plcom.c revision 1.24.6.1 1 /* $NetBSD: plcom.c,v 1.24.6.1 2008/01/08 22:09:40 bouyer Exp $ */
2
3 /*-
4 * Copyright (c) 2001 ARM Ltd
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the company may not be used to endorse or promote
16 * products derived from this software without specific prior written
17 * permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
23 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
32 * All rights reserved.
33 *
34 * This code is derived from software contributed to The NetBSD Foundation
35 * by Charles M. Hannum.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the NetBSD
48 * Foundation, Inc. and its contributors.
49 * 4. Neither the name of The NetBSD Foundation nor the names of its
50 * contributors may be used to endorse or promote products derived
51 * from this software without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
54 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63 * POSSIBILITY OF SUCH DAMAGE.
64 */
65
66 /*
67 * Copyright (c) 1991 The Regents of the University of California.
68 * All rights reserved.
69 *
70 * Redistribution and use in source and binary forms, with or without
71 * modification, are permitted provided that the following conditions
72 * are met:
73 * 1. Redistributions of source code must retain the above copyright
74 * notice, this list of conditions and the following disclaimer.
75 * 2. Redistributions in binary form must reproduce the above copyright
76 * notice, this list of conditions and the following disclaimer in the
77 * documentation and/or other materials provided with the distribution.
78 * 3. Neither the name of the University nor the names of its contributors
79 * may be used to endorse or promote products derived from this software
80 * without specific prior written permission.
81 *
82 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
83 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
84 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
85 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
86 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
87 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
88 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
89 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
90 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
91 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
92 * SUCH DAMAGE.
93 *
94 * @(#)com.c 7.5 (Berkeley) 5/16/91
95 */
96
97 /*
98 * COM driver for the Prime Cell PL010 UART, which is similar to the 16C550,
99 * but has a completely different programmer's model.
100 * Derived from the NS16550AF com driver.
101 */
102
103 #include <sys/cdefs.h>
104 __KERNEL_RCSID(0, "$NetBSD: plcom.c,v 1.24.6.1 2008/01/08 22:09:40 bouyer Exp $");
105
106 #include "opt_plcom.h"
107 #include "opt_ddb.h"
108 #include "opt_kgdb.h"
109 #include "opt_lockdebug.h"
110 #include "opt_multiprocessor.h"
111
112 #include "rnd.h"
113 #if NRND > 0 && defined(RND_COM)
114 #include <sys/rnd.h>
115 #endif
116
117 /*
118 * Override cnmagic(9) macro before including <sys/systm.h>.
119 * We need to know if cn_check_magic triggered debugger, so set a flag.
120 * Callers of cn_check_magic must declare int cn_trapped = 0;
121 * XXX: this is *ugly*!
122 */
123 #define cn_trap() \
124 do { \
125 console_debugger(); \
126 cn_trapped = 1; \
127 } while (/* CONSTCOND */ 0)
128
129 #include <sys/param.h>
130 #include <sys/systm.h>
131 #include <sys/ioctl.h>
132 #include <sys/select.h>
133 #include <sys/tty.h>
134 #include <sys/proc.h>
135 #include <sys/user.h>
136 #include <sys/conf.h>
137 #include <sys/file.h>
138 #include <sys/uio.h>
139 #include <sys/kernel.h>
140 #include <sys/syslog.h>
141 #include <sys/types.h>
142 #include <sys/device.h>
143 #include <sys/malloc.h>
144 #include <sys/timepps.h>
145 #include <sys/vnode.h>
146 #include <sys/kauth.h>
147 #include <sys/intr.h>
148 #include <sys/bus.h>
149
150 #include <evbarm/dev/plcomreg.h>
151 #include <evbarm/dev/plcomvar.h>
152
153 #include <dev/cons.h>
154
155 static void plcom_enable_debugport (struct plcom_softc *);
156
157 void plcom_config (struct plcom_softc *);
158 void plcom_shutdown (struct plcom_softc *);
159 int plcomspeed (long, long);
160 static u_char cflag2lcr (tcflag_t);
161 int plcomparam (struct tty *, struct termios *);
162 void plcomstart (struct tty *);
163 int plcomhwiflow (struct tty *, int);
164
165 void plcom_loadchannelregs (struct plcom_softc *);
166 void plcom_hwiflow (struct plcom_softc *);
167 void plcom_break (struct plcom_softc *, int);
168 void plcom_modem (struct plcom_softc *, int);
169 void tiocm_to_plcom (struct plcom_softc *, u_long, int);
170 int plcom_to_tiocm (struct plcom_softc *);
171 void plcom_iflush (struct plcom_softc *);
172
173 int plcom_common_getc (dev_t, bus_space_tag_t, bus_space_handle_t);
174 void plcom_common_putc (dev_t, bus_space_tag_t, bus_space_handle_t, int);
175
176 int plcominit (bus_space_tag_t, bus_addr_t, int, int, tcflag_t,
177 bus_space_handle_t *);
178
179 dev_type_open(plcomopen);
180 dev_type_close(plcomclose);
181 dev_type_read(plcomread);
182 dev_type_write(plcomwrite);
183 dev_type_ioctl(plcomioctl);
184 dev_type_stop(plcomstop);
185 dev_type_tty(plcomtty);
186 dev_type_poll(plcompoll);
187
188 int plcomcngetc (dev_t);
189 void plcomcnputc (dev_t, int);
190 void plcomcnpollc (dev_t, int);
191
192 #define integrate static inline
193 void plcomsoft (void *);
194 integrate void plcom_rxsoft (struct plcom_softc *, struct tty *);
195 integrate void plcom_txsoft (struct plcom_softc *, struct tty *);
196 integrate void plcom_stsoft (struct plcom_softc *, struct tty *);
197 integrate void plcom_schedrx (struct plcom_softc *);
198 void plcomdiag (void *);
199
200 extern struct cfdriver plcom_cd;
201
202 const struct cdevsw plcom_cdevsw = {
203 plcomopen, plcomclose, plcomread, plcomwrite, plcomioctl,
204 plcomstop, plcomtty, plcompoll, nommap, ttykqfilter, D_TTY
205 };
206
207 /*
208 * Make this an option variable one can patch.
209 * But be warned: this must be a power of 2!
210 */
211 u_int plcom_rbuf_size = PLCOM_RING_SIZE;
212
213 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
214 u_int plcom_rbuf_hiwat = (PLCOM_RING_SIZE * 1) / 4;
215 u_int plcom_rbuf_lowat = (PLCOM_RING_SIZE * 3) / 4;
216
217 static int plcomconsunit = -1;
218 static bus_space_tag_t plcomconstag;
219 static bus_space_handle_t plcomconsioh;
220 static int plcomconsattached;
221 static int plcomconsrate;
222 static tcflag_t plcomconscflag;
223 static struct cnm_state plcom_cnm_state;
224
225 static int ppscap =
226 PPS_TSFMT_TSPEC |
227 PPS_CAPTUREASSERT |
228 PPS_CAPTURECLEAR |
229 #ifdef PPS_SYNC
230 PPS_HARDPPSONASSERT | PPS_HARDPPSONCLEAR |
231 #endif /* PPS_SYNC */
232 PPS_OFFSETASSERT | PPS_OFFSETCLEAR;
233
234 #ifdef KGDB
235 #include <sys/kgdb.h>
236
237 static int plcom_kgdb_unit;
238 static bus_space_tag_t plcom_kgdb_iot;
239 static bus_space_handle_t plcom_kgdb_ioh;
240 static int plcom_kgdb_attached;
241
242 int plcom_kgdb_getc (void *);
243 void plcom_kgdb_putc (void *, int);
244 #endif /* KGDB */
245
246 #define PLCOMUNIT_MASK 0x7ffff
247 #define PLCOMDIALOUT_MASK 0x80000
248
249 #define PLCOMUNIT(x) (minor(x) & PLCOMUNIT_MASK)
250 #define PLCOMDIALOUT(x) (minor(x) & PLCOMDIALOUT_MASK)
251
252 #define PLCOM_ISALIVE(sc) ((sc)->enabled != 0 && \
253 device_is_active(&(sc)->sc_dev))
254
255 #define BR BUS_SPACE_BARRIER_READ
256 #define BW BUS_SPACE_BARRIER_WRITE
257 #define PLCOM_BARRIER(t, h, f) bus_space_barrier((t), (h), 0, PLCOM_UART_SIZE, (f))
258
259 #define PLCOM_LOCK(sc) simple_lock(&(sc)->sc_lock)
260 #define PLCOM_UNLOCK(sc) simple_unlock(&(sc)->sc_lock)
261
262 int
263 plcomspeed(long speed, long frequency)
264 {
265 #define divrnd(n, q) (((n)*2/(q)+1)/2) /* divide and round off */
266
267 int x, err;
268
269 #if 0
270 if (speed == 0)
271 return 0;
272 #endif
273 if (speed <= 0)
274 return -1;
275 x = divrnd(frequency / 16, speed);
276 if (x <= 0)
277 return -1;
278 err = divrnd(((quad_t)frequency) * 1000 / 16, speed * x) - 1000;
279 if (err < 0)
280 err = -err;
281 if (err > PLCOM_TOLERANCE)
282 return -1;
283 return x;
284
285 #undef divrnd
286 }
287
288 #ifdef PLCOM_DEBUG
289 int plcom_debug = 0;
290
291 void plcomstatus (struct plcom_softc *, char *);
292 void
293 plcomstatus(struct plcom_softc *sc, char *str)
294 {
295 struct tty *tp = sc->sc_tty;
296
297 printf("%s: %s %sclocal %sdcd %sts_carr_on %sdtr %stx_stopped\n",
298 sc->sc_dev.dv_xname, str,
299 ISSET(tp->t_cflag, CLOCAL) ? "+" : "-",
300 ISSET(sc->sc_msr, MSR_DCD) ? "+" : "-",
301 ISSET(tp->t_state, TS_CARR_ON) ? "+" : "-",
302 ISSET(sc->sc_mcr, MCR_DTR) ? "+" : "-",
303 sc->sc_tx_stopped ? "+" : "-");
304
305 printf("%s: %s %scrtscts %scts %sts_ttstop %srts %xrx_flags\n",
306 sc->sc_dev.dv_xname, str,
307 ISSET(tp->t_cflag, CRTSCTS) ? "+" : "-",
308 ISSET(sc->sc_msr, MSR_CTS) ? "+" : "-",
309 ISSET(tp->t_state, TS_TTSTOP) ? "+" : "-",
310 ISSET(sc->sc_mcr, MCR_RTS) ? "+" : "-",
311 sc->sc_rx_flags);
312 }
313 #endif
314
315 int
316 plcomprobe1(bus_space_tag_t iot, bus_space_handle_t ioh)
317 {
318 int data;
319
320 /* Disable the UART. */
321 bus_space_write_1(iot, ioh, plcom_cr, 0);
322 /* Make sure the FIFO is off. */
323 bus_space_write_1(iot, ioh, plcom_lcr, LCR_8BITS);
324 /* Disable interrupts. */
325 bus_space_write_1(iot, ioh, plcom_iir, 0);
326
327 /* Make sure we swallow anything in the receiving register. */
328 data = bus_space_read_1(iot, ioh, plcom_dr);
329
330 if (bus_space_read_1(iot, ioh, plcom_lcr) != LCR_8BITS)
331 return 0;
332
333 data = bus_space_read_1(iot, ioh, plcom_fr) & (FR_RXFF | FR_RXFE);
334
335 if (data != FR_RXFE)
336 return 0;
337
338 return 1;
339 }
340
341 static void
342 plcom_enable_debugport(struct plcom_softc *sc)
343 {
344 int s;
345
346 /* Turn on line break interrupt, set carrier. */
347 s = splserial();
348 PLCOM_LOCK(sc);
349 sc->sc_cr = CR_RIE | CR_RTIE | CR_UARTEN;
350 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
351 SET(sc->sc_mcr, MCR_DTR | MCR_RTS);
352 /* XXX device_unit() abuse */
353 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev),
354 sc->sc_mcr);
355 PLCOM_UNLOCK(sc);
356 splx(s);
357 }
358
359 void
360 plcom_attach_subr(struct plcom_softc *sc)
361 {
362 int unit = sc->sc_iounit;
363 bus_space_tag_t iot = sc->sc_iot;
364 bus_space_handle_t ioh = sc->sc_ioh;
365 struct tty *tp;
366
367 callout_init(&sc->sc_diag_callout, 0);
368 simple_lock_init(&sc->sc_lock);
369
370 /* Disable interrupts before configuring the device. */
371 sc->sc_cr = 0;
372
373 if (plcomconstag && unit == plcomconsunit) {
374 plcomconsattached = 1;
375
376 plcomconstag = iot;
377 plcomconsioh = ioh;
378
379 /* Make sure the console is always "hardwired". */
380 delay(1000); /* wait for output to finish */
381 SET(sc->sc_hwflags, PLCOM_HW_CONSOLE);
382 SET(sc->sc_swflags, TIOCFLAG_SOFTCAR);
383 /* Must re-enable the console immediately, or we will
384 hang when trying to print. */
385 sc->sc_cr = CR_UARTEN;
386 }
387
388 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
389
390 /* The PL010 has a 16-byte fifo, but the tx interrupt triggers when
391 there is space for 8 more bytes. */
392 sc->sc_fifolen = 8;
393 printf("\n");
394
395 if (ISSET(sc->sc_hwflags, PLCOM_HW_TXFIFO_DISABLE)) {
396 sc->sc_fifolen = 1;
397 printf("%s: txfifo disabled\n", sc->sc_dev.dv_xname);
398 }
399
400 if (sc->sc_fifolen > 1)
401 SET(sc->sc_hwflags, PLCOM_HW_FIFO);
402
403 tp = ttymalloc();
404 tp->t_oproc = plcomstart;
405 tp->t_param = plcomparam;
406 tp->t_hwiflow = plcomhwiflow;
407
408 sc->sc_tty = tp;
409 sc->sc_rbuf = malloc(plcom_rbuf_size << 1, M_DEVBUF, M_NOWAIT);
410 sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
411 sc->sc_rbavail = plcom_rbuf_size;
412 if (sc->sc_rbuf == NULL) {
413 printf("%s: unable to allocate ring buffer\n",
414 sc->sc_dev.dv_xname);
415 return;
416 }
417 sc->sc_ebuf = sc->sc_rbuf + (plcom_rbuf_size << 1);
418
419 tty_attach(tp);
420
421 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
422 int maj;
423
424 /* locate the major number */
425 maj = cdevsw_lookup_major(&plcom_cdevsw);
426
427 cn_tab->cn_dev = makedev(maj, device_unit(&sc->sc_dev));
428
429 printf("%s: console\n", sc->sc_dev.dv_xname);
430 }
431
432 #ifdef KGDB
433 /*
434 * Allow kgdb to "take over" this port. If this is
435 * the kgdb device, it has exclusive use.
436 */
437 if (iot == plcom_kgdb_iot && unit == plcom_kgdb_unit) {
438 plcom_kgdb_attached = 1;
439
440 SET(sc->sc_hwflags, PLCOM_HW_KGDB);
441 printf("%s: kgdb\n", sc->sc_dev.dv_xname);
442 }
443 #endif
444
445 sc->sc_si = softint_establish(SOFTINT_SERIAL, plcomsoft, sc);
446
447 #if NRND > 0 && defined(RND_COM)
448 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
449 RND_TYPE_TTY, 0);
450 #endif
451
452 /* if there are no enable/disable functions, assume the device
453 is always enabled */
454 if (!sc->enable)
455 sc->enabled = 1;
456
457 plcom_config(sc);
458
459 SET(sc->sc_hwflags, PLCOM_HW_DEV_OK);
460 }
461
462 void
463 plcom_config(struct plcom_softc *sc)
464 {
465 bus_space_tag_t iot = sc->sc_iot;
466 bus_space_handle_t ioh = sc->sc_ioh;
467
468 /* Disable interrupts before configuring the device. */
469 sc->sc_cr = 0;
470 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
471
472 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE|PLCOM_HW_KGDB))
473 plcom_enable_debugport(sc);
474 }
475
476 int
477 plcom_detach(self, flags)
478 struct device *self;
479 int flags;
480 {
481 struct plcom_softc *sc = (struct plcom_softc *)self;
482 int maj, mn;
483
484 /* locate the major number */
485 maj = cdevsw_lookup_major(&plcom_cdevsw);
486
487 /* Nuke the vnodes for any open instances. */
488 mn = device_unit(self);
489 vdevgone(maj, mn, mn, VCHR);
490
491 mn |= PLCOMDIALOUT_MASK;
492 vdevgone(maj, mn, mn, VCHR);
493
494 /* Free the receive buffer. */
495 free(sc->sc_rbuf, M_DEVBUF);
496
497 /* Detach and free the tty. */
498 tty_detach(sc->sc_tty);
499 ttyfree(sc->sc_tty);
500
501 /* Unhook the soft interrupt handler. */
502 softint_disestablish(sc->sc_si);
503
504 #if NRND > 0 && defined(RND_COM)
505 /* Unhook the entropy source. */
506 rnd_detach_source(&sc->rnd_source);
507 #endif
508
509 return 0;
510 }
511
512 int
513 plcom_activate(struct device *self, enum devact act)
514 {
515 struct plcom_softc *sc = (struct plcom_softc *)self;
516 int s, rv = 0;
517
518 s = splserial();
519 PLCOM_LOCK(sc);
520 switch (act) {
521 case DVACT_ACTIVATE:
522 rv = EOPNOTSUPP;
523 break;
524
525 case DVACT_DEACTIVATE:
526 if (sc->sc_hwflags & (PLCOM_HW_CONSOLE|PLCOM_HW_KGDB)) {
527 rv = EBUSY;
528 break;
529 }
530
531 if (sc->disable != NULL && sc->enabled != 0) {
532 (*sc->disable)(sc);
533 sc->enabled = 0;
534 }
535 break;
536 }
537
538 PLCOM_UNLOCK(sc);
539 splx(s);
540 return rv;
541 }
542
543 void
544 plcom_shutdown(struct plcom_softc *sc)
545 {
546 struct tty *tp = sc->sc_tty;
547 int s;
548
549 s = splserial();
550 PLCOM_LOCK(sc);
551
552 /* If we were asserting flow control, then deassert it. */
553 SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
554 plcom_hwiflow(sc);
555
556 /* Clear any break condition set with TIOCSBRK. */
557 plcom_break(sc, 0);
558
559 /* Turn off PPS capture on last close. */
560 sc->sc_ppsmask = 0;
561 sc->ppsparam.mode = 0;
562
563 /*
564 * Hang up if necessary. Wait a bit, so the other side has time to
565 * notice even if we immediately open the port again.
566 * Avoid tsleeping above splhigh().
567 */
568 if (ISSET(tp->t_cflag, HUPCL)) {
569 plcom_modem(sc, 0);
570 PLCOM_UNLOCK(sc);
571 splx(s);
572 /* XXX tsleep will only timeout */
573 (void) tsleep(sc, TTIPRI, ttclos, hz);
574 s = splserial();
575 PLCOM_LOCK(sc);
576 }
577
578 /* Turn off interrupts. */
579 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE))
580 /* interrupt on break */
581 sc->sc_cr = CR_RIE | CR_RTIE | CR_UARTEN;
582 else
583 sc->sc_cr = 0;
584 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
585
586 if (sc->disable) {
587 #ifdef DIAGNOSTIC
588 if (!sc->enabled)
589 panic("plcom_shutdown: not enabled?");
590 #endif
591 (*sc->disable)(sc);
592 sc->enabled = 0;
593 }
594 PLCOM_UNLOCK(sc);
595 splx(s);
596 }
597
598 int
599 plcomopen(dev_t dev, int flag, int mode, struct lwp *l)
600 {
601 struct plcom_softc *sc;
602 struct tty *tp;
603 int s, s2;
604 int error;
605
606 sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
607 if (sc == NULL || !ISSET(sc->sc_hwflags, PLCOM_HW_DEV_OK) ||
608 sc->sc_rbuf == NULL)
609 return ENXIO;
610
611 if (!device_is_active(&sc->sc_dev))
612 return ENXIO;
613
614 #ifdef KGDB
615 /*
616 * If this is the kgdb port, no other use is permitted.
617 */
618 if (ISSET(sc->sc_hwflags, PLCOM_HW_KGDB))
619 return EBUSY;
620 #endif
621
622 tp = sc->sc_tty;
623
624 if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
625 return (EBUSY);
626
627 s = spltty();
628
629 /*
630 * Do the following iff this is a first open.
631 */
632 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
633 struct termios t;
634
635 tp->t_dev = dev;
636
637 s2 = splserial();
638 PLCOM_LOCK(sc);
639
640 if (sc->enable) {
641 if ((*sc->enable)(sc)) {
642 PLCOM_UNLOCK(sc);
643 splx(s2);
644 splx(s);
645 printf("%s: device enable failed\n",
646 sc->sc_dev.dv_xname);
647 return EIO;
648 }
649 sc->enabled = 1;
650 plcom_config(sc);
651 }
652
653 /* Turn on interrupts. */
654 /* IER_ERXRDY | IER_ERLS | IER_EMSC; */
655 sc->sc_cr = CR_RIE | CR_RTIE | CR_MSIE | CR_UARTEN;
656 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
657
658 /* Fetch the current modem control status, needed later. */
659 sc->sc_msr = bus_space_read_1(sc->sc_iot, sc->sc_ioh, plcom_fr);
660
661 /* Clear PPS capture state on first open. */
662 sc->sc_ppsmask = 0;
663 sc->ppsparam.mode = 0;
664
665 PLCOM_UNLOCK(sc);
666 splx(s2);
667
668 /*
669 * Initialize the termios status to the defaults. Add in the
670 * sticky bits from TIOCSFLAGS.
671 */
672 t.c_ispeed = 0;
673 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
674 t.c_ospeed = plcomconsrate;
675 t.c_cflag = plcomconscflag;
676 } else {
677 t.c_ospeed = TTYDEF_SPEED;
678 t.c_cflag = TTYDEF_CFLAG;
679 }
680 if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL))
681 SET(t.c_cflag, CLOCAL);
682 if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS))
683 SET(t.c_cflag, CRTSCTS);
684 if (ISSET(sc->sc_swflags, TIOCFLAG_MDMBUF))
685 SET(t.c_cflag, MDMBUF);
686 /* Make sure plcomparam() will do something. */
687 tp->t_ospeed = 0;
688 (void) plcomparam(tp, &t);
689 tp->t_iflag = TTYDEF_IFLAG;
690 tp->t_oflag = TTYDEF_OFLAG;
691 tp->t_lflag = TTYDEF_LFLAG;
692 ttychars(tp);
693 ttsetwater(tp);
694
695 s2 = splserial();
696 PLCOM_LOCK(sc);
697
698 /*
699 * Turn on DTR. We must always do this, even if carrier is not
700 * present, because otherwise we'd have to use TIOCSDTR
701 * immediately after setting CLOCAL, which applications do not
702 * expect. We always assert DTR while the device is open
703 * unless explicitly requested to deassert it.
704 */
705 plcom_modem(sc, 1);
706
707 /* Clear the input ring, and unblock. */
708 sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
709 sc->sc_rbavail = plcom_rbuf_size;
710 plcom_iflush(sc);
711 CLR(sc->sc_rx_flags, RX_ANY_BLOCK);
712 plcom_hwiflow(sc);
713
714 #ifdef PLCOM_DEBUG
715 if (plcom_debug)
716 plcomstatus(sc, "plcomopen ");
717 #endif
718
719 PLCOM_UNLOCK(sc);
720 splx(s2);
721 }
722
723 splx(s);
724
725 error = ttyopen(tp, PLCOMDIALOUT(dev), ISSET(flag, O_NONBLOCK));
726 if (error)
727 goto bad;
728
729 error = (*tp->t_linesw->l_open)(dev, tp);
730 if (error)
731 goto bad;
732
733 return 0;
734
735 bad:
736 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
737 /*
738 * We failed to open the device, and nobody else had it opened.
739 * Clean up the state as appropriate.
740 */
741 plcom_shutdown(sc);
742 }
743
744 return error;
745 }
746
747 int
748 plcomclose(dev_t dev, int flag, int mode, struct lwp *l)
749 {
750 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
751 struct tty *tp = sc->sc_tty;
752
753 /* XXX This is for cons.c. */
754 if (!ISSET(tp->t_state, TS_ISOPEN))
755 return 0;
756
757 (*tp->t_linesw->l_close)(tp, flag);
758 ttyclose(tp);
759
760 if (PLCOM_ISALIVE(sc) == 0)
761 return 0;
762
763 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
764 /*
765 * Although we got a last close, the device may still be in
766 * use; e.g. if this was the dialout node, and there are still
767 * processes waiting for carrier on the non-dialout node.
768 */
769 plcom_shutdown(sc);
770 }
771
772 return 0;
773 }
774
775 int
776 plcomread(dev_t dev, struct uio *uio, int flag)
777 {
778 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
779 struct tty *tp = sc->sc_tty;
780
781 if (PLCOM_ISALIVE(sc) == 0)
782 return EIO;
783
784 return (*tp->t_linesw->l_read)(tp, uio, flag);
785 }
786
787 int
788 plcomwrite(dev_t dev, struct uio *uio, int flag)
789 {
790 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
791 struct tty *tp = sc->sc_tty;
792
793 if (PLCOM_ISALIVE(sc) == 0)
794 return EIO;
795
796 return (*tp->t_linesw->l_write)(tp, uio, flag);
797 }
798
799 int
800 plcompoll(dev_t dev, int events, struct lwp *l)
801 {
802 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
803 struct tty *tp = sc->sc_tty;
804
805 if (PLCOM_ISALIVE(sc) == 0)
806 return EIO;
807
808 return (*tp->t_linesw->l_poll)(tp, events, l);
809 }
810
811 struct tty *
812 plcomtty(dev_t dev)
813 {
814 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
815 struct tty *tp = sc->sc_tty;
816
817 return tp;
818 }
819
820 int
821 plcomioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
822 {
823 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
824 struct tty *tp = sc->sc_tty;
825 int error;
826 int s;
827
828 if (PLCOM_ISALIVE(sc) == 0)
829 return EIO;
830
831 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
832 if (error != EPASSTHROUGH)
833 return error;
834
835 error = ttioctl(tp, cmd, data, flag, l);
836 if (error != EPASSTHROUGH)
837 return error;
838
839 error = 0;
840
841 s = splserial();
842 PLCOM_LOCK(sc);
843
844 switch (cmd) {
845 case TIOCSBRK:
846 plcom_break(sc, 1);
847 break;
848
849 case TIOCCBRK:
850 plcom_break(sc, 0);
851 break;
852
853 case TIOCSDTR:
854 plcom_modem(sc, 1);
855 break;
856
857 case TIOCCDTR:
858 plcom_modem(sc, 0);
859 break;
860
861 case TIOCGFLAGS:
862 *(int *)data = sc->sc_swflags;
863 break;
864
865 case TIOCSFLAGS:
866 error = kauth_authorize_device_tty(l->l_cred,
867 KAUTH_DEVICE_TTY_PRIVSET, tp);
868 if (error)
869 break;
870 sc->sc_swflags = *(int *)data;
871 break;
872
873 case TIOCMSET:
874 case TIOCMBIS:
875 case TIOCMBIC:
876 tiocm_to_plcom(sc, cmd, *(int *)data);
877 break;
878
879 case TIOCMGET:
880 *(int *)data = plcom_to_tiocm(sc);
881 break;
882
883 case PPS_IOC_CREATE:
884 break;
885
886 case PPS_IOC_DESTROY:
887 break;
888
889 case PPS_IOC_GETPARAMS: {
890 pps_params_t *pp;
891 pp = (pps_params_t *)data;
892 *pp = sc->ppsparam;
893 break;
894 }
895
896 case PPS_IOC_SETPARAMS: {
897 pps_params_t *pp;
898 int mode;
899 pp = (pps_params_t *)data;
900 if (pp->mode & ~ppscap) {
901 error = EINVAL;
902 break;
903 }
904 sc->ppsparam = *pp;
905 /*
906 * Compute msr masks from user-specified timestamp state.
907 */
908 mode = sc->ppsparam.mode;
909 #ifdef PPS_SYNC
910 if (mode & PPS_HARDPPSONASSERT) {
911 mode |= PPS_CAPTUREASSERT;
912 /* XXX revoke any previous HARDPPS source */
913 }
914 if (mode & PPS_HARDPPSONCLEAR) {
915 mode |= PPS_CAPTURECLEAR;
916 /* XXX revoke any previous HARDPPS source */
917 }
918 #endif /* PPS_SYNC */
919 switch (mode & PPS_CAPTUREBOTH) {
920 case 0:
921 sc->sc_ppsmask = 0;
922 break;
923
924 case PPS_CAPTUREASSERT:
925 sc->sc_ppsmask = MSR_DCD;
926 sc->sc_ppsassert = MSR_DCD;
927 sc->sc_ppsclear = -1;
928 break;
929
930 case PPS_CAPTURECLEAR:
931 sc->sc_ppsmask = MSR_DCD;
932 sc->sc_ppsassert = -1;
933 sc->sc_ppsclear = 0;
934 break;
935
936 case PPS_CAPTUREBOTH:
937 sc->sc_ppsmask = MSR_DCD;
938 sc->sc_ppsassert = MSR_DCD;
939 sc->sc_ppsclear = 0;
940 break;
941
942 default:
943 error = EINVAL;
944 break;
945 }
946 break;
947 }
948
949 case PPS_IOC_GETCAP:
950 *(int*)data = ppscap;
951 break;
952
953 case PPS_IOC_FETCH: {
954 pps_info_t *pi;
955 pi = (pps_info_t *)data;
956 *pi = sc->ppsinfo;
957 break;
958 }
959
960 case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */
961 /*
962 * Some GPS clocks models use the falling rather than
963 * rising edge as the on-the-second signal.
964 * The old API has no way to specify PPS polarity.
965 */
966 sc->sc_ppsmask = MSR_DCD;
967 #ifndef PPS_TRAILING_EDGE
968 sc->sc_ppsassert = MSR_DCD;
969 sc->sc_ppsclear = -1;
970 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
971 &sc->ppsinfo.assert_timestamp);
972 #else
973 sc->sc_ppsassert = -1
974 sc->sc_ppsclear = 0;
975 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
976 &sc->ppsinfo.clear_timestamp);
977 #endif
978 break;
979
980 default:
981 error = EPASSTHROUGH;
982 break;
983 }
984
985 PLCOM_UNLOCK(sc);
986 splx(s);
987
988 #ifdef PLCOM_DEBUG
989 if (plcom_debug)
990 plcomstatus(sc, "plcomioctl ");
991 #endif
992
993 return error;
994 }
995
996 integrate void
997 plcom_schedrx(struct plcom_softc *sc)
998 {
999
1000 sc->sc_rx_ready = 1;
1001
1002 /* Wake up the poller. */
1003 softint_schedule(sc->sc_si);
1004 }
1005
1006 void
1007 plcom_break(struct plcom_softc *sc, int onoff)
1008 {
1009
1010 if (onoff)
1011 SET(sc->sc_lcr, LCR_BRK);
1012 else
1013 CLR(sc->sc_lcr, LCR_BRK);
1014
1015 if (!sc->sc_heldchange) {
1016 if (sc->sc_tx_busy) {
1017 sc->sc_heldtbc = sc->sc_tbc;
1018 sc->sc_tbc = 0;
1019 sc->sc_heldchange = 1;
1020 } else
1021 plcom_loadchannelregs(sc);
1022 }
1023 }
1024
1025 void
1026 plcom_modem(struct plcom_softc *sc, int onoff)
1027 {
1028
1029 if (sc->sc_mcr_dtr == 0)
1030 return;
1031
1032 if (onoff)
1033 SET(sc->sc_mcr, sc->sc_mcr_dtr);
1034 else
1035 CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1036
1037 if (!sc->sc_heldchange) {
1038 if (sc->sc_tx_busy) {
1039 sc->sc_heldtbc = sc->sc_tbc;
1040 sc->sc_tbc = 0;
1041 sc->sc_heldchange = 1;
1042 } else
1043 plcom_loadchannelregs(sc);
1044 }
1045 }
1046
1047 void
1048 tiocm_to_plcom(struct plcom_softc *sc, u_long how, int ttybits)
1049 {
1050 u_char plcombits;
1051
1052 plcombits = 0;
1053 if (ISSET(ttybits, TIOCM_DTR))
1054 SET(plcombits, MCR_DTR);
1055 if (ISSET(ttybits, TIOCM_RTS))
1056 SET(plcombits, MCR_RTS);
1057
1058 switch (how) {
1059 case TIOCMBIC:
1060 CLR(sc->sc_mcr, plcombits);
1061 break;
1062
1063 case TIOCMBIS:
1064 SET(sc->sc_mcr, plcombits);
1065 break;
1066
1067 case TIOCMSET:
1068 CLR(sc->sc_mcr, MCR_DTR | MCR_RTS);
1069 SET(sc->sc_mcr, plcombits);
1070 break;
1071 }
1072
1073 if (!sc->sc_heldchange) {
1074 if (sc->sc_tx_busy) {
1075 sc->sc_heldtbc = sc->sc_tbc;
1076 sc->sc_tbc = 0;
1077 sc->sc_heldchange = 1;
1078 } else
1079 plcom_loadchannelregs(sc);
1080 }
1081 }
1082
1083 int
1084 plcom_to_tiocm(struct plcom_softc *sc)
1085 {
1086 u_char plcombits;
1087 int ttybits = 0;
1088
1089 plcombits = sc->sc_mcr;
1090 if (ISSET(plcombits, MCR_DTR))
1091 SET(ttybits, TIOCM_DTR);
1092 if (ISSET(plcombits, MCR_RTS))
1093 SET(ttybits, TIOCM_RTS);
1094
1095 plcombits = sc->sc_msr;
1096 if (ISSET(plcombits, MSR_DCD))
1097 SET(ttybits, TIOCM_CD);
1098 if (ISSET(plcombits, MSR_CTS))
1099 SET(ttybits, TIOCM_CTS);
1100 if (ISSET(plcombits, MSR_DSR))
1101 SET(ttybits, TIOCM_DSR);
1102
1103 if (sc->sc_cr != 0)
1104 SET(ttybits, TIOCM_LE);
1105
1106 return ttybits;
1107 }
1108
1109 static u_char
1110 cflag2lcr(tcflag_t cflag)
1111 {
1112 u_char lcr = 0;
1113
1114 switch (ISSET(cflag, CSIZE)) {
1115 case CS5:
1116 SET(lcr, LCR_5BITS);
1117 break;
1118 case CS6:
1119 SET(lcr, LCR_6BITS);
1120 break;
1121 case CS7:
1122 SET(lcr, LCR_7BITS);
1123 break;
1124 case CS8:
1125 SET(lcr, LCR_8BITS);
1126 break;
1127 }
1128 if (ISSET(cflag, PARENB)) {
1129 SET(lcr, LCR_PEN);
1130 if (!ISSET(cflag, PARODD))
1131 SET(lcr, LCR_EPS);
1132 }
1133 if (ISSET(cflag, CSTOPB))
1134 SET(lcr, LCR_STP2);
1135
1136 return lcr;
1137 }
1138
1139 int
1140 plcomparam(struct tty *tp, struct termios *t)
1141 {
1142 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(tp->t_dev));
1143 int ospeed;
1144 u_char lcr;
1145 int s;
1146
1147 if (PLCOM_ISALIVE(sc) == 0)
1148 return EIO;
1149
1150 ospeed = plcomspeed(t->c_ospeed, sc->sc_frequency);
1151
1152 /* Check requested parameters. */
1153 if (ospeed < 0)
1154 return EINVAL;
1155 if (t->c_ispeed && t->c_ispeed != t->c_ospeed)
1156 return EINVAL;
1157
1158 /*
1159 * For the console, always force CLOCAL and !HUPCL, so that the port
1160 * is always active.
1161 */
1162 if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR) ||
1163 ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
1164 SET(t->c_cflag, CLOCAL);
1165 CLR(t->c_cflag, HUPCL);
1166 }
1167
1168 /*
1169 * If there were no changes, don't do anything. This avoids dropping
1170 * input and improves performance when all we did was frob things like
1171 * VMIN and VTIME.
1172 */
1173 if (tp->t_ospeed == t->c_ospeed &&
1174 tp->t_cflag == t->c_cflag)
1175 return 0;
1176
1177 lcr = ISSET(sc->sc_lcr, LCR_BRK) | cflag2lcr(t->c_cflag);
1178
1179 s = splserial();
1180 PLCOM_LOCK(sc);
1181
1182 sc->sc_lcr = lcr;
1183
1184 /*
1185 * PL010 has a fixed-length FIFO trigger point.
1186 */
1187 if (ISSET(sc->sc_hwflags, PLCOM_HW_FIFO))
1188 sc->sc_fifo = 1;
1189 else
1190 sc->sc_fifo = 0;
1191
1192 if (sc->sc_fifo)
1193 SET(sc->sc_lcr, LCR_FEN);
1194
1195 /*
1196 * If we're not in a mode that assumes a connection is present, then
1197 * ignore carrier changes.
1198 */
1199 if (ISSET(t->c_cflag, CLOCAL | MDMBUF))
1200 sc->sc_msr_dcd = 0;
1201 else
1202 sc->sc_msr_dcd = MSR_DCD;
1203 /*
1204 * Set the flow control pins depending on the current flow control
1205 * mode.
1206 */
1207 if (ISSET(t->c_cflag, CRTSCTS)) {
1208 sc->sc_mcr_dtr = MCR_DTR;
1209 sc->sc_mcr_rts = MCR_RTS;
1210 sc->sc_msr_cts = MSR_CTS;
1211 } else if (ISSET(t->c_cflag, MDMBUF)) {
1212 /*
1213 * For DTR/DCD flow control, make sure we don't toggle DTR for
1214 * carrier detection.
1215 */
1216 sc->sc_mcr_dtr = 0;
1217 sc->sc_mcr_rts = MCR_DTR;
1218 sc->sc_msr_cts = MSR_DCD;
1219 } else {
1220 /*
1221 * If no flow control, then always set RTS. This will make
1222 * the other side happy if it mistakenly thinks we're doing
1223 * RTS/CTS flow control.
1224 */
1225 sc->sc_mcr_dtr = MCR_DTR | MCR_RTS;
1226 sc->sc_mcr_rts = 0;
1227 sc->sc_msr_cts = 0;
1228 if (ISSET(sc->sc_mcr, MCR_DTR))
1229 SET(sc->sc_mcr, MCR_RTS);
1230 else
1231 CLR(sc->sc_mcr, MCR_RTS);
1232 }
1233 sc->sc_msr_mask = sc->sc_msr_cts | sc->sc_msr_dcd;
1234
1235 #if 0
1236 if (ospeed == 0)
1237 CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1238 else
1239 SET(sc->sc_mcr, sc->sc_mcr_dtr);
1240 #endif
1241
1242 sc->sc_dlbl = ospeed;
1243 sc->sc_dlbh = ospeed >> 8;
1244
1245 /* And copy to tty. */
1246 tp->t_ispeed = 0;
1247 tp->t_ospeed = t->c_ospeed;
1248 tp->t_cflag = t->c_cflag;
1249
1250 if (!sc->sc_heldchange) {
1251 if (sc->sc_tx_busy) {
1252 sc->sc_heldtbc = sc->sc_tbc;
1253 sc->sc_tbc = 0;
1254 sc->sc_heldchange = 1;
1255 } else
1256 plcom_loadchannelregs(sc);
1257 }
1258
1259 if (!ISSET(t->c_cflag, CHWFLOW)) {
1260 /* Disable the high water mark. */
1261 sc->sc_r_hiwat = 0;
1262 sc->sc_r_lowat = 0;
1263 if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1264 CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1265 plcom_schedrx(sc);
1266 }
1267 if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
1268 CLR(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
1269 plcom_hwiflow(sc);
1270 }
1271 } else {
1272 sc->sc_r_hiwat = plcom_rbuf_hiwat;
1273 sc->sc_r_lowat = plcom_rbuf_lowat;
1274 }
1275
1276 PLCOM_UNLOCK(sc);
1277 splx(s);
1278
1279 /*
1280 * Update the tty layer's idea of the carrier bit, in case we changed
1281 * CLOCAL or MDMBUF. We don't hang up here; we only do that by
1282 * explicit request.
1283 */
1284 (void) (*tp->t_linesw->l_modem)(tp, ISSET(sc->sc_msr, MSR_DCD));
1285
1286 #ifdef PLCOM_DEBUG
1287 if (plcom_debug)
1288 plcomstatus(sc, "plcomparam ");
1289 #endif
1290
1291 if (!ISSET(t->c_cflag, CHWFLOW)) {
1292 if (sc->sc_tx_stopped) {
1293 sc->sc_tx_stopped = 0;
1294 plcomstart(tp);
1295 }
1296 }
1297
1298 return 0;
1299 }
1300
1301 void
1302 plcom_iflush(struct plcom_softc *sc)
1303 {
1304 bus_space_tag_t iot = sc->sc_iot;
1305 bus_space_handle_t ioh = sc->sc_ioh;
1306 #ifdef DIAGNOSTIC
1307 int reg;
1308 #endif
1309 int timo;
1310
1311 #ifdef DIAGNOSTIC
1312 reg = 0xffff;
1313 #endif
1314 timo = 50000;
1315 /* flush any pending I/O */
1316 while (! ISSET(bus_space_read_1(iot, ioh, plcom_fr), FR_RXFE)
1317 && --timo)
1318 #ifdef DIAGNOSTIC
1319 reg =
1320 #else
1321 (void)
1322 #endif
1323 bus_space_read_1(iot, ioh, plcom_dr);
1324 #ifdef DIAGNOSTIC
1325 if (!timo)
1326 printf("%s: plcom_iflush timeout %02x\n", sc->sc_dev.dv_xname,
1327 reg);
1328 #endif
1329 }
1330
1331 void
1332 plcom_loadchannelregs(struct plcom_softc *sc)
1333 {
1334 bus_space_tag_t iot = sc->sc_iot;
1335 bus_space_handle_t ioh = sc->sc_ioh;
1336
1337 /* XXXXX necessary? */
1338 plcom_iflush(sc);
1339
1340 bus_space_write_1(iot, ioh, plcom_cr, 0);
1341
1342 bus_space_write_1(iot, ioh, plcom_dlbl, sc->sc_dlbl);
1343 bus_space_write_1(iot, ioh, plcom_dlbh, sc->sc_dlbh);
1344 bus_space_write_1(iot, ioh, plcom_lcr, sc->sc_lcr);
1345 /* XXX device_unit() abuse */
1346 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev),
1347 sc->sc_mcr_active = sc->sc_mcr);
1348
1349 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
1350 }
1351
1352 int
1353 plcomhwiflow(struct tty *tp, int block)
1354 {
1355 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(tp->t_dev));
1356 int s;
1357
1358 if (PLCOM_ISALIVE(sc) == 0)
1359 return 0;
1360
1361 if (sc->sc_mcr_rts == 0)
1362 return 0;
1363
1364 s = splserial();
1365 PLCOM_LOCK(sc);
1366
1367 if (block) {
1368 if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1369 SET(sc->sc_rx_flags, RX_TTY_BLOCKED);
1370 plcom_hwiflow(sc);
1371 }
1372 } else {
1373 if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1374 CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1375 plcom_schedrx(sc);
1376 }
1377 if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1378 CLR(sc->sc_rx_flags, RX_TTY_BLOCKED);
1379 plcom_hwiflow(sc);
1380 }
1381 }
1382
1383 PLCOM_UNLOCK(sc);
1384 splx(s);
1385 return 1;
1386 }
1387
1388 /*
1389 * (un)block input via hw flowcontrol
1390 */
1391 void
1392 plcom_hwiflow(struct plcom_softc *sc)
1393 {
1394 if (sc->sc_mcr_rts == 0)
1395 return;
1396
1397 if (ISSET(sc->sc_rx_flags, RX_ANY_BLOCK)) {
1398 CLR(sc->sc_mcr, sc->sc_mcr_rts);
1399 CLR(sc->sc_mcr_active, sc->sc_mcr_rts);
1400 } else {
1401 SET(sc->sc_mcr, sc->sc_mcr_rts);
1402 SET(sc->sc_mcr_active, sc->sc_mcr_rts);
1403 }
1404 /* XXX device_unit() abuse */
1405 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev),
1406 sc->sc_mcr_active);
1407 }
1408
1409
1410 void
1411 plcomstart(struct tty *tp)
1412 {
1413 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(tp->t_dev));
1414 bus_space_tag_t iot = sc->sc_iot;
1415 bus_space_handle_t ioh = sc->sc_ioh;
1416 int s;
1417
1418 if (PLCOM_ISALIVE(sc) == 0)
1419 return;
1420
1421 s = spltty();
1422 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
1423 goto out;
1424 if (sc->sc_tx_stopped)
1425 goto out;
1426
1427 if (!ttypull(tp))
1428 goto out;
1429
1430 /* Grab the first contiguous region of buffer space. */
1431 {
1432 u_char *tba;
1433 int tbc;
1434
1435 tba = tp->t_outq.c_cf;
1436 tbc = ndqb(&tp->t_outq, 0);
1437
1438 (void)splserial();
1439 PLCOM_LOCK(sc);
1440
1441 sc->sc_tba = tba;
1442 sc->sc_tbc = tbc;
1443 }
1444
1445 SET(tp->t_state, TS_BUSY);
1446 sc->sc_tx_busy = 1;
1447
1448 /* Enable transmit completion interrupts if necessary. */
1449 if (!ISSET(sc->sc_cr, CR_TIE)) {
1450 SET(sc->sc_cr, CR_TIE);
1451 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
1452 }
1453
1454 /* Output the first chunk of the contiguous buffer. */
1455 {
1456 int n;
1457
1458 n = sc->sc_tbc;
1459 if (n > sc->sc_fifolen)
1460 n = sc->sc_fifolen;
1461 bus_space_write_multi_1(iot, ioh, plcom_dr, sc->sc_tba, n);
1462 sc->sc_tbc -= n;
1463 sc->sc_tba += n;
1464 }
1465 PLCOM_UNLOCK(sc);
1466 out:
1467 splx(s);
1468 return;
1469 }
1470
1471 /*
1472 * Stop output on a line.
1473 */
1474 void
1475 plcomstop(struct tty *tp, int flag)
1476 {
1477 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(tp->t_dev));
1478 int s;
1479
1480 s = splserial();
1481 PLCOM_LOCK(sc);
1482 if (ISSET(tp->t_state, TS_BUSY)) {
1483 /* Stop transmitting at the next chunk. */
1484 sc->sc_tbc = 0;
1485 sc->sc_heldtbc = 0;
1486 if (!ISSET(tp->t_state, TS_TTSTOP))
1487 SET(tp->t_state, TS_FLUSH);
1488 }
1489 PLCOM_UNLOCK(sc);
1490 splx(s);
1491 }
1492
1493 void
1494 plcomdiag(void *arg)
1495 {
1496 struct plcom_softc *sc = arg;
1497 int overflows, floods;
1498 int s;
1499
1500 s = splserial();
1501 PLCOM_LOCK(sc);
1502 overflows = sc->sc_overflows;
1503 sc->sc_overflows = 0;
1504 floods = sc->sc_floods;
1505 sc->sc_floods = 0;
1506 sc->sc_errors = 0;
1507 PLCOM_UNLOCK(sc);
1508 splx(s);
1509
1510 log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
1511 sc->sc_dev.dv_xname,
1512 overflows, overflows == 1 ? "" : "s",
1513 floods, floods == 1 ? "" : "s");
1514 }
1515
1516 integrate void
1517 plcom_rxsoft(struct plcom_softc *sc, struct tty *tp)
1518 {
1519 int (*rint) (int, struct tty *) = tp->t_linesw->l_rint;
1520 u_char *get, *end;
1521 u_int cc, scc;
1522 u_char rsr;
1523 int code;
1524 int s;
1525
1526 end = sc->sc_ebuf;
1527 get = sc->sc_rbget;
1528 scc = cc = plcom_rbuf_size - sc->sc_rbavail;
1529
1530 if (cc == plcom_rbuf_size) {
1531 sc->sc_floods++;
1532 if (sc->sc_errors++ == 0)
1533 callout_reset(&sc->sc_diag_callout, 60 * hz,
1534 plcomdiag, sc);
1535 }
1536
1537 while (cc) {
1538 code = get[0];
1539 rsr = get[1];
1540 if (ISSET(rsr, RSR_OE | RSR_BE | RSR_FE | RSR_PE)) {
1541 if (ISSET(rsr, RSR_OE)) {
1542 sc->sc_overflows++;
1543 if (sc->sc_errors++ == 0)
1544 callout_reset(&sc->sc_diag_callout,
1545 60 * hz, plcomdiag, sc);
1546 }
1547 if (ISSET(rsr, RSR_BE | RSR_FE))
1548 SET(code, TTY_FE);
1549 if (ISSET(rsr, RSR_PE))
1550 SET(code, TTY_PE);
1551 }
1552 if ((*rint)(code, tp) == -1) {
1553 /*
1554 * The line discipline's buffer is out of space.
1555 */
1556 if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1557 /*
1558 * We're either not using flow control, or the
1559 * line discipline didn't tell us to block for
1560 * some reason. Either way, we have no way to
1561 * know when there's more space available, so
1562 * just drop the rest of the data.
1563 */
1564 get += cc << 1;
1565 if (get >= end)
1566 get -= plcom_rbuf_size << 1;
1567 cc = 0;
1568 } else {
1569 /*
1570 * Don't schedule any more receive processing
1571 * until the line discipline tells us there's
1572 * space available (through plcomhwiflow()).
1573 * Leave the rest of the data in the input
1574 * buffer.
1575 */
1576 SET(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1577 }
1578 break;
1579 }
1580 get += 2;
1581 if (get >= end)
1582 get = sc->sc_rbuf;
1583 cc--;
1584 }
1585
1586 if (cc != scc) {
1587 sc->sc_rbget = get;
1588 s = splserial();
1589 PLCOM_LOCK(sc);
1590
1591 cc = sc->sc_rbavail += scc - cc;
1592 /* Buffers should be ok again, release possible block. */
1593 if (cc >= sc->sc_r_lowat) {
1594 if (ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1595 CLR(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
1596 SET(sc->sc_cr, CR_RIE | CR_RTIE);
1597 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
1598 }
1599 if (ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED)) {
1600 CLR(sc->sc_rx_flags, RX_IBUF_BLOCKED);
1601 plcom_hwiflow(sc);
1602 }
1603 }
1604 PLCOM_UNLOCK(sc);
1605 splx(s);
1606 }
1607 }
1608
1609 integrate void
1610 plcom_txsoft(struct plcom_softc *sc, struct tty *tp)
1611 {
1612
1613 CLR(tp->t_state, TS_BUSY);
1614 if (ISSET(tp->t_state, TS_FLUSH))
1615 CLR(tp->t_state, TS_FLUSH);
1616 else
1617 ndflush(&tp->t_outq, (int)(sc->sc_tba - tp->t_outq.c_cf));
1618 (*tp->t_linesw->l_start)(tp);
1619 }
1620
1621 integrate void
1622 plcom_stsoft(struct plcom_softc *sc, struct tty *tp)
1623 {
1624 u_char msr, delta;
1625 int s;
1626
1627 s = splserial();
1628 PLCOM_LOCK(sc);
1629 msr = sc->sc_msr;
1630 delta = sc->sc_msr_delta;
1631 sc->sc_msr_delta = 0;
1632 PLCOM_UNLOCK(sc);
1633 splx(s);
1634
1635 if (ISSET(delta, sc->sc_msr_dcd)) {
1636 /*
1637 * Inform the tty layer that carrier detect changed.
1638 */
1639 (void) (*tp->t_linesw->l_modem)(tp, ISSET(msr, MSR_DCD));
1640 }
1641
1642 if (ISSET(delta, sc->sc_msr_cts)) {
1643 /* Block or unblock output according to flow control. */
1644 if (ISSET(msr, sc->sc_msr_cts)) {
1645 sc->sc_tx_stopped = 0;
1646 (*tp->t_linesw->l_start)(tp);
1647 } else {
1648 sc->sc_tx_stopped = 1;
1649 }
1650 }
1651
1652 #ifdef PLCOM_DEBUG
1653 if (plcom_debug)
1654 plcomstatus(sc, "plcom_stsoft");
1655 #endif
1656 }
1657
1658 void
1659 plcomsoft(void *arg)
1660 {
1661 struct plcom_softc *sc = arg;
1662 struct tty *tp;
1663
1664 if (PLCOM_ISALIVE(sc) == 0)
1665 return;
1666
1667 tp = sc->sc_tty;
1668
1669 if (sc->sc_rx_ready) {
1670 sc->sc_rx_ready = 0;
1671 plcom_rxsoft(sc, tp);
1672 }
1673
1674 if (sc->sc_st_check) {
1675 sc->sc_st_check = 0;
1676 plcom_stsoft(sc, tp);
1677 }
1678
1679 if (sc->sc_tx_done) {
1680 sc->sc_tx_done = 0;
1681 plcom_txsoft(sc, tp);
1682 }
1683 }
1684
1685 int
1686 plcomintr(void *arg)
1687 {
1688 struct plcom_softc *sc = arg;
1689 bus_space_tag_t iot = sc->sc_iot;
1690 bus_space_handle_t ioh = sc->sc_ioh;
1691 u_char *put, *end;
1692 u_int cc;
1693 u_char rsr, iir;
1694
1695 if (PLCOM_ISALIVE(sc) == 0)
1696 return 0;
1697
1698 PLCOM_LOCK(sc);
1699 iir = bus_space_read_1(iot, ioh, plcom_iir);
1700 if (! ISSET(iir, IIR_IMASK)) {
1701 PLCOM_UNLOCK(sc);
1702 return 0;
1703 }
1704
1705 end = sc->sc_ebuf;
1706 put = sc->sc_rbput;
1707 cc = sc->sc_rbavail;
1708
1709 do {
1710 u_char msr, delta, fr;
1711
1712 fr = bus_space_read_1(iot, ioh, plcom_fr);
1713
1714 if (!ISSET(fr, FR_RXFE) &&
1715 !ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1716 while (cc > 0) {
1717 int cn_trapped = 0;
1718 put[0] = bus_space_read_1(iot, ioh,
1719 plcom_dr);
1720 rsr = bus_space_read_1(iot, ioh, plcom_rsr);
1721 /* Clear any error status. */
1722 if (ISSET(rsr,
1723 (RSR_BE | RSR_OE | RSR_PE | RSR_FE)))
1724 bus_space_write_1(iot, ioh, plcom_ecr,
1725 0);
1726 if (ISSET(rsr, RSR_BE)) {
1727 cn_trapped = 0;
1728 cn_check_magic(sc->sc_tty->t_dev,
1729 CNC_BREAK, plcom_cnm_state);
1730 if (cn_trapped)
1731 continue;
1732 #if defined(KGDB)
1733 if (ISSET(sc->sc_hwflags,
1734 PLCOM_HW_KGDB)) {
1735 kgdb_connect(1);
1736 continue;
1737 }
1738 #endif
1739 }
1740
1741 put[1] = rsr;
1742 cn_trapped = 0;
1743 cn_check_magic(sc->sc_tty->t_dev,
1744 put[0], plcom_cnm_state);
1745 if (cn_trapped) {
1746 fr = bus_space_read_1(iot, ioh,
1747 plcom_fr);
1748 if (ISSET(fr, FR_RXFE))
1749 break;
1750
1751 continue;
1752 }
1753 put += 2;
1754 if (put >= end)
1755 put = sc->sc_rbuf;
1756 cc--;
1757
1758 fr = bus_space_read_1(iot, ioh, plcom_fr);
1759 if (ISSET(fr, FR_RXFE))
1760 break;
1761 }
1762
1763 /*
1764 * Current string of incoming characters ended because
1765 * no more data was available or we ran out of space.
1766 * Schedule a receive event if any data was received.
1767 * If we're out of space, turn off receive interrupts.
1768 */
1769 sc->sc_rbput = put;
1770 sc->sc_rbavail = cc;
1771 if (!ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED))
1772 sc->sc_rx_ready = 1;
1773
1774 /*
1775 * See if we are in danger of overflowing a buffer. If
1776 * so, use hardware flow control to ease the pressure.
1777 */
1778 if (!ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED) &&
1779 cc < sc->sc_r_hiwat) {
1780 SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
1781 plcom_hwiflow(sc);
1782 }
1783
1784 /*
1785 * If we're out of space, disable receive interrupts
1786 * until the queue has drained a bit.
1787 */
1788 if (!cc) {
1789 SET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
1790 CLR(sc->sc_cr, CR_RIE | CR_RTIE);
1791 bus_space_write_1(iot, ioh, plcom_cr,
1792 sc->sc_cr);
1793 }
1794 } else {
1795 if (ISSET(iir, IIR_RIS)) {
1796 bus_space_write_1(iot, ioh, plcom_cr, 0);
1797 delay(10);
1798 bus_space_write_1(iot, ioh, plcom_cr,
1799 sc->sc_cr);
1800 continue;
1801 }
1802 }
1803
1804 msr = bus_space_read_1(iot, ioh, plcom_fr);
1805 delta = msr ^ sc->sc_msr;
1806 sc->sc_msr = msr;
1807 /* Clear any pending modem status interrupt. */
1808 if (iir & IIR_MIS)
1809 bus_space_write_1(iot, ioh, plcom_icr, 0);
1810 /*
1811 * Pulse-per-second (PSS) signals on edge of DCD?
1812 * Process these even if line discipline is ignoring DCD.
1813 */
1814 if (delta & sc->sc_ppsmask) {
1815 struct timeval tv;
1816 if ((msr & sc->sc_ppsmask) == sc->sc_ppsassert) {
1817 /* XXX nanotime() */
1818 microtime(&tv);
1819 TIMEVAL_TO_TIMESPEC(&tv,
1820 &sc->ppsinfo.assert_timestamp);
1821 if (sc->ppsparam.mode & PPS_OFFSETASSERT) {
1822 timespecadd(&sc->ppsinfo.assert_timestamp,
1823 &sc->ppsparam.assert_offset,
1824 &sc->ppsinfo.assert_timestamp);
1825 }
1826
1827 #ifdef PPS_SYNC
1828 if (sc->ppsparam.mode & PPS_HARDPPSONASSERT)
1829 hardpps(&tv, tv.tv_usec);
1830 #endif
1831 sc->ppsinfo.assert_sequence++;
1832 sc->ppsinfo.current_mode = sc->ppsparam.mode;
1833
1834 } else if ((msr & sc->sc_ppsmask) == sc->sc_ppsclear) {
1835 /* XXX nanotime() */
1836 microtime(&tv);
1837 TIMEVAL_TO_TIMESPEC(&tv,
1838 &sc->ppsinfo.clear_timestamp);
1839 if (sc->ppsparam.mode & PPS_OFFSETCLEAR) {
1840 timespecadd(&sc->ppsinfo.clear_timestamp,
1841 &sc->ppsparam.clear_offset,
1842 &sc->ppsinfo.clear_timestamp);
1843 }
1844
1845 #ifdef PPS_SYNC
1846 if (sc->ppsparam.mode & PPS_HARDPPSONCLEAR)
1847 hardpps(&tv, tv.tv_usec);
1848 #endif
1849 sc->ppsinfo.clear_sequence++;
1850 sc->ppsinfo.current_mode = sc->ppsparam.mode;
1851 }
1852 }
1853
1854 /*
1855 * Process normal status changes
1856 */
1857 if (ISSET(delta, sc->sc_msr_mask)) {
1858 SET(sc->sc_msr_delta, delta);
1859
1860 /*
1861 * Stop output immediately if we lose the output
1862 * flow control signal or carrier detect.
1863 */
1864 if (ISSET(~msr, sc->sc_msr_mask)) {
1865 sc->sc_tbc = 0;
1866 sc->sc_heldtbc = 0;
1867 #ifdef PLCOM_DEBUG
1868 if (plcom_debug)
1869 plcomstatus(sc, "plcomintr ");
1870 #endif
1871 }
1872
1873 sc->sc_st_check = 1;
1874 }
1875
1876 /*
1877 * Done handling any receive interrupts. See if data
1878 * can be * transmitted as well. Schedule tx done
1879 * event if no data left * and tty was marked busy.
1880 */
1881 if (ISSET(iir, IIR_TIS)) {
1882 /*
1883 * If we've delayed a parameter change, do it
1884 * now, and restart * output.
1885 */
1886 if (sc->sc_heldchange) {
1887 plcom_loadchannelregs(sc);
1888 sc->sc_heldchange = 0;
1889 sc->sc_tbc = sc->sc_heldtbc;
1890 sc->sc_heldtbc = 0;
1891 }
1892
1893 /*
1894 * Output the next chunk of the contiguous
1895 * buffer, if any.
1896 */
1897 if (sc->sc_tbc > 0) {
1898 int n;
1899
1900 n = sc->sc_tbc;
1901 if (n > sc->sc_fifolen)
1902 n = sc->sc_fifolen;
1903 bus_space_write_multi_1(iot, ioh, plcom_dr,
1904 sc->sc_tba, n);
1905 sc->sc_tbc -= n;
1906 sc->sc_tba += n;
1907 } else {
1908 /*
1909 * Disable transmit plcompletion
1910 * interrupts if necessary.
1911 */
1912 if (ISSET(sc->sc_cr, CR_TIE)) {
1913 CLR(sc->sc_cr, CR_TIE);
1914 bus_space_write_1(iot, ioh, plcom_cr,
1915 sc->sc_cr);
1916 }
1917 if (sc->sc_tx_busy) {
1918 sc->sc_tx_busy = 0;
1919 sc->sc_tx_done = 1;
1920 }
1921 }
1922 }
1923 } while (ISSET((iir = bus_space_read_1(iot, ioh, plcom_iir)),
1924 IIR_IMASK));
1925
1926 PLCOM_UNLOCK(sc);
1927
1928 /* Wake up the poller. */
1929 softint_schedule(sc->sc_si);
1930
1931 #if NRND > 0 && defined(RND_COM)
1932 rnd_add_uint32(&sc->rnd_source, iir | rsr);
1933 #endif
1934
1935 return 1;
1936 }
1937
1938 /*
1939 * The following functions are polled getc and putc routines, shared
1940 * by the console and kgdb glue.
1941 *
1942 * The read-ahead code is so that you can detect pending in-band
1943 * cn_magic in polled mode while doing output rather than having to
1944 * wait until the kernel decides it needs input.
1945 */
1946
1947 #define MAX_READAHEAD 20
1948 static int plcom_readahead[MAX_READAHEAD];
1949 static int plcom_readaheadcount = 0;
1950
1951 int
1952 plcom_common_getc(dev_t dev, bus_space_tag_t iot, bus_space_handle_t ioh)
1953 {
1954 int s = splserial();
1955 u_char stat, c;
1956
1957 /* got a character from reading things earlier */
1958 if (plcom_readaheadcount > 0) {
1959 int i;
1960
1961 c = plcom_readahead[0];
1962 for (i = 1; i < plcom_readaheadcount; i++) {
1963 plcom_readahead[i-1] = plcom_readahead[i];
1964 }
1965 plcom_readaheadcount--;
1966 splx(s);
1967 return c;
1968 }
1969
1970 /* block until a character becomes available */
1971 while (ISSET(stat = bus_space_read_1(iot, ioh, plcom_fr), FR_RXFE))
1972 ;
1973
1974 c = bus_space_read_1(iot, ioh, plcom_dr);
1975 stat = bus_space_read_1(iot, ioh, plcom_iir);
1976 {
1977 int cn_trapped = 0; /* unused */
1978 #ifdef DDB
1979 extern int db_active;
1980 if (!db_active)
1981 #endif
1982 cn_check_magic(dev, c, plcom_cnm_state);
1983 }
1984 splx(s);
1985 return c;
1986 }
1987
1988 void
1989 plcom_common_putc(dev_t dev, bus_space_tag_t iot, bus_space_handle_t ioh,
1990 int c)
1991 {
1992 int s = splserial();
1993 int timo;
1994
1995 int cin, stat;
1996 if (plcom_readaheadcount < MAX_READAHEAD
1997 && !ISSET(stat = bus_space_read_1(iot, ioh, plcom_fr), FR_RXFE)) {
1998 int cn_trapped = 0;
1999 cin = bus_space_read_1(iot, ioh, plcom_dr);
2000 stat = bus_space_read_1(iot, ioh, plcom_iir);
2001 cn_check_magic(dev, cin, plcom_cnm_state);
2002 plcom_readahead[plcom_readaheadcount++] = cin;
2003 }
2004
2005 /* wait for any pending transmission to finish */
2006 timo = 150000;
2007 while (!ISSET(bus_space_read_1(iot, ioh, plcom_fr), FR_TXFE) && --timo)
2008 continue;
2009
2010 bus_space_write_1(iot, ioh, plcom_dr, c);
2011 PLCOM_BARRIER(iot, ioh, BR | BW);
2012
2013 /* wait for this transmission to complete */
2014 timo = 1500000;
2015 while (!ISSET(bus_space_read_1(iot, ioh, plcom_fr), FR_TXFE) && --timo)
2016 continue;
2017
2018 splx(s);
2019 }
2020
2021 /*
2022 * Initialize UART for use as console or KGDB line.
2023 */
2024 int
2025 plcominit(bus_space_tag_t iot, bus_addr_t iobase, int rate, int frequency,
2026 tcflag_t cflag, bus_space_handle_t *iohp)
2027 {
2028 bus_space_handle_t ioh;
2029
2030 if (bus_space_map(iot, iobase, PLCOM_UART_SIZE, 0, &ioh))
2031 return ENOMEM; /* ??? */
2032
2033 rate = plcomspeed(rate, frequency);
2034 bus_space_write_1(iot, ioh, plcom_cr, 0);
2035 bus_space_write_1(iot, ioh, plcom_dlbl, rate);
2036 bus_space_write_1(iot, ioh, plcom_dlbh, rate >> 8);
2037 bus_space_write_1(iot, ioh, plcom_lcr, cflag2lcr(cflag) | LCR_FEN);
2038 bus_space_write_1(iot, ioh, plcom_cr, CR_UARTEN);
2039
2040 #if 0
2041 /* Ought to do something like this, but we have no sc to
2042 dereference. */
2043 /* XXX device_unit() abuse */
2044 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev),
2045 MCR_DTR | MCR_RTS);
2046 #endif
2047
2048 *iohp = ioh;
2049 return 0;
2050 }
2051
2052 /*
2053 * Following are all routines needed for PLCOM to act as console
2054 */
2055 struct consdev plcomcons = {
2056 NULL, NULL, plcomcngetc, plcomcnputc, plcomcnpollc, NULL,
2057 NULL, NULL, NODEV, CN_NORMAL
2058 };
2059
2060
2061 int
2062 plcomcnattach(bus_space_tag_t iot, bus_addr_t iobase, int rate, int frequency,
2063 tcflag_t cflag, int unit)
2064 {
2065 int res;
2066
2067 res = plcominit(iot, iobase, rate, frequency, cflag, &plcomconsioh);
2068 if (res)
2069 return res;
2070
2071 cn_tab = &plcomcons;
2072 cn_init_magic(&plcom_cnm_state);
2073 cn_set_magic("\047\001"); /* default magic is BREAK */
2074
2075 plcomconstag = iot;
2076 plcomconsunit = unit;
2077 plcomconsrate = rate;
2078 plcomconscflag = cflag;
2079
2080 return 0;
2081 }
2082
2083 void
2084 plcomcndetach(void)
2085 {
2086 bus_space_unmap(plcomconstag, plcomconsioh, PLCOM_UART_SIZE);
2087 plcomconstag = NULL;
2088
2089 cn_tab = NULL;
2090 }
2091
2092 int
2093 plcomcngetc(dev_t dev)
2094 {
2095 return plcom_common_getc(dev, plcomconstag, plcomconsioh);
2096 }
2097
2098 /*
2099 * Console kernel output character routine.
2100 */
2101 void
2102 plcomcnputc(dev_t dev, int c)
2103 {
2104 plcom_common_putc(dev, plcomconstag, plcomconsioh, c);
2105 }
2106
2107 void
2108 plcomcnpollc(dev_t dev, int on)
2109 {
2110
2111 }
2112
2113 #ifdef KGDB
2114 int
2115 plcom_kgdb_attach(bus_space_tag_t iot, bus_addr_t iobase, int rate,
2116 int frequency, tcflag_t cflag, int unit)
2117 {
2118 int res;
2119
2120 if (iot == plcomconstag && iobase == plcomconsunit)
2121 return EBUSY; /* cannot share with console */
2122
2123 res = plcominit(iot, iobase, rate, frequency, cflag, &plcom_kgdb_ioh);
2124 if (res)
2125 return res;
2126
2127 kgdb_attach(plcom_kgdb_getc, plcom_kgdb_putc, NULL);
2128 kgdb_dev = 123; /* unneeded, only to satisfy some tests */
2129
2130 plcom_kgdb_iot = iot;
2131 plcom_kgdb_unit = unit;
2132
2133 return 0;
2134 }
2135
2136 /* ARGSUSED */
2137 int
2138 plcom_kgdb_getc(void *arg)
2139 {
2140 return plcom_common_getc(NODEV, plcom_kgdb_iot, plcom_kgdb_ioh);
2141 }
2142
2143 /* ARGSUSED */
2144 void
2145 plcom_kgdb_putc(void *arg, int c)
2146 {
2147 plcom_common_putc(NODEV, plcom_kgdb_iot, plcom_kgdb_ioh, c);
2148 }
2149 #endif /* KGDB */
2150
2151 /* helper function to identify the plcom ports used by
2152 console or KGDB (and not yet autoconf attached) */
2153 int
2154 plcom_is_console(bus_space_tag_t iot, int unit,
2155 bus_space_handle_t *ioh)
2156 {
2157 bus_space_handle_t help;
2158
2159 if (!plcomconsattached &&
2160 iot == plcomconstag && unit == plcomconsunit)
2161 help = plcomconsioh;
2162 #ifdef KGDB
2163 else if (!plcom_kgdb_attached &&
2164 iot == plcom_kgdb_iot && unit == plcom_kgdb_unit)
2165 help = plcom_kgdb_ioh;
2166 #endif
2167 else
2168 return 0;
2169
2170 if (ioh)
2171 *ioh = help;
2172 return 1;
2173 }
2174