plcom.c revision 1.20 1 /* $NetBSD: plcom.c,v 1.20 2007/03/04 05:59:44 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2001 ARM Ltd
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the company may not be used to endorse or promote
16 * products derived from this software without specific prior written
17 * permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
23 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
32 * All rights reserved.
33 *
34 * This code is derived from software contributed to The NetBSD Foundation
35 * by Charles M. Hannum.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the NetBSD
48 * Foundation, Inc. and its contributors.
49 * 4. Neither the name of The NetBSD Foundation nor the names of its
50 * contributors may be used to endorse or promote products derived
51 * from this software without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
54 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 * POSSIBILITY OF SUCH DAMAGE.
64 */
65
66 /*
67 * Copyright (c) 1991 The Regents of the University of California.
68 * All rights reserved.
69 *
70 * Redistribution and use in source and binary forms, with or without
71 * modification, are permitted provided that the following conditions
72 * are met:
73 * 1. Redistributions of source code must retain the above copyright
74 * notice, this list of conditions and the following disclaimer.
75 * 2. Redistributions in binary form must reproduce the above copyright
76 * notice, this list of conditions and the following disclaimer in the
77 * documentation and/or other materials provided with the distribution.
78 * 3. Neither the name of the University nor the names of its contributors
79 * may be used to endorse or promote products derived from this software
80 * without specific prior written permission.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
83 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
84 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
85 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
86 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
87 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
88 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
89 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
90 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
91 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
92 * SUCH DAMAGE.
93 *
94 * @(#)com.c 7.5 (Berkeley) 5/16/91
95 */
96
97 /*
98 * COM driver for the Prime Cell PL010 UART, which is similar to the 16C550,
99 * but has a completely different programmer's model.
100 * Derived from the NS16550AF com driver.
101 */
102
103 #include <sys/cdefs.h>
104 __KERNEL_RCSID(0, "$NetBSD: plcom.c,v 1.20 2007/03/04 05:59:44 christos Exp $");
105
106 #include "opt_plcom.h"
107 #include "opt_ddb.h"
108 #include "opt_kgdb.h"
109 #include "opt_lockdebug.h"
110 #include "opt_multiprocessor.h"
111
112 #include "rnd.h"
113 #if NRND > 0 && defined(RND_COM)
114 #include <sys/rnd.h>
115 #endif
116
117 /*
118 * Override cnmagic(9) macro before including <sys/systm.h>.
119 * We need to know if cn_check_magic triggered debugger, so set a flag.
120 * Callers of cn_check_magic must declare int cn_trapped = 0;
121 * XXX: this is *ugly*!
122 */
123 #define cn_trap() \
124 do { \
125 console_debugger(); \
126 cn_trapped = 1; \
127 } while (/* CONSTCOND */ 0)
128
129 #include <sys/param.h>
130 #include <sys/systm.h>
131 #include <sys/ioctl.h>
132 #include <sys/select.h>
133 #include <sys/tty.h>
134 #include <sys/proc.h>
135 #include <sys/user.h>
136 #include <sys/conf.h>
137 #include <sys/file.h>
138 #include <sys/uio.h>
139 #include <sys/kernel.h>
140 #include <sys/syslog.h>
141 #include <sys/types.h>
142 #include <sys/device.h>
143 #include <sys/malloc.h>
144 #include <sys/timepps.h>
145 #include <sys/vnode.h>
146 #include <sys/kauth.h>
147
148 #include <machine/intr.h>
149 #include <machine/bus.h>
150
151 #include <evbarm/dev/plcomreg.h>
152 #include <evbarm/dev/plcomvar.h>
153
154 #include <dev/cons.h>
155
156 static void plcom_enable_debugport (struct plcom_softc *);
157
158 void plcom_config (struct plcom_softc *);
159 void plcom_shutdown (struct plcom_softc *);
160 int plcomspeed (long, long);
161 static u_char cflag2lcr (tcflag_t);
162 int plcomparam (struct tty *, struct termios *);
163 void plcomstart (struct tty *);
164 int plcomhwiflow (struct tty *, int);
165
166 void plcom_loadchannelregs (struct plcom_softc *);
167 void plcom_hwiflow (struct plcom_softc *);
168 void plcom_break (struct plcom_softc *, int);
169 void plcom_modem (struct plcom_softc *, int);
170 void tiocm_to_plcom (struct plcom_softc *, u_long, int);
171 int plcom_to_tiocm (struct plcom_softc *);
172 void plcom_iflush (struct plcom_softc *);
173
174 int plcom_common_getc (dev_t, bus_space_tag_t, bus_space_handle_t);
175 void plcom_common_putc (dev_t, bus_space_tag_t, bus_space_handle_t, int);
176
177 int plcominit (bus_space_tag_t, bus_addr_t, int, int, tcflag_t,
178 bus_space_handle_t *);
179
180 dev_type_open(plcomopen);
181 dev_type_close(plcomclose);
182 dev_type_read(plcomread);
183 dev_type_write(plcomwrite);
184 dev_type_ioctl(plcomioctl);
185 dev_type_stop(plcomstop);
186 dev_type_tty(plcomtty);
187 dev_type_poll(plcompoll);
188
189 int plcomcngetc (dev_t);
190 void plcomcnputc (dev_t, int);
191 void plcomcnpollc (dev_t, int);
192
193 #define integrate static inline
194 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
195 void plcomsoft (void *);
196 #else
197 #ifndef __NO_SOFT_SERIAL_INTERRUPT
198 void plcomsoft (void);
199 #else
200 void plcomsoft (void *);
201 struct callout plcomsoft_callout = CALLOUT_INITIALIZER;
202 #endif
203 #endif
204 integrate void plcom_rxsoft (struct plcom_softc *, struct tty *);
205 integrate void plcom_txsoft (struct plcom_softc *, struct tty *);
206 integrate void plcom_stsoft (struct plcom_softc *, struct tty *);
207 integrate void plcom_schedrx (struct plcom_softc *);
208 void plcomdiag (void *);
209
210 extern struct cfdriver plcom_cd;
211
212 const struct cdevsw plcom_cdevsw = {
213 plcomopen, plcomclose, plcomread, plcomwrite, plcomioctl,
214 plcomstop, plcomtty, plcompoll, nommap, ttykqfilter, D_TTY
215 };
216
217 /*
218 * Make this an option variable one can patch.
219 * But be warned: this must be a power of 2!
220 */
221 u_int plcom_rbuf_size = PLCOM_RING_SIZE;
222
223 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
224 u_int plcom_rbuf_hiwat = (PLCOM_RING_SIZE * 1) / 4;
225 u_int plcom_rbuf_lowat = (PLCOM_RING_SIZE * 3) / 4;
226
227 static int plcomconsunit = -1;
228 static bus_space_tag_t plcomconstag;
229 static bus_space_handle_t plcomconsioh;
230 static int plcomconsattached;
231 static int plcomconsrate;
232 static tcflag_t plcomconscflag;
233 static struct cnm_state plcom_cnm_state;
234
235 static int ppscap =
236 PPS_TSFMT_TSPEC |
237 PPS_CAPTUREASSERT |
238 PPS_CAPTURECLEAR |
239 #ifdef PPS_SYNC
240 PPS_HARDPPSONASSERT | PPS_HARDPPSONCLEAR |
241 #endif /* PPS_SYNC */
242 PPS_OFFSETASSERT | PPS_OFFSETCLEAR;
243
244 #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS
245 #ifdef __NO_SOFT_SERIAL_INTERRUPT
246 volatile int plcom_softintr_scheduled;
247 #endif
248 #endif
249
250 #ifdef KGDB
251 #include <sys/kgdb.h>
252
253 static int plcom_kgdb_unit;
254 static bus_space_tag_t plcom_kgdb_iot;
255 static bus_space_handle_t plcom_kgdb_ioh;
256 static int plcom_kgdb_attached;
257
258 int plcom_kgdb_getc (void *);
259 void plcom_kgdb_putc (void *, int);
260 #endif /* KGDB */
261
262 #define PLCOMUNIT_MASK 0x7ffff
263 #define PLCOMDIALOUT_MASK 0x80000
264
265 #define PLCOMUNIT(x) (minor(x) & PLCOMUNIT_MASK)
266 #define PLCOMDIALOUT(x) (minor(x) & PLCOMDIALOUT_MASK)
267
268 #define PLCOM_ISALIVE(sc) ((sc)->enabled != 0 && \
269 device_is_active(&(sc)->sc_dev))
270
271 #define BR BUS_SPACE_BARRIER_READ
272 #define BW BUS_SPACE_BARRIER_WRITE
273 #define PLCOM_BARRIER(t, h, f) bus_space_barrier((t), (h), 0, PLCOM_UART_SIZE, (f))
274
275 #define PLCOM_LOCK(sc) simple_lock(&(sc)->sc_lock)
276 #define PLCOM_UNLOCK(sc) simple_unlock(&(sc)->sc_lock)
277
278 int
279 plcomspeed(long speed, long frequency)
280 {
281 #define divrnd(n, q) (((n)*2/(q)+1)/2) /* divide and round off */
282
283 int x, err;
284
285 #if 0
286 if (speed == 0)
287 return 0;
288 #endif
289 if (speed <= 0)
290 return -1;
291 x = divrnd(frequency / 16, speed);
292 if (x <= 0)
293 return -1;
294 err = divrnd(((quad_t)frequency) * 1000 / 16, speed * x) - 1000;
295 if (err < 0)
296 err = -err;
297 if (err > PLCOM_TOLERANCE)
298 return -1;
299 return x;
300
301 #undef divrnd
302 }
303
304 #ifdef PLCOM_DEBUG
305 int plcom_debug = 0;
306
307 void plcomstatus (struct plcom_softc *, char *);
308 void
309 plcomstatus(struct plcom_softc *sc, char *str)
310 {
311 struct tty *tp = sc->sc_tty;
312
313 printf("%s: %s %sclocal %sdcd %sts_carr_on %sdtr %stx_stopped\n",
314 sc->sc_dev.dv_xname, str,
315 ISSET(tp->t_cflag, CLOCAL) ? "+" : "-",
316 ISSET(sc->sc_msr, MSR_DCD) ? "+" : "-",
317 ISSET(tp->t_state, TS_CARR_ON) ? "+" : "-",
318 ISSET(sc->sc_mcr, MCR_DTR) ? "+" : "-",
319 sc->sc_tx_stopped ? "+" : "-");
320
321 printf("%s: %s %scrtscts %scts %sts_ttstop %srts %xrx_flags\n",
322 sc->sc_dev.dv_xname, str,
323 ISSET(tp->t_cflag, CRTSCTS) ? "+" : "-",
324 ISSET(sc->sc_msr, MSR_CTS) ? "+" : "-",
325 ISSET(tp->t_state, TS_TTSTOP) ? "+" : "-",
326 ISSET(sc->sc_mcr, MCR_RTS) ? "+" : "-",
327 sc->sc_rx_flags);
328 }
329 #endif
330
331 int
332 plcomprobe1(bus_space_tag_t iot, bus_space_handle_t ioh)
333 {
334 int data;
335
336 /* Disable the UART. */
337 bus_space_write_1(iot, ioh, plcom_cr, 0);
338 /* Make sure the FIFO is off. */
339 bus_space_write_1(iot, ioh, plcom_lcr, LCR_8BITS);
340 /* Disable interrupts. */
341 bus_space_write_1(iot, ioh, plcom_iir, 0);
342
343 /* Make sure we swallow anything in the receiving register. */
344 data = bus_space_read_1(iot, ioh, plcom_dr);
345
346 if (bus_space_read_1(iot, ioh, plcom_lcr) != LCR_8BITS)
347 return 0;
348
349 data = bus_space_read_1(iot, ioh, plcom_fr) & (FR_RXFF | FR_RXFE);
350
351 if (data != FR_RXFE)
352 return 0;
353
354 return 1;
355 }
356
357 static void
358 plcom_enable_debugport(struct plcom_softc *sc)
359 {
360 int s;
361
362 /* Turn on line break interrupt, set carrier. */
363 s = splserial();
364 PLCOM_LOCK(sc);
365 sc->sc_cr = CR_RIE | CR_RTIE | CR_UARTEN;
366 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
367 SET(sc->sc_mcr, MCR_DTR | MCR_RTS);
368 /* XXX device_unit() abuse */
369 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev),
370 sc->sc_mcr);
371 PLCOM_UNLOCK(sc);
372 splx(s);
373 }
374
375 void
376 plcom_attach_subr(struct plcom_softc *sc)
377 {
378 int unit = sc->sc_iounit;
379 bus_space_tag_t iot = sc->sc_iot;
380 bus_space_handle_t ioh = sc->sc_ioh;
381 struct tty *tp;
382
383 callout_init(&sc->sc_diag_callout);
384 simple_lock_init(&sc->sc_lock);
385
386 /* Disable interrupts before configuring the device. */
387 sc->sc_cr = 0;
388
389 if (plcomconstag && unit == plcomconsunit) {
390 plcomconsattached = 1;
391
392 plcomconstag = iot;
393 plcomconsioh = ioh;
394
395 /* Make sure the console is always "hardwired". */
396 delay(1000); /* wait for output to finish */
397 SET(sc->sc_hwflags, PLCOM_HW_CONSOLE);
398 SET(sc->sc_swflags, TIOCFLAG_SOFTCAR);
399 /* Must re-enable the console immediately, or we will
400 hang when trying to print. */
401 sc->sc_cr = CR_UARTEN;
402 }
403
404 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
405
406 /* The PL010 has a 16-byte fifo, but the tx interrupt triggers when
407 there is space for 8 more bytes. */
408 sc->sc_fifolen = 8;
409 printf("\n");
410
411 if (ISSET(sc->sc_hwflags, PLCOM_HW_TXFIFO_DISABLE)) {
412 sc->sc_fifolen = 1;
413 printf("%s: txfifo disabled\n", sc->sc_dev.dv_xname);
414 }
415
416 if (sc->sc_fifolen > 1)
417 SET(sc->sc_hwflags, PLCOM_HW_FIFO);
418
419 tp = ttymalloc();
420 tp->t_oproc = plcomstart;
421 tp->t_param = plcomparam;
422 tp->t_hwiflow = plcomhwiflow;
423
424 sc->sc_tty = tp;
425 sc->sc_rbuf = malloc(plcom_rbuf_size << 1, M_DEVBUF, M_NOWAIT);
426 sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
427 sc->sc_rbavail = plcom_rbuf_size;
428 if (sc->sc_rbuf == NULL) {
429 printf("%s: unable to allocate ring buffer\n",
430 sc->sc_dev.dv_xname);
431 return;
432 }
433 sc->sc_ebuf = sc->sc_rbuf + (plcom_rbuf_size << 1);
434
435 tty_attach(tp);
436
437 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
438 int maj;
439
440 /* locate the major number */
441 maj = cdevsw_lookup_major(&plcom_cdevsw);
442
443 cn_tab->cn_dev = makedev(maj, device_unit(&sc->sc_dev));
444
445 printf("%s: console\n", sc->sc_dev.dv_xname);
446 }
447
448 #ifdef KGDB
449 /*
450 * Allow kgdb to "take over" this port. If this is
451 * the kgdb device, it has exclusive use.
452 */
453 if (iot == plcom_kgdb_iot && unit == plcom_kgdb_unit) {
454 plcom_kgdb_attached = 1;
455
456 SET(sc->sc_hwflags, PLCOM_HW_KGDB);
457 printf("%s: kgdb\n", sc->sc_dev.dv_xname);
458 }
459 #endif
460
461 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
462 sc->sc_si = softintr_establish(IPL_SOFTSERIAL, plcomsoft, sc);
463 #endif
464
465 #if NRND > 0 && defined(RND_COM)
466 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
467 RND_TYPE_TTY, 0);
468 #endif
469
470 /* if there are no enable/disable functions, assume the device
471 is always enabled */
472 if (!sc->enable)
473 sc->enabled = 1;
474
475 plcom_config(sc);
476
477 SET(sc->sc_hwflags, PLCOM_HW_DEV_OK);
478 }
479
480 void
481 plcom_config(struct plcom_softc *sc)
482 {
483 bus_space_tag_t iot = sc->sc_iot;
484 bus_space_handle_t ioh = sc->sc_ioh;
485
486 /* Disable interrupts before configuring the device. */
487 sc->sc_cr = 0;
488 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
489
490 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE|PLCOM_HW_KGDB))
491 plcom_enable_debugport(sc);
492 }
493
494 int
495 plcom_detach(self, flags)
496 struct device *self;
497 int flags;
498 {
499 struct plcom_softc *sc = (struct plcom_softc *)self;
500 int maj, mn;
501
502 /* locate the major number */
503 maj = cdevsw_lookup_major(&plcom_cdevsw);
504
505 /* Nuke the vnodes for any open instances. */
506 mn = device_unit(self);
507 vdevgone(maj, mn, mn, VCHR);
508
509 mn |= PLCOMDIALOUT_MASK;
510 vdevgone(maj, mn, mn, VCHR);
511
512 /* Free the receive buffer. */
513 free(sc->sc_rbuf, M_DEVBUF);
514
515 /* Detach and free the tty. */
516 tty_detach(sc->sc_tty);
517 ttyfree(sc->sc_tty);
518
519 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
520 /* Unhook the soft interrupt handler. */
521 softintr_disestablish(sc->sc_si);
522 #endif
523
524 #if NRND > 0 && defined(RND_COM)
525 /* Unhook the entropy source. */
526 rnd_detach_source(&sc->rnd_source);
527 #endif
528
529 return 0;
530 }
531
532 int
533 plcom_activate(struct device *self, enum devact act)
534 {
535 struct plcom_softc *sc = (struct plcom_softc *)self;
536 int s, rv = 0;
537
538 s = splserial();
539 PLCOM_LOCK(sc);
540 switch (act) {
541 case DVACT_ACTIVATE:
542 rv = EOPNOTSUPP;
543 break;
544
545 case DVACT_DEACTIVATE:
546 if (sc->sc_hwflags & (PLCOM_HW_CONSOLE|PLCOM_HW_KGDB)) {
547 rv = EBUSY;
548 break;
549 }
550
551 if (sc->disable != NULL && sc->enabled != 0) {
552 (*sc->disable)(sc);
553 sc->enabled = 0;
554 }
555 break;
556 }
557
558 PLCOM_UNLOCK(sc);
559 splx(s);
560 return rv;
561 }
562
563 void
564 plcom_shutdown(struct plcom_softc *sc)
565 {
566 struct tty *tp = sc->sc_tty;
567 int s;
568
569 s = splserial();
570 PLCOM_LOCK(sc);
571
572 /* If we were asserting flow control, then deassert it. */
573 SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
574 plcom_hwiflow(sc);
575
576 /* Clear any break condition set with TIOCSBRK. */
577 plcom_break(sc, 0);
578
579 /* Turn off PPS capture on last close. */
580 sc->sc_ppsmask = 0;
581 sc->ppsparam.mode = 0;
582
583 /*
584 * Hang up if necessary. Wait a bit, so the other side has time to
585 * notice even if we immediately open the port again.
586 * Avoid tsleeping above splhigh().
587 */
588 if (ISSET(tp->t_cflag, HUPCL)) {
589 plcom_modem(sc, 0);
590 PLCOM_UNLOCK(sc);
591 splx(s);
592 /* XXX tsleep will only timeout */
593 (void) tsleep(sc, TTIPRI, ttclos, hz);
594 s = splserial();
595 PLCOM_LOCK(sc);
596 }
597
598 /* Turn off interrupts. */
599 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE))
600 /* interrupt on break */
601 sc->sc_cr = CR_RIE | CR_RTIE | CR_UARTEN;
602 else
603 sc->sc_cr = 0;
604 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
605
606 if (sc->disable) {
607 #ifdef DIAGNOSTIC
608 if (!sc->enabled)
609 panic("plcom_shutdown: not enabled?");
610 #endif
611 (*sc->disable)(sc);
612 sc->enabled = 0;
613 }
614 PLCOM_UNLOCK(sc);
615 splx(s);
616 }
617
618 int
619 plcomopen(dev_t dev, int flag, int mode, struct lwp *l)
620 {
621 struct plcom_softc *sc;
622 struct tty *tp;
623 int s, s2;
624 int error;
625
626 sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
627 if (sc == NULL || !ISSET(sc->sc_hwflags, PLCOM_HW_DEV_OK) ||
628 sc->sc_rbuf == NULL)
629 return ENXIO;
630
631 if (!device_is_active(&sc->sc_dev))
632 return ENXIO;
633
634 #ifdef KGDB
635 /*
636 * If this is the kgdb port, no other use is permitted.
637 */
638 if (ISSET(sc->sc_hwflags, PLCOM_HW_KGDB))
639 return EBUSY;
640 #endif
641
642 tp = sc->sc_tty;
643
644 if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
645 return (EBUSY);
646
647 s = spltty();
648
649 /*
650 * Do the following iff this is a first open.
651 */
652 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
653 struct termios t;
654
655 tp->t_dev = dev;
656
657 s2 = splserial();
658 PLCOM_LOCK(sc);
659
660 if (sc->enable) {
661 if ((*sc->enable)(sc)) {
662 PLCOM_UNLOCK(sc);
663 splx(s2);
664 splx(s);
665 printf("%s: device enable failed\n",
666 sc->sc_dev.dv_xname);
667 return EIO;
668 }
669 sc->enabled = 1;
670 plcom_config(sc);
671 }
672
673 /* Turn on interrupts. */
674 /* IER_ERXRDY | IER_ERLS | IER_EMSC; */
675 sc->sc_cr = CR_RIE | CR_RTIE | CR_MSIE | CR_UARTEN;
676 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
677
678 /* Fetch the current modem control status, needed later. */
679 sc->sc_msr = bus_space_read_1(sc->sc_iot, sc->sc_ioh, plcom_fr);
680
681 /* Clear PPS capture state on first open. */
682 sc->sc_ppsmask = 0;
683 sc->ppsparam.mode = 0;
684
685 PLCOM_UNLOCK(sc);
686 splx(s2);
687
688 /*
689 * Initialize the termios status to the defaults. Add in the
690 * sticky bits from TIOCSFLAGS.
691 */
692 t.c_ispeed = 0;
693 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
694 t.c_ospeed = plcomconsrate;
695 t.c_cflag = plcomconscflag;
696 } else {
697 t.c_ospeed = TTYDEF_SPEED;
698 t.c_cflag = TTYDEF_CFLAG;
699 }
700 if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL))
701 SET(t.c_cflag, CLOCAL);
702 if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS))
703 SET(t.c_cflag, CRTSCTS);
704 if (ISSET(sc->sc_swflags, TIOCFLAG_MDMBUF))
705 SET(t.c_cflag, MDMBUF);
706 /* Make sure plcomparam() will do something. */
707 tp->t_ospeed = 0;
708 (void) plcomparam(tp, &t);
709 tp->t_iflag = TTYDEF_IFLAG;
710 tp->t_oflag = TTYDEF_OFLAG;
711 tp->t_lflag = TTYDEF_LFLAG;
712 ttychars(tp);
713 ttsetwater(tp);
714
715 s2 = splserial();
716 PLCOM_LOCK(sc);
717
718 /*
719 * Turn on DTR. We must always do this, even if carrier is not
720 * present, because otherwise we'd have to use TIOCSDTR
721 * immediately after setting CLOCAL, which applications do not
722 * expect. We always assert DTR while the device is open
723 * unless explicitly requested to deassert it.
724 */
725 plcom_modem(sc, 1);
726
727 /* Clear the input ring, and unblock. */
728 sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
729 sc->sc_rbavail = plcom_rbuf_size;
730 plcom_iflush(sc);
731 CLR(sc->sc_rx_flags, RX_ANY_BLOCK);
732 plcom_hwiflow(sc);
733
734 #ifdef PLCOM_DEBUG
735 if (plcom_debug)
736 plcomstatus(sc, "plcomopen ");
737 #endif
738
739 PLCOM_UNLOCK(sc);
740 splx(s2);
741 }
742
743 splx(s);
744
745 error = ttyopen(tp, PLCOMDIALOUT(dev), ISSET(flag, O_NONBLOCK));
746 if (error)
747 goto bad;
748
749 error = (*tp->t_linesw->l_open)(dev, tp);
750 if (error)
751 goto bad;
752
753 return 0;
754
755 bad:
756 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
757 /*
758 * We failed to open the device, and nobody else had it opened.
759 * Clean up the state as appropriate.
760 */
761 plcom_shutdown(sc);
762 }
763
764 return error;
765 }
766
767 int
768 plcomclose(dev_t dev, int flag, int mode, struct lwp *l)
769 {
770 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
771 struct tty *tp = sc->sc_tty;
772
773 /* XXX This is for cons.c. */
774 if (!ISSET(tp->t_state, TS_ISOPEN))
775 return 0;
776
777 (*tp->t_linesw->l_close)(tp, flag);
778 ttyclose(tp);
779
780 if (PLCOM_ISALIVE(sc) == 0)
781 return 0;
782
783 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
784 /*
785 * Although we got a last close, the device may still be in
786 * use; e.g. if this was the dialout node, and there are still
787 * processes waiting for carrier on the non-dialout node.
788 */
789 plcom_shutdown(sc);
790 }
791
792 return 0;
793 }
794
795 int
796 plcomread(dev_t dev, struct uio *uio, int flag)
797 {
798 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
799 struct tty *tp = sc->sc_tty;
800
801 if (PLCOM_ISALIVE(sc) == 0)
802 return EIO;
803
804 return (*tp->t_linesw->l_read)(tp, uio, flag);
805 }
806
807 int
808 plcomwrite(dev_t dev, struct uio *uio, int flag)
809 {
810 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
811 struct tty *tp = sc->sc_tty;
812
813 if (PLCOM_ISALIVE(sc) == 0)
814 return EIO;
815
816 return (*tp->t_linesw->l_write)(tp, uio, flag);
817 }
818
819 int
820 plcompoll(dev_t dev, int events, struct lwp *l)
821 {
822 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
823 struct tty *tp = sc->sc_tty;
824
825 if (PLCOM_ISALIVE(sc) == 0)
826 return EIO;
827
828 return (*tp->t_linesw->l_poll)(tp, events, l);
829 }
830
831 struct tty *
832 plcomtty(dev_t dev)
833 {
834 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
835 struct tty *tp = sc->sc_tty;
836
837 return tp;
838 }
839
840 int
841 plcomioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
842 {
843 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
844 struct tty *tp = sc->sc_tty;
845 int error;
846 int s;
847
848 if (PLCOM_ISALIVE(sc) == 0)
849 return EIO;
850
851 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
852 if (error != EPASSTHROUGH)
853 return error;
854
855 error = ttioctl(tp, cmd, data, flag, l);
856 if (error != EPASSTHROUGH)
857 return error;
858
859 error = 0;
860
861 s = splserial();
862 PLCOM_LOCK(sc);
863
864 switch (cmd) {
865 case TIOCSBRK:
866 plcom_break(sc, 1);
867 break;
868
869 case TIOCCBRK:
870 plcom_break(sc, 0);
871 break;
872
873 case TIOCSDTR:
874 plcom_modem(sc, 1);
875 break;
876
877 case TIOCCDTR:
878 plcom_modem(sc, 0);
879 break;
880
881 case TIOCGFLAGS:
882 *(int *)data = sc->sc_swflags;
883 break;
884
885 case TIOCSFLAGS:
886 error = kauth_authorize_device_tty(l->l_cred,
887 KAUTH_DEVICE_TTY_PRIVSET, tp);
888 if (error)
889 break;
890 sc->sc_swflags = *(int *)data;
891 break;
892
893 case TIOCMSET:
894 case TIOCMBIS:
895 case TIOCMBIC:
896 tiocm_to_plcom(sc, cmd, *(int *)data);
897 break;
898
899 case TIOCMGET:
900 *(int *)data = plcom_to_tiocm(sc);
901 break;
902
903 case PPS_IOC_CREATE:
904 break;
905
906 case PPS_IOC_DESTROY:
907 break;
908
909 case PPS_IOC_GETPARAMS: {
910 pps_params_t *pp;
911 pp = (pps_params_t *)data;
912 *pp = sc->ppsparam;
913 break;
914 }
915
916 case PPS_IOC_SETPARAMS: {
917 pps_params_t *pp;
918 int mode;
919 pp = (pps_params_t *)data;
920 if (pp->mode & ~ppscap) {
921 error = EINVAL;
922 break;
923 }
924 sc->ppsparam = *pp;
925 /*
926 * Compute msr masks from user-specified timestamp state.
927 */
928 mode = sc->ppsparam.mode;
929 #ifdef PPS_SYNC
930 if (mode & PPS_HARDPPSONASSERT) {
931 mode |= PPS_CAPTUREASSERT;
932 /* XXX revoke any previous HARDPPS source */
933 }
934 if (mode & PPS_HARDPPSONCLEAR) {
935 mode |= PPS_CAPTURECLEAR;
936 /* XXX revoke any previous HARDPPS source */
937 }
938 #endif /* PPS_SYNC */
939 switch (mode & PPS_CAPTUREBOTH) {
940 case 0:
941 sc->sc_ppsmask = 0;
942 break;
943
944 case PPS_CAPTUREASSERT:
945 sc->sc_ppsmask = MSR_DCD;
946 sc->sc_ppsassert = MSR_DCD;
947 sc->sc_ppsclear = -1;
948 break;
949
950 case PPS_CAPTURECLEAR:
951 sc->sc_ppsmask = MSR_DCD;
952 sc->sc_ppsassert = -1;
953 sc->sc_ppsclear = 0;
954 break;
955
956 case PPS_CAPTUREBOTH:
957 sc->sc_ppsmask = MSR_DCD;
958 sc->sc_ppsassert = MSR_DCD;
959 sc->sc_ppsclear = 0;
960 break;
961
962 default:
963 error = EINVAL;
964 break;
965 }
966 break;
967 }
968
969 case PPS_IOC_GETCAP:
970 *(int*)data = ppscap;
971 break;
972
973 case PPS_IOC_FETCH: {
974 pps_info_t *pi;
975 pi = (pps_info_t *)data;
976 *pi = sc->ppsinfo;
977 break;
978 }
979
980 case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */
981 /*
982 * Some GPS clocks models use the falling rather than
983 * rising edge as the on-the-second signal.
984 * The old API has no way to specify PPS polarity.
985 */
986 sc->sc_ppsmask = MSR_DCD;
987 #ifndef PPS_TRAILING_EDGE
988 sc->sc_ppsassert = MSR_DCD;
989 sc->sc_ppsclear = -1;
990 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
991 &sc->ppsinfo.assert_timestamp);
992 #else
993 sc->sc_ppsassert = -1
994 sc->sc_ppsclear = 0;
995 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
996 &sc->ppsinfo.clear_timestamp);
997 #endif
998 break;
999
1000 default:
1001 error = EPASSTHROUGH;
1002 break;
1003 }
1004
1005 PLCOM_UNLOCK(sc);
1006 splx(s);
1007
1008 #ifdef PLCOM_DEBUG
1009 if (plcom_debug)
1010 plcomstatus(sc, "plcomioctl ");
1011 #endif
1012
1013 return error;
1014 }
1015
1016 integrate void
1017 plcom_schedrx(struct plcom_softc *sc)
1018 {
1019
1020 sc->sc_rx_ready = 1;
1021
1022 /* Wake up the poller. */
1023 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
1024 softintr_schedule(sc->sc_si);
1025 #else
1026 #ifndef __NO_SOFT_SERIAL_INTERRUPT
1027 setsoftserial();
1028 #else
1029 if (!plcom_softintr_scheduled) {
1030 plcom_softintr_scheduled = 1;
1031 callout_reset(&plcomsoft_callout, 1, plcomsoft, NULL);
1032 }
1033 #endif
1034 #endif
1035 }
1036
1037 void
1038 plcom_break(struct plcom_softc *sc, int onoff)
1039 {
1040
1041 if (onoff)
1042 SET(sc->sc_lcr, LCR_BRK);
1043 else
1044 CLR(sc->sc_lcr, LCR_BRK);
1045
1046 if (!sc->sc_heldchange) {
1047 if (sc->sc_tx_busy) {
1048 sc->sc_heldtbc = sc->sc_tbc;
1049 sc->sc_tbc = 0;
1050 sc->sc_heldchange = 1;
1051 } else
1052 plcom_loadchannelregs(sc);
1053 }
1054 }
1055
1056 void
1057 plcom_modem(struct plcom_softc *sc, int onoff)
1058 {
1059
1060 if (sc->sc_mcr_dtr == 0)
1061 return;
1062
1063 if (onoff)
1064 SET(sc->sc_mcr, sc->sc_mcr_dtr);
1065 else
1066 CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1067
1068 if (!sc->sc_heldchange) {
1069 if (sc->sc_tx_busy) {
1070 sc->sc_heldtbc = sc->sc_tbc;
1071 sc->sc_tbc = 0;
1072 sc->sc_heldchange = 1;
1073 } else
1074 plcom_loadchannelregs(sc);
1075 }
1076 }
1077
1078 void
1079 tiocm_to_plcom(struct plcom_softc *sc, u_long how, int ttybits)
1080 {
1081 u_char plcombits;
1082
1083 plcombits = 0;
1084 if (ISSET(ttybits, TIOCM_DTR))
1085 SET(plcombits, MCR_DTR);
1086 if (ISSET(ttybits, TIOCM_RTS))
1087 SET(plcombits, MCR_RTS);
1088
1089 switch (how) {
1090 case TIOCMBIC:
1091 CLR(sc->sc_mcr, plcombits);
1092 break;
1093
1094 case TIOCMBIS:
1095 SET(sc->sc_mcr, plcombits);
1096 break;
1097
1098 case TIOCMSET:
1099 CLR(sc->sc_mcr, MCR_DTR | MCR_RTS);
1100 SET(sc->sc_mcr, plcombits);
1101 break;
1102 }
1103
1104 if (!sc->sc_heldchange) {
1105 if (sc->sc_tx_busy) {
1106 sc->sc_heldtbc = sc->sc_tbc;
1107 sc->sc_tbc = 0;
1108 sc->sc_heldchange = 1;
1109 } else
1110 plcom_loadchannelregs(sc);
1111 }
1112 }
1113
1114 int
1115 plcom_to_tiocm(struct plcom_softc *sc)
1116 {
1117 u_char plcombits;
1118 int ttybits = 0;
1119
1120 plcombits = sc->sc_mcr;
1121 if (ISSET(plcombits, MCR_DTR))
1122 SET(ttybits, TIOCM_DTR);
1123 if (ISSET(plcombits, MCR_RTS))
1124 SET(ttybits, TIOCM_RTS);
1125
1126 plcombits = sc->sc_msr;
1127 if (ISSET(plcombits, MSR_DCD))
1128 SET(ttybits, TIOCM_CD);
1129 if (ISSET(plcombits, MSR_CTS))
1130 SET(ttybits, TIOCM_CTS);
1131 if (ISSET(plcombits, MSR_DSR))
1132 SET(ttybits, TIOCM_DSR);
1133
1134 if (sc->sc_cr != 0)
1135 SET(ttybits, TIOCM_LE);
1136
1137 return ttybits;
1138 }
1139
1140 static u_char
1141 cflag2lcr(tcflag_t cflag)
1142 {
1143 u_char lcr = 0;
1144
1145 switch (ISSET(cflag, CSIZE)) {
1146 case CS5:
1147 SET(lcr, LCR_5BITS);
1148 break;
1149 case CS6:
1150 SET(lcr, LCR_6BITS);
1151 break;
1152 case CS7:
1153 SET(lcr, LCR_7BITS);
1154 break;
1155 case CS8:
1156 SET(lcr, LCR_8BITS);
1157 break;
1158 }
1159 if (ISSET(cflag, PARENB)) {
1160 SET(lcr, LCR_PEN);
1161 if (!ISSET(cflag, PARODD))
1162 SET(lcr, LCR_EPS);
1163 }
1164 if (ISSET(cflag, CSTOPB))
1165 SET(lcr, LCR_STP2);
1166
1167 return lcr;
1168 }
1169
1170 int
1171 plcomparam(struct tty *tp, struct termios *t)
1172 {
1173 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(tp->t_dev));
1174 int ospeed;
1175 u_char lcr;
1176 int s;
1177
1178 if (PLCOM_ISALIVE(sc) == 0)
1179 return EIO;
1180
1181 ospeed = plcomspeed(t->c_ospeed, sc->sc_frequency);
1182
1183 /* Check requested parameters. */
1184 if (ospeed < 0)
1185 return EINVAL;
1186 if (t->c_ispeed && t->c_ispeed != t->c_ospeed)
1187 return EINVAL;
1188
1189 /*
1190 * For the console, always force CLOCAL and !HUPCL, so that the port
1191 * is always active.
1192 */
1193 if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR) ||
1194 ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
1195 SET(t->c_cflag, CLOCAL);
1196 CLR(t->c_cflag, HUPCL);
1197 }
1198
1199 /*
1200 * If there were no changes, don't do anything. This avoids dropping
1201 * input and improves performance when all we did was frob things like
1202 * VMIN and VTIME.
1203 */
1204 if (tp->t_ospeed == t->c_ospeed &&
1205 tp->t_cflag == t->c_cflag)
1206 return 0;
1207
1208 lcr = ISSET(sc->sc_lcr, LCR_BRK) | cflag2lcr(t->c_cflag);
1209
1210 s = splserial();
1211 PLCOM_LOCK(sc);
1212
1213 sc->sc_lcr = lcr;
1214
1215 /*
1216 * PL010 has a fixed-length FIFO trigger point.
1217 */
1218 if (ISSET(sc->sc_hwflags, PLCOM_HW_FIFO))
1219 sc->sc_fifo = 1;
1220 else
1221 sc->sc_fifo = 0;
1222
1223 if (sc->sc_fifo)
1224 SET(sc->sc_lcr, LCR_FEN);
1225
1226 /*
1227 * If we're not in a mode that assumes a connection is present, then
1228 * ignore carrier changes.
1229 */
1230 if (ISSET(t->c_cflag, CLOCAL | MDMBUF))
1231 sc->sc_msr_dcd = 0;
1232 else
1233 sc->sc_msr_dcd = MSR_DCD;
1234 /*
1235 * Set the flow control pins depending on the current flow control
1236 * mode.
1237 */
1238 if (ISSET(t->c_cflag, CRTSCTS)) {
1239 sc->sc_mcr_dtr = MCR_DTR;
1240 sc->sc_mcr_rts = MCR_RTS;
1241 sc->sc_msr_cts = MSR_CTS;
1242 } else if (ISSET(t->c_cflag, MDMBUF)) {
1243 /*
1244 * For DTR/DCD flow control, make sure we don't toggle DTR for
1245 * carrier detection.
1246 */
1247 sc->sc_mcr_dtr = 0;
1248 sc->sc_mcr_rts = MCR_DTR;
1249 sc->sc_msr_cts = MSR_DCD;
1250 } else {
1251 /*
1252 * If no flow control, then always set RTS. This will make
1253 * the other side happy if it mistakenly thinks we're doing
1254 * RTS/CTS flow control.
1255 */
1256 sc->sc_mcr_dtr = MCR_DTR | MCR_RTS;
1257 sc->sc_mcr_rts = 0;
1258 sc->sc_msr_cts = 0;
1259 if (ISSET(sc->sc_mcr, MCR_DTR))
1260 SET(sc->sc_mcr, MCR_RTS);
1261 else
1262 CLR(sc->sc_mcr, MCR_RTS);
1263 }
1264 sc->sc_msr_mask = sc->sc_msr_cts | sc->sc_msr_dcd;
1265
1266 #if 0
1267 if (ospeed == 0)
1268 CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1269 else
1270 SET(sc->sc_mcr, sc->sc_mcr_dtr);
1271 #endif
1272
1273 sc->sc_dlbl = ospeed;
1274 sc->sc_dlbh = ospeed >> 8;
1275
1276 /* And copy to tty. */
1277 tp->t_ispeed = 0;
1278 tp->t_ospeed = t->c_ospeed;
1279 tp->t_cflag = t->c_cflag;
1280
1281 if (!sc->sc_heldchange) {
1282 if (sc->sc_tx_busy) {
1283 sc->sc_heldtbc = sc->sc_tbc;
1284 sc->sc_tbc = 0;
1285 sc->sc_heldchange = 1;
1286 } else
1287 plcom_loadchannelregs(sc);
1288 }
1289
1290 if (!ISSET(t->c_cflag, CHWFLOW)) {
1291 /* Disable the high water mark. */
1292 sc->sc_r_hiwat = 0;
1293 sc->sc_r_lowat = 0;
1294 if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1295 CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1296 plcom_schedrx(sc);
1297 }
1298 if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
1299 CLR(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
1300 plcom_hwiflow(sc);
1301 }
1302 } else {
1303 sc->sc_r_hiwat = plcom_rbuf_hiwat;
1304 sc->sc_r_lowat = plcom_rbuf_lowat;
1305 }
1306
1307 PLCOM_UNLOCK(sc);
1308 splx(s);
1309
1310 /*
1311 * Update the tty layer's idea of the carrier bit, in case we changed
1312 * CLOCAL or MDMBUF. We don't hang up here; we only do that by
1313 * explicit request.
1314 */
1315 (void) (*tp->t_linesw->l_modem)(tp, ISSET(sc->sc_msr, MSR_DCD));
1316
1317 #ifdef PLCOM_DEBUG
1318 if (plcom_debug)
1319 plcomstatus(sc, "plcomparam ");
1320 #endif
1321
1322 if (!ISSET(t->c_cflag, CHWFLOW)) {
1323 if (sc->sc_tx_stopped) {
1324 sc->sc_tx_stopped = 0;
1325 plcomstart(tp);
1326 }
1327 }
1328
1329 return 0;
1330 }
1331
1332 void
1333 plcom_iflush(struct plcom_softc *sc)
1334 {
1335 bus_space_tag_t iot = sc->sc_iot;
1336 bus_space_handle_t ioh = sc->sc_ioh;
1337 #ifdef DIAGNOSTIC
1338 int reg;
1339 #endif
1340 int timo;
1341
1342 #ifdef DIAGNOSTIC
1343 reg = 0xffff;
1344 #endif
1345 timo = 50000;
1346 /* flush any pending I/O */
1347 while (! ISSET(bus_space_read_1(iot, ioh, plcom_fr), FR_RXFE)
1348 && --timo)
1349 #ifdef DIAGNOSTIC
1350 reg =
1351 #else
1352 (void)
1353 #endif
1354 bus_space_read_1(iot, ioh, plcom_dr);
1355 #ifdef DIAGNOSTIC
1356 if (!timo)
1357 printf("%s: plcom_iflush timeout %02x\n", sc->sc_dev.dv_xname,
1358 reg);
1359 #endif
1360 }
1361
1362 void
1363 plcom_loadchannelregs(struct plcom_softc *sc)
1364 {
1365 bus_space_tag_t iot = sc->sc_iot;
1366 bus_space_handle_t ioh = sc->sc_ioh;
1367
1368 /* XXXXX necessary? */
1369 plcom_iflush(sc);
1370
1371 bus_space_write_1(iot, ioh, plcom_cr, 0);
1372
1373 bus_space_write_1(iot, ioh, plcom_dlbl, sc->sc_dlbl);
1374 bus_space_write_1(iot, ioh, plcom_dlbh, sc->sc_dlbh);
1375 bus_space_write_1(iot, ioh, plcom_lcr, sc->sc_lcr);
1376 /* XXX device_unit() abuse */
1377 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev),
1378 sc->sc_mcr_active = sc->sc_mcr);
1379
1380 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
1381 }
1382
1383 int
1384 plcomhwiflow(struct tty *tp, int block)
1385 {
1386 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(tp->t_dev));
1387 int s;
1388
1389 if (PLCOM_ISALIVE(sc) == 0)
1390 return 0;
1391
1392 if (sc->sc_mcr_rts == 0)
1393 return 0;
1394
1395 s = splserial();
1396 PLCOM_LOCK(sc);
1397
1398 if (block) {
1399 if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1400 SET(sc->sc_rx_flags, RX_TTY_BLOCKED);
1401 plcom_hwiflow(sc);
1402 }
1403 } else {
1404 if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1405 CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1406 plcom_schedrx(sc);
1407 }
1408 if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1409 CLR(sc->sc_rx_flags, RX_TTY_BLOCKED);
1410 plcom_hwiflow(sc);
1411 }
1412 }
1413
1414 PLCOM_UNLOCK(sc);
1415 splx(s);
1416 return 1;
1417 }
1418
1419 /*
1420 * (un)block input via hw flowcontrol
1421 */
1422 void
1423 plcom_hwiflow(struct plcom_softc *sc)
1424 {
1425 if (sc->sc_mcr_rts == 0)
1426 return;
1427
1428 if (ISSET(sc->sc_rx_flags, RX_ANY_BLOCK)) {
1429 CLR(sc->sc_mcr, sc->sc_mcr_rts);
1430 CLR(sc->sc_mcr_active, sc->sc_mcr_rts);
1431 } else {
1432 SET(sc->sc_mcr, sc->sc_mcr_rts);
1433 SET(sc->sc_mcr_active, sc->sc_mcr_rts);
1434 }
1435 /* XXX device_unit() abuse */
1436 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev),
1437 sc->sc_mcr_active);
1438 }
1439
1440
1441 void
1442 plcomstart(struct tty *tp)
1443 {
1444 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(tp->t_dev));
1445 bus_space_tag_t iot = sc->sc_iot;
1446 bus_space_handle_t ioh = sc->sc_ioh;
1447 int s;
1448
1449 if (PLCOM_ISALIVE(sc) == 0)
1450 return;
1451
1452 s = spltty();
1453 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
1454 goto out;
1455 if (sc->sc_tx_stopped)
1456 goto out;
1457
1458 if (tp->t_outq.c_cc <= tp->t_lowat) {
1459 if (ISSET(tp->t_state, TS_ASLEEP)) {
1460 CLR(tp->t_state, TS_ASLEEP);
1461 wakeup(&tp->t_outq);
1462 }
1463 selwakeup(&tp->t_wsel);
1464 if (tp->t_outq.c_cc == 0)
1465 goto out;
1466 }
1467
1468 /* Grab the first contiguous region of buffer space. */
1469 {
1470 u_char *tba;
1471 int tbc;
1472
1473 tba = tp->t_outq.c_cf;
1474 tbc = ndqb(&tp->t_outq, 0);
1475
1476 (void)splserial();
1477 PLCOM_LOCK(sc);
1478
1479 sc->sc_tba = tba;
1480 sc->sc_tbc = tbc;
1481 }
1482
1483 SET(tp->t_state, TS_BUSY);
1484 sc->sc_tx_busy = 1;
1485
1486 /* Enable transmit completion interrupts if necessary. */
1487 if (!ISSET(sc->sc_cr, CR_TIE)) {
1488 SET(sc->sc_cr, CR_TIE);
1489 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
1490 }
1491
1492 /* Output the first chunk of the contiguous buffer. */
1493 {
1494 int n;
1495
1496 n = sc->sc_tbc;
1497 if (n > sc->sc_fifolen)
1498 n = sc->sc_fifolen;
1499 bus_space_write_multi_1(iot, ioh, plcom_dr, sc->sc_tba, n);
1500 sc->sc_tbc -= n;
1501 sc->sc_tba += n;
1502 }
1503 PLCOM_UNLOCK(sc);
1504 out:
1505 splx(s);
1506 return;
1507 }
1508
1509 /*
1510 * Stop output on a line.
1511 */
1512 void
1513 plcomstop(struct tty *tp, int flag)
1514 {
1515 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(tp->t_dev));
1516 int s;
1517
1518 s = splserial();
1519 PLCOM_LOCK(sc);
1520 if (ISSET(tp->t_state, TS_BUSY)) {
1521 /* Stop transmitting at the next chunk. */
1522 sc->sc_tbc = 0;
1523 sc->sc_heldtbc = 0;
1524 if (!ISSET(tp->t_state, TS_TTSTOP))
1525 SET(tp->t_state, TS_FLUSH);
1526 }
1527 PLCOM_UNLOCK(sc);
1528 splx(s);
1529 }
1530
1531 void
1532 plcomdiag(void *arg)
1533 {
1534 struct plcom_softc *sc = arg;
1535 int overflows, floods;
1536 int s;
1537
1538 s = splserial();
1539 PLCOM_LOCK(sc);
1540 overflows = sc->sc_overflows;
1541 sc->sc_overflows = 0;
1542 floods = sc->sc_floods;
1543 sc->sc_floods = 0;
1544 sc->sc_errors = 0;
1545 PLCOM_UNLOCK(sc);
1546 splx(s);
1547
1548 log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
1549 sc->sc_dev.dv_xname,
1550 overflows, overflows == 1 ? "" : "s",
1551 floods, floods == 1 ? "" : "s");
1552 }
1553
1554 integrate void
1555 plcom_rxsoft(struct plcom_softc *sc, struct tty *tp)
1556 {
1557 int (*rint) (int, struct tty *) = tp->t_linesw->l_rint;
1558 u_char *get, *end;
1559 u_int cc, scc;
1560 u_char rsr;
1561 int code;
1562 int s;
1563
1564 end = sc->sc_ebuf;
1565 get = sc->sc_rbget;
1566 scc = cc = plcom_rbuf_size - sc->sc_rbavail;
1567
1568 if (cc == plcom_rbuf_size) {
1569 sc->sc_floods++;
1570 if (sc->sc_errors++ == 0)
1571 callout_reset(&sc->sc_diag_callout, 60 * hz,
1572 plcomdiag, sc);
1573 }
1574
1575 while (cc) {
1576 code = get[0];
1577 rsr = get[1];
1578 if (ISSET(rsr, RSR_OE | RSR_BE | RSR_FE | RSR_PE)) {
1579 if (ISSET(rsr, RSR_OE)) {
1580 sc->sc_overflows++;
1581 if (sc->sc_errors++ == 0)
1582 callout_reset(&sc->sc_diag_callout,
1583 60 * hz, plcomdiag, sc);
1584 }
1585 if (ISSET(rsr, RSR_BE | RSR_FE))
1586 SET(code, TTY_FE);
1587 if (ISSET(rsr, RSR_PE))
1588 SET(code, TTY_PE);
1589 }
1590 if ((*rint)(code, tp) == -1) {
1591 /*
1592 * The line discipline's buffer is out of space.
1593 */
1594 if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1595 /*
1596 * We're either not using flow control, or the
1597 * line discipline didn't tell us to block for
1598 * some reason. Either way, we have no way to
1599 * know when there's more space available, so
1600 * just drop the rest of the data.
1601 */
1602 get += cc << 1;
1603 if (get >= end)
1604 get -= plcom_rbuf_size << 1;
1605 cc = 0;
1606 } else {
1607 /*
1608 * Don't schedule any more receive processing
1609 * until the line discipline tells us there's
1610 * space available (through plcomhwiflow()).
1611 * Leave the rest of the data in the input
1612 * buffer.
1613 */
1614 SET(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1615 }
1616 break;
1617 }
1618 get += 2;
1619 if (get >= end)
1620 get = sc->sc_rbuf;
1621 cc--;
1622 }
1623
1624 if (cc != scc) {
1625 sc->sc_rbget = get;
1626 s = splserial();
1627 PLCOM_LOCK(sc);
1628
1629 cc = sc->sc_rbavail += scc - cc;
1630 /* Buffers should be ok again, release possible block. */
1631 if (cc >= sc->sc_r_lowat) {
1632 if (ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1633 CLR(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
1634 SET(sc->sc_cr, CR_RIE | CR_RTIE);
1635 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
1636 }
1637 if (ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED)) {
1638 CLR(sc->sc_rx_flags, RX_IBUF_BLOCKED);
1639 plcom_hwiflow(sc);
1640 }
1641 }
1642 PLCOM_UNLOCK(sc);
1643 splx(s);
1644 }
1645 }
1646
1647 integrate void
1648 plcom_txsoft(struct plcom_softc *sc, struct tty *tp)
1649 {
1650
1651 CLR(tp->t_state, TS_BUSY);
1652 if (ISSET(tp->t_state, TS_FLUSH))
1653 CLR(tp->t_state, TS_FLUSH);
1654 else
1655 ndflush(&tp->t_outq, (int)(sc->sc_tba - tp->t_outq.c_cf));
1656 (*tp->t_linesw->l_start)(tp);
1657 }
1658
1659 integrate void
1660 plcom_stsoft(struct plcom_softc *sc, struct tty *tp)
1661 {
1662 u_char msr, delta;
1663 int s;
1664
1665 s = splserial();
1666 PLCOM_LOCK(sc);
1667 msr = sc->sc_msr;
1668 delta = sc->sc_msr_delta;
1669 sc->sc_msr_delta = 0;
1670 PLCOM_UNLOCK(sc);
1671 splx(s);
1672
1673 if (ISSET(delta, sc->sc_msr_dcd)) {
1674 /*
1675 * Inform the tty layer that carrier detect changed.
1676 */
1677 (void) (*tp->t_linesw->l_modem)(tp, ISSET(msr, MSR_DCD));
1678 }
1679
1680 if (ISSET(delta, sc->sc_msr_cts)) {
1681 /* Block or unblock output according to flow control. */
1682 if (ISSET(msr, sc->sc_msr_cts)) {
1683 sc->sc_tx_stopped = 0;
1684 (*tp->t_linesw->l_start)(tp);
1685 } else {
1686 sc->sc_tx_stopped = 1;
1687 }
1688 }
1689
1690 #ifdef PLCOM_DEBUG
1691 if (plcom_debug)
1692 plcomstatus(sc, "plcom_stsoft");
1693 #endif
1694 }
1695
1696 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
1697 void
1698 plcomsoft(void *arg)
1699 {
1700 struct plcom_softc *sc = arg;
1701 struct tty *tp;
1702
1703 if (PLCOM_ISALIVE(sc) == 0)
1704 return;
1705
1706 {
1707 #else
1708 void
1709 #ifndef __NO_SOFT_SERIAL_INTERRUPT
1710 plcomsoft(void)
1711 #else
1712 plcomsoft(void *arg)
1713 #endif
1714 {
1715 struct plcom_softc *sc;
1716 struct tty *tp;
1717 int unit;
1718 #ifdef __NO_SOFT_SERIAL_INTERRUPT
1719 int s;
1720
1721 s = splsoftserial();
1722 plcom_softintr_scheduled = 0;
1723 #endif
1724
1725 for (unit = 0; unit < plcom_cd.cd_ndevs; unit++) {
1726 sc = device_lookup(&plcom_cd, unit);
1727 if (sc == NULL || !ISSET(sc->sc_hwflags, PLCOM_HW_DEV_OK))
1728 continue;
1729
1730 if (PLCOM_ISALIVE(sc) == 0)
1731 continue;
1732
1733 tp = sc->sc_tty;
1734 if (tp == NULL)
1735 continue;
1736 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0)
1737 continue;
1738 #endif
1739 tp = sc->sc_tty;
1740
1741 if (sc->sc_rx_ready) {
1742 sc->sc_rx_ready = 0;
1743 plcom_rxsoft(sc, tp);
1744 }
1745
1746 if (sc->sc_st_check) {
1747 sc->sc_st_check = 0;
1748 plcom_stsoft(sc, tp);
1749 }
1750
1751 if (sc->sc_tx_done) {
1752 sc->sc_tx_done = 0;
1753 plcom_txsoft(sc, tp);
1754 }
1755 }
1756
1757 #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS
1758 #ifdef __NO_SOFT_SERIAL_INTERRUPT
1759 splx(s);
1760 #endif
1761 #endif
1762 }
1763
1764 #ifdef __ALIGN_BRACKET_LEVEL_FOR_CTAGS
1765 /* there has got to be a better way to do plcomsoft() */
1766 }}
1767 #endif
1768
1769 int
1770 plcomintr(void *arg)
1771 {
1772 struct plcom_softc *sc = arg;
1773 bus_space_tag_t iot = sc->sc_iot;
1774 bus_space_handle_t ioh = sc->sc_ioh;
1775 u_char *put, *end;
1776 u_int cc;
1777 u_char rsr, iir;
1778
1779 if (PLCOM_ISALIVE(sc) == 0)
1780 return 0;
1781
1782 PLCOM_LOCK(sc);
1783 iir = bus_space_read_1(iot, ioh, plcom_iir);
1784 if (! ISSET(iir, IIR_IMASK)) {
1785 PLCOM_UNLOCK(sc);
1786 return 0;
1787 }
1788
1789 end = sc->sc_ebuf;
1790 put = sc->sc_rbput;
1791 cc = sc->sc_rbavail;
1792
1793 do {
1794 u_char msr, delta, fr;
1795
1796 fr = bus_space_read_1(iot, ioh, plcom_fr);
1797
1798 if (!ISSET(fr, FR_RXFE) &&
1799 !ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1800 while (cc > 0) {
1801 int cn_trapped = 0;
1802 put[0] = bus_space_read_1(iot, ioh,
1803 plcom_dr);
1804 rsr = bus_space_read_1(iot, ioh, plcom_rsr);
1805 /* Clear any error status. */
1806 if (ISSET(rsr,
1807 (RSR_BE | RSR_OE | RSR_PE | RSR_FE)))
1808 bus_space_write_1(iot, ioh, plcom_ecr,
1809 0);
1810 if (ISSET(rsr, RSR_BE)) {
1811 cn_trapped = 0;
1812 cn_check_magic(sc->sc_tty->t_dev,
1813 CNC_BREAK, plcom_cnm_state);
1814 if (cn_trapped)
1815 continue;
1816 #if defined(KGDB)
1817 if (ISSET(sc->sc_hwflags,
1818 PLCOM_HW_KGDB)) {
1819 kgdb_connect(1);
1820 continue;
1821 }
1822 #endif
1823 }
1824
1825 put[1] = rsr;
1826 cn_trapped = 0;
1827 cn_check_magic(sc->sc_tty->t_dev,
1828 put[0], plcom_cnm_state);
1829 if (cn_trapped) {
1830 fr = bus_space_read_1(iot, ioh,
1831 plcom_fr);
1832 if (ISSET(fr, FR_RXFE))
1833 break;
1834
1835 continue;
1836 }
1837 put += 2;
1838 if (put >= end)
1839 put = sc->sc_rbuf;
1840 cc--;
1841
1842 fr = bus_space_read_1(iot, ioh, plcom_fr);
1843 if (ISSET(fr, FR_RXFE))
1844 break;
1845 }
1846
1847 /*
1848 * Current string of incoming characters ended because
1849 * no more data was available or we ran out of space.
1850 * Schedule a receive event if any data was received.
1851 * If we're out of space, turn off receive interrupts.
1852 */
1853 sc->sc_rbput = put;
1854 sc->sc_rbavail = cc;
1855 if (!ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED))
1856 sc->sc_rx_ready = 1;
1857
1858 /*
1859 * See if we are in danger of overflowing a buffer. If
1860 * so, use hardware flow control to ease the pressure.
1861 */
1862 if (!ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED) &&
1863 cc < sc->sc_r_hiwat) {
1864 SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
1865 plcom_hwiflow(sc);
1866 }
1867
1868 /*
1869 * If we're out of space, disable receive interrupts
1870 * until the queue has drained a bit.
1871 */
1872 if (!cc) {
1873 SET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
1874 CLR(sc->sc_cr, CR_RIE | CR_RTIE);
1875 bus_space_write_1(iot, ioh, plcom_cr,
1876 sc->sc_cr);
1877 }
1878 } else {
1879 if (ISSET(iir, IIR_RIS)) {
1880 bus_space_write_1(iot, ioh, plcom_cr, 0);
1881 delay(10);
1882 bus_space_write_1(iot, ioh, plcom_cr,
1883 sc->sc_cr);
1884 continue;
1885 }
1886 }
1887
1888 msr = bus_space_read_1(iot, ioh, plcom_fr);
1889 delta = msr ^ sc->sc_msr;
1890 sc->sc_msr = msr;
1891 /* Clear any pending modem status interrupt. */
1892 if (iir & IIR_MIS)
1893 bus_space_write_1(iot, ioh, plcom_icr, 0);
1894 /*
1895 * Pulse-per-second (PSS) signals on edge of DCD?
1896 * Process these even if line discipline is ignoring DCD.
1897 */
1898 if (delta & sc->sc_ppsmask) {
1899 struct timeval tv;
1900 if ((msr & sc->sc_ppsmask) == sc->sc_ppsassert) {
1901 /* XXX nanotime() */
1902 microtime(&tv);
1903 TIMEVAL_TO_TIMESPEC(&tv,
1904 &sc->ppsinfo.assert_timestamp);
1905 if (sc->ppsparam.mode & PPS_OFFSETASSERT) {
1906 timespecadd(&sc->ppsinfo.assert_timestamp,
1907 &sc->ppsparam.assert_offset,
1908 &sc->ppsinfo.assert_timestamp);
1909 }
1910
1911 #ifdef PPS_SYNC
1912 if (sc->ppsparam.mode & PPS_HARDPPSONASSERT)
1913 hardpps(&tv, tv.tv_usec);
1914 #endif
1915 sc->ppsinfo.assert_sequence++;
1916 sc->ppsinfo.current_mode = sc->ppsparam.mode;
1917
1918 } else if ((msr & sc->sc_ppsmask) == sc->sc_ppsclear) {
1919 /* XXX nanotime() */
1920 microtime(&tv);
1921 TIMEVAL_TO_TIMESPEC(&tv,
1922 &sc->ppsinfo.clear_timestamp);
1923 if (sc->ppsparam.mode & PPS_OFFSETCLEAR) {
1924 timespecadd(&sc->ppsinfo.clear_timestamp,
1925 &sc->ppsparam.clear_offset,
1926 &sc->ppsinfo.clear_timestamp);
1927 }
1928
1929 #ifdef PPS_SYNC
1930 if (sc->ppsparam.mode & PPS_HARDPPSONCLEAR)
1931 hardpps(&tv, tv.tv_usec);
1932 #endif
1933 sc->ppsinfo.clear_sequence++;
1934 sc->ppsinfo.current_mode = sc->ppsparam.mode;
1935 }
1936 }
1937
1938 /*
1939 * Process normal status changes
1940 */
1941 if (ISSET(delta, sc->sc_msr_mask)) {
1942 SET(sc->sc_msr_delta, delta);
1943
1944 /*
1945 * Stop output immediately if we lose the output
1946 * flow control signal or carrier detect.
1947 */
1948 if (ISSET(~msr, sc->sc_msr_mask)) {
1949 sc->sc_tbc = 0;
1950 sc->sc_heldtbc = 0;
1951 #ifdef PLCOM_DEBUG
1952 if (plcom_debug)
1953 plcomstatus(sc, "plcomintr ");
1954 #endif
1955 }
1956
1957 sc->sc_st_check = 1;
1958 }
1959
1960 /*
1961 * Done handling any receive interrupts. See if data
1962 * can be * transmitted as well. Schedule tx done
1963 * event if no data left * and tty was marked busy.
1964 */
1965 if (ISSET(iir, IIR_TIS)) {
1966 /*
1967 * If we've delayed a parameter change, do it
1968 * now, and restart * output.
1969 */
1970 if (sc->sc_heldchange) {
1971 plcom_loadchannelregs(sc);
1972 sc->sc_heldchange = 0;
1973 sc->sc_tbc = sc->sc_heldtbc;
1974 sc->sc_heldtbc = 0;
1975 }
1976
1977 /*
1978 * Output the next chunk of the contiguous
1979 * buffer, if any.
1980 */
1981 if (sc->sc_tbc > 0) {
1982 int n;
1983
1984 n = sc->sc_tbc;
1985 if (n > sc->sc_fifolen)
1986 n = sc->sc_fifolen;
1987 bus_space_write_multi_1(iot, ioh, plcom_dr,
1988 sc->sc_tba, n);
1989 sc->sc_tbc -= n;
1990 sc->sc_tba += n;
1991 } else {
1992 /*
1993 * Disable transmit plcompletion
1994 * interrupts if necessary.
1995 */
1996 if (ISSET(sc->sc_cr, CR_TIE)) {
1997 CLR(sc->sc_cr, CR_TIE);
1998 bus_space_write_1(iot, ioh, plcom_cr,
1999 sc->sc_cr);
2000 }
2001 if (sc->sc_tx_busy) {
2002 sc->sc_tx_busy = 0;
2003 sc->sc_tx_done = 1;
2004 }
2005 }
2006 }
2007 } while (ISSET((iir = bus_space_read_1(iot, ioh, plcom_iir)),
2008 IIR_IMASK));
2009
2010 PLCOM_UNLOCK(sc);
2011
2012 /* Wake up the poller. */
2013 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
2014 softintr_schedule(sc->sc_si);
2015 #else
2016 #ifndef __NO_SOFT_SERIAL_INTERRUPT
2017 setsoftserial();
2018 #else
2019 if (!plcom_softintr_scheduled) {
2020 plcom_softintr_scheduled = 1;
2021 callout_reset(&plcomsoft_callout, 1, plcomsoft, NULL);
2022 }
2023 #endif
2024 #endif
2025
2026 #if NRND > 0 && defined(RND_COM)
2027 rnd_add_uint32(&sc->rnd_source, iir | rsr);
2028 #endif
2029
2030 return 1;
2031 }
2032
2033 /*
2034 * The following functions are polled getc and putc routines, shared
2035 * by the console and kgdb glue.
2036 *
2037 * The read-ahead code is so that you can detect pending in-band
2038 * cn_magic in polled mode while doing output rather than having to
2039 * wait until the kernel decides it needs input.
2040 */
2041
2042 #define MAX_READAHEAD 20
2043 static int plcom_readahead[MAX_READAHEAD];
2044 static int plcom_readaheadcount = 0;
2045
2046 int
2047 plcom_common_getc(dev_t dev, bus_space_tag_t iot, bus_space_handle_t ioh)
2048 {
2049 int s = splserial();
2050 u_char stat, c;
2051
2052 /* got a character from reading things earlier */
2053 if (plcom_readaheadcount > 0) {
2054 int i;
2055
2056 c = plcom_readahead[0];
2057 for (i = 1; i < plcom_readaheadcount; i++) {
2058 plcom_readahead[i-1] = plcom_readahead[i];
2059 }
2060 plcom_readaheadcount--;
2061 splx(s);
2062 return c;
2063 }
2064
2065 /* block until a character becomes available */
2066 while (ISSET(stat = bus_space_read_1(iot, ioh, plcom_fr), FR_RXFE))
2067 ;
2068
2069 c = bus_space_read_1(iot, ioh, plcom_dr);
2070 stat = bus_space_read_1(iot, ioh, plcom_iir);
2071 {
2072 int cn_trapped = 0; /* unused */
2073 #ifdef DDB
2074 extern int db_active;
2075 if (!db_active)
2076 #endif
2077 cn_check_magic(dev, c, plcom_cnm_state);
2078 }
2079 splx(s);
2080 return c;
2081 }
2082
2083 void
2084 plcom_common_putc(dev_t dev, bus_space_tag_t iot, bus_space_handle_t ioh,
2085 int c)
2086 {
2087 int s = splserial();
2088 int timo;
2089
2090 int cin, stat;
2091 if (plcom_readaheadcount < MAX_READAHEAD
2092 && !ISSET(stat = bus_space_read_1(iot, ioh, plcom_fr), FR_RXFE)) {
2093 int cn_trapped = 0;
2094 cin = bus_space_read_1(iot, ioh, plcom_dr);
2095 stat = bus_space_read_1(iot, ioh, plcom_iir);
2096 cn_check_magic(dev, cin, plcom_cnm_state);
2097 plcom_readahead[plcom_readaheadcount++] = cin;
2098 }
2099
2100 /* wait for any pending transmission to finish */
2101 timo = 150000;
2102 while (!ISSET(bus_space_read_1(iot, ioh, plcom_fr), FR_TXFE) && --timo)
2103 continue;
2104
2105 bus_space_write_1(iot, ioh, plcom_dr, c);
2106 PLCOM_BARRIER(iot, ioh, BR | BW);
2107
2108 /* wait for this transmission to complete */
2109 timo = 1500000;
2110 while (!ISSET(bus_space_read_1(iot, ioh, plcom_fr), FR_TXFE) && --timo)
2111 continue;
2112
2113 splx(s);
2114 }
2115
2116 /*
2117 * Initialize UART for use as console or KGDB line.
2118 */
2119 int
2120 plcominit(bus_space_tag_t iot, bus_addr_t iobase, int rate, int frequency,
2121 tcflag_t cflag, bus_space_handle_t *iohp)
2122 {
2123 bus_space_handle_t ioh;
2124
2125 if (bus_space_map(iot, iobase, PLCOM_UART_SIZE, 0, &ioh))
2126 return ENOMEM; /* ??? */
2127
2128 rate = plcomspeed(rate, frequency);
2129 bus_space_write_1(iot, ioh, plcom_cr, 0);
2130 bus_space_write_1(iot, ioh, plcom_dlbl, rate);
2131 bus_space_write_1(iot, ioh, plcom_dlbh, rate >> 8);
2132 bus_space_write_1(iot, ioh, plcom_lcr, cflag2lcr(cflag) | LCR_FEN);
2133 bus_space_write_1(iot, ioh, plcom_cr, CR_UARTEN);
2134
2135 #if 0
2136 /* Ought to do something like this, but we have no sc to
2137 dereference. */
2138 /* XXX device_unit() abuse */
2139 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev),
2140 MCR_DTR | MCR_RTS);
2141 #endif
2142
2143 *iohp = ioh;
2144 return 0;
2145 }
2146
2147 /*
2148 * Following are all routines needed for PLCOM to act as console
2149 */
2150 struct consdev plcomcons = {
2151 NULL, NULL, plcomcngetc, plcomcnputc, plcomcnpollc, NULL,
2152 NULL, NULL, NODEV, CN_NORMAL
2153 };
2154
2155
2156 int
2157 plcomcnattach(bus_space_tag_t iot, bus_addr_t iobase, int rate, int frequency,
2158 tcflag_t cflag, int unit)
2159 {
2160 int res;
2161
2162 res = plcominit(iot, iobase, rate, frequency, cflag, &plcomconsioh);
2163 if (res)
2164 return res;
2165
2166 cn_tab = &plcomcons;
2167 cn_init_magic(&plcom_cnm_state);
2168 cn_set_magic("\047\001"); /* default magic is BREAK */
2169
2170 plcomconstag = iot;
2171 plcomconsunit = unit;
2172 plcomconsrate = rate;
2173 plcomconscflag = cflag;
2174
2175 return 0;
2176 }
2177
2178 void
2179 plcomcndetach(void)
2180 {
2181 bus_space_unmap(plcomconstag, plcomconsioh, PLCOM_UART_SIZE);
2182 plcomconstag = NULL;
2183
2184 cn_tab = NULL;
2185 }
2186
2187 int
2188 plcomcngetc(dev_t dev)
2189 {
2190 return plcom_common_getc(dev, plcomconstag, plcomconsioh);
2191 }
2192
2193 /*
2194 * Console kernel output character routine.
2195 */
2196 void
2197 plcomcnputc(dev_t dev, int c)
2198 {
2199 plcom_common_putc(dev, plcomconstag, plcomconsioh, c);
2200 }
2201
2202 void
2203 plcomcnpollc(dev_t dev, int on)
2204 {
2205
2206 }
2207
2208 #ifdef KGDB
2209 int
2210 plcom_kgdb_attach(bus_space_tag_t iot, bus_addr_t iobase, int rate,
2211 int frequency, tcflag_t cflag, int unit)
2212 {
2213 int res;
2214
2215 if (iot == plcomconstag && iobase == plcomconsunit)
2216 return EBUSY; /* cannot share with console */
2217
2218 res = plcominit(iot, iobase, rate, frequency, cflag, &plcom_kgdb_ioh);
2219 if (res)
2220 return res;
2221
2222 kgdb_attach(plcom_kgdb_getc, plcom_kgdb_putc, NULL);
2223 kgdb_dev = 123; /* unneeded, only to satisfy some tests */
2224
2225 plcom_kgdb_iot = iot;
2226 plcom_kgdb_unit = unit;
2227
2228 return 0;
2229 }
2230
2231 /* ARGSUSED */
2232 int
2233 plcom_kgdb_getc(void *arg)
2234 {
2235 return plcom_common_getc(NODEV, plcom_kgdb_iot, plcom_kgdb_ioh);
2236 }
2237
2238 /* ARGSUSED */
2239 void
2240 plcom_kgdb_putc(void *arg, int c)
2241 {
2242 plcom_common_putc(NODEV, plcom_kgdb_iot, plcom_kgdb_ioh, c);
2243 }
2244 #endif /* KGDB */
2245
2246 /* helper function to identify the plcom ports used by
2247 console or KGDB (and not yet autoconf attached) */
2248 int
2249 plcom_is_console(bus_space_tag_t iot, int unit,
2250 bus_space_handle_t *ioh)
2251 {
2252 bus_space_handle_t help;
2253
2254 if (!plcomconsattached &&
2255 iot == plcomconstag && unit == plcomconsunit)
2256 help = plcomconsioh;
2257 #ifdef KGDB
2258 else if (!plcom_kgdb_attached &&
2259 iot == plcom_kgdb_iot && unit == plcom_kgdb_unit)
2260 help = plcom_kgdb_ioh;
2261 #endif
2262 else
2263 return 0;
2264
2265 if (ioh)
2266 *ioh = help;
2267 return 1;
2268 }
2269