plcom.c revision 1.16 1 /* $NetBSD: plcom.c,v 1.16 2006/05/14 21:55:10 elad Exp $ */
2
3 /*-
4 * Copyright (c) 2001 ARM Ltd
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the company may not be used to endorse or promote
16 * products derived from this software without specific prior written
17 * permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
23 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
32 * All rights reserved.
33 *
34 * This code is derived from software contributed to The NetBSD Foundation
35 * by Charles M. Hannum.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the NetBSD
48 * Foundation, Inc. and its contributors.
49 * 4. Neither the name of The NetBSD Foundation nor the names of its
50 * contributors may be used to endorse or promote products derived
51 * from this software without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
54 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 * POSSIBILITY OF SUCH DAMAGE.
64 */
65
66 /*
67 * Copyright (c) 1991 The Regents of the University of California.
68 * All rights reserved.
69 *
70 * Redistribution and use in source and binary forms, with or without
71 * modification, are permitted provided that the following conditions
72 * are met:
73 * 1. Redistributions of source code must retain the above copyright
74 * notice, this list of conditions and the following disclaimer.
75 * 2. Redistributions in binary form must reproduce the above copyright
76 * notice, this list of conditions and the following disclaimer in the
77 * documentation and/or other materials provided with the distribution.
78 * 3. Neither the name of the University nor the names of its contributors
79 * may be used to endorse or promote products derived from this software
80 * without specific prior written permission.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
83 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
84 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
85 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
86 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
87 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
88 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
89 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
90 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
91 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
92 * SUCH DAMAGE.
93 *
94 * @(#)com.c 7.5 (Berkeley) 5/16/91
95 */
96
97 /*
98 * COM driver for the Prime Cell PL010 UART, which is similar to the 16C550,
99 * but has a completely different programmer's model.
100 * Derived from the NS16550AF com driver.
101 */
102
103 #include <sys/cdefs.h>
104 __KERNEL_RCSID(0, "$NetBSD: plcom.c,v 1.16 2006/05/14 21:55:10 elad Exp $");
105
106 #include "opt_plcom.h"
107 #include "opt_ddb.h"
108 #include "opt_kgdb.h"
109 #include "opt_lockdebug.h"
110 #include "opt_multiprocessor.h"
111
112 #include "rnd.h"
113 #if NRND > 0 && defined(RND_COM)
114 #include <sys/rnd.h>
115 #endif
116
117 /*
118 * Override cnmagic(9) macro before including <sys/systm.h>.
119 * We need to know if cn_check_magic triggered debugger, so set a flag.
120 * Callers of cn_check_magic must declare int cn_trapped = 0;
121 * XXX: this is *ugly*!
122 */
123 #define cn_trap() \
124 do { \
125 console_debugger(); \
126 cn_trapped = 1; \
127 } while (/* CONSTCOND */ 0)
128
129 #include <sys/param.h>
130 #include <sys/systm.h>
131 #include <sys/ioctl.h>
132 #include <sys/select.h>
133 #include <sys/tty.h>
134 #include <sys/proc.h>
135 #include <sys/user.h>
136 #include <sys/conf.h>
137 #include <sys/file.h>
138 #include <sys/uio.h>
139 #include <sys/kernel.h>
140 #include <sys/syslog.h>
141 #include <sys/types.h>
142 #include <sys/device.h>
143 #include <sys/malloc.h>
144 #include <sys/timepps.h>
145 #include <sys/vnode.h>
146 #include <sys/kauth.h>
147
148 #include <machine/intr.h>
149 #include <machine/bus.h>
150
151 #include <evbarm/dev/plcomreg.h>
152 #include <evbarm/dev/plcomvar.h>
153
154 #include <dev/cons.h>
155
156 static void plcom_enable_debugport (struct plcom_softc *);
157
158 void plcom_config (struct plcom_softc *);
159 void plcom_shutdown (struct plcom_softc *);
160 int plcomspeed (long, long);
161 static u_char cflag2lcr (tcflag_t);
162 int plcomparam (struct tty *, struct termios *);
163 void plcomstart (struct tty *);
164 int plcomhwiflow (struct tty *, int);
165
166 void plcom_loadchannelregs (struct plcom_softc *);
167 void plcom_hwiflow (struct plcom_softc *);
168 void plcom_break (struct plcom_softc *, int);
169 void plcom_modem (struct plcom_softc *, int);
170 void tiocm_to_plcom (struct plcom_softc *, u_long, int);
171 int plcom_to_tiocm (struct plcom_softc *);
172 void plcom_iflush (struct plcom_softc *);
173
174 int plcom_common_getc (dev_t, bus_space_tag_t, bus_space_handle_t);
175 void plcom_common_putc (dev_t, bus_space_tag_t, bus_space_handle_t, int);
176
177 int plcominit (bus_space_tag_t, bus_addr_t, int, int, tcflag_t,
178 bus_space_handle_t *);
179
180 dev_type_open(plcomopen);
181 dev_type_close(plcomclose);
182 dev_type_read(plcomread);
183 dev_type_write(plcomwrite);
184 dev_type_ioctl(plcomioctl);
185 dev_type_stop(plcomstop);
186 dev_type_tty(plcomtty);
187 dev_type_poll(plcompoll);
188
189 int plcomcngetc (dev_t);
190 void plcomcnputc (dev_t, int);
191 void plcomcnpollc (dev_t, int);
192
193 #define integrate static inline
194 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
195 void plcomsoft (void *);
196 #else
197 #ifndef __NO_SOFT_SERIAL_INTERRUPT
198 void plcomsoft (void);
199 #else
200 void plcomsoft (void *);
201 struct callout plcomsoft_callout = CALLOUT_INITIALIZER;
202 #endif
203 #endif
204 integrate void plcom_rxsoft (struct plcom_softc *, struct tty *);
205 integrate void plcom_txsoft (struct plcom_softc *, struct tty *);
206 integrate void plcom_stsoft (struct plcom_softc *, struct tty *);
207 integrate void plcom_schedrx (struct plcom_softc *);
208 void plcomdiag (void *);
209
210 extern struct cfdriver plcom_cd;
211
212 const struct cdevsw plcom_cdevsw = {
213 plcomopen, plcomclose, plcomread, plcomwrite, plcomioctl,
214 plcomstop, plcomtty, plcompoll, nommap, ttykqfilter, D_TTY
215 };
216
217 /*
218 * Make this an option variable one can patch.
219 * But be warned: this must be a power of 2!
220 */
221 u_int plcom_rbuf_size = PLCOM_RING_SIZE;
222
223 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
224 u_int plcom_rbuf_hiwat = (PLCOM_RING_SIZE * 1) / 4;
225 u_int plcom_rbuf_lowat = (PLCOM_RING_SIZE * 3) / 4;
226
227 static int plcomconsunit = -1;
228 static bus_space_tag_t plcomconstag;
229 static bus_space_handle_t plcomconsioh;
230 static int plcomconsattached;
231 static int plcomconsrate;
232 static tcflag_t plcomconscflag;
233 static struct cnm_state plcom_cnm_state;
234
235 static int ppscap =
236 PPS_TSFMT_TSPEC |
237 PPS_CAPTUREASSERT |
238 PPS_CAPTURECLEAR |
239 #ifdef PPS_SYNC
240 PPS_HARDPPSONASSERT | PPS_HARDPPSONCLEAR |
241 #endif /* PPS_SYNC */
242 PPS_OFFSETASSERT | PPS_OFFSETCLEAR;
243
244 #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS
245 #ifdef __NO_SOFT_SERIAL_INTERRUPT
246 volatile int plcom_softintr_scheduled;
247 #endif
248 #endif
249
250 #ifdef KGDB
251 #include <sys/kgdb.h>
252
253 static int plcom_kgdb_unit;
254 static bus_space_tag_t plcom_kgdb_iot;
255 static bus_space_handle_t plcom_kgdb_ioh;
256 static int plcom_kgdb_attached;
257
258 int plcom_kgdb_getc (void *);
259 void plcom_kgdb_putc (void *, int);
260 #endif /* KGDB */
261
262 #define PLCOMUNIT_MASK 0x7ffff
263 #define PLCOMDIALOUT_MASK 0x80000
264
265 #define PLCOMUNIT(x) (minor(x) & PLCOMUNIT_MASK)
266 #define PLCOMDIALOUT(x) (minor(x) & PLCOMDIALOUT_MASK)
267
268 #define PLCOM_ISALIVE(sc) ((sc)->enabled != 0 && \
269 device_is_active(&(sc)->sc_dev))
270
271 #define BR BUS_SPACE_BARRIER_READ
272 #define BW BUS_SPACE_BARRIER_WRITE
273 #define PLCOM_BARRIER(t, h, f) bus_space_barrier((t), (h), 0, PLCOM_UART_SIZE, (f))
274
275 #define PLCOM_LOCK(sc) simple_lock(&(sc)->sc_lock)
276 #define PLCOM_UNLOCK(sc) simple_unlock(&(sc)->sc_lock)
277
278 int
279 plcomspeed(long speed, long frequency)
280 {
281 #define divrnd(n, q) (((n)*2/(q)+1)/2) /* divide and round off */
282
283 int x, err;
284
285 #if 0
286 if (speed == 0)
287 return 0;
288 #endif
289 if (speed <= 0)
290 return -1;
291 x = divrnd(frequency / 16, speed);
292 if (x <= 0)
293 return -1;
294 err = divrnd(((quad_t)frequency) * 1000 / 16, speed * x) - 1000;
295 if (err < 0)
296 err = -err;
297 if (err > PLCOM_TOLERANCE)
298 return -1;
299 return x;
300
301 #undef divrnd
302 }
303
304 #ifdef PLCOM_DEBUG
305 int plcom_debug = 0;
306
307 void plcomstatus (struct plcom_softc *, char *);
308 void
309 plcomstatus(struct plcom_softc *sc, char *str)
310 {
311 struct tty *tp = sc->sc_tty;
312
313 printf("%s: %s %sclocal %sdcd %sts_carr_on %sdtr %stx_stopped\n",
314 sc->sc_dev.dv_xname, str,
315 ISSET(tp->t_cflag, CLOCAL) ? "+" : "-",
316 ISSET(sc->sc_msr, MSR_DCD) ? "+" : "-",
317 ISSET(tp->t_state, TS_CARR_ON) ? "+" : "-",
318 ISSET(sc->sc_mcr, MCR_DTR) ? "+" : "-",
319 sc->sc_tx_stopped ? "+" : "-");
320
321 printf("%s: %s %scrtscts %scts %sts_ttstop %srts %xrx_flags\n",
322 sc->sc_dev.dv_xname, str,
323 ISSET(tp->t_cflag, CRTSCTS) ? "+" : "-",
324 ISSET(sc->sc_msr, MSR_CTS) ? "+" : "-",
325 ISSET(tp->t_state, TS_TTSTOP) ? "+" : "-",
326 ISSET(sc->sc_mcr, MCR_RTS) ? "+" : "-",
327 sc->sc_rx_flags);
328 }
329 #endif
330
331 int
332 plcomprobe1(bus_space_tag_t iot, bus_space_handle_t ioh)
333 {
334 int data;
335
336 /* Disable the UART. */
337 bus_space_write_1(iot, ioh, plcom_cr, 0);
338 /* Make sure the FIFO is off. */
339 bus_space_write_1(iot, ioh, plcom_lcr, LCR_8BITS);
340 /* Disable interrupts. */
341 bus_space_write_1(iot, ioh, plcom_iir, 0);
342
343 /* Make sure we swallow anything in the receiving register. */
344 data = bus_space_read_1(iot, ioh, plcom_dr);
345
346 if (bus_space_read_1(iot, ioh, plcom_lcr) != LCR_8BITS)
347 return 0;
348
349 data = bus_space_read_1(iot, ioh, plcom_fr) & (FR_RXFF | FR_RXFE);
350
351 if (data != FR_RXFE)
352 return 0;
353
354 return 1;
355 }
356
357 static void
358 plcom_enable_debugport(struct plcom_softc *sc)
359 {
360 int s;
361
362 /* Turn on line break interrupt, set carrier. */
363 s = splserial();
364 PLCOM_LOCK(sc);
365 sc->sc_cr = CR_RIE | CR_RTIE | CR_UARTEN;
366 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
367 SET(sc->sc_mcr, MCR_DTR | MCR_RTS);
368 /* XXX device_unit() abuse */
369 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev),
370 sc->sc_mcr);
371 PLCOM_UNLOCK(sc);
372 splx(s);
373 }
374
375 void
376 plcom_attach_subr(struct plcom_softc *sc)
377 {
378 int unit = sc->sc_iounit;
379 bus_space_tag_t iot = sc->sc_iot;
380 bus_space_handle_t ioh = sc->sc_ioh;
381 struct tty *tp;
382
383 callout_init(&sc->sc_diag_callout);
384 simple_lock_init(&sc->sc_lock);
385
386 /* Disable interrupts before configuring the device. */
387 sc->sc_cr = 0;
388
389 if (plcomconstag && unit == plcomconsunit) {
390 plcomconsattached = 1;
391
392 plcomconstag = iot;
393 plcomconsioh = ioh;
394
395 /* Make sure the console is always "hardwired". */
396 delay(1000); /* wait for output to finish */
397 SET(sc->sc_hwflags, PLCOM_HW_CONSOLE);
398 SET(sc->sc_swflags, TIOCFLAG_SOFTCAR);
399 /* Must re-enable the console immediately, or we will
400 hang when trying to print. */
401 sc->sc_cr = CR_UARTEN;
402 }
403
404 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
405
406 /* The PL010 has a 16-byte fifo, but the tx interrupt triggers when
407 there is space for 8 more bytes. */
408 sc->sc_fifolen = 8;
409 printf("\n");
410
411 if (ISSET(sc->sc_hwflags, PLCOM_HW_TXFIFO_DISABLE)) {
412 sc->sc_fifolen = 1;
413 printf("%s: txfifo disabled\n", sc->sc_dev.dv_xname);
414 }
415
416 if (sc->sc_fifolen > 1)
417 SET(sc->sc_hwflags, PLCOM_HW_FIFO);
418
419 tp = ttymalloc();
420 tp->t_oproc = plcomstart;
421 tp->t_param = plcomparam;
422 tp->t_hwiflow = plcomhwiflow;
423
424 sc->sc_tty = tp;
425 sc->sc_rbuf = malloc(plcom_rbuf_size << 1, M_DEVBUF, M_NOWAIT);
426 sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
427 sc->sc_rbavail = plcom_rbuf_size;
428 if (sc->sc_rbuf == NULL) {
429 printf("%s: unable to allocate ring buffer\n",
430 sc->sc_dev.dv_xname);
431 return;
432 }
433 sc->sc_ebuf = sc->sc_rbuf + (plcom_rbuf_size << 1);
434
435 tty_attach(tp);
436
437 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
438 int maj;
439
440 /* locate the major number */
441 maj = cdevsw_lookup_major(&plcom_cdevsw);
442
443 cn_tab->cn_dev = makedev(maj, device_unit(&sc->sc_dev));
444
445 printf("%s: console\n", sc->sc_dev.dv_xname);
446 }
447
448 #ifdef KGDB
449 /*
450 * Allow kgdb to "take over" this port. If this is
451 * the kgdb device, it has exclusive use.
452 */
453 if (iot == plcom_kgdb_iot && unit == plcom_kgdb_unit) {
454 plcom_kgdb_attached = 1;
455
456 SET(sc->sc_hwflags, PLCOM_HW_KGDB);
457 printf("%s: kgdb\n", sc->sc_dev.dv_xname);
458 }
459 #endif
460
461 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
462 sc->sc_si = softintr_establish(IPL_SOFTSERIAL, plcomsoft, sc);
463 #endif
464
465 #if NRND > 0 && defined(RND_COM)
466 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
467 RND_TYPE_TTY, 0);
468 #endif
469
470 /* if there are no enable/disable functions, assume the device
471 is always enabled */
472 if (!sc->enable)
473 sc->enabled = 1;
474
475 plcom_config(sc);
476
477 SET(sc->sc_hwflags, PLCOM_HW_DEV_OK);
478 }
479
480 void
481 plcom_config(struct plcom_softc *sc)
482 {
483 bus_space_tag_t iot = sc->sc_iot;
484 bus_space_handle_t ioh = sc->sc_ioh;
485
486 /* Disable interrupts before configuring the device. */
487 sc->sc_cr = 0;
488 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
489
490 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE|PLCOM_HW_KGDB))
491 plcom_enable_debugport(sc);
492 }
493
494 int
495 plcom_detach(self, flags)
496 struct device *self;
497 int flags;
498 {
499 struct plcom_softc *sc = (struct plcom_softc *)self;
500 int maj, mn;
501
502 /* locate the major number */
503 maj = cdevsw_lookup_major(&plcom_cdevsw);
504
505 /* Nuke the vnodes for any open instances. */
506 mn = device_unit(self);
507 vdevgone(maj, mn, mn, VCHR);
508
509 mn |= PLCOMDIALOUT_MASK;
510 vdevgone(maj, mn, mn, VCHR);
511
512 /* Free the receive buffer. */
513 free(sc->sc_rbuf, M_DEVBUF);
514
515 /* Detach and free the tty. */
516 tty_detach(sc->sc_tty);
517 ttyfree(sc->sc_tty);
518
519 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
520 /* Unhook the soft interrupt handler. */
521 softintr_disestablish(sc->sc_si);
522 #endif
523
524 #if NRND > 0 && defined(RND_COM)
525 /* Unhook the entropy source. */
526 rnd_detach_source(&sc->rnd_source);
527 #endif
528
529 return 0;
530 }
531
532 int
533 plcom_activate(struct device *self, enum devact act)
534 {
535 struct plcom_softc *sc = (struct plcom_softc *)self;
536 int s, rv = 0;
537
538 s = splserial();
539 PLCOM_LOCK(sc);
540 switch (act) {
541 case DVACT_ACTIVATE:
542 rv = EOPNOTSUPP;
543 break;
544
545 case DVACT_DEACTIVATE:
546 if (sc->sc_hwflags & (PLCOM_HW_CONSOLE|PLCOM_HW_KGDB)) {
547 rv = EBUSY;
548 break;
549 }
550
551 if (sc->disable != NULL && sc->enabled != 0) {
552 (*sc->disable)(sc);
553 sc->enabled = 0;
554 }
555 break;
556 }
557
558 PLCOM_UNLOCK(sc);
559 splx(s);
560 return rv;
561 }
562
563 void
564 plcom_shutdown(struct plcom_softc *sc)
565 {
566 struct tty *tp = sc->sc_tty;
567 int s;
568
569 s = splserial();
570 PLCOM_LOCK(sc);
571
572 /* If we were asserting flow control, then deassert it. */
573 SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
574 plcom_hwiflow(sc);
575
576 /* Clear any break condition set with TIOCSBRK. */
577 plcom_break(sc, 0);
578
579 /* Turn off PPS capture on last close. */
580 sc->sc_ppsmask = 0;
581 sc->ppsparam.mode = 0;
582
583 /*
584 * Hang up if necessary. Wait a bit, so the other side has time to
585 * notice even if we immediately open the port again.
586 * Avoid tsleeping above splhigh().
587 */
588 if (ISSET(tp->t_cflag, HUPCL)) {
589 plcom_modem(sc, 0);
590 PLCOM_UNLOCK(sc);
591 splx(s);
592 /* XXX tsleep will only timeout */
593 (void) tsleep(sc, TTIPRI, ttclos, hz);
594 s = splserial();
595 PLCOM_LOCK(sc);
596 }
597
598 /* Turn off interrupts. */
599 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE))
600 /* interrupt on break */
601 sc->sc_cr = CR_RIE | CR_RTIE | CR_UARTEN;
602 else
603 sc->sc_cr = 0;
604 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
605
606 if (sc->disable) {
607 #ifdef DIAGNOSTIC
608 if (!sc->enabled)
609 panic("plcom_shutdown: not enabled?");
610 #endif
611 (*sc->disable)(sc);
612 sc->enabled = 0;
613 }
614 PLCOM_UNLOCK(sc);
615 splx(s);
616 }
617
618 int
619 plcomopen(dev_t dev, int flag, int mode, struct lwp *l)
620 {
621 struct plcom_softc *sc;
622 struct tty *tp;
623 int s, s2;
624 int error;
625
626 sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
627 if (sc == NULL || !ISSET(sc->sc_hwflags, PLCOM_HW_DEV_OK) ||
628 sc->sc_rbuf == NULL)
629 return ENXIO;
630
631 if (!device_is_active(&sc->sc_dev))
632 return ENXIO;
633
634 #ifdef KGDB
635 /*
636 * If this is the kgdb port, no other use is permitted.
637 */
638 if (ISSET(sc->sc_hwflags, PLCOM_HW_KGDB))
639 return EBUSY;
640 #endif
641
642 tp = sc->sc_tty;
643
644 if (ISSET(tp->t_state, TS_ISOPEN) &&
645 ISSET(tp->t_state, TS_XCLUDE) &&
646 kauth_authorize_generic(l->l_proc->p_cred,
647 KAUTH_GENERIC_ISSUSER,
648 &l->l_proc->p_acflag) != 0)
649 return EBUSY;
650
651 s = spltty();
652
653 /*
654 * Do the following iff this is a first open.
655 */
656 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
657 struct termios t;
658
659 tp->t_dev = dev;
660
661 s2 = splserial();
662 PLCOM_LOCK(sc);
663
664 if (sc->enable) {
665 if ((*sc->enable)(sc)) {
666 PLCOM_UNLOCK(sc);
667 splx(s2);
668 splx(s);
669 printf("%s: device enable failed\n",
670 sc->sc_dev.dv_xname);
671 return EIO;
672 }
673 sc->enabled = 1;
674 plcom_config(sc);
675 }
676
677 /* Turn on interrupts. */
678 /* IER_ERXRDY | IER_ERLS | IER_EMSC; */
679 sc->sc_cr = CR_RIE | CR_RTIE | CR_MSIE | CR_UARTEN;
680 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
681
682 /* Fetch the current modem control status, needed later. */
683 sc->sc_msr = bus_space_read_1(sc->sc_iot, sc->sc_ioh, plcom_fr);
684
685 /* Clear PPS capture state on first open. */
686 sc->sc_ppsmask = 0;
687 sc->ppsparam.mode = 0;
688
689 PLCOM_UNLOCK(sc);
690 splx(s2);
691
692 /*
693 * Initialize the termios status to the defaults. Add in the
694 * sticky bits from TIOCSFLAGS.
695 */
696 t.c_ispeed = 0;
697 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
698 t.c_ospeed = plcomconsrate;
699 t.c_cflag = plcomconscflag;
700 } else {
701 t.c_ospeed = TTYDEF_SPEED;
702 t.c_cflag = TTYDEF_CFLAG;
703 }
704 if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL))
705 SET(t.c_cflag, CLOCAL);
706 if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS))
707 SET(t.c_cflag, CRTSCTS);
708 if (ISSET(sc->sc_swflags, TIOCFLAG_MDMBUF))
709 SET(t.c_cflag, MDMBUF);
710 /* Make sure plcomparam() will do something. */
711 tp->t_ospeed = 0;
712 (void) plcomparam(tp, &t);
713 tp->t_iflag = TTYDEF_IFLAG;
714 tp->t_oflag = TTYDEF_OFLAG;
715 tp->t_lflag = TTYDEF_LFLAG;
716 ttychars(tp);
717 ttsetwater(tp);
718
719 s2 = splserial();
720 PLCOM_LOCK(sc);
721
722 /*
723 * Turn on DTR. We must always do this, even if carrier is not
724 * present, because otherwise we'd have to use TIOCSDTR
725 * immediately after setting CLOCAL, which applications do not
726 * expect. We always assert DTR while the device is open
727 * unless explicitly requested to deassert it.
728 */
729 plcom_modem(sc, 1);
730
731 /* Clear the input ring, and unblock. */
732 sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
733 sc->sc_rbavail = plcom_rbuf_size;
734 plcom_iflush(sc);
735 CLR(sc->sc_rx_flags, RX_ANY_BLOCK);
736 plcom_hwiflow(sc);
737
738 #ifdef PLCOM_DEBUG
739 if (plcom_debug)
740 plcomstatus(sc, "plcomopen ");
741 #endif
742
743 PLCOM_UNLOCK(sc);
744 splx(s2);
745 }
746
747 splx(s);
748
749 error = ttyopen(tp, PLCOMDIALOUT(dev), ISSET(flag, O_NONBLOCK));
750 if (error)
751 goto bad;
752
753 error = (*tp->t_linesw->l_open)(dev, tp);
754 if (error)
755 goto bad;
756
757 return 0;
758
759 bad:
760 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
761 /*
762 * We failed to open the device, and nobody else had it opened.
763 * Clean up the state as appropriate.
764 */
765 plcom_shutdown(sc);
766 }
767
768 return error;
769 }
770
771 int
772 plcomclose(dev_t dev, int flag, int mode, struct lwp *l)
773 {
774 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
775 struct tty *tp = sc->sc_tty;
776
777 /* XXX This is for cons.c. */
778 if (!ISSET(tp->t_state, TS_ISOPEN))
779 return 0;
780
781 (*tp->t_linesw->l_close)(tp, flag);
782 ttyclose(tp);
783
784 if (PLCOM_ISALIVE(sc) == 0)
785 return 0;
786
787 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
788 /*
789 * Although we got a last close, the device may still be in
790 * use; e.g. if this was the dialout node, and there are still
791 * processes waiting for carrier on the non-dialout node.
792 */
793 plcom_shutdown(sc);
794 }
795
796 return 0;
797 }
798
799 int
800 plcomread(dev_t dev, struct uio *uio, int flag)
801 {
802 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
803 struct tty *tp = sc->sc_tty;
804
805 if (PLCOM_ISALIVE(sc) == 0)
806 return EIO;
807
808 return (*tp->t_linesw->l_read)(tp, uio, flag);
809 }
810
811 int
812 plcomwrite(dev_t dev, struct uio *uio, int flag)
813 {
814 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
815 struct tty *tp = sc->sc_tty;
816
817 if (PLCOM_ISALIVE(sc) == 0)
818 return EIO;
819
820 return (*tp->t_linesw->l_write)(tp, uio, flag);
821 }
822
823 int
824 plcompoll(dev_t dev, int events, struct lwp *l)
825 {
826 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
827 struct tty *tp = sc->sc_tty;
828
829 if (PLCOM_ISALIVE(sc) == 0)
830 return EIO;
831
832 return (*tp->t_linesw->l_poll)(tp, events, l);
833 }
834
835 struct tty *
836 plcomtty(dev_t dev)
837 {
838 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
839 struct tty *tp = sc->sc_tty;
840
841 return tp;
842 }
843
844 int
845 plcomioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct lwp *l)
846 {
847 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
848 struct tty *tp = sc->sc_tty;
849 int error;
850 int s;
851
852 if (PLCOM_ISALIVE(sc) == 0)
853 return EIO;
854
855 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
856 if (error != EPASSTHROUGH)
857 return error;
858
859 error = ttioctl(tp, cmd, data, flag, l);
860 if (error != EPASSTHROUGH)
861 return error;
862
863 error = 0;
864
865 s = splserial();
866 PLCOM_LOCK(sc);
867
868 switch (cmd) {
869 case TIOCSBRK:
870 plcom_break(sc, 1);
871 break;
872
873 case TIOCCBRK:
874 plcom_break(sc, 0);
875 break;
876
877 case TIOCSDTR:
878 plcom_modem(sc, 1);
879 break;
880
881 case TIOCCDTR:
882 plcom_modem(sc, 0);
883 break;
884
885 case TIOCGFLAGS:
886 *(int *)data = sc->sc_swflags;
887 break;
888
889 case TIOCSFLAGS:
890 error = kauth_authorize_generic(l->l_proc->p_cred,
891 KAUTH_GENERIC_ISSUSER,
892 &l->l_proc->p_acflag);
893 if (error)
894 break;
895 sc->sc_swflags = *(int *)data;
896 break;
897
898 case TIOCMSET:
899 case TIOCMBIS:
900 case TIOCMBIC:
901 tiocm_to_plcom(sc, cmd, *(int *)data);
902 break;
903
904 case TIOCMGET:
905 *(int *)data = plcom_to_tiocm(sc);
906 break;
907
908 case PPS_IOC_CREATE:
909 break;
910
911 case PPS_IOC_DESTROY:
912 break;
913
914 case PPS_IOC_GETPARAMS: {
915 pps_params_t *pp;
916 pp = (pps_params_t *)data;
917 *pp = sc->ppsparam;
918 break;
919 }
920
921 case PPS_IOC_SETPARAMS: {
922 pps_params_t *pp;
923 int mode;
924 pp = (pps_params_t *)data;
925 if (pp->mode & ~ppscap) {
926 error = EINVAL;
927 break;
928 }
929 sc->ppsparam = *pp;
930 /*
931 * Compute msr masks from user-specified timestamp state.
932 */
933 mode = sc->ppsparam.mode;
934 #ifdef PPS_SYNC
935 if (mode & PPS_HARDPPSONASSERT) {
936 mode |= PPS_CAPTUREASSERT;
937 /* XXX revoke any previous HARDPPS source */
938 }
939 if (mode & PPS_HARDPPSONCLEAR) {
940 mode |= PPS_CAPTURECLEAR;
941 /* XXX revoke any previous HARDPPS source */
942 }
943 #endif /* PPS_SYNC */
944 switch (mode & PPS_CAPTUREBOTH) {
945 case 0:
946 sc->sc_ppsmask = 0;
947 break;
948
949 case PPS_CAPTUREASSERT:
950 sc->sc_ppsmask = MSR_DCD;
951 sc->sc_ppsassert = MSR_DCD;
952 sc->sc_ppsclear = -1;
953 break;
954
955 case PPS_CAPTURECLEAR:
956 sc->sc_ppsmask = MSR_DCD;
957 sc->sc_ppsassert = -1;
958 sc->sc_ppsclear = 0;
959 break;
960
961 case PPS_CAPTUREBOTH:
962 sc->sc_ppsmask = MSR_DCD;
963 sc->sc_ppsassert = MSR_DCD;
964 sc->sc_ppsclear = 0;
965 break;
966
967 default:
968 error = EINVAL;
969 break;
970 }
971 break;
972 }
973
974 case PPS_IOC_GETCAP:
975 *(int*)data = ppscap;
976 break;
977
978 case PPS_IOC_FETCH: {
979 pps_info_t *pi;
980 pi = (pps_info_t *)data;
981 *pi = sc->ppsinfo;
982 break;
983 }
984
985 case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */
986 /*
987 * Some GPS clocks models use the falling rather than
988 * rising edge as the on-the-second signal.
989 * The old API has no way to specify PPS polarity.
990 */
991 sc->sc_ppsmask = MSR_DCD;
992 #ifndef PPS_TRAILING_EDGE
993 sc->sc_ppsassert = MSR_DCD;
994 sc->sc_ppsclear = -1;
995 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
996 &sc->ppsinfo.assert_timestamp);
997 #else
998 sc->sc_ppsassert = -1
999 sc->sc_ppsclear = 0;
1000 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
1001 &sc->ppsinfo.clear_timestamp);
1002 #endif
1003 break;
1004
1005 default:
1006 error = EPASSTHROUGH;
1007 break;
1008 }
1009
1010 PLCOM_UNLOCK(sc);
1011 splx(s);
1012
1013 #ifdef PLCOM_DEBUG
1014 if (plcom_debug)
1015 plcomstatus(sc, "plcomioctl ");
1016 #endif
1017
1018 return error;
1019 }
1020
1021 integrate void
1022 plcom_schedrx(struct plcom_softc *sc)
1023 {
1024
1025 sc->sc_rx_ready = 1;
1026
1027 /* Wake up the poller. */
1028 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
1029 softintr_schedule(sc->sc_si);
1030 #else
1031 #ifndef __NO_SOFT_SERIAL_INTERRUPT
1032 setsoftserial();
1033 #else
1034 if (!plcom_softintr_scheduled) {
1035 plcom_softintr_scheduled = 1;
1036 callout_reset(&plcomsoft_callout, 1, plcomsoft, NULL);
1037 }
1038 #endif
1039 #endif
1040 }
1041
1042 void
1043 plcom_break(struct plcom_softc *sc, int onoff)
1044 {
1045
1046 if (onoff)
1047 SET(sc->sc_lcr, LCR_BRK);
1048 else
1049 CLR(sc->sc_lcr, LCR_BRK);
1050
1051 if (!sc->sc_heldchange) {
1052 if (sc->sc_tx_busy) {
1053 sc->sc_heldtbc = sc->sc_tbc;
1054 sc->sc_tbc = 0;
1055 sc->sc_heldchange = 1;
1056 } else
1057 plcom_loadchannelregs(sc);
1058 }
1059 }
1060
1061 void
1062 plcom_modem(struct plcom_softc *sc, int onoff)
1063 {
1064
1065 if (sc->sc_mcr_dtr == 0)
1066 return;
1067
1068 if (onoff)
1069 SET(sc->sc_mcr, sc->sc_mcr_dtr);
1070 else
1071 CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1072
1073 if (!sc->sc_heldchange) {
1074 if (sc->sc_tx_busy) {
1075 sc->sc_heldtbc = sc->sc_tbc;
1076 sc->sc_tbc = 0;
1077 sc->sc_heldchange = 1;
1078 } else
1079 plcom_loadchannelregs(sc);
1080 }
1081 }
1082
1083 void
1084 tiocm_to_plcom(struct plcom_softc *sc, u_long how, int ttybits)
1085 {
1086 u_char plcombits;
1087
1088 plcombits = 0;
1089 if (ISSET(ttybits, TIOCM_DTR))
1090 SET(plcombits, MCR_DTR);
1091 if (ISSET(ttybits, TIOCM_RTS))
1092 SET(plcombits, MCR_RTS);
1093
1094 switch (how) {
1095 case TIOCMBIC:
1096 CLR(sc->sc_mcr, plcombits);
1097 break;
1098
1099 case TIOCMBIS:
1100 SET(sc->sc_mcr, plcombits);
1101 break;
1102
1103 case TIOCMSET:
1104 CLR(sc->sc_mcr, MCR_DTR | MCR_RTS);
1105 SET(sc->sc_mcr, plcombits);
1106 break;
1107 }
1108
1109 if (!sc->sc_heldchange) {
1110 if (sc->sc_tx_busy) {
1111 sc->sc_heldtbc = sc->sc_tbc;
1112 sc->sc_tbc = 0;
1113 sc->sc_heldchange = 1;
1114 } else
1115 plcom_loadchannelregs(sc);
1116 }
1117 }
1118
1119 int
1120 plcom_to_tiocm(struct plcom_softc *sc)
1121 {
1122 u_char plcombits;
1123 int ttybits = 0;
1124
1125 plcombits = sc->sc_mcr;
1126 if (ISSET(plcombits, MCR_DTR))
1127 SET(ttybits, TIOCM_DTR);
1128 if (ISSET(plcombits, MCR_RTS))
1129 SET(ttybits, TIOCM_RTS);
1130
1131 plcombits = sc->sc_msr;
1132 if (ISSET(plcombits, MSR_DCD))
1133 SET(ttybits, TIOCM_CD);
1134 if (ISSET(plcombits, MSR_CTS))
1135 SET(ttybits, TIOCM_CTS);
1136 if (ISSET(plcombits, MSR_DSR))
1137 SET(ttybits, TIOCM_DSR);
1138
1139 if (sc->sc_cr != 0)
1140 SET(ttybits, TIOCM_LE);
1141
1142 return ttybits;
1143 }
1144
1145 static u_char
1146 cflag2lcr(tcflag_t cflag)
1147 {
1148 u_char lcr = 0;
1149
1150 switch (ISSET(cflag, CSIZE)) {
1151 case CS5:
1152 SET(lcr, LCR_5BITS);
1153 break;
1154 case CS6:
1155 SET(lcr, LCR_6BITS);
1156 break;
1157 case CS7:
1158 SET(lcr, LCR_7BITS);
1159 break;
1160 case CS8:
1161 SET(lcr, LCR_8BITS);
1162 break;
1163 }
1164 if (ISSET(cflag, PARENB)) {
1165 SET(lcr, LCR_PEN);
1166 if (!ISSET(cflag, PARODD))
1167 SET(lcr, LCR_EPS);
1168 }
1169 if (ISSET(cflag, CSTOPB))
1170 SET(lcr, LCR_STP2);
1171
1172 return lcr;
1173 }
1174
1175 int
1176 plcomparam(struct tty *tp, struct termios *t)
1177 {
1178 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(tp->t_dev));
1179 int ospeed;
1180 u_char lcr;
1181 int s;
1182
1183 if (PLCOM_ISALIVE(sc) == 0)
1184 return EIO;
1185
1186 ospeed = plcomspeed(t->c_ospeed, sc->sc_frequency);
1187
1188 /* Check requested parameters. */
1189 if (ospeed < 0)
1190 return EINVAL;
1191 if (t->c_ispeed && t->c_ispeed != t->c_ospeed)
1192 return EINVAL;
1193
1194 /*
1195 * For the console, always force CLOCAL and !HUPCL, so that the port
1196 * is always active.
1197 */
1198 if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR) ||
1199 ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
1200 SET(t->c_cflag, CLOCAL);
1201 CLR(t->c_cflag, HUPCL);
1202 }
1203
1204 /*
1205 * If there were no changes, don't do anything. This avoids dropping
1206 * input and improves performance when all we did was frob things like
1207 * VMIN and VTIME.
1208 */
1209 if (tp->t_ospeed == t->c_ospeed &&
1210 tp->t_cflag == t->c_cflag)
1211 return 0;
1212
1213 lcr = ISSET(sc->sc_lcr, LCR_BRK) | cflag2lcr(t->c_cflag);
1214
1215 s = splserial();
1216 PLCOM_LOCK(sc);
1217
1218 sc->sc_lcr = lcr;
1219
1220 /*
1221 * PL010 has a fixed-length FIFO trigger point.
1222 */
1223 if (ISSET(sc->sc_hwflags, PLCOM_HW_FIFO))
1224 sc->sc_fifo = 1;
1225 else
1226 sc->sc_fifo = 0;
1227
1228 if (sc->sc_fifo)
1229 SET(sc->sc_lcr, LCR_FEN);
1230
1231 /*
1232 * If we're not in a mode that assumes a connection is present, then
1233 * ignore carrier changes.
1234 */
1235 if (ISSET(t->c_cflag, CLOCAL | MDMBUF))
1236 sc->sc_msr_dcd = 0;
1237 else
1238 sc->sc_msr_dcd = MSR_DCD;
1239 /*
1240 * Set the flow control pins depending on the current flow control
1241 * mode.
1242 */
1243 if (ISSET(t->c_cflag, CRTSCTS)) {
1244 sc->sc_mcr_dtr = MCR_DTR;
1245 sc->sc_mcr_rts = MCR_RTS;
1246 sc->sc_msr_cts = MSR_CTS;
1247 } else if (ISSET(t->c_cflag, MDMBUF)) {
1248 /*
1249 * For DTR/DCD flow control, make sure we don't toggle DTR for
1250 * carrier detection.
1251 */
1252 sc->sc_mcr_dtr = 0;
1253 sc->sc_mcr_rts = MCR_DTR;
1254 sc->sc_msr_cts = MSR_DCD;
1255 } else {
1256 /*
1257 * If no flow control, then always set RTS. This will make
1258 * the other side happy if it mistakenly thinks we're doing
1259 * RTS/CTS flow control.
1260 */
1261 sc->sc_mcr_dtr = MCR_DTR | MCR_RTS;
1262 sc->sc_mcr_rts = 0;
1263 sc->sc_msr_cts = 0;
1264 if (ISSET(sc->sc_mcr, MCR_DTR))
1265 SET(sc->sc_mcr, MCR_RTS);
1266 else
1267 CLR(sc->sc_mcr, MCR_RTS);
1268 }
1269 sc->sc_msr_mask = sc->sc_msr_cts | sc->sc_msr_dcd;
1270
1271 #if 0
1272 if (ospeed == 0)
1273 CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1274 else
1275 SET(sc->sc_mcr, sc->sc_mcr_dtr);
1276 #endif
1277
1278 sc->sc_dlbl = ospeed;
1279 sc->sc_dlbh = ospeed >> 8;
1280
1281 /* And copy to tty. */
1282 tp->t_ispeed = 0;
1283 tp->t_ospeed = t->c_ospeed;
1284 tp->t_cflag = t->c_cflag;
1285
1286 if (!sc->sc_heldchange) {
1287 if (sc->sc_tx_busy) {
1288 sc->sc_heldtbc = sc->sc_tbc;
1289 sc->sc_tbc = 0;
1290 sc->sc_heldchange = 1;
1291 } else
1292 plcom_loadchannelregs(sc);
1293 }
1294
1295 if (!ISSET(t->c_cflag, CHWFLOW)) {
1296 /* Disable the high water mark. */
1297 sc->sc_r_hiwat = 0;
1298 sc->sc_r_lowat = 0;
1299 if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1300 CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1301 plcom_schedrx(sc);
1302 }
1303 if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
1304 CLR(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
1305 plcom_hwiflow(sc);
1306 }
1307 } else {
1308 sc->sc_r_hiwat = plcom_rbuf_hiwat;
1309 sc->sc_r_lowat = plcom_rbuf_lowat;
1310 }
1311
1312 PLCOM_UNLOCK(sc);
1313 splx(s);
1314
1315 /*
1316 * Update the tty layer's idea of the carrier bit, in case we changed
1317 * CLOCAL or MDMBUF. We don't hang up here; we only do that by
1318 * explicit request.
1319 */
1320 (void) (*tp->t_linesw->l_modem)(tp, ISSET(sc->sc_msr, MSR_DCD));
1321
1322 #ifdef PLCOM_DEBUG
1323 if (plcom_debug)
1324 plcomstatus(sc, "plcomparam ");
1325 #endif
1326
1327 if (!ISSET(t->c_cflag, CHWFLOW)) {
1328 if (sc->sc_tx_stopped) {
1329 sc->sc_tx_stopped = 0;
1330 plcomstart(tp);
1331 }
1332 }
1333
1334 return 0;
1335 }
1336
1337 void
1338 plcom_iflush(struct plcom_softc *sc)
1339 {
1340 bus_space_tag_t iot = sc->sc_iot;
1341 bus_space_handle_t ioh = sc->sc_ioh;
1342 #ifdef DIAGNOSTIC
1343 int reg;
1344 #endif
1345 int timo;
1346
1347 #ifdef DIAGNOSTIC
1348 reg = 0xffff;
1349 #endif
1350 timo = 50000;
1351 /* flush any pending I/O */
1352 while (! ISSET(bus_space_read_1(iot, ioh, plcom_fr), FR_RXFE)
1353 && --timo)
1354 #ifdef DIAGNOSTIC
1355 reg =
1356 #else
1357 (void)
1358 #endif
1359 bus_space_read_1(iot, ioh, plcom_dr);
1360 #ifdef DIAGNOSTIC
1361 if (!timo)
1362 printf("%s: plcom_iflush timeout %02x\n", sc->sc_dev.dv_xname,
1363 reg);
1364 #endif
1365 }
1366
1367 void
1368 plcom_loadchannelregs(struct plcom_softc *sc)
1369 {
1370 bus_space_tag_t iot = sc->sc_iot;
1371 bus_space_handle_t ioh = sc->sc_ioh;
1372
1373 /* XXXXX necessary? */
1374 plcom_iflush(sc);
1375
1376 bus_space_write_1(iot, ioh, plcom_cr, 0);
1377
1378 bus_space_write_1(iot, ioh, plcom_dlbl, sc->sc_dlbl);
1379 bus_space_write_1(iot, ioh, plcom_dlbh, sc->sc_dlbh);
1380 bus_space_write_1(iot, ioh, plcom_lcr, sc->sc_lcr);
1381 /* XXX device_unit() abuse */
1382 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev),
1383 sc->sc_mcr_active = sc->sc_mcr);
1384
1385 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
1386 }
1387
1388 int
1389 plcomhwiflow(struct tty *tp, int block)
1390 {
1391 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(tp->t_dev));
1392 int s;
1393
1394 if (PLCOM_ISALIVE(sc) == 0)
1395 return 0;
1396
1397 if (sc->sc_mcr_rts == 0)
1398 return 0;
1399
1400 s = splserial();
1401 PLCOM_LOCK(sc);
1402
1403 if (block) {
1404 if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1405 SET(sc->sc_rx_flags, RX_TTY_BLOCKED);
1406 plcom_hwiflow(sc);
1407 }
1408 } else {
1409 if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1410 CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1411 plcom_schedrx(sc);
1412 }
1413 if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1414 CLR(sc->sc_rx_flags, RX_TTY_BLOCKED);
1415 plcom_hwiflow(sc);
1416 }
1417 }
1418
1419 PLCOM_UNLOCK(sc);
1420 splx(s);
1421 return 1;
1422 }
1423
1424 /*
1425 * (un)block input via hw flowcontrol
1426 */
1427 void
1428 plcom_hwiflow(struct plcom_softc *sc)
1429 {
1430 if (sc->sc_mcr_rts == 0)
1431 return;
1432
1433 if (ISSET(sc->sc_rx_flags, RX_ANY_BLOCK)) {
1434 CLR(sc->sc_mcr, sc->sc_mcr_rts);
1435 CLR(sc->sc_mcr_active, sc->sc_mcr_rts);
1436 } else {
1437 SET(sc->sc_mcr, sc->sc_mcr_rts);
1438 SET(sc->sc_mcr_active, sc->sc_mcr_rts);
1439 }
1440 /* XXX device_unit() abuse */
1441 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev),
1442 sc->sc_mcr_active);
1443 }
1444
1445
1446 void
1447 plcomstart(struct tty *tp)
1448 {
1449 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(tp->t_dev));
1450 bus_space_tag_t iot = sc->sc_iot;
1451 bus_space_handle_t ioh = sc->sc_ioh;
1452 int s;
1453
1454 if (PLCOM_ISALIVE(sc) == 0)
1455 return;
1456
1457 s = spltty();
1458 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
1459 goto out;
1460 if (sc->sc_tx_stopped)
1461 goto out;
1462
1463 if (tp->t_outq.c_cc <= tp->t_lowat) {
1464 if (ISSET(tp->t_state, TS_ASLEEP)) {
1465 CLR(tp->t_state, TS_ASLEEP);
1466 wakeup(&tp->t_outq);
1467 }
1468 selwakeup(&tp->t_wsel);
1469 if (tp->t_outq.c_cc == 0)
1470 goto out;
1471 }
1472
1473 /* Grab the first contiguous region of buffer space. */
1474 {
1475 u_char *tba;
1476 int tbc;
1477
1478 tba = tp->t_outq.c_cf;
1479 tbc = ndqb(&tp->t_outq, 0);
1480
1481 (void)splserial();
1482 PLCOM_LOCK(sc);
1483
1484 sc->sc_tba = tba;
1485 sc->sc_tbc = tbc;
1486 }
1487
1488 SET(tp->t_state, TS_BUSY);
1489 sc->sc_tx_busy = 1;
1490
1491 /* Enable transmit completion interrupts if necessary. */
1492 if (!ISSET(sc->sc_cr, CR_TIE)) {
1493 SET(sc->sc_cr, CR_TIE);
1494 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
1495 }
1496
1497 /* Output the first chunk of the contiguous buffer. */
1498 {
1499 int n;
1500
1501 n = sc->sc_tbc;
1502 if (n > sc->sc_fifolen)
1503 n = sc->sc_fifolen;
1504 bus_space_write_multi_1(iot, ioh, plcom_dr, sc->sc_tba, n);
1505 sc->sc_tbc -= n;
1506 sc->sc_tba += n;
1507 }
1508 PLCOM_UNLOCK(sc);
1509 out:
1510 splx(s);
1511 return;
1512 }
1513
1514 /*
1515 * Stop output on a line.
1516 */
1517 void
1518 plcomstop(struct tty *tp, int flag)
1519 {
1520 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(tp->t_dev));
1521 int s;
1522
1523 s = splserial();
1524 PLCOM_LOCK(sc);
1525 if (ISSET(tp->t_state, TS_BUSY)) {
1526 /* Stop transmitting at the next chunk. */
1527 sc->sc_tbc = 0;
1528 sc->sc_heldtbc = 0;
1529 if (!ISSET(tp->t_state, TS_TTSTOP))
1530 SET(tp->t_state, TS_FLUSH);
1531 }
1532 PLCOM_UNLOCK(sc);
1533 splx(s);
1534 }
1535
1536 void
1537 plcomdiag(void *arg)
1538 {
1539 struct plcom_softc *sc = arg;
1540 int overflows, floods;
1541 int s;
1542
1543 s = splserial();
1544 PLCOM_LOCK(sc);
1545 overflows = sc->sc_overflows;
1546 sc->sc_overflows = 0;
1547 floods = sc->sc_floods;
1548 sc->sc_floods = 0;
1549 sc->sc_errors = 0;
1550 PLCOM_UNLOCK(sc);
1551 splx(s);
1552
1553 log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
1554 sc->sc_dev.dv_xname,
1555 overflows, overflows == 1 ? "" : "s",
1556 floods, floods == 1 ? "" : "s");
1557 }
1558
1559 integrate void
1560 plcom_rxsoft(struct plcom_softc *sc, struct tty *tp)
1561 {
1562 int (*rint) (int, struct tty *) = tp->t_linesw->l_rint;
1563 u_char *get, *end;
1564 u_int cc, scc;
1565 u_char rsr;
1566 int code;
1567 int s;
1568
1569 end = sc->sc_ebuf;
1570 get = sc->sc_rbget;
1571 scc = cc = plcom_rbuf_size - sc->sc_rbavail;
1572
1573 if (cc == plcom_rbuf_size) {
1574 sc->sc_floods++;
1575 if (sc->sc_errors++ == 0)
1576 callout_reset(&sc->sc_diag_callout, 60 * hz,
1577 plcomdiag, sc);
1578 }
1579
1580 while (cc) {
1581 code = get[0];
1582 rsr = get[1];
1583 if (ISSET(rsr, RSR_OE | RSR_BE | RSR_FE | RSR_PE)) {
1584 if (ISSET(rsr, RSR_OE)) {
1585 sc->sc_overflows++;
1586 if (sc->sc_errors++ == 0)
1587 callout_reset(&sc->sc_diag_callout,
1588 60 * hz, plcomdiag, sc);
1589 }
1590 if (ISSET(rsr, RSR_BE | RSR_FE))
1591 SET(code, TTY_FE);
1592 if (ISSET(rsr, RSR_PE))
1593 SET(code, TTY_PE);
1594 }
1595 if ((*rint)(code, tp) == -1) {
1596 /*
1597 * The line discipline's buffer is out of space.
1598 */
1599 if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1600 /*
1601 * We're either not using flow control, or the
1602 * line discipline didn't tell us to block for
1603 * some reason. Either way, we have no way to
1604 * know when there's more space available, so
1605 * just drop the rest of the data.
1606 */
1607 get += cc << 1;
1608 if (get >= end)
1609 get -= plcom_rbuf_size << 1;
1610 cc = 0;
1611 } else {
1612 /*
1613 * Don't schedule any more receive processing
1614 * until the line discipline tells us there's
1615 * space available (through plcomhwiflow()).
1616 * Leave the rest of the data in the input
1617 * buffer.
1618 */
1619 SET(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1620 }
1621 break;
1622 }
1623 get += 2;
1624 if (get >= end)
1625 get = sc->sc_rbuf;
1626 cc--;
1627 }
1628
1629 if (cc != scc) {
1630 sc->sc_rbget = get;
1631 s = splserial();
1632 PLCOM_LOCK(sc);
1633
1634 cc = sc->sc_rbavail += scc - cc;
1635 /* Buffers should be ok again, release possible block. */
1636 if (cc >= sc->sc_r_lowat) {
1637 if (ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1638 CLR(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
1639 SET(sc->sc_cr, CR_RIE | CR_RTIE);
1640 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
1641 }
1642 if (ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED)) {
1643 CLR(sc->sc_rx_flags, RX_IBUF_BLOCKED);
1644 plcom_hwiflow(sc);
1645 }
1646 }
1647 PLCOM_UNLOCK(sc);
1648 splx(s);
1649 }
1650 }
1651
1652 integrate void
1653 plcom_txsoft(struct plcom_softc *sc, struct tty *tp)
1654 {
1655
1656 CLR(tp->t_state, TS_BUSY);
1657 if (ISSET(tp->t_state, TS_FLUSH))
1658 CLR(tp->t_state, TS_FLUSH);
1659 else
1660 ndflush(&tp->t_outq, (int)(sc->sc_tba - tp->t_outq.c_cf));
1661 (*tp->t_linesw->l_start)(tp);
1662 }
1663
1664 integrate void
1665 plcom_stsoft(struct plcom_softc *sc, struct tty *tp)
1666 {
1667 u_char msr, delta;
1668 int s;
1669
1670 s = splserial();
1671 PLCOM_LOCK(sc);
1672 msr = sc->sc_msr;
1673 delta = sc->sc_msr_delta;
1674 sc->sc_msr_delta = 0;
1675 PLCOM_UNLOCK(sc);
1676 splx(s);
1677
1678 if (ISSET(delta, sc->sc_msr_dcd)) {
1679 /*
1680 * Inform the tty layer that carrier detect changed.
1681 */
1682 (void) (*tp->t_linesw->l_modem)(tp, ISSET(msr, MSR_DCD));
1683 }
1684
1685 if (ISSET(delta, sc->sc_msr_cts)) {
1686 /* Block or unblock output according to flow control. */
1687 if (ISSET(msr, sc->sc_msr_cts)) {
1688 sc->sc_tx_stopped = 0;
1689 (*tp->t_linesw->l_start)(tp);
1690 } else {
1691 sc->sc_tx_stopped = 1;
1692 }
1693 }
1694
1695 #ifdef PLCOM_DEBUG
1696 if (plcom_debug)
1697 plcomstatus(sc, "plcom_stsoft");
1698 #endif
1699 }
1700
1701 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
1702 void
1703 plcomsoft(void *arg)
1704 {
1705 struct plcom_softc *sc = arg;
1706 struct tty *tp;
1707
1708 if (PLCOM_ISALIVE(sc) == 0)
1709 return;
1710
1711 {
1712 #else
1713 void
1714 #ifndef __NO_SOFT_SERIAL_INTERRUPT
1715 plcomsoft(void)
1716 #else
1717 plcomsoft(void *arg)
1718 #endif
1719 {
1720 struct plcom_softc *sc;
1721 struct tty *tp;
1722 int unit;
1723 #ifdef __NO_SOFT_SERIAL_INTERRUPT
1724 int s;
1725
1726 s = splsoftserial();
1727 plcom_softintr_scheduled = 0;
1728 #endif
1729
1730 for (unit = 0; unit < plcom_cd.cd_ndevs; unit++) {
1731 sc = device_lookup(&plcom_cd, unit);
1732 if (sc == NULL || !ISSET(sc->sc_hwflags, PLCOM_HW_DEV_OK))
1733 continue;
1734
1735 if (PLCOM_ISALIVE(sc) == 0)
1736 continue;
1737
1738 tp = sc->sc_tty;
1739 if (tp == NULL)
1740 continue;
1741 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0)
1742 continue;
1743 #endif
1744 tp = sc->sc_tty;
1745
1746 if (sc->sc_rx_ready) {
1747 sc->sc_rx_ready = 0;
1748 plcom_rxsoft(sc, tp);
1749 }
1750
1751 if (sc->sc_st_check) {
1752 sc->sc_st_check = 0;
1753 plcom_stsoft(sc, tp);
1754 }
1755
1756 if (sc->sc_tx_done) {
1757 sc->sc_tx_done = 0;
1758 plcom_txsoft(sc, tp);
1759 }
1760 }
1761
1762 #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS
1763 #ifdef __NO_SOFT_SERIAL_INTERRUPT
1764 splx(s);
1765 #endif
1766 #endif
1767 }
1768
1769 #ifdef __ALIGN_BRACKET_LEVEL_FOR_CTAGS
1770 /* there has got to be a better way to do plcomsoft() */
1771 }}
1772 #endif
1773
1774 int
1775 plcomintr(void *arg)
1776 {
1777 struct plcom_softc *sc = arg;
1778 bus_space_tag_t iot = sc->sc_iot;
1779 bus_space_handle_t ioh = sc->sc_ioh;
1780 u_char *put, *end;
1781 u_int cc;
1782 u_char rsr, iir;
1783
1784 if (PLCOM_ISALIVE(sc) == 0)
1785 return 0;
1786
1787 PLCOM_LOCK(sc);
1788 iir = bus_space_read_1(iot, ioh, plcom_iir);
1789 if (! ISSET(iir, IIR_IMASK)) {
1790 PLCOM_UNLOCK(sc);
1791 return 0;
1792 }
1793
1794 end = sc->sc_ebuf;
1795 put = sc->sc_rbput;
1796 cc = sc->sc_rbavail;
1797
1798 do {
1799 u_char msr, delta, fr;
1800
1801 fr = bus_space_read_1(iot, ioh, plcom_fr);
1802
1803 if (!ISSET(fr, FR_RXFE) &&
1804 !ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1805 while (cc > 0) {
1806 int cn_trapped = 0;
1807 put[0] = bus_space_read_1(iot, ioh,
1808 plcom_dr);
1809 rsr = bus_space_read_1(iot, ioh, plcom_rsr);
1810 /* Clear any error status. */
1811 if (ISSET(rsr,
1812 (RSR_BE | RSR_OE | RSR_PE | RSR_FE)))
1813 bus_space_write_1(iot, ioh, plcom_ecr,
1814 0);
1815 if (ISSET(rsr, RSR_BE)) {
1816 cn_trapped = 0;
1817 cn_check_magic(sc->sc_tty->t_dev,
1818 CNC_BREAK, plcom_cnm_state);
1819 if (cn_trapped)
1820 continue;
1821 #if defined(KGDB)
1822 if (ISSET(sc->sc_hwflags,
1823 PLCOM_HW_KGDB)) {
1824 kgdb_connect(1);
1825 continue;
1826 }
1827 #endif
1828 }
1829
1830 put[1] = rsr;
1831 cn_trapped = 0;
1832 cn_check_magic(sc->sc_tty->t_dev,
1833 put[0], plcom_cnm_state);
1834 if (cn_trapped) {
1835 fr = bus_space_read_1(iot, ioh,
1836 plcom_fr);
1837 if (ISSET(fr, FR_RXFE))
1838 break;
1839
1840 continue;
1841 }
1842 put += 2;
1843 if (put >= end)
1844 put = sc->sc_rbuf;
1845 cc--;
1846
1847 fr = bus_space_read_1(iot, ioh, plcom_fr);
1848 if (ISSET(fr, FR_RXFE))
1849 break;
1850 }
1851
1852 /*
1853 * Current string of incoming characters ended because
1854 * no more data was available or we ran out of space.
1855 * Schedule a receive event if any data was received.
1856 * If we're out of space, turn off receive interrupts.
1857 */
1858 sc->sc_rbput = put;
1859 sc->sc_rbavail = cc;
1860 if (!ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED))
1861 sc->sc_rx_ready = 1;
1862
1863 /*
1864 * See if we are in danger of overflowing a buffer. If
1865 * so, use hardware flow control to ease the pressure.
1866 */
1867 if (!ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED) &&
1868 cc < sc->sc_r_hiwat) {
1869 SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
1870 plcom_hwiflow(sc);
1871 }
1872
1873 /*
1874 * If we're out of space, disable receive interrupts
1875 * until the queue has drained a bit.
1876 */
1877 if (!cc) {
1878 SET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
1879 CLR(sc->sc_cr, CR_RIE | CR_RTIE);
1880 bus_space_write_1(iot, ioh, plcom_cr,
1881 sc->sc_cr);
1882 }
1883 } else {
1884 if (ISSET(iir, IIR_RIS)) {
1885 bus_space_write_1(iot, ioh, plcom_cr, 0);
1886 delay(10);
1887 bus_space_write_1(iot, ioh, plcom_cr,
1888 sc->sc_cr);
1889 continue;
1890 }
1891 }
1892
1893 msr = bus_space_read_1(iot, ioh, plcom_fr);
1894 delta = msr ^ sc->sc_msr;
1895 sc->sc_msr = msr;
1896 /* Clear any pending modem status interrupt. */
1897 if (iir & IIR_MIS)
1898 bus_space_write_1(iot, ioh, plcom_icr, 0);
1899 /*
1900 * Pulse-per-second (PSS) signals on edge of DCD?
1901 * Process these even if line discipline is ignoring DCD.
1902 */
1903 if (delta & sc->sc_ppsmask) {
1904 struct timeval tv;
1905 if ((msr & sc->sc_ppsmask) == sc->sc_ppsassert) {
1906 /* XXX nanotime() */
1907 microtime(&tv);
1908 TIMEVAL_TO_TIMESPEC(&tv,
1909 &sc->ppsinfo.assert_timestamp);
1910 if (sc->ppsparam.mode & PPS_OFFSETASSERT) {
1911 timespecadd(&sc->ppsinfo.assert_timestamp,
1912 &sc->ppsparam.assert_offset,
1913 &sc->ppsinfo.assert_timestamp);
1914 }
1915
1916 #ifdef PPS_SYNC
1917 if (sc->ppsparam.mode & PPS_HARDPPSONASSERT)
1918 hardpps(&tv, tv.tv_usec);
1919 #endif
1920 sc->ppsinfo.assert_sequence++;
1921 sc->ppsinfo.current_mode = sc->ppsparam.mode;
1922
1923 } else if ((msr & sc->sc_ppsmask) == sc->sc_ppsclear) {
1924 /* XXX nanotime() */
1925 microtime(&tv);
1926 TIMEVAL_TO_TIMESPEC(&tv,
1927 &sc->ppsinfo.clear_timestamp);
1928 if (sc->ppsparam.mode & PPS_OFFSETCLEAR) {
1929 timespecadd(&sc->ppsinfo.clear_timestamp,
1930 &sc->ppsparam.clear_offset,
1931 &sc->ppsinfo.clear_timestamp);
1932 }
1933
1934 #ifdef PPS_SYNC
1935 if (sc->ppsparam.mode & PPS_HARDPPSONCLEAR)
1936 hardpps(&tv, tv.tv_usec);
1937 #endif
1938 sc->ppsinfo.clear_sequence++;
1939 sc->ppsinfo.current_mode = sc->ppsparam.mode;
1940 }
1941 }
1942
1943 /*
1944 * Process normal status changes
1945 */
1946 if (ISSET(delta, sc->sc_msr_mask)) {
1947 SET(sc->sc_msr_delta, delta);
1948
1949 /*
1950 * Stop output immediately if we lose the output
1951 * flow control signal or carrier detect.
1952 */
1953 if (ISSET(~msr, sc->sc_msr_mask)) {
1954 sc->sc_tbc = 0;
1955 sc->sc_heldtbc = 0;
1956 #ifdef PLCOM_DEBUG
1957 if (plcom_debug)
1958 plcomstatus(sc, "plcomintr ");
1959 #endif
1960 }
1961
1962 sc->sc_st_check = 1;
1963 }
1964
1965 /*
1966 * Done handling any receive interrupts. See if data
1967 * can be * transmitted as well. Schedule tx done
1968 * event if no data left * and tty was marked busy.
1969 */
1970 if (ISSET(iir, IIR_TIS)) {
1971 /*
1972 * If we've delayed a parameter change, do it
1973 * now, and restart * output.
1974 */
1975 if (sc->sc_heldchange) {
1976 plcom_loadchannelregs(sc);
1977 sc->sc_heldchange = 0;
1978 sc->sc_tbc = sc->sc_heldtbc;
1979 sc->sc_heldtbc = 0;
1980 }
1981
1982 /*
1983 * Output the next chunk of the contiguous
1984 * buffer, if any.
1985 */
1986 if (sc->sc_tbc > 0) {
1987 int n;
1988
1989 n = sc->sc_tbc;
1990 if (n > sc->sc_fifolen)
1991 n = sc->sc_fifolen;
1992 bus_space_write_multi_1(iot, ioh, plcom_dr,
1993 sc->sc_tba, n);
1994 sc->sc_tbc -= n;
1995 sc->sc_tba += n;
1996 } else {
1997 /*
1998 * Disable transmit plcompletion
1999 * interrupts if necessary.
2000 */
2001 if (ISSET(sc->sc_cr, CR_TIE)) {
2002 CLR(sc->sc_cr, CR_TIE);
2003 bus_space_write_1(iot, ioh, plcom_cr,
2004 sc->sc_cr);
2005 }
2006 if (sc->sc_tx_busy) {
2007 sc->sc_tx_busy = 0;
2008 sc->sc_tx_done = 1;
2009 }
2010 }
2011 }
2012 } while (ISSET((iir = bus_space_read_1(iot, ioh, plcom_iir)),
2013 IIR_IMASK));
2014
2015 PLCOM_UNLOCK(sc);
2016
2017 /* Wake up the poller. */
2018 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
2019 softintr_schedule(sc->sc_si);
2020 #else
2021 #ifndef __NO_SOFT_SERIAL_INTERRUPT
2022 setsoftserial();
2023 #else
2024 if (!plcom_softintr_scheduled) {
2025 plcom_softintr_scheduled = 1;
2026 callout_reset(&plcomsoft_callout, 1, plcomsoft, NULL);
2027 }
2028 #endif
2029 #endif
2030
2031 #if NRND > 0 && defined(RND_COM)
2032 rnd_add_uint32(&sc->rnd_source, iir | rsr);
2033 #endif
2034
2035 return 1;
2036 }
2037
2038 /*
2039 * The following functions are polled getc and putc routines, shared
2040 * by the console and kgdb glue.
2041 *
2042 * The read-ahead code is so that you can detect pending in-band
2043 * cn_magic in polled mode while doing output rather than having to
2044 * wait until the kernel decides it needs input.
2045 */
2046
2047 #define MAX_READAHEAD 20
2048 static int plcom_readahead[MAX_READAHEAD];
2049 static int plcom_readaheadcount = 0;
2050
2051 int
2052 plcom_common_getc(dev_t dev, bus_space_tag_t iot, bus_space_handle_t ioh)
2053 {
2054 int s = splserial();
2055 u_char stat, c;
2056
2057 /* got a character from reading things earlier */
2058 if (plcom_readaheadcount > 0) {
2059 int i;
2060
2061 c = plcom_readahead[0];
2062 for (i = 1; i < plcom_readaheadcount; i++) {
2063 plcom_readahead[i-1] = plcom_readahead[i];
2064 }
2065 plcom_readaheadcount--;
2066 splx(s);
2067 return c;
2068 }
2069
2070 /* block until a character becomes available */
2071 while (ISSET(stat = bus_space_read_1(iot, ioh, plcom_fr), FR_RXFE))
2072 ;
2073
2074 c = bus_space_read_1(iot, ioh, plcom_dr);
2075 stat = bus_space_read_1(iot, ioh, plcom_iir);
2076 {
2077 int cn_trapped = 0; /* unused */
2078 #ifdef DDB
2079 extern int db_active;
2080 if (!db_active)
2081 #endif
2082 cn_check_magic(dev, c, plcom_cnm_state);
2083 }
2084 splx(s);
2085 return c;
2086 }
2087
2088 void
2089 plcom_common_putc(dev_t dev, bus_space_tag_t iot, bus_space_handle_t ioh,
2090 int c)
2091 {
2092 int s = splserial();
2093 int timo;
2094
2095 int cin, stat;
2096 if (plcom_readaheadcount < MAX_READAHEAD
2097 && !ISSET(stat = bus_space_read_1(iot, ioh, plcom_fr), FR_RXFE)) {
2098 int cn_trapped = 0;
2099 cin = bus_space_read_1(iot, ioh, plcom_dr);
2100 stat = bus_space_read_1(iot, ioh, plcom_iir);
2101 cn_check_magic(dev, cin, plcom_cnm_state);
2102 plcom_readahead[plcom_readaheadcount++] = cin;
2103 }
2104
2105 /* wait for any pending transmission to finish */
2106 timo = 150000;
2107 while (!ISSET(bus_space_read_1(iot, ioh, plcom_fr), FR_TXFE) && --timo)
2108 continue;
2109
2110 bus_space_write_1(iot, ioh, plcom_dr, c);
2111 PLCOM_BARRIER(iot, ioh, BR | BW);
2112
2113 /* wait for this transmission to complete */
2114 timo = 1500000;
2115 while (!ISSET(bus_space_read_1(iot, ioh, plcom_fr), FR_TXFE) && --timo)
2116 continue;
2117
2118 splx(s);
2119 }
2120
2121 /*
2122 * Initialize UART for use as console or KGDB line.
2123 */
2124 int
2125 plcominit(bus_space_tag_t iot, bus_addr_t iobase, int rate, int frequency,
2126 tcflag_t cflag, bus_space_handle_t *iohp)
2127 {
2128 bus_space_handle_t ioh;
2129
2130 if (bus_space_map(iot, iobase, PLCOM_UART_SIZE, 0, &ioh))
2131 return ENOMEM; /* ??? */
2132
2133 rate = plcomspeed(rate, frequency);
2134 bus_space_write_1(iot, ioh, plcom_cr, 0);
2135 bus_space_write_1(iot, ioh, plcom_dlbl, rate);
2136 bus_space_write_1(iot, ioh, plcom_dlbh, rate >> 8);
2137 bus_space_write_1(iot, ioh, plcom_lcr, cflag2lcr(cflag) | LCR_FEN);
2138 bus_space_write_1(iot, ioh, plcom_cr, CR_UARTEN);
2139
2140 #if 0
2141 /* Ought to do something like this, but we have no sc to
2142 dereference. */
2143 /* XXX device_unit() abuse */
2144 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev),
2145 MCR_DTR | MCR_RTS);
2146 #endif
2147
2148 *iohp = ioh;
2149 return 0;
2150 }
2151
2152 /*
2153 * Following are all routines needed for PLCOM to act as console
2154 */
2155 struct consdev plcomcons = {
2156 NULL, NULL, plcomcngetc, plcomcnputc, plcomcnpollc, NULL,
2157 NULL, NULL, NODEV, CN_NORMAL
2158 };
2159
2160
2161 int
2162 plcomcnattach(bus_space_tag_t iot, bus_addr_t iobase, int rate, int frequency,
2163 tcflag_t cflag, int unit)
2164 {
2165 int res;
2166
2167 res = plcominit(iot, iobase, rate, frequency, cflag, &plcomconsioh);
2168 if (res)
2169 return res;
2170
2171 cn_tab = &plcomcons;
2172 cn_init_magic(&plcom_cnm_state);
2173 cn_set_magic("\047\001"); /* default magic is BREAK */
2174
2175 plcomconstag = iot;
2176 plcomconsunit = unit;
2177 plcomconsrate = rate;
2178 plcomconscflag = cflag;
2179
2180 return 0;
2181 }
2182
2183 void
2184 plcomcndetach(void)
2185 {
2186 bus_space_unmap(plcomconstag, plcomconsioh, PLCOM_UART_SIZE);
2187 plcomconstag = NULL;
2188
2189 cn_tab = NULL;
2190 }
2191
2192 int
2193 plcomcngetc(dev_t dev)
2194 {
2195 return plcom_common_getc(dev, plcomconstag, plcomconsioh);
2196 }
2197
2198 /*
2199 * Console kernel output character routine.
2200 */
2201 void
2202 plcomcnputc(dev_t dev, int c)
2203 {
2204 plcom_common_putc(dev, plcomconstag, plcomconsioh, c);
2205 }
2206
2207 void
2208 plcomcnpollc(dev_t dev, int on)
2209 {
2210
2211 }
2212
2213 #ifdef KGDB
2214 int
2215 plcom_kgdb_attach(bus_space_tag_t iot, bus_addr_t iobase, int rate,
2216 int frequency, tcflag_t cflag, int unit)
2217 {
2218 int res;
2219
2220 if (iot == plcomconstag && iobase == plcomconsunit)
2221 return EBUSY; /* cannot share with console */
2222
2223 res = plcominit(iot, iobase, rate, frequency, cflag, &plcom_kgdb_ioh);
2224 if (res)
2225 return res;
2226
2227 kgdb_attach(plcom_kgdb_getc, plcom_kgdb_putc, NULL);
2228 kgdb_dev = 123; /* unneeded, only to satisfy some tests */
2229
2230 plcom_kgdb_iot = iot;
2231 plcom_kgdb_unit = unit;
2232
2233 return 0;
2234 }
2235
2236 /* ARGSUSED */
2237 int
2238 plcom_kgdb_getc(void *arg)
2239 {
2240 return plcom_common_getc(NODEV, plcom_kgdb_iot, plcom_kgdb_ioh);
2241 }
2242
2243 /* ARGSUSED */
2244 void
2245 plcom_kgdb_putc(void *arg, int c)
2246 {
2247 plcom_common_putc(NODEV, plcom_kgdb_iot, plcom_kgdb_ioh, c);
2248 }
2249 #endif /* KGDB */
2250
2251 /* helper function to identify the plcom ports used by
2252 console or KGDB (and not yet autoconf attached) */
2253 int
2254 plcom_is_console(bus_space_tag_t iot, int unit,
2255 bus_space_handle_t *ioh)
2256 {
2257 bus_space_handle_t help;
2258
2259 if (!plcomconsattached &&
2260 iot == plcomconstag && unit == plcomconsunit)
2261 help = plcomconsioh;
2262 #ifdef KGDB
2263 else if (!plcom_kgdb_attached &&
2264 iot == plcom_kgdb_iot && unit == plcom_kgdb_unit)
2265 help = plcom_kgdb_ioh;
2266 #endif
2267 else
2268 return 0;
2269
2270 if (ioh)
2271 *ioh = help;
2272 return 1;
2273 }
2274