brh_machdep.c revision 1.48.8.1 1 /* $NetBSD: brh_machdep.c,v 1.48.8.1 2020/04/20 11:28:53 bouyer Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1997,1998 Mark Brinicombe.
40 * Copyright (c) 1997,1998 Causality Limited.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by Mark Brinicombe
54 * for the NetBSD Project.
55 * 4. The name of the company nor the name of the author may be used to
56 * endorse or promote products derived from this software without specific
57 * prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
60 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * Machine dependent functions for kernel setup for the ADI Engineering
72 * BRH i80200 evaluation platform.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: brh_machdep.c,v 1.48.8.1 2020/04/20 11:28:53 bouyer Exp $");
77
78 #include "opt_arm_debug.h"
79 #include "opt_console.h"
80 #include "opt_ddb.h"
81
82 #include <sys/param.h>
83 #include <sys/device.h>
84 #include <sys/systm.h>
85 #include <sys/kernel.h>
86 #include <sys/exec.h>
87 #include <sys/proc.h>
88 #include <sys/msgbuf.h>
89 #include <sys/reboot.h>
90 #include <sys/termios.h>
91 #include <sys/ksyms.h>
92 #include <sys/bus.h>
93 #include <sys/cpu.h>
94
95 #include <uvm/uvm_extern.h>
96
97 #include <dev/cons.h>
98
99 #include <machine/db_machdep.h>
100 #include <ddb/db_sym.h>
101 #include <ddb/db_extern.h>
102
103 #include <machine/bootconfig.h>
104 #include <arm/locore.h>
105 #include <arm/undefined.h>
106
107 #include <arm/arm32/machdep.h>
108
109 #include <arm/xscale/i80200reg.h>
110 #include <arm/xscale/i80200var.h>
111
112 #include <dev/pci/ppbreg.h>
113
114 #include <arm/xscale/beccreg.h>
115 #include <arm/xscale/beccvar.h>
116
117 #include <evbarm/adi_brh/brhreg.h>
118 #include <evbarm/adi_brh/brhvar.h>
119 #include <evbarm/adi_brh/obiovar.h>
120
121 #include "ksyms.h"
122
123 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
124 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
125 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
126
127 /*
128 * The range 0xc1000000 - 0xccffffff is available for kernel VM space
129 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
130 */
131 #define KERNEL_VM_SIZE 0x0C000000
132
133 BootConfig bootconfig; /* Boot config storage */
134 char *boot_args = NULL;
135 char *boot_file = NULL;
136
137 vaddr_t physical_start;
138 vaddr_t physical_freestart;
139 vaddr_t physical_freeend;
140 vaddr_t physical_end;
141 u_int free_pages;
142
143 /*int debug_flags;*/
144 #ifndef PMAP_STATIC_L1S
145 int max_processes = 64; /* Default number */
146 #endif /* !PMAP_STATIC_L1S */
147
148 /* Physical and virtual addresses for some global pages */
149 pv_addr_t minidataclean;
150
151 paddr_t msgbufphys;
152
153 #define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */
154
155 #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */
156 #define KERNEL_PT_KERNEL_NUM 2
157
158 /* L2 tables for mapping kernel VM */
159 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
160 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
161 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
162
163 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
164
165 /* Prototypes */
166
167 void consinit(void);
168
169 #include "com.h"
170 #if NCOM > 0
171 #include <dev/ic/comreg.h>
172 #include <dev/ic/comvar.h>
173 #endif
174
175 /*
176 * Define the default console speed for the board. This is generally
177 * what the firmware provided with the board defaults to.
178 */
179 #ifndef CONSPEED
180 #define CONSPEED B57600
181 #endif /* ! CONSPEED */
182
183 #ifndef CONUNIT
184 #define CONUNIT 0
185 #endif
186
187 #ifndef CONMODE
188 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
189 #endif
190
191 int comcnspeed = CONSPEED;
192 int comcnmode = CONMODE;
193 int comcnunit = CONUNIT;
194
195 /*
196 * void cpu_reboot(int howto, char *bootstr)
197 *
198 * Reboots the system
199 *
200 * Deal with any syncing, unmounting, dumping and shutdown hooks,
201 * then reset the CPU.
202 */
203 void
204 cpu_reboot(int howto, char *bootstr)
205 {
206
207 /*
208 * If we are still cold then hit the air brakes
209 * and crash to earth fast
210 */
211 if (cold) {
212 doshutdownhooks();
213 pmf_system_shutdown(boothowto);
214 printf("The operating system has halted.\n");
215 printf("Please press any key to reboot.\n\n");
216 cngetc();
217 printf("rebooting...\n");
218 goto reset;
219 }
220
221 /* Disable console buffering */
222
223 /*
224 * If RB_NOSYNC was not specified sync the discs.
225 * Note: Unless cold is set to 1 here, syslogd will die during the
226 * unmount. It looks like syslogd is getting woken up only to find
227 * that it cannot page part of the binary in as the filesystem has
228 * been unmounted.
229 */
230 if (!(howto & RB_NOSYNC))
231 bootsync();
232
233 /* Say NO to interrupts */
234 splhigh();
235
236 /* Do a dump if requested. */
237 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
238 dumpsys();
239
240 /* Run any shutdown hooks */
241 doshutdownhooks();
242
243 pmf_system_shutdown(boothowto);
244
245 /* Make sure IRQ's are disabled */
246 IRQdisable;
247
248 if (howto & RB_HALT) {
249 brh_7seg('8');
250 printf("The operating system has halted.\n");
251 printf("Please press any key to reboot.\n\n");
252 cngetc();
253 }
254
255 printf("rebooting...\n\r");
256 reset:
257 cpu_reset();
258 }
259
260 /* Static device mappings. */
261 static const struct pmap_devmap brh_devmap[] = {
262 {
263 BRH_PCI_CONF_VBASE,
264 BECC_PCI_CONF_BASE,
265 BRH_PCI_CONF_VSIZE,
266 VM_PROT_READ|VM_PROT_WRITE,
267 PTE_NOCACHE,
268 },
269 {
270 BRH_PCI_MEM1_VBASE,
271 BECC_PCI_MEM1_BASE,
272 BRH_PCI_MEM1_VSIZE,
273 VM_PROT_READ|VM_PROT_WRITE,
274 PTE_NOCACHE,
275 },
276 {
277 BRH_PCI_MEM2_VBASE,
278 BECC_PCI_MEM2_BASE,
279 BRH_PCI_MEM2_VSIZE,
280 VM_PROT_READ|VM_PROT_WRITE,
281 PTE_NOCACHE,
282 },
283 {
284 BRH_UART1_VBASE,
285 BRH_UART1_BASE,
286 BRH_UART1_VSIZE,
287 VM_PROT_READ|VM_PROT_WRITE,
288 PTE_NOCACHE,
289 },
290 {
291 BRH_UART2_VBASE,
292 BRH_UART2_BASE,
293 BRH_UART2_VSIZE,
294 VM_PROT_READ|VM_PROT_WRITE,
295 PTE_NOCACHE,
296 },
297 {
298 BRH_LED_VBASE,
299 BRH_LED_BASE,
300 BRH_LED_VSIZE,
301 VM_PROT_READ|VM_PROT_WRITE,
302 PTE_NOCACHE,
303 },
304 {
305 BRH_PCI_IO_VBASE,
306 BECC_PCI_IO_BASE,
307 BRH_PCI_IO_VSIZE,
308 VM_PROT_READ|VM_PROT_WRITE,
309 PTE_NOCACHE,
310 },
311 {
312 BRH_BECC_VBASE,
313 BECC_REG_BASE,
314 BRH_BECC_VSIZE,
315 VM_PROT_READ|VM_PROT_WRITE,
316 PTE_NOCACHE,
317 },
318 {
319 0,
320 0,
321 0,
322 0,
323 0,
324 }
325 };
326
327 static void
328 brh_hardclock_hook(void)
329 {
330 static int snakefreq;
331
332 if ((snakefreq++ & 15) == 0)
333 brh_7seg_snake();
334 }
335
336 /*
337 * vaddr_t initarm(...)
338 *
339 * Initial entry point on startup. This gets called before main() is
340 * entered.
341 * It should be responsible for setting up everything that must be
342 * in place when main is called.
343 * This includes
344 * Taking a copy of the boot configuration structure.
345 * Initialising the physical console so characters can be printed.
346 * Setting up page tables for the kernel
347 * Relocating the kernel to the bottom of physical memory
348 */
349 vaddr_t
350 initarm(void *arg)
351 {
352 extern vaddr_t xscale_cache_clean_addr;
353 #ifdef DIAGNOSTIC
354 extern vsize_t xscale_minidata_clean_size;
355 #endif
356 int loop;
357 int loop1;
358 u_int l1pagetable;
359 paddr_t memstart;
360 psize_t memsize;
361
362 /*
363 * Clear out the 7-segment display. Whee, the first visual
364 * indication that we're running kernel code.
365 */
366 brh_7seg(' ');
367
368 /*
369 * Since we have mapped the on-board devices at their permanent
370 * locations already, it is possible for us to initialize
371 * the console now.
372 */
373 consinit();
374
375 #ifdef VERBOSE_INIT_ARM
376 /* Talk to the user */
377 printf("\nNetBSD/evbarm (ADI BRH) booting ...\n");
378 #endif
379
380 /* Calibrate the delay loop. */
381 becc_hardclock_hook = brh_hardclock_hook;
382
383 /*
384 * Heads up ... Setup the CPU / MMU / TLB functions
385 */
386 if (set_cpufuncs())
387 panic("CPU not recognized!");
388
389 /*
390 * We are currently running with the MMU enabled and the
391 * entire address space mapped VA==PA. Memory conveniently
392 * starts at 0xc0000000, which is where we want it. Certain
393 * on-board devices have already been mapped where we want
394 * them to be. There is an L1 page table at 0xc0004000.
395 */
396
397 becc_icu_init();
398
399 /*
400 * Memory always starts at 0xc0000000 on a BRH, and the
401 * memory size is always 128M.
402 */
403 memstart = 0xc0000000UL;
404 memsize = (128UL * 1024 * 1024);
405
406 #ifdef VERBOSE_INIT_ARM
407 printf("initarm: Configuring system ...\n");
408 #endif
409
410 /* Fake bootconfig structure for the benefit of pmap.c */
411 /* XXX must make the memory description h/w independent */
412 bootconfig.dramblocks = 1;
413 bootconfig.dram[0].address = memstart;
414 bootconfig.dram[0].pages = memsize / PAGE_SIZE;
415
416 /*
417 * Set up the variables that define the availablilty of
418 * physical memory. For now, we're going to set
419 * physical_freestart to 0xc0200000 (where the kernel
420 * was loaded), and allocate the memory we need downwards.
421 * If we get too close to the L1 table that we set up, we
422 * will panic. We will update physical_freestart and
423 * physical_freeend later to reflect what pmap_bootstrap()
424 * wants to see.
425 *
426 * XXX pmap_bootstrap() needs an enema.
427 */
428 physical_start = bootconfig.dram[0].address;
429 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
430
431 physical_freestart = 0xc0009000UL;
432 physical_freeend = 0xc0200000UL;
433
434 #ifdef VERBOSE_INIT_ARM
435 /* Tell the user about the memory */
436 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
437 physical_start, physical_end - 1);
438 #endif
439
440 /*
441 * Okay, the kernel starts 2MB in from the bottom of physical
442 * memory. We are going to allocate our bootstrap pages downwards
443 * from there.
444 *
445 * We need to allocate some fixed page tables to get the kernel
446 * going. We allocate one page directory and a number of page
447 * tables and store the physical addresses in the kernel_pt_table
448 * array.
449 *
450 * The kernel page directory must be on a 16K boundary. The page
451 * tables must be on 4K boundaries. What we do is allocate the
452 * page directory on the first 16K boundary that we encounter, and
453 * the page tables on 4K boundaries otherwise. Since we allocate
454 * at least 3 L2 page tables, we are guaranteed to encounter at
455 * least one 16K aligned region.
456 */
457
458 #ifdef VERBOSE_INIT_ARM
459 printf("Allocating page tables\n");
460 #endif
461
462 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
463
464 #ifdef VERBOSE_INIT_ARM
465 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
466 physical_freestart, free_pages, free_pages);
467 #endif
468
469 /* Define a macro to simplify memory allocation */
470 #define valloc_pages(var, np) \
471 alloc_pages((var).pv_pa, (np)); \
472 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
473
474 #define alloc_pages(var, np) \
475 physical_freeend -= ((np) * PAGE_SIZE); \
476 if (physical_freeend < physical_freestart) \
477 panic("initarm: out of memory"); \
478 (var) = physical_freeend; \
479 free_pages -= (np); \
480 memset((char *)(var), 0, ((np) * PAGE_SIZE));
481
482 loop1 = 0;
483 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
484 /* Are we 16KB aligned for an L1 ? */
485 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
486 && kernel_l1pt.pv_pa == 0) {
487 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
488 } else {
489 valloc_pages(kernel_pt_table[loop1],
490 L2_TABLE_SIZE / PAGE_SIZE);
491 ++loop1;
492 }
493 }
494
495 /* This should never be able to happen but better confirm that. */
496 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
497 panic("initarm: Failed to align the kernel page directory\n");
498
499 /*
500 * Allocate a page for the system page mapped to V0x00000000
501 * This page will just contain the system vectors and can be
502 * shared by all processes.
503 */
504 alloc_pages(systempage.pv_pa, 1);
505
506 /* Allocate stacks for all modes */
507 valloc_pages(irqstack, IRQ_STACK_SIZE);
508 valloc_pages(abtstack, ABT_STACK_SIZE);
509 valloc_pages(undstack, UND_STACK_SIZE);
510 valloc_pages(kernelstack, UPAGES);
511
512 /* Allocate enough pages for cleaning the Mini-Data cache. */
513 KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
514 valloc_pages(minidataclean, 1);
515
516 #ifdef VERBOSE_INIT_ARM
517 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
518 irqstack.pv_va);
519 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
520 abtstack.pv_va);
521 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
522 undstack.pv_va);
523 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
524 kernelstack.pv_va);
525 #endif
526
527 /*
528 * XXX Defer this to later so that we can reclaim the memory
529 * XXX used by the RedBoot page tables.
530 */
531 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
532
533 /*
534 * Ok we have allocated physical pages for the primary kernel
535 * page tables
536 */
537
538 #ifdef VERBOSE_INIT_ARM
539 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
540 #endif
541
542 /*
543 * Now we start construction of the L1 page table
544 * We start by mapping the L2 page tables into the L1.
545 * This means that we can replace L1 mappings later on if necessary
546 */
547 l1pagetable = kernel_l1pt.pv_pa;
548
549 /* Map the L2 pages tables in the L1 page table */
550 pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
551 &kernel_pt_table[KERNEL_PT_SYS]);
552 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
553 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
554 &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
555 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
556 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
557 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
558
559 /* update the top of the kernel VM */
560 pmap_curmaxkvaddr =
561 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
562
563 #ifdef VERBOSE_INIT_ARM
564 printf("Mapping kernel\n");
565 #endif
566
567 /* Now we fill in the L2 pagetable for the kernel static code/data */
568 {
569 extern char etext[], _end[];
570 size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
571 size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
572 u_int logical;
573
574 textsize = (textsize + PGOFSET) & ~PGOFSET;
575 totalsize = (totalsize + PGOFSET) & ~PGOFSET;
576
577 logical = 0x00200000; /* offset of kernel in RAM */
578
579 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
580 physical_start + logical, textsize,
581 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
582 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
583 physical_start + logical, totalsize - textsize,
584 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
585 }
586
587 #ifdef VERBOSE_INIT_ARM
588 printf("Constructing L2 page tables\n");
589 #endif
590
591 /* Map the stack pages */
592 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
593 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
594 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
595 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
596 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
597 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
598 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
599 UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
600
601 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
602 L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
603
604 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
605 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
606 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
607 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
608 }
609
610 /* Map the Mini-Data cache clean area. */
611 xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
612 minidataclean.pv_pa);
613
614 /* Map the vector page. */
615 pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
616 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
617
618 /* Map the statically mapped devices. */
619 pmap_devmap_bootstrap(l1pagetable, brh_devmap);
620
621 /*
622 * Give the XScale global cache clean code an appropriately
623 * sized chunk of unmapped VA space starting at 0xff500000
624 * (our device mappings end before this address).
625 */
626 xscale_cache_clean_addr = 0xff500000U;
627
628 /*
629 * Now we have the real page tables in place so we can switch to them.
630 * Once this is done we will be running with the REAL kernel page
631 * tables.
632 */
633
634 /* Switch tables */
635 #ifdef VERBOSE_INIT_ARM
636 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
637 #endif
638 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
639 cpu_setttb(kernel_l1pt.pv_pa, true);
640 cpu_tlb_flushID();
641 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
642
643 /*
644 * Move from cpu_startup() as data_abort_handler() references
645 * this during uvm init
646 */
647 uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
648
649 #ifdef VERBOSE_INIT_ARM
650 printf("done!\n");
651 #endif
652
653 #ifdef VERBOSE_INIT_ARM
654 printf("bootstrap done.\n");
655 #endif
656
657 /*
658 * Inform the BECC code where the BECC is mapped.
659 */
660 becc_vaddr = BRH_BECC_VBASE;
661
662 /*
663 * Now that we have becc_vaddr set, calibrate delay.
664 */
665 becc_calibrate_delay();
666
667 /*
668 * BECC <= Rev7 can only address 64M through the inbound
669 * PCI windows. Limit memory to 64M on those revs. (This
670 * problem was fixed in Rev8 of the BECC; get an FPGA upgrade.)
671 */
672 {
673 vaddr_t va = BRH_PCI_CONF_VBASE | (1U << BECC_IDSEL_BIT) |
674 PCI_CLASS_REG;
675 uint32_t reg;
676
677 reg = *(volatile uint32_t *) va;
678 becc_rev = PCI_REVISION(reg);
679 if (becc_rev <= BECC_REV_V7 &&
680 memsize > (64UL * 1024 * 1024)) {
681 memsize = (64UL * 1024 * 1024);
682 bootconfig.dram[0].pages = memsize / PAGE_SIZE;
683 physical_end = physical_start +
684 (bootconfig.dram[0].pages * PAGE_SIZE);
685 printf("BECC <= Rev7: memory truncated to 64M\n");
686 }
687 }
688
689 /*
690 * Update the physical_freestart/physical_freeend/free_pages
691 * variables.
692 */
693 {
694 extern char _end[];
695
696 physical_freestart = physical_start +
697 (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
698 KERNEL_BASE);
699 physical_freeend = physical_end;
700 free_pages =
701 (physical_freeend - physical_freestart) / PAGE_SIZE;
702 }
703 #ifdef VERBOSE_INIT_ARM
704 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
705 physical_freestart, free_pages, free_pages);
706 #endif
707
708 physmem = (physical_end - physical_start) / PAGE_SIZE;
709
710 arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
711
712 /*
713 * Pages were allocated during the secondary bootstrap for the
714 * stacks for different CPU modes.
715 * We must now set the r13 registers in the different CPU modes to
716 * point to these stacks.
717 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
718 * of the stack memory.
719 */
720 #ifdef VERBOSE_INIT_ARM
721 printf("init subsystems: stacks ");
722 #endif
723
724 set_stackptr(PSR_IRQ32_MODE,
725 irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
726 set_stackptr(PSR_ABT32_MODE,
727 abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
728 set_stackptr(PSR_UND32_MODE,
729 undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
730
731 /*
732 * Well we should set a data abort handler.
733 * Once things get going this will change as we will need a proper
734 * handler.
735 * Until then we will use a handler that just panics but tells us
736 * why.
737 * Initialisation of the vectors will just panic on a data abort.
738 * This just fills in a slightly better one.
739 */
740 #ifdef VERBOSE_INIT_ARM
741 printf("vectors ");
742 #endif
743 data_abort_handler_address = (u_int)data_abort_handler;
744 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
745 undefined_handler_address = (u_int)undefinedinstruction_bounce;
746
747 /* Initialise the undefined instruction handlers */
748 #ifdef VERBOSE_INIT_ARM
749 printf("undefined ");
750 #endif
751 undefined_init();
752
753 /* Load memory into UVM. */
754 #ifdef VERBOSE_INIT_ARM
755 printf("page ");
756 #endif
757 uvm_md_init();
758 uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
759 atop(physical_freestart), atop(physical_freeend),
760 VM_FREELIST_DEFAULT);
761
762 /* Boot strap pmap telling it where the managed kernel virtual memory is */
763 #ifdef VERBOSE_INIT_ARM
764 printf("pmap ");
765 #endif
766 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
767
768 /* Setup the IRQ system */
769 #ifdef VERBOSE_INIT_ARM
770 printf("irq ");
771 #endif
772 becc_intr_init();
773 #ifdef VERBOSE_INIT_ARM
774 printf("done.\n");
775 #endif
776
777 #ifdef DDB
778 db_machine_init();
779 if (boothowto & RB_KDB)
780 Debugger();
781 #endif
782
783 /* We return the new stack pointer address */
784 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
785 }
786
787 void
788 consinit(void)
789 {
790 static const bus_addr_t comcnaddrs[] = {
791 BRH_UART1_BASE, /* com0 */
792 BRH_UART2_BASE, /* com1 */
793 };
794 static int consinit_called;
795
796 if (consinit_called != 0)
797 return;
798
799 consinit_called = 1;
800
801 /*
802 * brh_start() has mapped the console devices for us per
803 * the devmap, so register it now so drivers can map the
804 * console device.
805 */
806 pmap_devmap_register(brh_devmap);
807
808 #if NCOM > 0
809 if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed,
810 BECC_PERIPH_CLOCK, COM_TYPE_NORMAL, comcnmode))
811 panic("can't init serial console @%lx", comcnaddrs[comcnunit]);
812 #else
813 panic("serial console @%lx not configured", comcnaddrs[comcnunit]);
814 #endif
815 }
816