brh_machdep.c revision 1.7 1 /* $NetBSD: brh_machdep.c,v 1.7 2003/05/02 23:22:34 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1997,1998 Mark Brinicombe.
40 * Copyright (c) 1997,1998 Causality Limited.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by Mark Brinicombe
54 * for the NetBSD Project.
55 * 4. The name of the company nor the name of the author may be used to
56 * endorse or promote products derived from this software without specific
57 * prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
60 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * Machine dependant functions for kernel setup for the ADI Engineering
72 * BRH i80200 evaluation platform.
73 */
74
75 #include "opt_ddb.h"
76 #include "opt_pmap_debug.h"
77
78 #include <sys/param.h>
79 #include <sys/device.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/exec.h>
83 #include <sys/proc.h>
84 #include <sys/msgbuf.h>
85 #include <sys/reboot.h>
86 #include <sys/termios.h>
87 #include <sys/ksyms.h>
88
89 #include <uvm/uvm_extern.h>
90
91 #include <dev/cons.h>
92
93 #include <machine/db_machdep.h>
94 #include <ddb/db_sym.h>
95 #include <ddb/db_extern.h>
96
97 #include <machine/bootconfig.h>
98 #include <machine/bus.h>
99 #include <machine/cpu.h>
100 #include <machine/frame.h>
101 #include <arm/undefined.h>
102
103 #include <arm/arm32/machdep.h>
104
105 #include <arm/xscale/i80200reg.h>
106 #include <arm/xscale/i80200var.h>
107
108 #include <dev/pci/ppbreg.h>
109
110 #include <arm/xscale/beccreg.h>
111 #include <arm/xscale/beccvar.h>
112
113 #include <evbarm/adi_brh/brhreg.h>
114 #include <evbarm/adi_brh/brhvar.h>
115 #include <evbarm/adi_brh/obiovar.h>
116
117 #include "opt_ipkdb.h"
118 #include "ksyms.h"
119
120 /*
121 * Address to call from cpu_reset() to reset the machine.
122 * This is machine architecture dependant as it varies depending
123 * on where the ROM appears when you turn the MMU off.
124 */
125
126 u_int cpu_reset_address = 0x00000000;
127
128 /* Define various stack sizes in pages */
129 #define IRQ_STACK_SIZE 1
130 #define ABT_STACK_SIZE 1
131 #ifdef IPKDB
132 #define UND_STACK_SIZE 2
133 #else
134 #define UND_STACK_SIZE 1
135 #endif
136
137 BootConfig bootconfig; /* Boot config storage */
138 char *boot_args = NULL;
139 char *boot_file = NULL;
140
141 vm_offset_t physical_start;
142 vm_offset_t physical_freestart;
143 vm_offset_t physical_freeend;
144 vm_offset_t physical_end;
145 u_int free_pages;
146 vm_offset_t pagetables_start;
147 int physmem = 0;
148
149 /*int debug_flags;*/
150 #ifndef PMAP_STATIC_L1S
151 int max_processes = 64; /* Default number */
152 #endif /* !PMAP_STATIC_L1S */
153
154 /* Physical and virtual addresses for some global pages */
155 pv_addr_t systempage;
156 pv_addr_t irqstack;
157 pv_addr_t undstack;
158 pv_addr_t abtstack;
159 pv_addr_t kernelstack;
160 pv_addr_t minidataclean;
161
162 vm_offset_t msgbufphys;
163
164 extern u_int data_abort_handler_address;
165 extern u_int prefetch_abort_handler_address;
166 extern u_int undefined_handler_address;
167
168 #ifdef PMAP_DEBUG
169 extern int pmap_debug_level;
170 #endif
171
172 #define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */
173
174 #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */
175 #define KERNEL_PT_KERNEL_NUM 2
176
177 /* L2 tables for mapping kernel VM */
178 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
179 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
180 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
181
182 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
183
184 struct user *proc0paddr;
185
186 /* Prototypes */
187
188 void consinit(void);
189
190 #include "com.h"
191 #if NCOM > 0
192 #include <dev/ic/comreg.h>
193 #include <dev/ic/comvar.h>
194 #endif
195
196 /*
197 * Define the default console speed for the board. This is generally
198 * what the firmware provided with the board defaults to.
199 */
200 #ifndef CONSPEED
201 #define CONSPEED B57600
202 #endif /* ! CONSPEED */
203
204 #ifndef CONUNIT
205 #define CONUNIT 0
206 #endif
207
208 #ifndef CONMODE
209 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
210 #endif
211
212 int comcnspeed = CONSPEED;
213 int comcnmode = CONMODE;
214 int comcnunit = CONUNIT;
215
216 /*
217 * void cpu_reboot(int howto, char *bootstr)
218 *
219 * Reboots the system
220 *
221 * Deal with any syncing, unmounting, dumping and shutdown hooks,
222 * then reset the CPU.
223 */
224 void
225 cpu_reboot(int howto, char *bootstr)
226 {
227 #ifdef DIAGNOSTIC
228 /* info */
229 printf("boot: howto=%08x curproc=%p\n", howto, curproc);
230 #endif
231
232 /*
233 * If we are still cold then hit the air brakes
234 * and crash to earth fast
235 */
236 if (cold) {
237 doshutdownhooks();
238 printf("The operating system has halted.\n");
239 printf("Please press any key to reboot.\n\n");
240 cngetc();
241 printf("rebooting...\n");
242 goto reset;
243 }
244
245 /* Disable console buffering */
246
247 /*
248 * If RB_NOSYNC was not specified sync the discs.
249 * Note: Unless cold is set to 1 here, syslogd will die during the
250 * unmount. It looks like syslogd is getting woken up only to find
251 * that it cannot page part of the binary in as the filesystem has
252 * been unmounted.
253 */
254 if (!(howto & RB_NOSYNC))
255 bootsync();
256
257 /* Say NO to interrupts */
258 splhigh();
259
260 /* Do a dump if requested. */
261 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
262 dumpsys();
263
264 /* Run any shutdown hooks */
265 doshutdownhooks();
266
267 /* Make sure IRQ's are disabled */
268 IRQdisable;
269
270 if (howto & RB_HALT) {
271 brh_7seg('8');
272 printf("The operating system has halted.\n");
273 printf("Please press any key to reboot.\n\n");
274 cngetc();
275 }
276
277 printf("rebooting...\n\r");
278 reset:
279 cpu_reset();
280 }
281
282 /*
283 * Mapping table for core kernel memory. This memory is mapped at init
284 * time with section mappings.
285 */
286 struct l1_sec_map {
287 vaddr_t va;
288 vaddr_t pa;
289 vsize_t size;
290 vm_prot_t prot;
291 int cache;
292 } l1_sec_table[] = {
293 {
294 BRH_PCI_CONF_VBASE,
295 BECC_PCI_CONF_BASE,
296 BRH_PCI_CONF_VSIZE,
297 VM_PROT_READ|VM_PROT_WRITE,
298 PTE_NOCACHE,
299 },
300 {
301 BRH_PCI_MEM1_VBASE,
302 BECC_PCI_MEM1_BASE,
303 BRH_PCI_MEM1_VSIZE,
304 VM_PROT_READ|VM_PROT_WRITE,
305 PTE_NOCACHE,
306 },
307 {
308 BRH_PCI_MEM2_VBASE,
309 BECC_PCI_MEM2_BASE,
310 BRH_PCI_MEM2_VSIZE,
311 VM_PROT_READ|VM_PROT_WRITE,
312 PTE_NOCACHE,
313 },
314 {
315 BRH_UART1_VBASE,
316 BRH_UART1_BASE,
317 BRH_UART1_VSIZE,
318 VM_PROT_READ|VM_PROT_WRITE,
319 PTE_NOCACHE,
320 },
321 {
322 BRH_UART2_VBASE,
323 BRH_UART2_BASE,
324 BRH_UART2_VSIZE,
325 VM_PROT_READ|VM_PROT_WRITE,
326 PTE_NOCACHE,
327 },
328 {
329 BRH_LED_VBASE,
330 BRH_LED_BASE,
331 BRH_LED_VSIZE,
332 VM_PROT_READ|VM_PROT_WRITE,
333 PTE_NOCACHE,
334 },
335 {
336 BRH_PCI_IO_VBASE,
337 BECC_PCI_IO_BASE,
338 BRH_PCI_IO_VSIZE,
339 VM_PROT_READ|VM_PROT_WRITE,
340 PTE_NOCACHE,
341 },
342 {
343 BRH_BECC_VBASE,
344 BECC_REG_BASE,
345 BRH_BECC_VSIZE,
346 VM_PROT_READ|VM_PROT_WRITE,
347 PTE_NOCACHE,
348 },
349 {
350 0,
351 0,
352 0,
353 0,
354 0,
355 }
356 };
357
358 static void
359 brh_hardclock_hook(void)
360 {
361 static int snakefreq;
362
363 if ((snakefreq++ & 15) == 0)
364 brh_7seg_snake();
365 }
366
367 /*
368 * u_int initarm(...)
369 *
370 * Initial entry point on startup. This gets called before main() is
371 * entered.
372 * It should be responsible for setting up everything that must be
373 * in place when main is called.
374 * This includes
375 * Taking a copy of the boot configuration structure.
376 * Initialising the physical console so characters can be printed.
377 * Setting up page tables for the kernel
378 * Relocating the kernel to the bottom of physical memory
379 */
380 u_int
381 initarm(void *arg)
382 {
383 extern vaddr_t xscale_cache_clean_addr;
384 #ifdef DIAGNOSTIC
385 extern vsize_t xscale_minidata_clean_size;
386 #endif
387 int loop;
388 int loop1;
389 u_int l1pagetable;
390 pv_addr_t kernel_l1pt;
391 #ifndef ARM32_PMAP_NEW
392 pv_addr_t kernel_ptpt;
393 #endif
394 paddr_t memstart;
395 psize_t memsize;
396
397 /*
398 * Clear out the 7-segment display. Whee, the first visual
399 * indication that we're running kernel code.
400 */
401 brh_7seg(' ');
402
403 /*
404 * Since we have mapped the on-board devices at their permanent
405 * locations already, it is possible for us to initialize
406 * the console now.
407 */
408 consinit();
409
410 /* Talk to the user */
411 printf("\nNetBSD/evbarm (ADI BRH) booting ...\n");
412
413 /* Calibrate the delay loop. */
414 becc_calibrate_delay();
415 becc_hardclock_hook = brh_hardclock_hook;
416
417 /*
418 * Heads up ... Setup the CPU / MMU / TLB functions
419 */
420 if (set_cpufuncs())
421 panic("cpu not recognized!");
422
423 /*
424 * We are currently running with the MMU enabled and the
425 * entire address space mapped VA==PA. Memory conveniently
426 * starts at 0xc0000000, which is where we want it. Certain
427 * on-board devices have already been mapped where we want
428 * them to be. There is an L1 page table at 0xc0004000.
429 */
430
431 becc_icu_init();
432
433 /*
434 * Memory always starts at 0xc0000000 on a BRH, and the
435 * memory size is always 128M.
436 */
437 memstart = 0xc0000000UL;
438 memsize = (128UL * 1024 * 1024);
439
440 printf("initarm: Configuring system ...\n");
441
442 /* Fake bootconfig structure for the benefit of pmap.c */
443 /* XXX must make the memory description h/w independant */
444 bootconfig.dramblocks = 1;
445 bootconfig.dram[0].address = memstart;
446 bootconfig.dram[0].pages = memsize / PAGE_SIZE;
447
448 /*
449 * Set up the variables that define the availablilty of
450 * physical memory. For now, we're going to set
451 * physical_freestart to 0xc0200000 (where the kernel
452 * was loaded), and allocate the memory we need downwards.
453 * If we get too close to the L1 table that we set up, we
454 * will panic. We will update physical_freestart and
455 * physical_freeend later to reflect what pmap_bootstrap()
456 * wants to see.
457 *
458 * XXX pmap_bootstrap() needs an enema.
459 */
460 physical_start = bootconfig.dram[0].address;
461 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
462
463 physical_freestart = 0xc0009000UL;
464 physical_freeend = 0xc0200000UL;
465
466 /* Tell the user about the memory */
467 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
468 physical_start, physical_end - 1);
469
470 /*
471 * Okay, the kernel starts 2MB in from the bottom of physical
472 * memory. We are going to allocate our bootstrap pages downwards
473 * from there.
474 *
475 * We need to allocate some fixed page tables to get the kernel
476 * going. We allocate one page directory and a number of page
477 * tables and store the physical addresses in the kernel_pt_table
478 * array.
479 *
480 * The kernel page directory must be on a 16K boundary. The page
481 * tables must be on 4K bounaries. What we do is allocate the
482 * page directory on the first 16K boundary that we encounter, and
483 * the page tables on 4K boundaries otherwise. Since we allocate
484 * at least 3 L2 page tables, we are guaranteed to encounter at
485 * least one 16K aligned region.
486 */
487
488 #ifdef VERBOSE_INIT_ARM
489 printf("Allocating page tables\n");
490 #endif
491
492 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
493
494 #ifdef VERBOSE_INIT_ARM
495 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
496 physical_freestart, free_pages, free_pages);
497 #endif
498
499 /* Define a macro to simplify memory allocation */
500 #define valloc_pages(var, np) \
501 alloc_pages((var).pv_pa, (np)); \
502 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
503
504 #define alloc_pages(var, np) \
505 physical_freeend -= ((np) * PAGE_SIZE); \
506 if (physical_freeend < physical_freestart) \
507 panic("initarm: out of memory"); \
508 (var) = physical_freeend; \
509 free_pages -= (np); \
510 memset((char *)(var), 0, ((np) * PAGE_SIZE));
511
512 loop1 = 0;
513 kernel_l1pt.pv_pa = 0;
514 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
515 /* Are we 16KB aligned for an L1 ? */
516 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
517 && kernel_l1pt.pv_pa == 0) {
518 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
519 } else {
520 #ifdef ARM32_PMAP_NEW
521 valloc_pages(kernel_pt_table[loop1],
522 L2_TABLE_SIZE / PAGE_SIZE);
523 #else
524 alloc_pages(kernel_pt_table[loop1].pv_pa,
525 L2_TABLE_SIZE / PAGE_SIZE);
526 kernel_pt_table[loop1].pv_va =
527 kernel_pt_table[loop1].pv_pa;
528 #endif
529 ++loop1;
530 }
531 }
532
533 /* This should never be able to happen but better confirm that. */
534 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
535 panic("initarm: Failed to align the kernel page directory\n");
536
537 /*
538 * Allocate a page for the system page mapped to V0x00000000
539 * This page will just contain the system vectors and can be
540 * shared by all processes.
541 */
542 alloc_pages(systempage.pv_pa, 1);
543
544 #ifndef ARM32_PMAP_NEW
545 /* Allocate a page for the page table to map kernel page tables. */
546 valloc_pages(kernel_ptpt, L2_TABLE_SIZE / PAGE_SIZE);
547 #endif
548
549 /* Allocate stacks for all modes */
550 valloc_pages(irqstack, IRQ_STACK_SIZE);
551 valloc_pages(abtstack, ABT_STACK_SIZE);
552 valloc_pages(undstack, UND_STACK_SIZE);
553 valloc_pages(kernelstack, UPAGES);
554
555 /* Allocate enough pages for cleaning the Mini-Data cache. */
556 KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
557 valloc_pages(minidataclean, 1);
558
559 #ifdef VERBOSE_INIT_ARM
560 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
561 irqstack.pv_va);
562 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
563 abtstack.pv_va);
564 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
565 undstack.pv_va);
566 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
567 kernelstack.pv_va);
568 #endif
569
570 /*
571 * XXX Defer this to later so that we can reclaim the memory
572 * XXX used by the RedBoot page tables.
573 */
574 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
575
576 /*
577 * Ok we have allocated physical pages for the primary kernel
578 * page tables
579 */
580
581 #ifdef VERBOSE_INIT_ARM
582 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
583 #endif
584
585 /*
586 * Now we start construction of the L1 page table
587 * We start by mapping the L2 page tables into the L1.
588 * This means that we can replace L1 mappings later on if necessary
589 */
590 l1pagetable = kernel_l1pt.pv_pa;
591
592 /* Map the L2 pages tables in the L1 page table */
593 pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
594 &kernel_pt_table[KERNEL_PT_SYS]);
595 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
596 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
597 &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
598 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
599 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
600 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
601 #ifndef ARM32_PMAP_NEW
602 pmap_link_l2pt(l1pagetable, PTE_BASE, &kernel_ptpt);
603 #endif
604
605 /* update the top of the kernel VM */
606 pmap_curmaxkvaddr =
607 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
608
609 #ifdef VERBOSE_INIT_ARM
610 printf("Mapping kernel\n");
611 #endif
612
613 /* Now we fill in the L2 pagetable for the kernel static code/data */
614 {
615 extern char etext[], _end[];
616 size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
617 size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
618 u_int logical;
619
620 textsize = (textsize + PGOFSET) & ~PGOFSET;
621 totalsize = (totalsize + PGOFSET) & ~PGOFSET;
622
623 logical = 0x00200000; /* offset of kernel in RAM */
624
625 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
626 physical_start + logical, textsize,
627 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
628 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
629 physical_start + logical, totalsize - textsize,
630 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
631 }
632
633 #ifdef VERBOSE_INIT_ARM
634 printf("Constructing L2 page tables\n");
635 #endif
636
637 /* Map the stack pages */
638 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
639 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
640 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
641 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
642 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
643 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
644 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
645 UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
646
647 #ifndef ARM32_PMAP_NEW
648 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
649 L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
650 #else
651 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
652 L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
653
654 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
655 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
656 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
657 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
658 }
659 #endif
660
661 /* Map the Mini-Data cache clean area. */
662 xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
663 minidataclean.pv_pa);
664
665 #ifndef ARM32_PMAP_NEW
666 /* Map the page table that maps the kernel pages */
667 pmap_map_entry(l1pagetable, kernel_ptpt.pv_va, kernel_ptpt.pv_pa,
668 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
669
670 /*
671 * Map entries in the page table used to map PTE's
672 * Basically every kernel page table gets mapped here
673 */
674 /* The -2 is slightly bogus, it should be -log2(sizeof(pt_entry_t)) */
675 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) {
676 pmap_map_entry(l1pagetable,
677 PTE_BASE + ((KERNEL_BASE +
678 (loop * 0x00400000)) >> (PGSHIFT-2)),
679 kernel_pt_table[KERNEL_PT_KERNEL + loop].pv_pa,
680 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
681 }
682 pmap_map_entry(l1pagetable,
683 PTE_BASE + (PTE_BASE >> (PGSHIFT-2)),
684 kernel_ptpt.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
685 pmap_map_entry(l1pagetable,
686 trunc_page(PTE_BASE + (ARM_VECTORS_HIGH >> (PGSHIFT-2))),
687 kernel_pt_table[KERNEL_PT_SYS].pv_pa,
688 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
689 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
690 pmap_map_entry(l1pagetable,
691 PTE_BASE + ((KERNEL_VM_BASE +
692 (loop * 0x00400000)) >> (PGSHIFT-2)),
693 kernel_pt_table[KERNEL_PT_VMDATA + loop].pv_pa,
694 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
695 #endif
696
697 /* Map the vector page. */
698 pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
699 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
700
701 /*
702 * Map devices we can map w/ section mappings.
703 */
704 loop = 0;
705 while (l1_sec_table[loop].size) {
706 vm_size_t sz;
707
708 #ifdef VERBOSE_INIT_ARM
709 printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
710 l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
711 l1_sec_table[loop].va);
712 #endif
713 for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_S_SIZE)
714 pmap_map_section(l1pagetable,
715 l1_sec_table[loop].va + sz,
716 l1_sec_table[loop].pa + sz,
717 l1_sec_table[loop].prot,
718 l1_sec_table[loop].cache);
719 ++loop;
720 }
721
722 /*
723 * Give the XScale global cache clean code an appropriately
724 * sized chunk of unmapped VA space starting at 0xff500000
725 * (our device mappings end before this address).
726 */
727 xscale_cache_clean_addr = 0xff500000U;
728
729 /*
730 * Now we have the real page tables in place so we can switch to them.
731 * Once this is done we will be running with the REAL kernel page
732 * tables.
733 */
734
735 /* Switch tables */
736 #ifdef VERBOSE_INIT_ARM
737 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
738 #endif
739 #ifdef ARM32_PMAP_NEW
740 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
741 #endif
742 setttb(kernel_l1pt.pv_pa);
743 cpu_tlb_flushID();
744 #ifdef ARM32_PMAP_NEW
745 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
746
747 /*
748 * Move from cpu_startup() as data_abort_handler() references
749 * this during uvm init
750 */
751 proc0paddr = (struct user *)kernelstack.pv_va;
752 lwp0.l_addr = proc0paddr;
753 #endif
754
755 #ifdef VERBOSE_INIT_ARM
756 printf("done!\n");
757 #endif
758
759 #ifdef VERBOSE_INIT_ARM
760 printf("bootstrap done.\n");
761 #endif
762
763 /*
764 * Inform the BECC code where the BECC is mapped.
765 */
766 becc_vaddr = BRH_BECC_VBASE;
767
768 /*
769 * BECC <= Rev7 can only address 64M through the inbound
770 * PCI windows. Limit memory to 64M on those revs. (This
771 * problem was fixed in Rev8 of the BECC; get an FPGA upgrade.)
772 */
773 {
774 vaddr_t va = BRH_PCI_CONF_VBASE | (1U << BECC_IDSEL_BIT) |
775 PCI_CLASS_REG;
776 uint32_t reg;
777
778 reg = *(__volatile uint32_t *) va;
779 becc_rev = PCI_REVISION(reg);
780 if (becc_rev <= BECC_REV_V7 &&
781 memsize > (64UL * 1024 * 1024)) {
782 memsize = (64UL * 1024 * 1024);
783 bootconfig.dram[0].pages = memsize / PAGE_SIZE;
784 physical_end = physical_start +
785 (bootconfig.dram[0].pages * PAGE_SIZE);
786 printf("BECC <= Rev7: memory truncated to 64M\n");
787 }
788 }
789
790 /*
791 * Update the physical_freestart/physical_freeend/free_pages
792 * variables.
793 */
794 {
795 extern char _end[];
796
797 physical_freestart = physical_start +
798 (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
799 KERNEL_BASE);
800 physical_freeend = physical_end;
801 free_pages =
802 (physical_freeend - physical_freestart) / PAGE_SIZE;
803 }
804 #ifdef VERBOSE_INIT_ARM
805 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
806 physical_freestart, free_pages, free_pages);
807 #endif
808
809 physmem = (physical_end - physical_start) / PAGE_SIZE;
810
811 arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
812
813 /*
814 * Pages were allocated during the secondary bootstrap for the
815 * stacks for different CPU modes.
816 * We must now set the r13 registers in the different CPU modes to
817 * point to these stacks.
818 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
819 * of the stack memory.
820 */
821 printf("init subsystems: stacks ");
822
823 set_stackptr(PSR_IRQ32_MODE,
824 irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
825 set_stackptr(PSR_ABT32_MODE,
826 abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
827 set_stackptr(PSR_UND32_MODE,
828 undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
829
830 /*
831 * Well we should set a data abort handler.
832 * Once things get going this will change as we will need a proper
833 * handler.
834 * Until then we will use a handler that just panics but tells us
835 * why.
836 * Initialisation of the vectors will just panic on a data abort.
837 * This just fills in a slighly better one.
838 */
839 printf("vectors ");
840 data_abort_handler_address = (u_int)data_abort_handler;
841 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
842 undefined_handler_address = (u_int)undefinedinstruction_bounce;
843
844 /* Initialise the undefined instruction handlers */
845 printf("undefined ");
846 undefined_init();
847
848 /* Load memory into UVM. */
849 printf("page ");
850 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
851 uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
852 atop(physical_freestart), atop(physical_freeend),
853 VM_FREELIST_DEFAULT);
854
855 /* Boot strap pmap telling it where the kernel page table is */
856 printf("pmap ");
857 #ifdef ARM32_PMAP_NEW
858 pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va);
859 #else
860 pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, kernel_ptpt);
861 #endif
862
863 /* Setup the IRQ system */
864 printf("irq ");
865 becc_intr_init();
866 printf("done.\n");
867
868 #ifdef IPKDB
869 /* Initialise ipkdb */
870 ipkdb_init();
871 if (boothowto & RB_KDB)
872 ipkdb_connect(0);
873 #endif
874
875
876 #if NKSYMS || defined(DDB) || defined(LKM)
877 /* Firmware doesn't load symbols. */
878 ksyms_init(0, NULL, NULL);
879 #endif
880
881 #ifdef DDB
882 db_machine_init();
883 if (boothowto & RB_KDB)
884 Debugger();
885 #endif
886
887 /* We return the new stack pointer address */
888 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
889 }
890
891 void
892 consinit(void)
893 {
894 static const bus_addr_t comcnaddrs[] = {
895 BRH_UART1_BASE, /* com0 */
896 BRH_UART2_BASE, /* com1 */
897 };
898 static int consinit_called;
899
900 if (consinit_called != 0)
901 return;
902
903 consinit_called = 1;
904
905 #if NCOM > 0
906 if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed,
907 BECC_PERIPH_CLOCK, comcnmode))
908 panic("can't init serial console @%lx", comcnaddrs[comcnunit]);
909 #else
910 panic("serial console @%lx not configured", comcnaddrs[comcnunit]);
911 #endif
912 }
913