brh_machdep.c revision 1.38 1 /* $NetBSD: brh_machdep.c,v 1.38 2011/07/01 20:38:16 dyoung Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1997,1998 Mark Brinicombe.
40 * Copyright (c) 1997,1998 Causality Limited.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by Mark Brinicombe
54 * for the NetBSD Project.
55 * 4. The name of the company nor the name of the author may be used to
56 * endorse or promote products derived from this software without specific
57 * prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
60 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * Machine dependent functions for kernel setup for the ADI Engineering
72 * BRH i80200 evaluation platform.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: brh_machdep.c,v 1.38 2011/07/01 20:38:16 dyoung Exp $");
77
78 #include "opt_ddb.h"
79 #include "opt_pmap_debug.h"
80
81 #include <sys/param.h>
82 #include <sys/device.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/exec.h>
86 #include <sys/proc.h>
87 #include <sys/msgbuf.h>
88 #include <sys/reboot.h>
89 #include <sys/termios.h>
90 #include <sys/ksyms.h>
91
92 #include <uvm/uvm_extern.h>
93
94 #include <dev/cons.h>
95
96 #include <machine/db_machdep.h>
97 #include <ddb/db_sym.h>
98 #include <ddb/db_extern.h>
99
100 #include <machine/bootconfig.h>
101 #include <sys/bus.h>
102 #include <machine/cpu.h>
103 #include <machine/frame.h>
104 #include <arm/undefined.h>
105
106 #include <arm/arm32/machdep.h>
107
108 #include <arm/xscale/i80200reg.h>
109 #include <arm/xscale/i80200var.h>
110
111 #include <dev/pci/ppbreg.h>
112
113 #include <arm/xscale/beccreg.h>
114 #include <arm/xscale/beccvar.h>
115
116 #include <evbarm/adi_brh/brhreg.h>
117 #include <evbarm/adi_brh/brhvar.h>
118 #include <evbarm/adi_brh/obiovar.h>
119
120 #include "ksyms.h"
121
122 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
123 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
124 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
125
126 /*
127 * The range 0xc1000000 - 0xccffffff is available for kernel VM space
128 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
129 */
130 #define KERNEL_VM_SIZE 0x0C000000
131
132 /*
133 * Address to call from cpu_reset() to reset the machine.
134 * This is machine architecture dependent as it varies depending
135 * on where the ROM appears when you turn the MMU off.
136 */
137
138 u_int cpu_reset_address = 0x00000000;
139
140 /* Define various stack sizes in pages */
141 #define IRQ_STACK_SIZE 1
142 #define ABT_STACK_SIZE 1
143 #define UND_STACK_SIZE 1
144
145 BootConfig bootconfig; /* Boot config storage */
146 char *boot_args = NULL;
147 char *boot_file = NULL;
148
149 vm_offset_t physical_start;
150 vm_offset_t physical_freestart;
151 vm_offset_t physical_freeend;
152 vm_offset_t physical_end;
153 u_int free_pages;
154
155 /*int debug_flags;*/
156 #ifndef PMAP_STATIC_L1S
157 int max_processes = 64; /* Default number */
158 #endif /* !PMAP_STATIC_L1S */
159
160 /* Physical and virtual addresses for some global pages */
161 pv_addr_t irqstack;
162 pv_addr_t undstack;
163 pv_addr_t abtstack;
164 pv_addr_t kernelstack;
165 pv_addr_t minidataclean;
166
167 vm_offset_t msgbufphys;
168
169 extern u_int data_abort_handler_address;
170 extern u_int prefetch_abort_handler_address;
171 extern u_int undefined_handler_address;
172
173 #ifdef PMAP_DEBUG
174 extern int pmap_debug_level;
175 #endif
176
177 #define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */
178
179 #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */
180 #define KERNEL_PT_KERNEL_NUM 2
181
182 /* L2 tables for mapping kernel VM */
183 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
184 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
185 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
186
187 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
188
189 /* Prototypes */
190
191 void consinit(void);
192
193 #include "com.h"
194 #if NCOM > 0
195 #include <dev/ic/comreg.h>
196 #include <dev/ic/comvar.h>
197 #endif
198
199 /*
200 * Define the default console speed for the board. This is generally
201 * what the firmware provided with the board defaults to.
202 */
203 #ifndef CONSPEED
204 #define CONSPEED B57600
205 #endif /* ! CONSPEED */
206
207 #ifndef CONUNIT
208 #define CONUNIT 0
209 #endif
210
211 #ifndef CONMODE
212 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
213 #endif
214
215 int comcnspeed = CONSPEED;
216 int comcnmode = CONMODE;
217 int comcnunit = CONUNIT;
218
219 /*
220 * void cpu_reboot(int howto, char *bootstr)
221 *
222 * Reboots the system
223 *
224 * Deal with any syncing, unmounting, dumping and shutdown hooks,
225 * then reset the CPU.
226 */
227 void
228 cpu_reboot(int howto, char *bootstr)
229 {
230
231 /*
232 * If we are still cold then hit the air brakes
233 * and crash to earth fast
234 */
235 if (cold) {
236 doshutdownhooks();
237 pmf_system_shutdown(boothowto);
238 printf("The operating system has halted.\n");
239 printf("Please press any key to reboot.\n\n");
240 cngetc();
241 printf("rebooting...\n");
242 goto reset;
243 }
244
245 /* Disable console buffering */
246
247 /*
248 * If RB_NOSYNC was not specified sync the discs.
249 * Note: Unless cold is set to 1 here, syslogd will die during the
250 * unmount. It looks like syslogd is getting woken up only to find
251 * that it cannot page part of the binary in as the filesystem has
252 * been unmounted.
253 */
254 if (!(howto & RB_NOSYNC))
255 bootsync();
256
257 /* Say NO to interrupts */
258 splhigh();
259
260 /* Do a dump if requested. */
261 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
262 dumpsys();
263
264 /* Run any shutdown hooks */
265 doshutdownhooks();
266
267 pmf_system_shutdown(boothowto);
268
269 /* Make sure IRQ's are disabled */
270 IRQdisable;
271
272 if (howto & RB_HALT) {
273 brh_7seg('8');
274 printf("The operating system has halted.\n");
275 printf("Please press any key to reboot.\n\n");
276 cngetc();
277 }
278
279 printf("rebooting...\n\r");
280 reset:
281 cpu_reset();
282 }
283
284 /* Static device mappings. */
285 static const struct pmap_devmap brh_devmap[] = {
286 {
287 BRH_PCI_CONF_VBASE,
288 BECC_PCI_CONF_BASE,
289 BRH_PCI_CONF_VSIZE,
290 VM_PROT_READ|VM_PROT_WRITE,
291 PTE_NOCACHE,
292 },
293 {
294 BRH_PCI_MEM1_VBASE,
295 BECC_PCI_MEM1_BASE,
296 BRH_PCI_MEM1_VSIZE,
297 VM_PROT_READ|VM_PROT_WRITE,
298 PTE_NOCACHE,
299 },
300 {
301 BRH_PCI_MEM2_VBASE,
302 BECC_PCI_MEM2_BASE,
303 BRH_PCI_MEM2_VSIZE,
304 VM_PROT_READ|VM_PROT_WRITE,
305 PTE_NOCACHE,
306 },
307 {
308 BRH_UART1_VBASE,
309 BRH_UART1_BASE,
310 BRH_UART1_VSIZE,
311 VM_PROT_READ|VM_PROT_WRITE,
312 PTE_NOCACHE,
313 },
314 {
315 BRH_UART2_VBASE,
316 BRH_UART2_BASE,
317 BRH_UART2_VSIZE,
318 VM_PROT_READ|VM_PROT_WRITE,
319 PTE_NOCACHE,
320 },
321 {
322 BRH_LED_VBASE,
323 BRH_LED_BASE,
324 BRH_LED_VSIZE,
325 VM_PROT_READ|VM_PROT_WRITE,
326 PTE_NOCACHE,
327 },
328 {
329 BRH_PCI_IO_VBASE,
330 BECC_PCI_IO_BASE,
331 BRH_PCI_IO_VSIZE,
332 VM_PROT_READ|VM_PROT_WRITE,
333 PTE_NOCACHE,
334 },
335 {
336 BRH_BECC_VBASE,
337 BECC_REG_BASE,
338 BRH_BECC_VSIZE,
339 VM_PROT_READ|VM_PROT_WRITE,
340 PTE_NOCACHE,
341 },
342 {
343 0,
344 0,
345 0,
346 0,
347 0,
348 }
349 };
350
351 static void
352 brh_hardclock_hook(void)
353 {
354 static int snakefreq;
355
356 if ((snakefreq++ & 15) == 0)
357 brh_7seg_snake();
358 }
359
360 /*
361 * u_int initarm(...)
362 *
363 * Initial entry point on startup. This gets called before main() is
364 * entered.
365 * It should be responsible for setting up everything that must be
366 * in place when main is called.
367 * This includes
368 * Taking a copy of the boot configuration structure.
369 * Initialising the physical console so characters can be printed.
370 * Setting up page tables for the kernel
371 * Relocating the kernel to the bottom of physical memory
372 */
373 u_int
374 initarm(void *arg)
375 {
376 extern vaddr_t xscale_cache_clean_addr;
377 #ifdef DIAGNOSTIC
378 extern vsize_t xscale_minidata_clean_size;
379 #endif
380 int loop;
381 int loop1;
382 u_int l1pagetable;
383 paddr_t memstart;
384 psize_t memsize;
385
386 /*
387 * Clear out the 7-segment display. Whee, the first visual
388 * indication that we're running kernel code.
389 */
390 brh_7seg(' ');
391
392 /*
393 * Since we have mapped the on-board devices at their permanent
394 * locations already, it is possible for us to initialize
395 * the console now.
396 */
397 consinit();
398
399 #ifdef VERBOSE_INIT_ARM
400 /* Talk to the user */
401 printf("\nNetBSD/evbarm (ADI BRH) booting ...\n");
402 #endif
403
404 /* Calibrate the delay loop. */
405 becc_hardclock_hook = brh_hardclock_hook;
406
407 /*
408 * Heads up ... Setup the CPU / MMU / TLB functions
409 */
410 if (set_cpufuncs())
411 panic("CPU not recognized!");
412
413 /*
414 * We are currently running with the MMU enabled and the
415 * entire address space mapped VA==PA. Memory conveniently
416 * starts at 0xc0000000, which is where we want it. Certain
417 * on-board devices have already been mapped where we want
418 * them to be. There is an L1 page table at 0xc0004000.
419 */
420
421 becc_icu_init();
422
423 /*
424 * Memory always starts at 0xc0000000 on a BRH, and the
425 * memory size is always 128M.
426 */
427 memstart = 0xc0000000UL;
428 memsize = (128UL * 1024 * 1024);
429
430 #ifdef VERBOSE_INIT_ARM
431 printf("initarm: Configuring system ...\n");
432 #endif
433
434 /* Fake bootconfig structure for the benefit of pmap.c */
435 /* XXX must make the memory description h/w independent */
436 bootconfig.dramblocks = 1;
437 bootconfig.dram[0].address = memstart;
438 bootconfig.dram[0].pages = memsize / PAGE_SIZE;
439
440 /*
441 * Set up the variables that define the availablilty of
442 * physical memory. For now, we're going to set
443 * physical_freestart to 0xc0200000 (where the kernel
444 * was loaded), and allocate the memory we need downwards.
445 * If we get too close to the L1 table that we set up, we
446 * will panic. We will update physical_freestart and
447 * physical_freeend later to reflect what pmap_bootstrap()
448 * wants to see.
449 *
450 * XXX pmap_bootstrap() needs an enema.
451 */
452 physical_start = bootconfig.dram[0].address;
453 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
454
455 physical_freestart = 0xc0009000UL;
456 physical_freeend = 0xc0200000UL;
457
458 #ifdef VERBOSE_INIT_ARM
459 /* Tell the user about the memory */
460 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
461 physical_start, physical_end - 1);
462 #endif
463
464 /*
465 * Okay, the kernel starts 2MB in from the bottom of physical
466 * memory. We are going to allocate our bootstrap pages downwards
467 * from there.
468 *
469 * We need to allocate some fixed page tables to get the kernel
470 * going. We allocate one page directory and a number of page
471 * tables and store the physical addresses in the kernel_pt_table
472 * array.
473 *
474 * The kernel page directory must be on a 16K boundary. The page
475 * tables must be on 4K boundaries. What we do is allocate the
476 * page directory on the first 16K boundary that we encounter, and
477 * the page tables on 4K boundaries otherwise. Since we allocate
478 * at least 3 L2 page tables, we are guaranteed to encounter at
479 * least one 16K aligned region.
480 */
481
482 #ifdef VERBOSE_INIT_ARM
483 printf("Allocating page tables\n");
484 #endif
485
486 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
487
488 #ifdef VERBOSE_INIT_ARM
489 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
490 physical_freestart, free_pages, free_pages);
491 #endif
492
493 /* Define a macro to simplify memory allocation */
494 #define valloc_pages(var, np) \
495 alloc_pages((var).pv_pa, (np)); \
496 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
497
498 #define alloc_pages(var, np) \
499 physical_freeend -= ((np) * PAGE_SIZE); \
500 if (physical_freeend < physical_freestart) \
501 panic("initarm: out of memory"); \
502 (var) = physical_freeend; \
503 free_pages -= (np); \
504 memset((char *)(var), 0, ((np) * PAGE_SIZE));
505
506 loop1 = 0;
507 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
508 /* Are we 16KB aligned for an L1 ? */
509 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
510 && kernel_l1pt.pv_pa == 0) {
511 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
512 } else {
513 valloc_pages(kernel_pt_table[loop1],
514 L2_TABLE_SIZE / PAGE_SIZE);
515 ++loop1;
516 }
517 }
518
519 /* This should never be able to happen but better confirm that. */
520 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
521 panic("initarm: Failed to align the kernel page directory\n");
522
523 /*
524 * Allocate a page for the system page mapped to V0x00000000
525 * This page will just contain the system vectors and can be
526 * shared by all processes.
527 */
528 alloc_pages(systempage.pv_pa, 1);
529
530 /* Allocate stacks for all modes */
531 valloc_pages(irqstack, IRQ_STACK_SIZE);
532 valloc_pages(abtstack, ABT_STACK_SIZE);
533 valloc_pages(undstack, UND_STACK_SIZE);
534 valloc_pages(kernelstack, UPAGES);
535
536 /* Allocate enough pages for cleaning the Mini-Data cache. */
537 KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
538 valloc_pages(minidataclean, 1);
539
540 #ifdef VERBOSE_INIT_ARM
541 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
542 irqstack.pv_va);
543 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
544 abtstack.pv_va);
545 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
546 undstack.pv_va);
547 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
548 kernelstack.pv_va);
549 #endif
550
551 /*
552 * XXX Defer this to later so that we can reclaim the memory
553 * XXX used by the RedBoot page tables.
554 */
555 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
556
557 /*
558 * Ok we have allocated physical pages for the primary kernel
559 * page tables
560 */
561
562 #ifdef VERBOSE_INIT_ARM
563 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
564 #endif
565
566 /*
567 * Now we start construction of the L1 page table
568 * We start by mapping the L2 page tables into the L1.
569 * This means that we can replace L1 mappings later on if necessary
570 */
571 l1pagetable = kernel_l1pt.pv_pa;
572
573 /* Map the L2 pages tables in the L1 page table */
574 pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
575 &kernel_pt_table[KERNEL_PT_SYS]);
576 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
577 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
578 &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
579 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
580 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
581 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
582
583 /* update the top of the kernel VM */
584 pmap_curmaxkvaddr =
585 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
586
587 #ifdef VERBOSE_INIT_ARM
588 printf("Mapping kernel\n");
589 #endif
590
591 /* Now we fill in the L2 pagetable for the kernel static code/data */
592 {
593 extern char etext[], _end[];
594 size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
595 size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
596 u_int logical;
597
598 textsize = (textsize + PGOFSET) & ~PGOFSET;
599 totalsize = (totalsize + PGOFSET) & ~PGOFSET;
600
601 logical = 0x00200000; /* offset of kernel in RAM */
602
603 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
604 physical_start + logical, textsize,
605 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
606 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
607 physical_start + logical, totalsize - textsize,
608 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
609 }
610
611 #ifdef VERBOSE_INIT_ARM
612 printf("Constructing L2 page tables\n");
613 #endif
614
615 /* Map the stack pages */
616 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
617 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
618 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
619 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
620 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
621 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
622 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
623 UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
624
625 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
626 L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
627
628 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
629 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
630 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
631 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
632 }
633
634 /* Map the Mini-Data cache clean area. */
635 xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
636 minidataclean.pv_pa);
637
638 /* Map the vector page. */
639 pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
640 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
641
642 /* Map the statically mapped devices. */
643 pmap_devmap_bootstrap(l1pagetable, brh_devmap);
644
645 /*
646 * Give the XScale global cache clean code an appropriately
647 * sized chunk of unmapped VA space starting at 0xff500000
648 * (our device mappings end before this address).
649 */
650 xscale_cache_clean_addr = 0xff500000U;
651
652 /*
653 * Now we have the real page tables in place so we can switch to them.
654 * Once this is done we will be running with the REAL kernel page
655 * tables.
656 */
657
658 /* Switch tables */
659 #ifdef VERBOSE_INIT_ARM
660 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
661 #endif
662 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
663 cpu_setttb(kernel_l1pt.pv_pa);
664 cpu_tlb_flushID();
665 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
666
667 /*
668 * Move from cpu_startup() as data_abort_handler() references
669 * this during uvm init
670 */
671 uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
672
673 #ifdef VERBOSE_INIT_ARM
674 printf("done!\n");
675 #endif
676
677 #ifdef VERBOSE_INIT_ARM
678 printf("bootstrap done.\n");
679 #endif
680
681 /*
682 * Inform the BECC code where the BECC is mapped.
683 */
684 becc_vaddr = BRH_BECC_VBASE;
685
686 /*
687 * Now that we have becc_vaddr set, calibrate delay.
688 */
689 becc_calibrate_delay();
690
691 /*
692 * BECC <= Rev7 can only address 64M through the inbound
693 * PCI windows. Limit memory to 64M on those revs. (This
694 * problem was fixed in Rev8 of the BECC; get an FPGA upgrade.)
695 */
696 {
697 vaddr_t va = BRH_PCI_CONF_VBASE | (1U << BECC_IDSEL_BIT) |
698 PCI_CLASS_REG;
699 uint32_t reg;
700
701 reg = *(volatile uint32_t *) va;
702 becc_rev = PCI_REVISION(reg);
703 if (becc_rev <= BECC_REV_V7 &&
704 memsize > (64UL * 1024 * 1024)) {
705 memsize = (64UL * 1024 * 1024);
706 bootconfig.dram[0].pages = memsize / PAGE_SIZE;
707 physical_end = physical_start +
708 (bootconfig.dram[0].pages * PAGE_SIZE);
709 printf("BECC <= Rev7: memory truncated to 64M\n");
710 }
711 }
712
713 /*
714 * Update the physical_freestart/physical_freeend/free_pages
715 * variables.
716 */
717 {
718 extern char _end[];
719
720 physical_freestart = physical_start +
721 (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
722 KERNEL_BASE);
723 physical_freeend = physical_end;
724 free_pages =
725 (physical_freeend - physical_freestart) / PAGE_SIZE;
726 }
727 #ifdef VERBOSE_INIT_ARM
728 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
729 physical_freestart, free_pages, free_pages);
730 #endif
731
732 physmem = (physical_end - physical_start) / PAGE_SIZE;
733
734 arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
735
736 /*
737 * Pages were allocated during the secondary bootstrap for the
738 * stacks for different CPU modes.
739 * We must now set the r13 registers in the different CPU modes to
740 * point to these stacks.
741 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
742 * of the stack memory.
743 */
744 #ifdef VERBOSE_INIT_ARM
745 printf("init subsystems: stacks ");
746 #endif
747
748 set_stackptr(PSR_IRQ32_MODE,
749 irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
750 set_stackptr(PSR_ABT32_MODE,
751 abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
752 set_stackptr(PSR_UND32_MODE,
753 undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
754
755 /*
756 * Well we should set a data abort handler.
757 * Once things get going this will change as we will need a proper
758 * handler.
759 * Until then we will use a handler that just panics but tells us
760 * why.
761 * Initialisation of the vectors will just panic on a data abort.
762 * This just fills in a slightly better one.
763 */
764 #ifdef VERBOSE_INIT_ARM
765 printf("vectors ");
766 #endif
767 data_abort_handler_address = (u_int)data_abort_handler;
768 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
769 undefined_handler_address = (u_int)undefinedinstruction_bounce;
770
771 /* Initialise the undefined instruction handlers */
772 #ifdef VERBOSE_INIT_ARM
773 printf("undefined ");
774 #endif
775 undefined_init();
776
777 /* Load memory into UVM. */
778 #ifdef VERBOSE_INIT_ARM
779 printf("page ");
780 #endif
781 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
782 uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
783 atop(physical_freestart), atop(physical_freeend),
784 VM_FREELIST_DEFAULT);
785
786 /* Boot strap pmap telling it where the kernel page table is */
787 #ifdef VERBOSE_INIT_ARM
788 printf("pmap ");
789 #endif
790 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
791
792 /* Setup the IRQ system */
793 #ifdef VERBOSE_INIT_ARM
794 printf("irq ");
795 #endif
796 becc_intr_init();
797 #ifdef VERBOSE_INIT_ARM
798 printf("done.\n");
799 #endif
800
801 #ifdef DDB
802 db_machine_init();
803 if (boothowto & RB_KDB)
804 Debugger();
805 #endif
806
807 /* We return the new stack pointer address */
808 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
809 }
810
811 void
812 consinit(void)
813 {
814 static const bus_addr_t comcnaddrs[] = {
815 BRH_UART1_BASE, /* com0 */
816 BRH_UART2_BASE, /* com1 */
817 };
818 static int consinit_called;
819
820 if (consinit_called != 0)
821 return;
822
823 consinit_called = 1;
824
825 /*
826 * brh_start() has mapped the console devices for us per
827 * the devmap, so register it now so drivers can map the
828 * console device.
829 */
830 pmap_devmap_register(brh_devmap);
831
832 #if NCOM > 0
833 if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed,
834 BECC_PERIPH_CLOCK, COM_TYPE_NORMAL, comcnmode))
835 panic("can't init serial console @%lx", comcnaddrs[comcnunit]);
836 #else
837 panic("serial console @%lx not configured", comcnaddrs[comcnunit]);
838 #endif
839 }
840