856 		return;
    857 
    858 	consinit_called = 1;
    859 
    860 #if NCOM > 0
    861 	if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed,
    862 	    BECC_PERIPH_CLOCK, comcnmode))
    863 		panic("can't init serial console @%lx", comcnaddrs[comcnunit]);
    864 #else
    865 	panic("serial console @%lx not configured", comcnaddrs[comcnunit]);
    866 #endif
    867 }
    868