plcom.c revision 1.24 1 /* $NetBSD: plcom.c,v 1.24 2007/11/19 18:51:39 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001 ARM Ltd
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the company may not be used to endorse or promote
16 * products derived from this software without specific prior written
17 * permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
23 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
32 * All rights reserved.
33 *
34 * This code is derived from software contributed to The NetBSD Foundation
35 * by Charles M. Hannum.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the NetBSD
48 * Foundation, Inc. and its contributors.
49 * 4. Neither the name of The NetBSD Foundation nor the names of its
50 * contributors may be used to endorse or promote products derived
51 * from this software without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
54 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 * POSSIBILITY OF SUCH DAMAGE.
64 */
65
66 /*
67 * Copyright (c) 1991 The Regents of the University of California.
68 * All rights reserved.
69 *
70 * Redistribution and use in source and binary forms, with or without
71 * modification, are permitted provided that the following conditions
72 * are met:
73 * 1. Redistributions of source code must retain the above copyright
74 * notice, this list of conditions and the following disclaimer.
75 * 2. Redistributions in binary form must reproduce the above copyright
76 * notice, this list of conditions and the following disclaimer in the
77 * documentation and/or other materials provided with the distribution.
78 * 3. Neither the name of the University nor the names of its contributors
79 * may be used to endorse or promote products derived from this software
80 * without specific prior written permission.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
83 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
84 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
85 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
86 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
87 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
88 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
89 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
90 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
91 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
92 * SUCH DAMAGE.
93 *
94 * @(#)com.c 7.5 (Berkeley) 5/16/91
95 */
96
97 /*
98 * COM driver for the Prime Cell PL010 UART, which is similar to the 16C550,
99 * but has a completely different programmer's model.
100 * Derived from the NS16550AF com driver.
101 */
102
103 #include <sys/cdefs.h>
104 __KERNEL_RCSID(0, "$NetBSD: plcom.c,v 1.24 2007/11/19 18:51:39 ad Exp $");
105
106 #include "opt_plcom.h"
107 #include "opt_ddb.h"
108 #include "opt_kgdb.h"
109 #include "opt_lockdebug.h"
110 #include "opt_multiprocessor.h"
111
112 #include "rnd.h"
113 #if NRND > 0 && defined(RND_COM)
114 #include <sys/rnd.h>
115 #endif
116
117 /*
118 * Override cnmagic(9) macro before including <sys/systm.h>.
119 * We need to know if cn_check_magic triggered debugger, so set a flag.
120 * Callers of cn_check_magic must declare int cn_trapped = 0;
121 * XXX: this is *ugly*!
122 */
123 #define cn_trap() \
124 do { \
125 console_debugger(); \
126 cn_trapped = 1; \
127 } while (/* CONSTCOND */ 0)
128
129 #include <sys/param.h>
130 #include <sys/systm.h>
131 #include <sys/ioctl.h>
132 #include <sys/select.h>
133 #include <sys/tty.h>
134 #include <sys/proc.h>
135 #include <sys/user.h>
136 #include <sys/conf.h>
137 #include <sys/file.h>
138 #include <sys/uio.h>
139 #include <sys/kernel.h>
140 #include <sys/syslog.h>
141 #include <sys/types.h>
142 #include <sys/device.h>
143 #include <sys/malloc.h>
144 #include <sys/timepps.h>
145 #include <sys/vnode.h>
146 #include <sys/kauth.h>
147
148 #include <machine/intr.h>
149 #include <machine/bus.h>
150
151 #include <evbarm/dev/plcomreg.h>
152 #include <evbarm/dev/plcomvar.h>
153
154 #include <dev/cons.h>
155
156 static void plcom_enable_debugport (struct plcom_softc *);
157
158 void plcom_config (struct plcom_softc *);
159 void plcom_shutdown (struct plcom_softc *);
160 int plcomspeed (long, long);
161 static u_char cflag2lcr (tcflag_t);
162 int plcomparam (struct tty *, struct termios *);
163 void plcomstart (struct tty *);
164 int plcomhwiflow (struct tty *, int);
165
166 void plcom_loadchannelregs (struct plcom_softc *);
167 void plcom_hwiflow (struct plcom_softc *);
168 void plcom_break (struct plcom_softc *, int);
169 void plcom_modem (struct plcom_softc *, int);
170 void tiocm_to_plcom (struct plcom_softc *, u_long, int);
171 int plcom_to_tiocm (struct plcom_softc *);
172 void plcom_iflush (struct plcom_softc *);
173
174 int plcom_common_getc (dev_t, bus_space_tag_t, bus_space_handle_t);
175 void plcom_common_putc (dev_t, bus_space_tag_t, bus_space_handle_t, int);
176
177 int plcominit (bus_space_tag_t, bus_addr_t, int, int, tcflag_t,
178 bus_space_handle_t *);
179
180 dev_type_open(plcomopen);
181 dev_type_close(plcomclose);
182 dev_type_read(plcomread);
183 dev_type_write(plcomwrite);
184 dev_type_ioctl(plcomioctl);
185 dev_type_stop(plcomstop);
186 dev_type_tty(plcomtty);
187 dev_type_poll(plcompoll);
188
189 int plcomcngetc (dev_t);
190 void plcomcnputc (dev_t, int);
191 void plcomcnpollc (dev_t, int);
192
193 #define integrate static inline
194 void plcomsoft (void *);
195 integrate void plcom_rxsoft (struct plcom_softc *, struct tty *);
196 integrate void plcom_txsoft (struct plcom_softc *, struct tty *);
197 integrate void plcom_stsoft (struct plcom_softc *, struct tty *);
198 integrate void plcom_schedrx (struct plcom_softc *);
199 void plcomdiag (void *);
200
201 extern struct cfdriver plcom_cd;
202
203 const struct cdevsw plcom_cdevsw = {
204 plcomopen, plcomclose, plcomread, plcomwrite, plcomioctl,
205 plcomstop, plcomtty, plcompoll, nommap, ttykqfilter, D_TTY
206 };
207
208 /*
209 * Make this an option variable one can patch.
210 * But be warned: this must be a power of 2!
211 */
212 u_int plcom_rbuf_size = PLCOM_RING_SIZE;
213
214 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
215 u_int plcom_rbuf_hiwat = (PLCOM_RING_SIZE * 1) / 4;
216 u_int plcom_rbuf_lowat = (PLCOM_RING_SIZE * 3) / 4;
217
218 static int plcomconsunit = -1;
219 static bus_space_tag_t plcomconstag;
220 static bus_space_handle_t plcomconsioh;
221 static int plcomconsattached;
222 static int plcomconsrate;
223 static tcflag_t plcomconscflag;
224 static struct cnm_state plcom_cnm_state;
225
226 static int ppscap =
227 PPS_TSFMT_TSPEC |
228 PPS_CAPTUREASSERT |
229 PPS_CAPTURECLEAR |
230 #ifdef PPS_SYNC
231 PPS_HARDPPSONASSERT | PPS_HARDPPSONCLEAR |
232 #endif /* PPS_SYNC */
233 PPS_OFFSETASSERT | PPS_OFFSETCLEAR;
234
235 #ifdef KGDB
236 #include <sys/kgdb.h>
237
238 static int plcom_kgdb_unit;
239 static bus_space_tag_t plcom_kgdb_iot;
240 static bus_space_handle_t plcom_kgdb_ioh;
241 static int plcom_kgdb_attached;
242
243 int plcom_kgdb_getc (void *);
244 void plcom_kgdb_putc (void *, int);
245 #endif /* KGDB */
246
247 #define PLCOMUNIT_MASK 0x7ffff
248 #define PLCOMDIALOUT_MASK 0x80000
249
250 #define PLCOMUNIT(x) (minor(x) & PLCOMUNIT_MASK)
251 #define PLCOMDIALOUT(x) (minor(x) & PLCOMDIALOUT_MASK)
252
253 #define PLCOM_ISALIVE(sc) ((sc)->enabled != 0 && \
254 device_is_active(&(sc)->sc_dev))
255
256 #define BR BUS_SPACE_BARRIER_READ
257 #define BW BUS_SPACE_BARRIER_WRITE
258 #define PLCOM_BARRIER(t, h, f) bus_space_barrier((t), (h), 0, PLCOM_UART_SIZE, (f))
259
260 #define PLCOM_LOCK(sc) simple_lock(&(sc)->sc_lock)
261 #define PLCOM_UNLOCK(sc) simple_unlock(&(sc)->sc_lock)
262
263 int
264 plcomspeed(long speed, long frequency)
265 {
266 #define divrnd(n, q) (((n)*2/(q)+1)/2) /* divide and round off */
267
268 int x, err;
269
270 #if 0
271 if (speed == 0)
272 return 0;
273 #endif
274 if (speed <= 0)
275 return -1;
276 x = divrnd(frequency / 16, speed);
277 if (x <= 0)
278 return -1;
279 err = divrnd(((quad_t)frequency) * 1000 / 16, speed * x) - 1000;
280 if (err < 0)
281 err = -err;
282 if (err > PLCOM_TOLERANCE)
283 return -1;
284 return x;
285
286 #undef divrnd
287 }
288
289 #ifdef PLCOM_DEBUG
290 int plcom_debug = 0;
291
292 void plcomstatus (struct plcom_softc *, char *);
293 void
294 plcomstatus(struct plcom_softc *sc, char *str)
295 {
296 struct tty *tp = sc->sc_tty;
297
298 printf("%s: %s %sclocal %sdcd %sts_carr_on %sdtr %stx_stopped\n",
299 sc->sc_dev.dv_xname, str,
300 ISSET(tp->t_cflag, CLOCAL) ? "+" : "-",
301 ISSET(sc->sc_msr, MSR_DCD) ? "+" : "-",
302 ISSET(tp->t_state, TS_CARR_ON) ? "+" : "-",
303 ISSET(sc->sc_mcr, MCR_DTR) ? "+" : "-",
304 sc->sc_tx_stopped ? "+" : "-");
305
306 printf("%s: %s %scrtscts %scts %sts_ttstop %srts %xrx_flags\n",
307 sc->sc_dev.dv_xname, str,
308 ISSET(tp->t_cflag, CRTSCTS) ? "+" : "-",
309 ISSET(sc->sc_msr, MSR_CTS) ? "+" : "-",
310 ISSET(tp->t_state, TS_TTSTOP) ? "+" : "-",
311 ISSET(sc->sc_mcr, MCR_RTS) ? "+" : "-",
312 sc->sc_rx_flags);
313 }
314 #endif
315
316 int
317 plcomprobe1(bus_space_tag_t iot, bus_space_handle_t ioh)
318 {
319 int data;
320
321 /* Disable the UART. */
322 bus_space_write_1(iot, ioh, plcom_cr, 0);
323 /* Make sure the FIFO is off. */
324 bus_space_write_1(iot, ioh, plcom_lcr, LCR_8BITS);
325 /* Disable interrupts. */
326 bus_space_write_1(iot, ioh, plcom_iir, 0);
327
328 /* Make sure we swallow anything in the receiving register. */
329 data = bus_space_read_1(iot, ioh, plcom_dr);
330
331 if (bus_space_read_1(iot, ioh, plcom_lcr) != LCR_8BITS)
332 return 0;
333
334 data = bus_space_read_1(iot, ioh, plcom_fr) & (FR_RXFF | FR_RXFE);
335
336 if (data != FR_RXFE)
337 return 0;
338
339 return 1;
340 }
341
342 static void
343 plcom_enable_debugport(struct plcom_softc *sc)
344 {
345 int s;
346
347 /* Turn on line break interrupt, set carrier. */
348 s = splserial();
349 PLCOM_LOCK(sc);
350 sc->sc_cr = CR_RIE | CR_RTIE | CR_UARTEN;
351 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
352 SET(sc->sc_mcr, MCR_DTR | MCR_RTS);
353 /* XXX device_unit() abuse */
354 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev),
355 sc->sc_mcr);
356 PLCOM_UNLOCK(sc);
357 splx(s);
358 }
359
360 void
361 plcom_attach_subr(struct plcom_softc *sc)
362 {
363 int unit = sc->sc_iounit;
364 bus_space_tag_t iot = sc->sc_iot;
365 bus_space_handle_t ioh = sc->sc_ioh;
366 struct tty *tp;
367
368 callout_init(&sc->sc_diag_callout, 0);
369 simple_lock_init(&sc->sc_lock);
370
371 /* Disable interrupts before configuring the device. */
372 sc->sc_cr = 0;
373
374 if (plcomconstag && unit == plcomconsunit) {
375 plcomconsattached = 1;
376
377 plcomconstag = iot;
378 plcomconsioh = ioh;
379
380 /* Make sure the console is always "hardwired". */
381 delay(1000); /* wait for output to finish */
382 SET(sc->sc_hwflags, PLCOM_HW_CONSOLE);
383 SET(sc->sc_swflags, TIOCFLAG_SOFTCAR);
384 /* Must re-enable the console immediately, or we will
385 hang when trying to print. */
386 sc->sc_cr = CR_UARTEN;
387 }
388
389 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
390
391 /* The PL010 has a 16-byte fifo, but the tx interrupt triggers when
392 there is space for 8 more bytes. */
393 sc->sc_fifolen = 8;
394 printf("\n");
395
396 if (ISSET(sc->sc_hwflags, PLCOM_HW_TXFIFO_DISABLE)) {
397 sc->sc_fifolen = 1;
398 printf("%s: txfifo disabled\n", sc->sc_dev.dv_xname);
399 }
400
401 if (sc->sc_fifolen > 1)
402 SET(sc->sc_hwflags, PLCOM_HW_FIFO);
403
404 tp = ttymalloc();
405 tp->t_oproc = plcomstart;
406 tp->t_param = plcomparam;
407 tp->t_hwiflow = plcomhwiflow;
408
409 sc->sc_tty = tp;
410 sc->sc_rbuf = malloc(plcom_rbuf_size << 1, M_DEVBUF, M_NOWAIT);
411 sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
412 sc->sc_rbavail = plcom_rbuf_size;
413 if (sc->sc_rbuf == NULL) {
414 printf("%s: unable to allocate ring buffer\n",
415 sc->sc_dev.dv_xname);
416 return;
417 }
418 sc->sc_ebuf = sc->sc_rbuf + (plcom_rbuf_size << 1);
419
420 tty_attach(tp);
421
422 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
423 int maj;
424
425 /* locate the major number */
426 maj = cdevsw_lookup_major(&plcom_cdevsw);
427
428 cn_tab->cn_dev = makedev(maj, device_unit(&sc->sc_dev));
429
430 printf("%s: console\n", sc->sc_dev.dv_xname);
431 }
432
433 #ifdef KGDB
434 /*
435 * Allow kgdb to "take over" this port. If this is
436 * the kgdb device, it has exclusive use.
437 */
438 if (iot == plcom_kgdb_iot && unit == plcom_kgdb_unit) {
439 plcom_kgdb_attached = 1;
440
441 SET(sc->sc_hwflags, PLCOM_HW_KGDB);
442 printf("%s: kgdb\n", sc->sc_dev.dv_xname);
443 }
444 #endif
445
446 sc->sc_si = softintr_establish(IPL_SOFTSERIAL, plcomsoft, sc);
447
448 #if NRND > 0 && defined(RND_COM)
449 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
450 RND_TYPE_TTY, 0);
451 #endif
452
453 /* if there are no enable/disable functions, assume the device
454 is always enabled */
455 if (!sc->enable)
456 sc->enabled = 1;
457
458 plcom_config(sc);
459
460 SET(sc->sc_hwflags, PLCOM_HW_DEV_OK);
461 }
462
463 void
464 plcom_config(struct plcom_softc *sc)
465 {
466 bus_space_tag_t iot = sc->sc_iot;
467 bus_space_handle_t ioh = sc->sc_ioh;
468
469 /* Disable interrupts before configuring the device. */
470 sc->sc_cr = 0;
471 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
472
473 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE|PLCOM_HW_KGDB))
474 plcom_enable_debugport(sc);
475 }
476
477 int
478 plcom_detach(self, flags)
479 struct device *self;
480 int flags;
481 {
482 struct plcom_softc *sc = (struct plcom_softc *)self;
483 int maj, mn;
484
485 /* locate the major number */
486 maj = cdevsw_lookup_major(&plcom_cdevsw);
487
488 /* Nuke the vnodes for any open instances. */
489 mn = device_unit(self);
490 vdevgone(maj, mn, mn, VCHR);
491
492 mn |= PLCOMDIALOUT_MASK;
493 vdevgone(maj, mn, mn, VCHR);
494
495 /* Free the receive buffer. */
496 free(sc->sc_rbuf, M_DEVBUF);
497
498 /* Detach and free the tty. */
499 tty_detach(sc->sc_tty);
500 ttyfree(sc->sc_tty);
501
502 /* Unhook the soft interrupt handler. */
503 softintr_disestablish(sc->sc_si);
504
505 #if NRND > 0 && defined(RND_COM)
506 /* Unhook the entropy source. */
507 rnd_detach_source(&sc->rnd_source);
508 #endif
509
510 return 0;
511 }
512
513 int
514 plcom_activate(struct device *self, enum devact act)
515 {
516 struct plcom_softc *sc = (struct plcom_softc *)self;
517 int s, rv = 0;
518
519 s = splserial();
520 PLCOM_LOCK(sc);
521 switch (act) {
522 case DVACT_ACTIVATE:
523 rv = EOPNOTSUPP;
524 break;
525
526 case DVACT_DEACTIVATE:
527 if (sc->sc_hwflags & (PLCOM_HW_CONSOLE|PLCOM_HW_KGDB)) {
528 rv = EBUSY;
529 break;
530 }
531
532 if (sc->disable != NULL && sc->enabled != 0) {
533 (*sc->disable)(sc);
534 sc->enabled = 0;
535 }
536 break;
537 }
538
539 PLCOM_UNLOCK(sc);
540 splx(s);
541 return rv;
542 }
543
544 void
545 plcom_shutdown(struct plcom_softc *sc)
546 {
547 struct tty *tp = sc->sc_tty;
548 int s;
549
550 s = splserial();
551 PLCOM_LOCK(sc);
552
553 /* If we were asserting flow control, then deassert it. */
554 SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
555 plcom_hwiflow(sc);
556
557 /* Clear any break condition set with TIOCSBRK. */
558 plcom_break(sc, 0);
559
560 /* Turn off PPS capture on last close. */
561 sc->sc_ppsmask = 0;
562 sc->ppsparam.mode = 0;
563
564 /*
565 * Hang up if necessary. Wait a bit, so the other side has time to
566 * notice even if we immediately open the port again.
567 * Avoid tsleeping above splhigh().
568 */
569 if (ISSET(tp->t_cflag, HUPCL)) {
570 plcom_modem(sc, 0);
571 PLCOM_UNLOCK(sc);
572 splx(s);
573 /* XXX tsleep will only timeout */
574 (void) tsleep(sc, TTIPRI, ttclos, hz);
575 s = splserial();
576 PLCOM_LOCK(sc);
577 }
578
579 /* Turn off interrupts. */
580 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE))
581 /* interrupt on break */
582 sc->sc_cr = CR_RIE | CR_RTIE | CR_UARTEN;
583 else
584 sc->sc_cr = 0;
585 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
586
587 if (sc->disable) {
588 #ifdef DIAGNOSTIC
589 if (!sc->enabled)
590 panic("plcom_shutdown: not enabled?");
591 #endif
592 (*sc->disable)(sc);
593 sc->enabled = 0;
594 }
595 PLCOM_UNLOCK(sc);
596 splx(s);
597 }
598
599 int
600 plcomopen(dev_t dev, int flag, int mode, struct lwp *l)
601 {
602 struct plcom_softc *sc;
603 struct tty *tp;
604 int s, s2;
605 int error;
606
607 sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
608 if (sc == NULL || !ISSET(sc->sc_hwflags, PLCOM_HW_DEV_OK) ||
609 sc->sc_rbuf == NULL)
610 return ENXIO;
611
612 if (!device_is_active(&sc->sc_dev))
613 return ENXIO;
614
615 #ifdef KGDB
616 /*
617 * If this is the kgdb port, no other use is permitted.
618 */
619 if (ISSET(sc->sc_hwflags, PLCOM_HW_KGDB))
620 return EBUSY;
621 #endif
622
623 tp = sc->sc_tty;
624
625 if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
626 return (EBUSY);
627
628 s = spltty();
629
630 /*
631 * Do the following iff this is a first open.
632 */
633 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
634 struct termios t;
635
636 tp->t_dev = dev;
637
638 s2 = splserial();
639 PLCOM_LOCK(sc);
640
641 if (sc->enable) {
642 if ((*sc->enable)(sc)) {
643 PLCOM_UNLOCK(sc);
644 splx(s2);
645 splx(s);
646 printf("%s: device enable failed\n",
647 sc->sc_dev.dv_xname);
648 return EIO;
649 }
650 sc->enabled = 1;
651 plcom_config(sc);
652 }
653
654 /* Turn on interrupts. */
655 /* IER_ERXRDY | IER_ERLS | IER_EMSC; */
656 sc->sc_cr = CR_RIE | CR_RTIE | CR_MSIE | CR_UARTEN;
657 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
658
659 /* Fetch the current modem control status, needed later. */
660 sc->sc_msr = bus_space_read_1(sc->sc_iot, sc->sc_ioh, plcom_fr);
661
662 /* Clear PPS capture state on first open. */
663 sc->sc_ppsmask = 0;
664 sc->ppsparam.mode = 0;
665
666 PLCOM_UNLOCK(sc);
667 splx(s2);
668
669 /*
670 * Initialize the termios status to the defaults. Add in the
671 * sticky bits from TIOCSFLAGS.
672 */
673 t.c_ispeed = 0;
674 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
675 t.c_ospeed = plcomconsrate;
676 t.c_cflag = plcomconscflag;
677 } else {
678 t.c_ospeed = TTYDEF_SPEED;
679 t.c_cflag = TTYDEF_CFLAG;
680 }
681 if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL))
682 SET(t.c_cflag, CLOCAL);
683 if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS))
684 SET(t.c_cflag, CRTSCTS);
685 if (ISSET(sc->sc_swflags, TIOCFLAG_MDMBUF))
686 SET(t.c_cflag, MDMBUF);
687 /* Make sure plcomparam() will do something. */
688 tp->t_ospeed = 0;
689 (void) plcomparam(tp, &t);
690 tp->t_iflag = TTYDEF_IFLAG;
691 tp->t_oflag = TTYDEF_OFLAG;
692 tp->t_lflag = TTYDEF_LFLAG;
693 ttychars(tp);
694 ttsetwater(tp);
695
696 s2 = splserial();
697 PLCOM_LOCK(sc);
698
699 /*
700 * Turn on DTR. We must always do this, even if carrier is not
701 * present, because otherwise we'd have to use TIOCSDTR
702 * immediately after setting CLOCAL, which applications do not
703 * expect. We always assert DTR while the device is open
704 * unless explicitly requested to deassert it.
705 */
706 plcom_modem(sc, 1);
707
708 /* Clear the input ring, and unblock. */
709 sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
710 sc->sc_rbavail = plcom_rbuf_size;
711 plcom_iflush(sc);
712 CLR(sc->sc_rx_flags, RX_ANY_BLOCK);
713 plcom_hwiflow(sc);
714
715 #ifdef PLCOM_DEBUG
716 if (plcom_debug)
717 plcomstatus(sc, "plcomopen ");
718 #endif
719
720 PLCOM_UNLOCK(sc);
721 splx(s2);
722 }
723
724 splx(s);
725
726 error = ttyopen(tp, PLCOMDIALOUT(dev), ISSET(flag, O_NONBLOCK));
727 if (error)
728 goto bad;
729
730 error = (*tp->t_linesw->l_open)(dev, tp);
731 if (error)
732 goto bad;
733
734 return 0;
735
736 bad:
737 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
738 /*
739 * We failed to open the device, and nobody else had it opened.
740 * Clean up the state as appropriate.
741 */
742 plcom_shutdown(sc);
743 }
744
745 return error;
746 }
747
748 int
749 plcomclose(dev_t dev, int flag, int mode, struct lwp *l)
750 {
751 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
752 struct tty *tp = sc->sc_tty;
753
754 /* XXX This is for cons.c. */
755 if (!ISSET(tp->t_state, TS_ISOPEN))
756 return 0;
757
758 (*tp->t_linesw->l_close)(tp, flag);
759 ttyclose(tp);
760
761 if (PLCOM_ISALIVE(sc) == 0)
762 return 0;
763
764 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
765 /*
766 * Although we got a last close, the device may still be in
767 * use; e.g. if this was the dialout node, and there are still
768 * processes waiting for carrier on the non-dialout node.
769 */
770 plcom_shutdown(sc);
771 }
772
773 return 0;
774 }
775
776 int
777 plcomread(dev_t dev, struct uio *uio, int flag)
778 {
779 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
780 struct tty *tp = sc->sc_tty;
781
782 if (PLCOM_ISALIVE(sc) == 0)
783 return EIO;
784
785 return (*tp->t_linesw->l_read)(tp, uio, flag);
786 }
787
788 int
789 plcomwrite(dev_t dev, struct uio *uio, int flag)
790 {
791 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
792 struct tty *tp = sc->sc_tty;
793
794 if (PLCOM_ISALIVE(sc) == 0)
795 return EIO;
796
797 return (*tp->t_linesw->l_write)(tp, uio, flag);
798 }
799
800 int
801 plcompoll(dev_t dev, int events, struct lwp *l)
802 {
803 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
804 struct tty *tp = sc->sc_tty;
805
806 if (PLCOM_ISALIVE(sc) == 0)
807 return EIO;
808
809 return (*tp->t_linesw->l_poll)(tp, events, l);
810 }
811
812 struct tty *
813 plcomtty(dev_t dev)
814 {
815 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
816 struct tty *tp = sc->sc_tty;
817
818 return tp;
819 }
820
821 int
822 plcomioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
823 {
824 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
825 struct tty *tp = sc->sc_tty;
826 int error;
827 int s;
828
829 if (PLCOM_ISALIVE(sc) == 0)
830 return EIO;
831
832 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
833 if (error != EPASSTHROUGH)
834 return error;
835
836 error = ttioctl(tp, cmd, data, flag, l);
837 if (error != EPASSTHROUGH)
838 return error;
839
840 error = 0;
841
842 s = splserial();
843 PLCOM_LOCK(sc);
844
845 switch (cmd) {
846 case TIOCSBRK:
847 plcom_break(sc, 1);
848 break;
849
850 case TIOCCBRK:
851 plcom_break(sc, 0);
852 break;
853
854 case TIOCSDTR:
855 plcom_modem(sc, 1);
856 break;
857
858 case TIOCCDTR:
859 plcom_modem(sc, 0);
860 break;
861
862 case TIOCGFLAGS:
863 *(int *)data = sc->sc_swflags;
864 break;
865
866 case TIOCSFLAGS:
867 error = kauth_authorize_device_tty(l->l_cred,
868 KAUTH_DEVICE_TTY_PRIVSET, tp);
869 if (error)
870 break;
871 sc->sc_swflags = *(int *)data;
872 break;
873
874 case TIOCMSET:
875 case TIOCMBIS:
876 case TIOCMBIC:
877 tiocm_to_plcom(sc, cmd, *(int *)data);
878 break;
879
880 case TIOCMGET:
881 *(int *)data = plcom_to_tiocm(sc);
882 break;
883
884 case PPS_IOC_CREATE:
885 break;
886
887 case PPS_IOC_DESTROY:
888 break;
889
890 case PPS_IOC_GETPARAMS: {
891 pps_params_t *pp;
892 pp = (pps_params_t *)data;
893 *pp = sc->ppsparam;
894 break;
895 }
896
897 case PPS_IOC_SETPARAMS: {
898 pps_params_t *pp;
899 int mode;
900 pp = (pps_params_t *)data;
901 if (pp->mode & ~ppscap) {
902 error = EINVAL;
903 break;
904 }
905 sc->ppsparam = *pp;
906 /*
907 * Compute msr masks from user-specified timestamp state.
908 */
909 mode = sc->ppsparam.mode;
910 #ifdef PPS_SYNC
911 if (mode & PPS_HARDPPSONASSERT) {
912 mode |= PPS_CAPTUREASSERT;
913 /* XXX revoke any previous HARDPPS source */
914 }
915 if (mode & PPS_HARDPPSONCLEAR) {
916 mode |= PPS_CAPTURECLEAR;
917 /* XXX revoke any previous HARDPPS source */
918 }
919 #endif /* PPS_SYNC */
920 switch (mode & PPS_CAPTUREBOTH) {
921 case 0:
922 sc->sc_ppsmask = 0;
923 break;
924
925 case PPS_CAPTUREASSERT:
926 sc->sc_ppsmask = MSR_DCD;
927 sc->sc_ppsassert = MSR_DCD;
928 sc->sc_ppsclear = -1;
929 break;
930
931 case PPS_CAPTURECLEAR:
932 sc->sc_ppsmask = MSR_DCD;
933 sc->sc_ppsassert = -1;
934 sc->sc_ppsclear = 0;
935 break;
936
937 case PPS_CAPTUREBOTH:
938 sc->sc_ppsmask = MSR_DCD;
939 sc->sc_ppsassert = MSR_DCD;
940 sc->sc_ppsclear = 0;
941 break;
942
943 default:
944 error = EINVAL;
945 break;
946 }
947 break;
948 }
949
950 case PPS_IOC_GETCAP:
951 *(int*)data = ppscap;
952 break;
953
954 case PPS_IOC_FETCH: {
955 pps_info_t *pi;
956 pi = (pps_info_t *)data;
957 *pi = sc->ppsinfo;
958 break;
959 }
960
961 case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */
962 /*
963 * Some GPS clocks models use the falling rather than
964 * rising edge as the on-the-second signal.
965 * The old API has no way to specify PPS polarity.
966 */
967 sc->sc_ppsmask = MSR_DCD;
968 #ifndef PPS_TRAILING_EDGE
969 sc->sc_ppsassert = MSR_DCD;
970 sc->sc_ppsclear = -1;
971 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
972 &sc->ppsinfo.assert_timestamp);
973 #else
974 sc->sc_ppsassert = -1
975 sc->sc_ppsclear = 0;
976 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
977 &sc->ppsinfo.clear_timestamp);
978 #endif
979 break;
980
981 default:
982 error = EPASSTHROUGH;
983 break;
984 }
985
986 PLCOM_UNLOCK(sc);
987 splx(s);
988
989 #ifdef PLCOM_DEBUG
990 if (plcom_debug)
991 plcomstatus(sc, "plcomioctl ");
992 #endif
993
994 return error;
995 }
996
997 integrate void
998 plcom_schedrx(struct plcom_softc *sc)
999 {
1000
1001 sc->sc_rx_ready = 1;
1002
1003 /* Wake up the poller. */
1004 softintr_schedule(sc->sc_si);
1005 }
1006
1007 void
1008 plcom_break(struct plcom_softc *sc, int onoff)
1009 {
1010
1011 if (onoff)
1012 SET(sc->sc_lcr, LCR_BRK);
1013 else
1014 CLR(sc->sc_lcr, LCR_BRK);
1015
1016 if (!sc->sc_heldchange) {
1017 if (sc->sc_tx_busy) {
1018 sc->sc_heldtbc = sc->sc_tbc;
1019 sc->sc_tbc = 0;
1020 sc->sc_heldchange = 1;
1021 } else
1022 plcom_loadchannelregs(sc);
1023 }
1024 }
1025
1026 void
1027 plcom_modem(struct plcom_softc *sc, int onoff)
1028 {
1029
1030 if (sc->sc_mcr_dtr == 0)
1031 return;
1032
1033 if (onoff)
1034 SET(sc->sc_mcr, sc->sc_mcr_dtr);
1035 else
1036 CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1037
1038 if (!sc->sc_heldchange) {
1039 if (sc->sc_tx_busy) {
1040 sc->sc_heldtbc = sc->sc_tbc;
1041 sc->sc_tbc = 0;
1042 sc->sc_heldchange = 1;
1043 } else
1044 plcom_loadchannelregs(sc);
1045 }
1046 }
1047
1048 void
1049 tiocm_to_plcom(struct plcom_softc *sc, u_long how, int ttybits)
1050 {
1051 u_char plcombits;
1052
1053 plcombits = 0;
1054 if (ISSET(ttybits, TIOCM_DTR))
1055 SET(plcombits, MCR_DTR);
1056 if (ISSET(ttybits, TIOCM_RTS))
1057 SET(plcombits, MCR_RTS);
1058
1059 switch (how) {
1060 case TIOCMBIC:
1061 CLR(sc->sc_mcr, plcombits);
1062 break;
1063
1064 case TIOCMBIS:
1065 SET(sc->sc_mcr, plcombits);
1066 break;
1067
1068 case TIOCMSET:
1069 CLR(sc->sc_mcr, MCR_DTR | MCR_RTS);
1070 SET(sc->sc_mcr, plcombits);
1071 break;
1072 }
1073
1074 if (!sc->sc_heldchange) {
1075 if (sc->sc_tx_busy) {
1076 sc->sc_heldtbc = sc->sc_tbc;
1077 sc->sc_tbc = 0;
1078 sc->sc_heldchange = 1;
1079 } else
1080 plcom_loadchannelregs(sc);
1081 }
1082 }
1083
1084 int
1085 plcom_to_tiocm(struct plcom_softc *sc)
1086 {
1087 u_char plcombits;
1088 int ttybits = 0;
1089
1090 plcombits = sc->sc_mcr;
1091 if (ISSET(plcombits, MCR_DTR))
1092 SET(ttybits, TIOCM_DTR);
1093 if (ISSET(plcombits, MCR_RTS))
1094 SET(ttybits, TIOCM_RTS);
1095
1096 plcombits = sc->sc_msr;
1097 if (ISSET(plcombits, MSR_DCD))
1098 SET(ttybits, TIOCM_CD);
1099 if (ISSET(plcombits, MSR_CTS))
1100 SET(ttybits, TIOCM_CTS);
1101 if (ISSET(plcombits, MSR_DSR))
1102 SET(ttybits, TIOCM_DSR);
1103
1104 if (sc->sc_cr != 0)
1105 SET(ttybits, TIOCM_LE);
1106
1107 return ttybits;
1108 }
1109
1110 static u_char
1111 cflag2lcr(tcflag_t cflag)
1112 {
1113 u_char lcr = 0;
1114
1115 switch (ISSET(cflag, CSIZE)) {
1116 case CS5:
1117 SET(lcr, LCR_5BITS);
1118 break;
1119 case CS6:
1120 SET(lcr, LCR_6BITS);
1121 break;
1122 case CS7:
1123 SET(lcr, LCR_7BITS);
1124 break;
1125 case CS8:
1126 SET(lcr, LCR_8BITS);
1127 break;
1128 }
1129 if (ISSET(cflag, PARENB)) {
1130 SET(lcr, LCR_PEN);
1131 if (!ISSET(cflag, PARODD))
1132 SET(lcr, LCR_EPS);
1133 }
1134 if (ISSET(cflag, CSTOPB))
1135 SET(lcr, LCR_STP2);
1136
1137 return lcr;
1138 }
1139
1140 int
1141 plcomparam(struct tty *tp, struct termios *t)
1142 {
1143 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(tp->t_dev));
1144 int ospeed;
1145 u_char lcr;
1146 int s;
1147
1148 if (PLCOM_ISALIVE(sc) == 0)
1149 return EIO;
1150
1151 ospeed = plcomspeed(t->c_ospeed, sc->sc_frequency);
1152
1153 /* Check requested parameters. */
1154 if (ospeed < 0)
1155 return EINVAL;
1156 if (t->c_ispeed && t->c_ispeed != t->c_ospeed)
1157 return EINVAL;
1158
1159 /*
1160 * For the console, always force CLOCAL and !HUPCL, so that the port
1161 * is always active.
1162 */
1163 if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR) ||
1164 ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
1165 SET(t->c_cflag, CLOCAL);
1166 CLR(t->c_cflag, HUPCL);
1167 }
1168
1169 /*
1170 * If there were no changes, don't do anything. This avoids dropping
1171 * input and improves performance when all we did was frob things like
1172 * VMIN and VTIME.
1173 */
1174 if (tp->t_ospeed == t->c_ospeed &&
1175 tp->t_cflag == t->c_cflag)
1176 return 0;
1177
1178 lcr = ISSET(sc->sc_lcr, LCR_BRK) | cflag2lcr(t->c_cflag);
1179
1180 s = splserial();
1181 PLCOM_LOCK(sc);
1182
1183 sc->sc_lcr = lcr;
1184
1185 /*
1186 * PL010 has a fixed-length FIFO trigger point.
1187 */
1188 if (ISSET(sc->sc_hwflags, PLCOM_HW_FIFO))
1189 sc->sc_fifo = 1;
1190 else
1191 sc->sc_fifo = 0;
1192
1193 if (sc->sc_fifo)
1194 SET(sc->sc_lcr, LCR_FEN);
1195
1196 /*
1197 * If we're not in a mode that assumes a connection is present, then
1198 * ignore carrier changes.
1199 */
1200 if (ISSET(t->c_cflag, CLOCAL | MDMBUF))
1201 sc->sc_msr_dcd = 0;
1202 else
1203 sc->sc_msr_dcd = MSR_DCD;
1204 /*
1205 * Set the flow control pins depending on the current flow control
1206 * mode.
1207 */
1208 if (ISSET(t->c_cflag, CRTSCTS)) {
1209 sc->sc_mcr_dtr = MCR_DTR;
1210 sc->sc_mcr_rts = MCR_RTS;
1211 sc->sc_msr_cts = MSR_CTS;
1212 } else if (ISSET(t->c_cflag, MDMBUF)) {
1213 /*
1214 * For DTR/DCD flow control, make sure we don't toggle DTR for
1215 * carrier detection.
1216 */
1217 sc->sc_mcr_dtr = 0;
1218 sc->sc_mcr_rts = MCR_DTR;
1219 sc->sc_msr_cts = MSR_DCD;
1220 } else {
1221 /*
1222 * If no flow control, then always set RTS. This will make
1223 * the other side happy if it mistakenly thinks we're doing
1224 * RTS/CTS flow control.
1225 */
1226 sc->sc_mcr_dtr = MCR_DTR | MCR_RTS;
1227 sc->sc_mcr_rts = 0;
1228 sc->sc_msr_cts = 0;
1229 if (ISSET(sc->sc_mcr, MCR_DTR))
1230 SET(sc->sc_mcr, MCR_RTS);
1231 else
1232 CLR(sc->sc_mcr, MCR_RTS);
1233 }
1234 sc->sc_msr_mask = sc->sc_msr_cts | sc->sc_msr_dcd;
1235
1236 #if 0
1237 if (ospeed == 0)
1238 CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1239 else
1240 SET(sc->sc_mcr, sc->sc_mcr_dtr);
1241 #endif
1242
1243 sc->sc_dlbl = ospeed;
1244 sc->sc_dlbh = ospeed >> 8;
1245
1246 /* And copy to tty. */
1247 tp->t_ispeed = 0;
1248 tp->t_ospeed = t->c_ospeed;
1249 tp->t_cflag = t->c_cflag;
1250
1251 if (!sc->sc_heldchange) {
1252 if (sc->sc_tx_busy) {
1253 sc->sc_heldtbc = sc->sc_tbc;
1254 sc->sc_tbc = 0;
1255 sc->sc_heldchange = 1;
1256 } else
1257 plcom_loadchannelregs(sc);
1258 }
1259
1260 if (!ISSET(t->c_cflag, CHWFLOW)) {
1261 /* Disable the high water mark. */
1262 sc->sc_r_hiwat = 0;
1263 sc->sc_r_lowat = 0;
1264 if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1265 CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1266 plcom_schedrx(sc);
1267 }
1268 if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
1269 CLR(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
1270 plcom_hwiflow(sc);
1271 }
1272 } else {
1273 sc->sc_r_hiwat = plcom_rbuf_hiwat;
1274 sc->sc_r_lowat = plcom_rbuf_lowat;
1275 }
1276
1277 PLCOM_UNLOCK(sc);
1278 splx(s);
1279
1280 /*
1281 * Update the tty layer's idea of the carrier bit, in case we changed
1282 * CLOCAL or MDMBUF. We don't hang up here; we only do that by
1283 * explicit request.
1284 */
1285 (void) (*tp->t_linesw->l_modem)(tp, ISSET(sc->sc_msr, MSR_DCD));
1286
1287 #ifdef PLCOM_DEBUG
1288 if (plcom_debug)
1289 plcomstatus(sc, "plcomparam ");
1290 #endif
1291
1292 if (!ISSET(t->c_cflag, CHWFLOW)) {
1293 if (sc->sc_tx_stopped) {
1294 sc->sc_tx_stopped = 0;
1295 plcomstart(tp);
1296 }
1297 }
1298
1299 return 0;
1300 }
1301
1302 void
1303 plcom_iflush(struct plcom_softc *sc)
1304 {
1305 bus_space_tag_t iot = sc->sc_iot;
1306 bus_space_handle_t ioh = sc->sc_ioh;
1307 #ifdef DIAGNOSTIC
1308 int reg;
1309 #endif
1310 int timo;
1311
1312 #ifdef DIAGNOSTIC
1313 reg = 0xffff;
1314 #endif
1315 timo = 50000;
1316 /* flush any pending I/O */
1317 while (! ISSET(bus_space_read_1(iot, ioh, plcom_fr), FR_RXFE)
1318 && --timo)
1319 #ifdef DIAGNOSTIC
1320 reg =
1321 #else
1322 (void)
1323 #endif
1324 bus_space_read_1(iot, ioh, plcom_dr);
1325 #ifdef DIAGNOSTIC
1326 if (!timo)
1327 printf("%s: plcom_iflush timeout %02x\n", sc->sc_dev.dv_xname,
1328 reg);
1329 #endif
1330 }
1331
1332 void
1333 plcom_loadchannelregs(struct plcom_softc *sc)
1334 {
1335 bus_space_tag_t iot = sc->sc_iot;
1336 bus_space_handle_t ioh = sc->sc_ioh;
1337
1338 /* XXXXX necessary? */
1339 plcom_iflush(sc);
1340
1341 bus_space_write_1(iot, ioh, plcom_cr, 0);
1342
1343 bus_space_write_1(iot, ioh, plcom_dlbl, sc->sc_dlbl);
1344 bus_space_write_1(iot, ioh, plcom_dlbh, sc->sc_dlbh);
1345 bus_space_write_1(iot, ioh, plcom_lcr, sc->sc_lcr);
1346 /* XXX device_unit() abuse */
1347 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev),
1348 sc->sc_mcr_active = sc->sc_mcr);
1349
1350 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
1351 }
1352
1353 int
1354 plcomhwiflow(struct tty *tp, int block)
1355 {
1356 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(tp->t_dev));
1357 int s;
1358
1359 if (PLCOM_ISALIVE(sc) == 0)
1360 return 0;
1361
1362 if (sc->sc_mcr_rts == 0)
1363 return 0;
1364
1365 s = splserial();
1366 PLCOM_LOCK(sc);
1367
1368 if (block) {
1369 if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1370 SET(sc->sc_rx_flags, RX_TTY_BLOCKED);
1371 plcom_hwiflow(sc);
1372 }
1373 } else {
1374 if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1375 CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1376 plcom_schedrx(sc);
1377 }
1378 if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1379 CLR(sc->sc_rx_flags, RX_TTY_BLOCKED);
1380 plcom_hwiflow(sc);
1381 }
1382 }
1383
1384 PLCOM_UNLOCK(sc);
1385 splx(s);
1386 return 1;
1387 }
1388
1389 /*
1390 * (un)block input via hw flowcontrol
1391 */
1392 void
1393 plcom_hwiflow(struct plcom_softc *sc)
1394 {
1395 if (sc->sc_mcr_rts == 0)
1396 return;
1397
1398 if (ISSET(sc->sc_rx_flags, RX_ANY_BLOCK)) {
1399 CLR(sc->sc_mcr, sc->sc_mcr_rts);
1400 CLR(sc->sc_mcr_active, sc->sc_mcr_rts);
1401 } else {
1402 SET(sc->sc_mcr, sc->sc_mcr_rts);
1403 SET(sc->sc_mcr_active, sc->sc_mcr_rts);
1404 }
1405 /* XXX device_unit() abuse */
1406 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev),
1407 sc->sc_mcr_active);
1408 }
1409
1410
1411 void
1412 plcomstart(struct tty *tp)
1413 {
1414 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(tp->t_dev));
1415 bus_space_tag_t iot = sc->sc_iot;
1416 bus_space_handle_t ioh = sc->sc_ioh;
1417 int s;
1418
1419 if (PLCOM_ISALIVE(sc) == 0)
1420 return;
1421
1422 s = spltty();
1423 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
1424 goto out;
1425 if (sc->sc_tx_stopped)
1426 goto out;
1427
1428 if (!ttypull(tp))
1429 goto out;
1430
1431 /* Grab the first contiguous region of buffer space. */
1432 {
1433 u_char *tba;
1434 int tbc;
1435
1436 tba = tp->t_outq.c_cf;
1437 tbc = ndqb(&tp->t_outq, 0);
1438
1439 (void)splserial();
1440 PLCOM_LOCK(sc);
1441
1442 sc->sc_tba = tba;
1443 sc->sc_tbc = tbc;
1444 }
1445
1446 SET(tp->t_state, TS_BUSY);
1447 sc->sc_tx_busy = 1;
1448
1449 /* Enable transmit completion interrupts if necessary. */
1450 if (!ISSET(sc->sc_cr, CR_TIE)) {
1451 SET(sc->sc_cr, CR_TIE);
1452 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
1453 }
1454
1455 /* Output the first chunk of the contiguous buffer. */
1456 {
1457 int n;
1458
1459 n = sc->sc_tbc;
1460 if (n > sc->sc_fifolen)
1461 n = sc->sc_fifolen;
1462 bus_space_write_multi_1(iot, ioh, plcom_dr, sc->sc_tba, n);
1463 sc->sc_tbc -= n;
1464 sc->sc_tba += n;
1465 }
1466 PLCOM_UNLOCK(sc);
1467 out:
1468 splx(s);
1469 return;
1470 }
1471
1472 /*
1473 * Stop output on a line.
1474 */
1475 void
1476 plcomstop(struct tty *tp, int flag)
1477 {
1478 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(tp->t_dev));
1479 int s;
1480
1481 s = splserial();
1482 PLCOM_LOCK(sc);
1483 if (ISSET(tp->t_state, TS_BUSY)) {
1484 /* Stop transmitting at the next chunk. */
1485 sc->sc_tbc = 0;
1486 sc->sc_heldtbc = 0;
1487 if (!ISSET(tp->t_state, TS_TTSTOP))
1488 SET(tp->t_state, TS_FLUSH);
1489 }
1490 PLCOM_UNLOCK(sc);
1491 splx(s);
1492 }
1493
1494 void
1495 plcomdiag(void *arg)
1496 {
1497 struct plcom_softc *sc = arg;
1498 int overflows, floods;
1499 int s;
1500
1501 s = splserial();
1502 PLCOM_LOCK(sc);
1503 overflows = sc->sc_overflows;
1504 sc->sc_overflows = 0;
1505 floods = sc->sc_floods;
1506 sc->sc_floods = 0;
1507 sc->sc_errors = 0;
1508 PLCOM_UNLOCK(sc);
1509 splx(s);
1510
1511 log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
1512 sc->sc_dev.dv_xname,
1513 overflows, overflows == 1 ? "" : "s",
1514 floods, floods == 1 ? "" : "s");
1515 }
1516
1517 integrate void
1518 plcom_rxsoft(struct plcom_softc *sc, struct tty *tp)
1519 {
1520 int (*rint) (int, struct tty *) = tp->t_linesw->l_rint;
1521 u_char *get, *end;
1522 u_int cc, scc;
1523 u_char rsr;
1524 int code;
1525 int s;
1526
1527 end = sc->sc_ebuf;
1528 get = sc->sc_rbget;
1529 scc = cc = plcom_rbuf_size - sc->sc_rbavail;
1530
1531 if (cc == plcom_rbuf_size) {
1532 sc->sc_floods++;
1533 if (sc->sc_errors++ == 0)
1534 callout_reset(&sc->sc_diag_callout, 60 * hz,
1535 plcomdiag, sc);
1536 }
1537
1538 while (cc) {
1539 code = get[0];
1540 rsr = get[1];
1541 if (ISSET(rsr, RSR_OE | RSR_BE | RSR_FE | RSR_PE)) {
1542 if (ISSET(rsr, RSR_OE)) {
1543 sc->sc_overflows++;
1544 if (sc->sc_errors++ == 0)
1545 callout_reset(&sc->sc_diag_callout,
1546 60 * hz, plcomdiag, sc);
1547 }
1548 if (ISSET(rsr, RSR_BE | RSR_FE))
1549 SET(code, TTY_FE);
1550 if (ISSET(rsr, RSR_PE))
1551 SET(code, TTY_PE);
1552 }
1553 if ((*rint)(code, tp) == -1) {
1554 /*
1555 * The line discipline's buffer is out of space.
1556 */
1557 if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1558 /*
1559 * We're either not using flow control, or the
1560 * line discipline didn't tell us to block for
1561 * some reason. Either way, we have no way to
1562 * know when there's more space available, so
1563 * just drop the rest of the data.
1564 */
1565 get += cc << 1;
1566 if (get >= end)
1567 get -= plcom_rbuf_size << 1;
1568 cc = 0;
1569 } else {
1570 /*
1571 * Don't schedule any more receive processing
1572 * until the line discipline tells us there's
1573 * space available (through plcomhwiflow()).
1574 * Leave the rest of the data in the input
1575 * buffer.
1576 */
1577 SET(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1578 }
1579 break;
1580 }
1581 get += 2;
1582 if (get >= end)
1583 get = sc->sc_rbuf;
1584 cc--;
1585 }
1586
1587 if (cc != scc) {
1588 sc->sc_rbget = get;
1589 s = splserial();
1590 PLCOM_LOCK(sc);
1591
1592 cc = sc->sc_rbavail += scc - cc;
1593 /* Buffers should be ok again, release possible block. */
1594 if (cc >= sc->sc_r_lowat) {
1595 if (ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1596 CLR(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
1597 SET(sc->sc_cr, CR_RIE | CR_RTIE);
1598 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
1599 }
1600 if (ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED)) {
1601 CLR(sc->sc_rx_flags, RX_IBUF_BLOCKED);
1602 plcom_hwiflow(sc);
1603 }
1604 }
1605 PLCOM_UNLOCK(sc);
1606 splx(s);
1607 }
1608 }
1609
1610 integrate void
1611 plcom_txsoft(struct plcom_softc *sc, struct tty *tp)
1612 {
1613
1614 CLR(tp->t_state, TS_BUSY);
1615 if (ISSET(tp->t_state, TS_FLUSH))
1616 CLR(tp->t_state, TS_FLUSH);
1617 else
1618 ndflush(&tp->t_outq, (int)(sc->sc_tba - tp->t_outq.c_cf));
1619 (*tp->t_linesw->l_start)(tp);
1620 }
1621
1622 integrate void
1623 plcom_stsoft(struct plcom_softc *sc, struct tty *tp)
1624 {
1625 u_char msr, delta;
1626 int s;
1627
1628 s = splserial();
1629 PLCOM_LOCK(sc);
1630 msr = sc->sc_msr;
1631 delta = sc->sc_msr_delta;
1632 sc->sc_msr_delta = 0;
1633 PLCOM_UNLOCK(sc);
1634 splx(s);
1635
1636 if (ISSET(delta, sc->sc_msr_dcd)) {
1637 /*
1638 * Inform the tty layer that carrier detect changed.
1639 */
1640 (void) (*tp->t_linesw->l_modem)(tp, ISSET(msr, MSR_DCD));
1641 }
1642
1643 if (ISSET(delta, sc->sc_msr_cts)) {
1644 /* Block or unblock output according to flow control. */
1645 if (ISSET(msr, sc->sc_msr_cts)) {
1646 sc->sc_tx_stopped = 0;
1647 (*tp->t_linesw->l_start)(tp);
1648 } else {
1649 sc->sc_tx_stopped = 1;
1650 }
1651 }
1652
1653 #ifdef PLCOM_DEBUG
1654 if (plcom_debug)
1655 plcomstatus(sc, "plcom_stsoft");
1656 #endif
1657 }
1658
1659 void
1660 plcomsoft(void *arg)
1661 {
1662 struct plcom_softc *sc = arg;
1663 struct tty *tp;
1664
1665 if (PLCOM_ISALIVE(sc) == 0)
1666 return;
1667
1668 tp = sc->sc_tty;
1669
1670 if (sc->sc_rx_ready) {
1671 sc->sc_rx_ready = 0;
1672 plcom_rxsoft(sc, tp);
1673 }
1674
1675 if (sc->sc_st_check) {
1676 sc->sc_st_check = 0;
1677 plcom_stsoft(sc, tp);
1678 }
1679
1680 if (sc->sc_tx_done) {
1681 sc->sc_tx_done = 0;
1682 plcom_txsoft(sc, tp);
1683 }
1684 }
1685
1686 int
1687 plcomintr(void *arg)
1688 {
1689 struct plcom_softc *sc = arg;
1690 bus_space_tag_t iot = sc->sc_iot;
1691 bus_space_handle_t ioh = sc->sc_ioh;
1692 u_char *put, *end;
1693 u_int cc;
1694 u_char rsr, iir;
1695
1696 if (PLCOM_ISALIVE(sc) == 0)
1697 return 0;
1698
1699 PLCOM_LOCK(sc);
1700 iir = bus_space_read_1(iot, ioh, plcom_iir);
1701 if (! ISSET(iir, IIR_IMASK)) {
1702 PLCOM_UNLOCK(sc);
1703 return 0;
1704 }
1705
1706 end = sc->sc_ebuf;
1707 put = sc->sc_rbput;
1708 cc = sc->sc_rbavail;
1709
1710 do {
1711 u_char msr, delta, fr;
1712
1713 fr = bus_space_read_1(iot, ioh, plcom_fr);
1714
1715 if (!ISSET(fr, FR_RXFE) &&
1716 !ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1717 while (cc > 0) {
1718 int cn_trapped = 0;
1719 put[0] = bus_space_read_1(iot, ioh,
1720 plcom_dr);
1721 rsr = bus_space_read_1(iot, ioh, plcom_rsr);
1722 /* Clear any error status. */
1723 if (ISSET(rsr,
1724 (RSR_BE | RSR_OE | RSR_PE | RSR_FE)))
1725 bus_space_write_1(iot, ioh, plcom_ecr,
1726 0);
1727 if (ISSET(rsr, RSR_BE)) {
1728 cn_trapped = 0;
1729 cn_check_magic(sc->sc_tty->t_dev,
1730 CNC_BREAK, plcom_cnm_state);
1731 if (cn_trapped)
1732 continue;
1733 #if defined(KGDB)
1734 if (ISSET(sc->sc_hwflags,
1735 PLCOM_HW_KGDB)) {
1736 kgdb_connect(1);
1737 continue;
1738 }
1739 #endif
1740 }
1741
1742 put[1] = rsr;
1743 cn_trapped = 0;
1744 cn_check_magic(sc->sc_tty->t_dev,
1745 put[0], plcom_cnm_state);
1746 if (cn_trapped) {
1747 fr = bus_space_read_1(iot, ioh,
1748 plcom_fr);
1749 if (ISSET(fr, FR_RXFE))
1750 break;
1751
1752 continue;
1753 }
1754 put += 2;
1755 if (put >= end)
1756 put = sc->sc_rbuf;
1757 cc--;
1758
1759 fr = bus_space_read_1(iot, ioh, plcom_fr);
1760 if (ISSET(fr, FR_RXFE))
1761 break;
1762 }
1763
1764 /*
1765 * Current string of incoming characters ended because
1766 * no more data was available or we ran out of space.
1767 * Schedule a receive event if any data was received.
1768 * If we're out of space, turn off receive interrupts.
1769 */
1770 sc->sc_rbput = put;
1771 sc->sc_rbavail = cc;
1772 if (!ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED))
1773 sc->sc_rx_ready = 1;
1774
1775 /*
1776 * See if we are in danger of overflowing a buffer. If
1777 * so, use hardware flow control to ease the pressure.
1778 */
1779 if (!ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED) &&
1780 cc < sc->sc_r_hiwat) {
1781 SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
1782 plcom_hwiflow(sc);
1783 }
1784
1785 /*
1786 * If we're out of space, disable receive interrupts
1787 * until the queue has drained a bit.
1788 */
1789 if (!cc) {
1790 SET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
1791 CLR(sc->sc_cr, CR_RIE | CR_RTIE);
1792 bus_space_write_1(iot, ioh, plcom_cr,
1793 sc->sc_cr);
1794 }
1795 } else {
1796 if (ISSET(iir, IIR_RIS)) {
1797 bus_space_write_1(iot, ioh, plcom_cr, 0);
1798 delay(10);
1799 bus_space_write_1(iot, ioh, plcom_cr,
1800 sc->sc_cr);
1801 continue;
1802 }
1803 }
1804
1805 msr = bus_space_read_1(iot, ioh, plcom_fr);
1806 delta = msr ^ sc->sc_msr;
1807 sc->sc_msr = msr;
1808 /* Clear any pending modem status interrupt. */
1809 if (iir & IIR_MIS)
1810 bus_space_write_1(iot, ioh, plcom_icr, 0);
1811 /*
1812 * Pulse-per-second (PSS) signals on edge of DCD?
1813 * Process these even if line discipline is ignoring DCD.
1814 */
1815 if (delta & sc->sc_ppsmask) {
1816 struct timeval tv;
1817 if ((msr & sc->sc_ppsmask) == sc->sc_ppsassert) {
1818 /* XXX nanotime() */
1819 microtime(&tv);
1820 TIMEVAL_TO_TIMESPEC(&tv,
1821 &sc->ppsinfo.assert_timestamp);
1822 if (sc->ppsparam.mode & PPS_OFFSETASSERT) {
1823 timespecadd(&sc->ppsinfo.assert_timestamp,
1824 &sc->ppsparam.assert_offset,
1825 &sc->ppsinfo.assert_timestamp);
1826 }
1827
1828 #ifdef PPS_SYNC
1829 if (sc->ppsparam.mode & PPS_HARDPPSONASSERT)
1830 hardpps(&tv, tv.tv_usec);
1831 #endif
1832 sc->ppsinfo.assert_sequence++;
1833 sc->ppsinfo.current_mode = sc->ppsparam.mode;
1834
1835 } else if ((msr & sc->sc_ppsmask) == sc->sc_ppsclear) {
1836 /* XXX nanotime() */
1837 microtime(&tv);
1838 TIMEVAL_TO_TIMESPEC(&tv,
1839 &sc->ppsinfo.clear_timestamp);
1840 if (sc->ppsparam.mode & PPS_OFFSETCLEAR) {
1841 timespecadd(&sc->ppsinfo.clear_timestamp,
1842 &sc->ppsparam.clear_offset,
1843 &sc->ppsinfo.clear_timestamp);
1844 }
1845
1846 #ifdef PPS_SYNC
1847 if (sc->ppsparam.mode & PPS_HARDPPSONCLEAR)
1848 hardpps(&tv, tv.tv_usec);
1849 #endif
1850 sc->ppsinfo.clear_sequence++;
1851 sc->ppsinfo.current_mode = sc->ppsparam.mode;
1852 }
1853 }
1854
1855 /*
1856 * Process normal status changes
1857 */
1858 if (ISSET(delta, sc->sc_msr_mask)) {
1859 SET(sc->sc_msr_delta, delta);
1860
1861 /*
1862 * Stop output immediately if we lose the output
1863 * flow control signal or carrier detect.
1864 */
1865 if (ISSET(~msr, sc->sc_msr_mask)) {
1866 sc->sc_tbc = 0;
1867 sc->sc_heldtbc = 0;
1868 #ifdef PLCOM_DEBUG
1869 if (plcom_debug)
1870 plcomstatus(sc, "plcomintr ");
1871 #endif
1872 }
1873
1874 sc->sc_st_check = 1;
1875 }
1876
1877 /*
1878 * Done handling any receive interrupts. See if data
1879 * can be * transmitted as well. Schedule tx done
1880 * event if no data left * and tty was marked busy.
1881 */
1882 if (ISSET(iir, IIR_TIS)) {
1883 /*
1884 * If we've delayed a parameter change, do it
1885 * now, and restart * output.
1886 */
1887 if (sc->sc_heldchange) {
1888 plcom_loadchannelregs(sc);
1889 sc->sc_heldchange = 0;
1890 sc->sc_tbc = sc->sc_heldtbc;
1891 sc->sc_heldtbc = 0;
1892 }
1893
1894 /*
1895 * Output the next chunk of the contiguous
1896 * buffer, if any.
1897 */
1898 if (sc->sc_tbc > 0) {
1899 int n;
1900
1901 n = sc->sc_tbc;
1902 if (n > sc->sc_fifolen)
1903 n = sc->sc_fifolen;
1904 bus_space_write_multi_1(iot, ioh, plcom_dr,
1905 sc->sc_tba, n);
1906 sc->sc_tbc -= n;
1907 sc->sc_tba += n;
1908 } else {
1909 /*
1910 * Disable transmit plcompletion
1911 * interrupts if necessary.
1912 */
1913 if (ISSET(sc->sc_cr, CR_TIE)) {
1914 CLR(sc->sc_cr, CR_TIE);
1915 bus_space_write_1(iot, ioh, plcom_cr,
1916 sc->sc_cr);
1917 }
1918 if (sc->sc_tx_busy) {
1919 sc->sc_tx_busy = 0;
1920 sc->sc_tx_done = 1;
1921 }
1922 }
1923 }
1924 } while (ISSET((iir = bus_space_read_1(iot, ioh, plcom_iir)),
1925 IIR_IMASK));
1926
1927 PLCOM_UNLOCK(sc);
1928
1929 /* Wake up the poller. */
1930 softintr_schedule(sc->sc_si);
1931
1932 #if NRND > 0 && defined(RND_COM)
1933 rnd_add_uint32(&sc->rnd_source, iir | rsr);
1934 #endif
1935
1936 return 1;
1937 }
1938
1939 /*
1940 * The following functions are polled getc and putc routines, shared
1941 * by the console and kgdb glue.
1942 *
1943 * The read-ahead code is so that you can detect pending in-band
1944 * cn_magic in polled mode while doing output rather than having to
1945 * wait until the kernel decides it needs input.
1946 */
1947
1948 #define MAX_READAHEAD 20
1949 static int plcom_readahead[MAX_READAHEAD];
1950 static int plcom_readaheadcount = 0;
1951
1952 int
1953 plcom_common_getc(dev_t dev, bus_space_tag_t iot, bus_space_handle_t ioh)
1954 {
1955 int s = splserial();
1956 u_char stat, c;
1957
1958 /* got a character from reading things earlier */
1959 if (plcom_readaheadcount > 0) {
1960 int i;
1961
1962 c = plcom_readahead[0];
1963 for (i = 1; i < plcom_readaheadcount; i++) {
1964 plcom_readahead[i-1] = plcom_readahead[i];
1965 }
1966 plcom_readaheadcount--;
1967 splx(s);
1968 return c;
1969 }
1970
1971 /* block until a character becomes available */
1972 while (ISSET(stat = bus_space_read_1(iot, ioh, plcom_fr), FR_RXFE))
1973 ;
1974
1975 c = bus_space_read_1(iot, ioh, plcom_dr);
1976 stat = bus_space_read_1(iot, ioh, plcom_iir);
1977 {
1978 int cn_trapped = 0; /* unused */
1979 #ifdef DDB
1980 extern int db_active;
1981 if (!db_active)
1982 #endif
1983 cn_check_magic(dev, c, plcom_cnm_state);
1984 }
1985 splx(s);
1986 return c;
1987 }
1988
1989 void
1990 plcom_common_putc(dev_t dev, bus_space_tag_t iot, bus_space_handle_t ioh,
1991 int c)
1992 {
1993 int s = splserial();
1994 int timo;
1995
1996 int cin, stat;
1997 if (plcom_readaheadcount < MAX_READAHEAD
1998 && !ISSET(stat = bus_space_read_1(iot, ioh, plcom_fr), FR_RXFE)) {
1999 int cn_trapped = 0;
2000 cin = bus_space_read_1(iot, ioh, plcom_dr);
2001 stat = bus_space_read_1(iot, ioh, plcom_iir);
2002 cn_check_magic(dev, cin, plcom_cnm_state);
2003 plcom_readahead[plcom_readaheadcount++] = cin;
2004 }
2005
2006 /* wait for any pending transmission to finish */
2007 timo = 150000;
2008 while (!ISSET(bus_space_read_1(iot, ioh, plcom_fr), FR_TXFE) && --timo)
2009 continue;
2010
2011 bus_space_write_1(iot, ioh, plcom_dr, c);
2012 PLCOM_BARRIER(iot, ioh, BR | BW);
2013
2014 /* wait for this transmission to complete */
2015 timo = 1500000;
2016 while (!ISSET(bus_space_read_1(iot, ioh, plcom_fr), FR_TXFE) && --timo)
2017 continue;
2018
2019 splx(s);
2020 }
2021
2022 /*
2023 * Initialize UART for use as console or KGDB line.
2024 */
2025 int
2026 plcominit(bus_space_tag_t iot, bus_addr_t iobase, int rate, int frequency,
2027 tcflag_t cflag, bus_space_handle_t *iohp)
2028 {
2029 bus_space_handle_t ioh;
2030
2031 if (bus_space_map(iot, iobase, PLCOM_UART_SIZE, 0, &ioh))
2032 return ENOMEM; /* ??? */
2033
2034 rate = plcomspeed(rate, frequency);
2035 bus_space_write_1(iot, ioh, plcom_cr, 0);
2036 bus_space_write_1(iot, ioh, plcom_dlbl, rate);
2037 bus_space_write_1(iot, ioh, plcom_dlbh, rate >> 8);
2038 bus_space_write_1(iot, ioh, plcom_lcr, cflag2lcr(cflag) | LCR_FEN);
2039 bus_space_write_1(iot, ioh, plcom_cr, CR_UARTEN);
2040
2041 #if 0
2042 /* Ought to do something like this, but we have no sc to
2043 dereference. */
2044 /* XXX device_unit() abuse */
2045 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev),
2046 MCR_DTR | MCR_RTS);
2047 #endif
2048
2049 *iohp = ioh;
2050 return 0;
2051 }
2052
2053 /*
2054 * Following are all routines needed for PLCOM to act as console
2055 */
2056 struct consdev plcomcons = {
2057 NULL, NULL, plcomcngetc, plcomcnputc, plcomcnpollc, NULL,
2058 NULL, NULL, NODEV, CN_NORMAL
2059 };
2060
2061
2062 int
2063 plcomcnattach(bus_space_tag_t iot, bus_addr_t iobase, int rate, int frequency,
2064 tcflag_t cflag, int unit)
2065 {
2066 int res;
2067
2068 res = plcominit(iot, iobase, rate, frequency, cflag, &plcomconsioh);
2069 if (res)
2070 return res;
2071
2072 cn_tab = &plcomcons;
2073 cn_init_magic(&plcom_cnm_state);
2074 cn_set_magic("\047\001"); /* default magic is BREAK */
2075
2076 plcomconstag = iot;
2077 plcomconsunit = unit;
2078 plcomconsrate = rate;
2079 plcomconscflag = cflag;
2080
2081 return 0;
2082 }
2083
2084 void
2085 plcomcndetach(void)
2086 {
2087 bus_space_unmap(plcomconstag, plcomconsioh, PLCOM_UART_SIZE);
2088 plcomconstag = NULL;
2089
2090 cn_tab = NULL;
2091 }
2092
2093 int
2094 plcomcngetc(dev_t dev)
2095 {
2096 return plcom_common_getc(dev, plcomconstag, plcomconsioh);
2097 }
2098
2099 /*
2100 * Console kernel output character routine.
2101 */
2102 void
2103 plcomcnputc(dev_t dev, int c)
2104 {
2105 plcom_common_putc(dev, plcomconstag, plcomconsioh, c);
2106 }
2107
2108 void
2109 plcomcnpollc(dev_t dev, int on)
2110 {
2111
2112 }
2113
2114 #ifdef KGDB
2115 int
2116 plcom_kgdb_attach(bus_space_tag_t iot, bus_addr_t iobase, int rate,
2117 int frequency, tcflag_t cflag, int unit)
2118 {
2119 int res;
2120
2121 if (iot == plcomconstag && iobase == plcomconsunit)
2122 return EBUSY; /* cannot share with console */
2123
2124 res = plcominit(iot, iobase, rate, frequency, cflag, &plcom_kgdb_ioh);
2125 if (res)
2126 return res;
2127
2128 kgdb_attach(plcom_kgdb_getc, plcom_kgdb_putc, NULL);
2129 kgdb_dev = 123; /* unneeded, only to satisfy some tests */
2130
2131 plcom_kgdb_iot = iot;
2132 plcom_kgdb_unit = unit;
2133
2134 return 0;
2135 }
2136
2137 /* ARGSUSED */
2138 int
2139 plcom_kgdb_getc(void *arg)
2140 {
2141 return plcom_common_getc(NODEV, plcom_kgdb_iot, plcom_kgdb_ioh);
2142 }
2143
2144 /* ARGSUSED */
2145 void
2146 plcom_kgdb_putc(void *arg, int c)
2147 {
2148 plcom_common_putc(NODEV, plcom_kgdb_iot, plcom_kgdb_ioh, c);
2149 }
2150 #endif /* KGDB */
2151
2152 /* helper function to identify the plcom ports used by
2153 console or KGDB (and not yet autoconf attached) */
2154 int
2155 plcom_is_console(bus_space_tag_t iot, int unit,
2156 bus_space_handle_t *ioh)
2157 {
2158 bus_space_handle_t help;
2159
2160 if (!plcomconsattached &&
2161 iot == plcomconstag && unit == plcomconsunit)
2162 help = plcomconsioh;
2163 #ifdef KGDB
2164 else if (!plcom_kgdb_attached &&
2165 iot == plcom_kgdb_iot && unit == plcom_kgdb_unit)
2166 help = plcom_kgdb_ioh;
2167 #endif
2168 else
2169 return 0;
2170
2171 if (ioh)
2172 *ioh = help;
2173 return 1;
2174 }
2175