plcom.c revision 1.25.8.1 1 /* $NetBSD: plcom.c,v 1.25.8.1 2008/05/18 12:31:48 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2001 ARM Ltd
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the company may not be used to endorse or promote
16 * products derived from this software without specific prior written
17 * permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
23 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
32 * All rights reserved.
33 *
34 * This code is derived from software contributed to The NetBSD Foundation
35 * by Charles M. Hannum.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
47 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
48 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
49 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
50 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
51 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
52 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
53 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
54 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
55 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
56 * POSSIBILITY OF SUCH DAMAGE.
57 */
58
59 /*
60 * Copyright (c) 1991 The Regents of the University of California.
61 * All rights reserved.
62 *
63 * Redistribution and use in source and binary forms, with or without
64 * modification, are permitted provided that the following conditions
65 * are met:
66 * 1. Redistributions of source code must retain the above copyright
67 * notice, this list of conditions and the following disclaimer.
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in the
70 * documentation and/or other materials provided with the distribution.
71 * 3. Neither the name of the University nor the names of its contributors
72 * may be used to endorse or promote products derived from this software
73 * without specific prior written permission.
74 *
75 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
76 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
77 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
78 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
79 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
80 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
81 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
82 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
83 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
84 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
85 * SUCH DAMAGE.
86 *
87 * @(#)com.c 7.5 (Berkeley) 5/16/91
88 */
89
90 /*
91 * COM driver for the Prime Cell PL010 UART, which is similar to the 16C550,
92 * but has a completely different programmer's model.
93 * Derived from the NS16550AF com driver.
94 */
95
96 #include <sys/cdefs.h>
97 __KERNEL_RCSID(0, "$NetBSD: plcom.c,v 1.25.8.1 2008/05/18 12:31:48 yamt Exp $");
98
99 #include "opt_plcom.h"
100 #include "opt_ddb.h"
101 #include "opt_kgdb.h"
102 #include "opt_lockdebug.h"
103 #include "opt_multiprocessor.h"
104
105 #include "rnd.h"
106 #if NRND > 0 && defined(RND_COM)
107 #include <sys/rnd.h>
108 #endif
109
110 /*
111 * Override cnmagic(9) macro before including <sys/systm.h>.
112 * We need to know if cn_check_magic triggered debugger, so set a flag.
113 * Callers of cn_check_magic must declare int cn_trapped = 0;
114 * XXX: this is *ugly*!
115 */
116 #define cn_trap() \
117 do { \
118 console_debugger(); \
119 cn_trapped = 1; \
120 } while (/* CONSTCOND */ 0)
121
122 #include <sys/param.h>
123 #include <sys/systm.h>
124 #include <sys/ioctl.h>
125 #include <sys/select.h>
126 #include <sys/tty.h>
127 #include <sys/proc.h>
128 #include <sys/user.h>
129 #include <sys/conf.h>
130 #include <sys/file.h>
131 #include <sys/uio.h>
132 #include <sys/kernel.h>
133 #include <sys/syslog.h>
134 #include <sys/types.h>
135 #include <sys/device.h>
136 #include <sys/malloc.h>
137 #include <sys/timepps.h>
138 #include <sys/vnode.h>
139 #include <sys/kauth.h>
140 #include <sys/intr.h>
141 #include <sys/bus.h>
142
143 #include <evbarm/dev/plcomreg.h>
144 #include <evbarm/dev/plcomvar.h>
145
146 #include <dev/cons.h>
147
148 static void plcom_enable_debugport (struct plcom_softc *);
149
150 void plcom_config (struct plcom_softc *);
151 void plcom_shutdown (struct plcom_softc *);
152 int plcomspeed (long, long);
153 static u_char cflag2lcr (tcflag_t);
154 int plcomparam (struct tty *, struct termios *);
155 void plcomstart (struct tty *);
156 int plcomhwiflow (struct tty *, int);
157
158 void plcom_loadchannelregs (struct plcom_softc *);
159 void plcom_hwiflow (struct plcom_softc *);
160 void plcom_break (struct plcom_softc *, int);
161 void plcom_modem (struct plcom_softc *, int);
162 void tiocm_to_plcom (struct plcom_softc *, u_long, int);
163 int plcom_to_tiocm (struct plcom_softc *);
164 void plcom_iflush (struct plcom_softc *);
165
166 int plcom_common_getc (dev_t, bus_space_tag_t, bus_space_handle_t);
167 void plcom_common_putc (dev_t, bus_space_tag_t, bus_space_handle_t, int);
168
169 int plcominit (bus_space_tag_t, bus_addr_t, int, int, tcflag_t,
170 bus_space_handle_t *);
171
172 dev_type_open(plcomopen);
173 dev_type_close(plcomclose);
174 dev_type_read(plcomread);
175 dev_type_write(plcomwrite);
176 dev_type_ioctl(plcomioctl);
177 dev_type_stop(plcomstop);
178 dev_type_tty(plcomtty);
179 dev_type_poll(plcompoll);
180
181 int plcomcngetc (dev_t);
182 void plcomcnputc (dev_t, int);
183 void plcomcnpollc (dev_t, int);
184
185 #define integrate static inline
186 void plcomsoft (void *);
187 integrate void plcom_rxsoft (struct plcom_softc *, struct tty *);
188 integrate void plcom_txsoft (struct plcom_softc *, struct tty *);
189 integrate void plcom_stsoft (struct plcom_softc *, struct tty *);
190 integrate void plcom_schedrx (struct plcom_softc *);
191 void plcomdiag (void *);
192
193 extern struct cfdriver plcom_cd;
194
195 const struct cdevsw plcom_cdevsw = {
196 plcomopen, plcomclose, plcomread, plcomwrite, plcomioctl,
197 plcomstop, plcomtty, plcompoll, nommap, ttykqfilter, D_TTY
198 };
199
200 /*
201 * Make this an option variable one can patch.
202 * But be warned: this must be a power of 2!
203 */
204 u_int plcom_rbuf_size = PLCOM_RING_SIZE;
205
206 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
207 u_int plcom_rbuf_hiwat = (PLCOM_RING_SIZE * 1) / 4;
208 u_int plcom_rbuf_lowat = (PLCOM_RING_SIZE * 3) / 4;
209
210 static int plcomconsunit = -1;
211 static bus_space_tag_t plcomconstag;
212 static bus_space_handle_t plcomconsioh;
213 static int plcomconsattached;
214 static int plcomconsrate;
215 static tcflag_t plcomconscflag;
216 static struct cnm_state plcom_cnm_state;
217
218 static int ppscap =
219 PPS_TSFMT_TSPEC |
220 PPS_CAPTUREASSERT |
221 PPS_CAPTURECLEAR |
222 #ifdef PPS_SYNC
223 PPS_HARDPPSONASSERT | PPS_HARDPPSONCLEAR |
224 #endif /* PPS_SYNC */
225 PPS_OFFSETASSERT | PPS_OFFSETCLEAR;
226
227 #ifdef KGDB
228 #include <sys/kgdb.h>
229
230 static int plcom_kgdb_unit;
231 static bus_space_tag_t plcom_kgdb_iot;
232 static bus_space_handle_t plcom_kgdb_ioh;
233 static int plcom_kgdb_attached;
234
235 int plcom_kgdb_getc (void *);
236 void plcom_kgdb_putc (void *, int);
237 #endif /* KGDB */
238
239 #define PLCOMUNIT_MASK 0x7ffff
240 #define PLCOMDIALOUT_MASK 0x80000
241
242 #define PLCOMUNIT(x) (minor(x) & PLCOMUNIT_MASK)
243 #define PLCOMDIALOUT(x) (minor(x) & PLCOMDIALOUT_MASK)
244
245 #define PLCOM_ISALIVE(sc) ((sc)->enabled != 0 && \
246 device_is_active(&(sc)->sc_dev))
247
248 #define BR BUS_SPACE_BARRIER_READ
249 #define BW BUS_SPACE_BARRIER_WRITE
250 #define PLCOM_BARRIER(t, h, f) bus_space_barrier((t), (h), 0, PLCOM_UART_SIZE, (f))
251
252 #define PLCOM_LOCK(sc) simple_lock(&(sc)->sc_lock)
253 #define PLCOM_UNLOCK(sc) simple_unlock(&(sc)->sc_lock)
254
255 int
256 plcomspeed(long speed, long frequency)
257 {
258 #define divrnd(n, q) (((n)*2/(q)+1)/2) /* divide and round off */
259
260 int x, err;
261
262 #if 0
263 if (speed == 0)
264 return 0;
265 #endif
266 if (speed <= 0)
267 return -1;
268 x = divrnd(frequency / 16, speed);
269 if (x <= 0)
270 return -1;
271 err = divrnd(((quad_t)frequency) * 1000 / 16, speed * x) - 1000;
272 if (err < 0)
273 err = -err;
274 if (err > PLCOM_TOLERANCE)
275 return -1;
276 return x;
277
278 #undef divrnd
279 }
280
281 #ifdef PLCOM_DEBUG
282 int plcom_debug = 0;
283
284 void plcomstatus (struct plcom_softc *, char *);
285 void
286 plcomstatus(struct plcom_softc *sc, char *str)
287 {
288 struct tty *tp = sc->sc_tty;
289
290 printf("%s: %s %sclocal %sdcd %sts_carr_on %sdtr %stx_stopped\n",
291 sc->sc_dev.dv_xname, str,
292 ISSET(tp->t_cflag, CLOCAL) ? "+" : "-",
293 ISSET(sc->sc_msr, MSR_DCD) ? "+" : "-",
294 ISSET(tp->t_state, TS_CARR_ON) ? "+" : "-",
295 ISSET(sc->sc_mcr, MCR_DTR) ? "+" : "-",
296 sc->sc_tx_stopped ? "+" : "-");
297
298 printf("%s: %s %scrtscts %scts %sts_ttstop %srts %xrx_flags\n",
299 sc->sc_dev.dv_xname, str,
300 ISSET(tp->t_cflag, CRTSCTS) ? "+" : "-",
301 ISSET(sc->sc_msr, MSR_CTS) ? "+" : "-",
302 ISSET(tp->t_state, TS_TTSTOP) ? "+" : "-",
303 ISSET(sc->sc_mcr, MCR_RTS) ? "+" : "-",
304 sc->sc_rx_flags);
305 }
306 #endif
307
308 int
309 plcomprobe1(bus_space_tag_t iot, bus_space_handle_t ioh)
310 {
311 int data;
312
313 /* Disable the UART. */
314 bus_space_write_1(iot, ioh, plcom_cr, 0);
315 /* Make sure the FIFO is off. */
316 bus_space_write_1(iot, ioh, plcom_lcr, LCR_8BITS);
317 /* Disable interrupts. */
318 bus_space_write_1(iot, ioh, plcom_iir, 0);
319
320 /* Make sure we swallow anything in the receiving register. */
321 data = bus_space_read_1(iot, ioh, plcom_dr);
322
323 if (bus_space_read_1(iot, ioh, plcom_lcr) != LCR_8BITS)
324 return 0;
325
326 data = bus_space_read_1(iot, ioh, plcom_fr) & (FR_RXFF | FR_RXFE);
327
328 if (data != FR_RXFE)
329 return 0;
330
331 return 1;
332 }
333
334 static void
335 plcom_enable_debugport(struct plcom_softc *sc)
336 {
337 int s;
338
339 /* Turn on line break interrupt, set carrier. */
340 s = splserial();
341 PLCOM_LOCK(sc);
342 sc->sc_cr = CR_RIE | CR_RTIE | CR_UARTEN;
343 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
344 SET(sc->sc_mcr, MCR_DTR | MCR_RTS);
345 /* XXX device_unit() abuse */
346 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev),
347 sc->sc_mcr);
348 PLCOM_UNLOCK(sc);
349 splx(s);
350 }
351
352 void
353 plcom_attach_subr(struct plcom_softc *sc)
354 {
355 int unit = sc->sc_iounit;
356 bus_space_tag_t iot = sc->sc_iot;
357 bus_space_handle_t ioh = sc->sc_ioh;
358 struct tty *tp;
359
360 callout_init(&sc->sc_diag_callout, 0);
361 simple_lock_init(&sc->sc_lock);
362
363 /* Disable interrupts before configuring the device. */
364 sc->sc_cr = 0;
365
366 if (plcomconstag && unit == plcomconsunit) {
367 plcomconsattached = 1;
368
369 plcomconstag = iot;
370 plcomconsioh = ioh;
371
372 /* Make sure the console is always "hardwired". */
373 delay(1000); /* wait for output to finish */
374 SET(sc->sc_hwflags, PLCOM_HW_CONSOLE);
375 SET(sc->sc_swflags, TIOCFLAG_SOFTCAR);
376 /* Must re-enable the console immediately, or we will
377 hang when trying to print. */
378 sc->sc_cr = CR_UARTEN;
379 }
380
381 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
382
383 /* The PL010 has a 16-byte fifo, but the tx interrupt triggers when
384 there is space for 8 more bytes. */
385 sc->sc_fifolen = 8;
386 printf("\n");
387
388 if (ISSET(sc->sc_hwflags, PLCOM_HW_TXFIFO_DISABLE)) {
389 sc->sc_fifolen = 1;
390 printf("%s: txfifo disabled\n", sc->sc_dev.dv_xname);
391 }
392
393 if (sc->sc_fifolen > 1)
394 SET(sc->sc_hwflags, PLCOM_HW_FIFO);
395
396 tp = ttymalloc();
397 tp->t_oproc = plcomstart;
398 tp->t_param = plcomparam;
399 tp->t_hwiflow = plcomhwiflow;
400
401 sc->sc_tty = tp;
402 sc->sc_rbuf = malloc(plcom_rbuf_size << 1, M_DEVBUF, M_NOWAIT);
403 sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
404 sc->sc_rbavail = plcom_rbuf_size;
405 if (sc->sc_rbuf == NULL) {
406 printf("%s: unable to allocate ring buffer\n",
407 sc->sc_dev.dv_xname);
408 return;
409 }
410 sc->sc_ebuf = sc->sc_rbuf + (plcom_rbuf_size << 1);
411
412 tty_attach(tp);
413
414 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
415 int maj;
416
417 /* locate the major number */
418 maj = cdevsw_lookup_major(&plcom_cdevsw);
419
420 cn_tab->cn_dev = makedev(maj, device_unit(&sc->sc_dev));
421
422 printf("%s: console\n", sc->sc_dev.dv_xname);
423 }
424
425 #ifdef KGDB
426 /*
427 * Allow kgdb to "take over" this port. If this is
428 * the kgdb device, it has exclusive use.
429 */
430 if (iot == plcom_kgdb_iot && unit == plcom_kgdb_unit) {
431 plcom_kgdb_attached = 1;
432
433 SET(sc->sc_hwflags, PLCOM_HW_KGDB);
434 printf("%s: kgdb\n", sc->sc_dev.dv_xname);
435 }
436 #endif
437
438 sc->sc_si = softint_establish(SOFTINT_SERIAL, plcomsoft, sc);
439
440 #if NRND > 0 && defined(RND_COM)
441 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
442 RND_TYPE_TTY, 0);
443 #endif
444
445 /* if there are no enable/disable functions, assume the device
446 is always enabled */
447 if (!sc->enable)
448 sc->enabled = 1;
449
450 plcom_config(sc);
451
452 SET(sc->sc_hwflags, PLCOM_HW_DEV_OK);
453 }
454
455 void
456 plcom_config(struct plcom_softc *sc)
457 {
458 bus_space_tag_t iot = sc->sc_iot;
459 bus_space_handle_t ioh = sc->sc_ioh;
460
461 /* Disable interrupts before configuring the device. */
462 sc->sc_cr = 0;
463 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
464
465 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE|PLCOM_HW_KGDB))
466 plcom_enable_debugport(sc);
467 }
468
469 int
470 plcom_detach(self, flags)
471 struct device *self;
472 int flags;
473 {
474 struct plcom_softc *sc = (struct plcom_softc *)self;
475 int maj, mn;
476
477 /* locate the major number */
478 maj = cdevsw_lookup_major(&plcom_cdevsw);
479
480 /* Nuke the vnodes for any open instances. */
481 mn = device_unit(self);
482 vdevgone(maj, mn, mn, VCHR);
483
484 mn |= PLCOMDIALOUT_MASK;
485 vdevgone(maj, mn, mn, VCHR);
486
487 /* Free the receive buffer. */
488 free(sc->sc_rbuf, M_DEVBUF);
489
490 /* Detach and free the tty. */
491 tty_detach(sc->sc_tty);
492 ttyfree(sc->sc_tty);
493
494 /* Unhook the soft interrupt handler. */
495 softint_disestablish(sc->sc_si);
496
497 #if NRND > 0 && defined(RND_COM)
498 /* Unhook the entropy source. */
499 rnd_detach_source(&sc->rnd_source);
500 #endif
501
502 return 0;
503 }
504
505 int
506 plcom_activate(struct device *self, enum devact act)
507 {
508 struct plcom_softc *sc = (struct plcom_softc *)self;
509 int s, rv = 0;
510
511 s = splserial();
512 PLCOM_LOCK(sc);
513 switch (act) {
514 case DVACT_ACTIVATE:
515 rv = EOPNOTSUPP;
516 break;
517
518 case DVACT_DEACTIVATE:
519 if (sc->sc_hwflags & (PLCOM_HW_CONSOLE|PLCOM_HW_KGDB)) {
520 rv = EBUSY;
521 break;
522 }
523
524 if (sc->disable != NULL && sc->enabled != 0) {
525 (*sc->disable)(sc);
526 sc->enabled = 0;
527 }
528 break;
529 }
530
531 PLCOM_UNLOCK(sc);
532 splx(s);
533 return rv;
534 }
535
536 void
537 plcom_shutdown(struct plcom_softc *sc)
538 {
539 struct tty *tp = sc->sc_tty;
540 int s;
541
542 s = splserial();
543 PLCOM_LOCK(sc);
544
545 /* If we were asserting flow control, then deassert it. */
546 SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
547 plcom_hwiflow(sc);
548
549 /* Clear any break condition set with TIOCSBRK. */
550 plcom_break(sc, 0);
551
552 /* Turn off PPS capture on last close. */
553 mutex_spin_enter(&timecounter_lock);
554 sc->sc_ppsmask = 0;
555 sc->ppsparam.mode = 0;
556 mutex_spin_exit(&timecounter_lock);
557
558 /*
559 * Hang up if necessary. Wait a bit, so the other side has time to
560 * notice even if we immediately open the port again.
561 * Avoid tsleeping above splhigh().
562 */
563 if (ISSET(tp->t_cflag, HUPCL)) {
564 plcom_modem(sc, 0);
565 PLCOM_UNLOCK(sc);
566 splx(s);
567 /* XXX tsleep will only timeout */
568 (void) tsleep(sc, TTIPRI, ttclos, hz);
569 s = splserial();
570 PLCOM_LOCK(sc);
571 }
572
573 /* Turn off interrupts. */
574 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE))
575 /* interrupt on break */
576 sc->sc_cr = CR_RIE | CR_RTIE | CR_UARTEN;
577 else
578 sc->sc_cr = 0;
579 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
580
581 if (sc->disable) {
582 #ifdef DIAGNOSTIC
583 if (!sc->enabled)
584 panic("plcom_shutdown: not enabled?");
585 #endif
586 (*sc->disable)(sc);
587 sc->enabled = 0;
588 }
589 PLCOM_UNLOCK(sc);
590 splx(s);
591 }
592
593 int
594 plcomopen(dev_t dev, int flag, int mode, struct lwp *l)
595 {
596 struct plcom_softc *sc;
597 struct tty *tp;
598 int s, s2;
599 int error;
600
601 sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
602 if (sc == NULL || !ISSET(sc->sc_hwflags, PLCOM_HW_DEV_OK) ||
603 sc->sc_rbuf == NULL)
604 return ENXIO;
605
606 if (!device_is_active(&sc->sc_dev))
607 return ENXIO;
608
609 #ifdef KGDB
610 /*
611 * If this is the kgdb port, no other use is permitted.
612 */
613 if (ISSET(sc->sc_hwflags, PLCOM_HW_KGDB))
614 return EBUSY;
615 #endif
616
617 tp = sc->sc_tty;
618
619 if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
620 return (EBUSY);
621
622 s = spltty();
623
624 /*
625 * Do the following iff this is a first open.
626 */
627 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
628 struct termios t;
629
630 tp->t_dev = dev;
631
632 s2 = splserial();
633 PLCOM_LOCK(sc);
634
635 if (sc->enable) {
636 if ((*sc->enable)(sc)) {
637 PLCOM_UNLOCK(sc);
638 splx(s2);
639 splx(s);
640 printf("%s: device enable failed\n",
641 sc->sc_dev.dv_xname);
642 return EIO;
643 }
644 sc->enabled = 1;
645 plcom_config(sc);
646 }
647
648 /* Turn on interrupts. */
649 /* IER_ERXRDY | IER_ERLS | IER_EMSC; */
650 sc->sc_cr = CR_RIE | CR_RTIE | CR_MSIE | CR_UARTEN;
651 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
652
653 /* Fetch the current modem control status, needed later. */
654 sc->sc_msr = bus_space_read_1(sc->sc_iot, sc->sc_ioh, plcom_fr);
655
656 /* Clear PPS capture state on first open. */
657
658 mutex_spin_enter(&timecounter_lock);
659 sc->sc_ppsmask = 0;
660 sc->ppsparam.mode = 0;
661 mutex_spin_exit(&timecounter_lock);
662
663 PLCOM_UNLOCK(sc);
664 splx(s2);
665
666 /*
667 * Initialize the termios status to the defaults. Add in the
668 * sticky bits from TIOCSFLAGS.
669 */
670 t.c_ispeed = 0;
671 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
672 t.c_ospeed = plcomconsrate;
673 t.c_cflag = plcomconscflag;
674 } else {
675 t.c_ospeed = TTYDEF_SPEED;
676 t.c_cflag = TTYDEF_CFLAG;
677 }
678 if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL))
679 SET(t.c_cflag, CLOCAL);
680 if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS))
681 SET(t.c_cflag, CRTSCTS);
682 if (ISSET(sc->sc_swflags, TIOCFLAG_MDMBUF))
683 SET(t.c_cflag, MDMBUF);
684 /* Make sure plcomparam() will do something. */
685 tp->t_ospeed = 0;
686 (void) plcomparam(tp, &t);
687 tp->t_iflag = TTYDEF_IFLAG;
688 tp->t_oflag = TTYDEF_OFLAG;
689 tp->t_lflag = TTYDEF_LFLAG;
690 ttychars(tp);
691 ttsetwater(tp);
692
693 s2 = splserial();
694 PLCOM_LOCK(sc);
695
696 /*
697 * Turn on DTR. We must always do this, even if carrier is not
698 * present, because otherwise we'd have to use TIOCSDTR
699 * immediately after setting CLOCAL, which applications do not
700 * expect. We always assert DTR while the device is open
701 * unless explicitly requested to deassert it.
702 */
703 plcom_modem(sc, 1);
704
705 /* Clear the input ring, and unblock. */
706 sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
707 sc->sc_rbavail = plcom_rbuf_size;
708 plcom_iflush(sc);
709 CLR(sc->sc_rx_flags, RX_ANY_BLOCK);
710 plcom_hwiflow(sc);
711
712 #ifdef PLCOM_DEBUG
713 if (plcom_debug)
714 plcomstatus(sc, "plcomopen ");
715 #endif
716
717 PLCOM_UNLOCK(sc);
718 splx(s2);
719 }
720
721 splx(s);
722
723 error = ttyopen(tp, PLCOMDIALOUT(dev), ISSET(flag, O_NONBLOCK));
724 if (error)
725 goto bad;
726
727 error = (*tp->t_linesw->l_open)(dev, tp);
728 if (error)
729 goto bad;
730
731 return 0;
732
733 bad:
734 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
735 /*
736 * We failed to open the device, and nobody else had it opened.
737 * Clean up the state as appropriate.
738 */
739 plcom_shutdown(sc);
740 }
741
742 return error;
743 }
744
745 int
746 plcomclose(dev_t dev, int flag, int mode, struct lwp *l)
747 {
748 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
749 struct tty *tp = sc->sc_tty;
750
751 /* XXX This is for cons.c. */
752 if (!ISSET(tp->t_state, TS_ISOPEN))
753 return 0;
754
755 (*tp->t_linesw->l_close)(tp, flag);
756 ttyclose(tp);
757
758 if (PLCOM_ISALIVE(sc) == 0)
759 return 0;
760
761 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
762 /*
763 * Although we got a last close, the device may still be in
764 * use; e.g. if this was the dialout node, and there are still
765 * processes waiting for carrier on the non-dialout node.
766 */
767 plcom_shutdown(sc);
768 }
769
770 return 0;
771 }
772
773 int
774 plcomread(dev_t dev, struct uio *uio, int flag)
775 {
776 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
777 struct tty *tp = sc->sc_tty;
778
779 if (PLCOM_ISALIVE(sc) == 0)
780 return EIO;
781
782 return (*tp->t_linesw->l_read)(tp, uio, flag);
783 }
784
785 int
786 plcomwrite(dev_t dev, struct uio *uio, int flag)
787 {
788 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
789 struct tty *tp = sc->sc_tty;
790
791 if (PLCOM_ISALIVE(sc) == 0)
792 return EIO;
793
794 return (*tp->t_linesw->l_write)(tp, uio, flag);
795 }
796
797 int
798 plcompoll(dev_t dev, int events, struct lwp *l)
799 {
800 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
801 struct tty *tp = sc->sc_tty;
802
803 if (PLCOM_ISALIVE(sc) == 0)
804 return EIO;
805
806 return (*tp->t_linesw->l_poll)(tp, events, l);
807 }
808
809 struct tty *
810 plcomtty(dev_t dev)
811 {
812 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
813 struct tty *tp = sc->sc_tty;
814
815 return tp;
816 }
817
818 int
819 plcomioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
820 {
821 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
822 struct tty *tp = sc->sc_tty;
823 int error;
824 int s;
825
826 if (PLCOM_ISALIVE(sc) == 0)
827 return EIO;
828
829 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
830 if (error != EPASSTHROUGH)
831 return error;
832
833 error = ttioctl(tp, cmd, data, flag, l);
834 if (error != EPASSTHROUGH)
835 return error;
836
837 error = 0;
838
839 s = splserial();
840 PLCOM_LOCK(sc);
841
842 switch (cmd) {
843 case TIOCSBRK:
844 plcom_break(sc, 1);
845 break;
846
847 case TIOCCBRK:
848 plcom_break(sc, 0);
849 break;
850
851 case TIOCSDTR:
852 plcom_modem(sc, 1);
853 break;
854
855 case TIOCCDTR:
856 plcom_modem(sc, 0);
857 break;
858
859 case TIOCGFLAGS:
860 *(int *)data = sc->sc_swflags;
861 break;
862
863 case TIOCSFLAGS:
864 error = kauth_authorize_device_tty(l->l_cred,
865 KAUTH_DEVICE_TTY_PRIVSET, tp);
866 if (error)
867 break;
868 sc->sc_swflags = *(int *)data;
869 break;
870
871 case TIOCMSET:
872 case TIOCMBIS:
873 case TIOCMBIC:
874 tiocm_to_plcom(sc, cmd, *(int *)data);
875 break;
876
877 case TIOCMGET:
878 *(int *)data = plcom_to_tiocm(sc);
879 break;
880
881 case PPS_IOC_CREATE:
882 break;
883
884 case PPS_IOC_DESTROY:
885 break;
886
887 case PPS_IOC_GETPARAMS: {
888 pps_params_t *pp;
889 pp = (pps_params_t *)data;
890 mutex_spin_enter(&timecounter_lock);
891 *pp = sc->ppsparam;
892 mutex_spin_exit(&timecounter_lock);
893 break;
894 }
895
896 case PPS_IOC_SETPARAMS: {
897 pps_params_t *pp;
898 int mode;
899 pp = (pps_params_t *)data;
900 mutex_spin_enter(&timecounter_lock);
901 if (pp->mode & ~ppscap) {
902 error = EINVAL;
903 mutex_spin_exit(&timecounter_lock);
904 break;
905 }
906 sc->ppsparam = *pp;
907 /*
908 * Compute msr masks from user-specified timestamp state.
909 */
910 mode = sc->ppsparam.mode;
911 #ifdef PPS_SYNC
912 if (mode & PPS_HARDPPSONASSERT) {
913 mode |= PPS_CAPTUREASSERT;
914 /* XXX revoke any previous HARDPPS source */
915 }
916 if (mode & PPS_HARDPPSONCLEAR) {
917 mode |= PPS_CAPTURECLEAR;
918 /* XXX revoke any previous HARDPPS source */
919 }
920 #endif /* PPS_SYNC */
921 switch (mode & PPS_CAPTUREBOTH) {
922 case 0:
923 sc->sc_ppsmask = 0;
924 break;
925
926 case PPS_CAPTUREASSERT:
927 sc->sc_ppsmask = MSR_DCD;
928 sc->sc_ppsassert = MSR_DCD;
929 sc->sc_ppsclear = -1;
930 break;
931
932 case PPS_CAPTURECLEAR:
933 sc->sc_ppsmask = MSR_DCD;
934 sc->sc_ppsassert = -1;
935 sc->sc_ppsclear = 0;
936 break;
937
938 case PPS_CAPTUREBOTH:
939 sc->sc_ppsmask = MSR_DCD;
940 sc->sc_ppsassert = MSR_DCD;
941 sc->sc_ppsclear = 0;
942 break;
943
944 default:
945 error = EINVAL;
946 break;
947 }
948 mutex_spin_exit(&timecounter_lock);
949 break;
950 }
951
952 case PPS_IOC_GETCAP:
953 *(int*)data = ppscap;
954 break;
955
956 case PPS_IOC_FETCH: {
957 pps_info_t *pi;
958 pi = (pps_info_t *)data;
959 mutex_spin_enter(&timecounter_lock);
960 *pi = sc->ppsinfo;
961 mutex_spin_exit(&timecounter_lock);
962 break;
963 }
964
965 case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */
966 /*
967 * Some GPS clocks models use the falling rather than
968 * rising edge as the on-the-second signal.
969 * The old API has no way to specify PPS polarity.
970 */
971 mutex_spin_enter(&timecounter_lock);
972 sc->sc_ppsmask = MSR_DCD;
973 #ifndef PPS_TRAILING_EDGE
974 sc->sc_ppsassert = MSR_DCD;
975 sc->sc_ppsclear = -1;
976 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
977 &sc->ppsinfo.assert_timestamp);
978 #else
979 sc->sc_ppsassert = -1
980 sc->sc_ppsclear = 0;
981 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
982 &sc->ppsinfo.clear_timestamp);
983 #endif
984 mutex_spin_exit(&timecounter_lock);
985 break;
986
987 default:
988 error = EPASSTHROUGH;
989 break;
990 }
991
992 PLCOM_UNLOCK(sc);
993 splx(s);
994
995 #ifdef PLCOM_DEBUG
996 if (plcom_debug)
997 plcomstatus(sc, "plcomioctl ");
998 #endif
999
1000 return error;
1001 }
1002
1003 integrate void
1004 plcom_schedrx(struct plcom_softc *sc)
1005 {
1006
1007 sc->sc_rx_ready = 1;
1008
1009 /* Wake up the poller. */
1010 softint_schedule(sc->sc_si);
1011 }
1012
1013 void
1014 plcom_break(struct plcom_softc *sc, int onoff)
1015 {
1016
1017 if (onoff)
1018 SET(sc->sc_lcr, LCR_BRK);
1019 else
1020 CLR(sc->sc_lcr, LCR_BRK);
1021
1022 if (!sc->sc_heldchange) {
1023 if (sc->sc_tx_busy) {
1024 sc->sc_heldtbc = sc->sc_tbc;
1025 sc->sc_tbc = 0;
1026 sc->sc_heldchange = 1;
1027 } else
1028 plcom_loadchannelregs(sc);
1029 }
1030 }
1031
1032 void
1033 plcom_modem(struct plcom_softc *sc, int onoff)
1034 {
1035
1036 if (sc->sc_mcr_dtr == 0)
1037 return;
1038
1039 if (onoff)
1040 SET(sc->sc_mcr, sc->sc_mcr_dtr);
1041 else
1042 CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1043
1044 if (!sc->sc_heldchange) {
1045 if (sc->sc_tx_busy) {
1046 sc->sc_heldtbc = sc->sc_tbc;
1047 sc->sc_tbc = 0;
1048 sc->sc_heldchange = 1;
1049 } else
1050 plcom_loadchannelregs(sc);
1051 }
1052 }
1053
1054 void
1055 tiocm_to_plcom(struct plcom_softc *sc, u_long how, int ttybits)
1056 {
1057 u_char plcombits;
1058
1059 plcombits = 0;
1060 if (ISSET(ttybits, TIOCM_DTR))
1061 SET(plcombits, MCR_DTR);
1062 if (ISSET(ttybits, TIOCM_RTS))
1063 SET(plcombits, MCR_RTS);
1064
1065 switch (how) {
1066 case TIOCMBIC:
1067 CLR(sc->sc_mcr, plcombits);
1068 break;
1069
1070 case TIOCMBIS:
1071 SET(sc->sc_mcr, plcombits);
1072 break;
1073
1074 case TIOCMSET:
1075 CLR(sc->sc_mcr, MCR_DTR | MCR_RTS);
1076 SET(sc->sc_mcr, plcombits);
1077 break;
1078 }
1079
1080 if (!sc->sc_heldchange) {
1081 if (sc->sc_tx_busy) {
1082 sc->sc_heldtbc = sc->sc_tbc;
1083 sc->sc_tbc = 0;
1084 sc->sc_heldchange = 1;
1085 } else
1086 plcom_loadchannelregs(sc);
1087 }
1088 }
1089
1090 int
1091 plcom_to_tiocm(struct plcom_softc *sc)
1092 {
1093 u_char plcombits;
1094 int ttybits = 0;
1095
1096 plcombits = sc->sc_mcr;
1097 if (ISSET(plcombits, MCR_DTR))
1098 SET(ttybits, TIOCM_DTR);
1099 if (ISSET(plcombits, MCR_RTS))
1100 SET(ttybits, TIOCM_RTS);
1101
1102 plcombits = sc->sc_msr;
1103 if (ISSET(plcombits, MSR_DCD))
1104 SET(ttybits, TIOCM_CD);
1105 if (ISSET(plcombits, MSR_CTS))
1106 SET(ttybits, TIOCM_CTS);
1107 if (ISSET(plcombits, MSR_DSR))
1108 SET(ttybits, TIOCM_DSR);
1109
1110 if (sc->sc_cr != 0)
1111 SET(ttybits, TIOCM_LE);
1112
1113 return ttybits;
1114 }
1115
1116 static u_char
1117 cflag2lcr(tcflag_t cflag)
1118 {
1119 u_char lcr = 0;
1120
1121 switch (ISSET(cflag, CSIZE)) {
1122 case CS5:
1123 SET(lcr, LCR_5BITS);
1124 break;
1125 case CS6:
1126 SET(lcr, LCR_6BITS);
1127 break;
1128 case CS7:
1129 SET(lcr, LCR_7BITS);
1130 break;
1131 case CS8:
1132 SET(lcr, LCR_8BITS);
1133 break;
1134 }
1135 if (ISSET(cflag, PARENB)) {
1136 SET(lcr, LCR_PEN);
1137 if (!ISSET(cflag, PARODD))
1138 SET(lcr, LCR_EPS);
1139 }
1140 if (ISSET(cflag, CSTOPB))
1141 SET(lcr, LCR_STP2);
1142
1143 return lcr;
1144 }
1145
1146 int
1147 plcomparam(struct tty *tp, struct termios *t)
1148 {
1149 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(tp->t_dev));
1150 int ospeed;
1151 u_char lcr;
1152 int s;
1153
1154 if (PLCOM_ISALIVE(sc) == 0)
1155 return EIO;
1156
1157 ospeed = plcomspeed(t->c_ospeed, sc->sc_frequency);
1158
1159 /* Check requested parameters. */
1160 if (ospeed < 0)
1161 return EINVAL;
1162 if (t->c_ispeed && t->c_ispeed != t->c_ospeed)
1163 return EINVAL;
1164
1165 /*
1166 * For the console, always force CLOCAL and !HUPCL, so that the port
1167 * is always active.
1168 */
1169 if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR) ||
1170 ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
1171 SET(t->c_cflag, CLOCAL);
1172 CLR(t->c_cflag, HUPCL);
1173 }
1174
1175 /*
1176 * If there were no changes, don't do anything. This avoids dropping
1177 * input and improves performance when all we did was frob things like
1178 * VMIN and VTIME.
1179 */
1180 if (tp->t_ospeed == t->c_ospeed &&
1181 tp->t_cflag == t->c_cflag)
1182 return 0;
1183
1184 lcr = ISSET(sc->sc_lcr, LCR_BRK) | cflag2lcr(t->c_cflag);
1185
1186 s = splserial();
1187 PLCOM_LOCK(sc);
1188
1189 sc->sc_lcr = lcr;
1190
1191 /*
1192 * PL010 has a fixed-length FIFO trigger point.
1193 */
1194 if (ISSET(sc->sc_hwflags, PLCOM_HW_FIFO))
1195 sc->sc_fifo = 1;
1196 else
1197 sc->sc_fifo = 0;
1198
1199 if (sc->sc_fifo)
1200 SET(sc->sc_lcr, LCR_FEN);
1201
1202 /*
1203 * If we're not in a mode that assumes a connection is present, then
1204 * ignore carrier changes.
1205 */
1206 if (ISSET(t->c_cflag, CLOCAL | MDMBUF))
1207 sc->sc_msr_dcd = 0;
1208 else
1209 sc->sc_msr_dcd = MSR_DCD;
1210 /*
1211 * Set the flow control pins depending on the current flow control
1212 * mode.
1213 */
1214 if (ISSET(t->c_cflag, CRTSCTS)) {
1215 sc->sc_mcr_dtr = MCR_DTR;
1216 sc->sc_mcr_rts = MCR_RTS;
1217 sc->sc_msr_cts = MSR_CTS;
1218 } else if (ISSET(t->c_cflag, MDMBUF)) {
1219 /*
1220 * For DTR/DCD flow control, make sure we don't toggle DTR for
1221 * carrier detection.
1222 */
1223 sc->sc_mcr_dtr = 0;
1224 sc->sc_mcr_rts = MCR_DTR;
1225 sc->sc_msr_cts = MSR_DCD;
1226 } else {
1227 /*
1228 * If no flow control, then always set RTS. This will make
1229 * the other side happy if it mistakenly thinks we're doing
1230 * RTS/CTS flow control.
1231 */
1232 sc->sc_mcr_dtr = MCR_DTR | MCR_RTS;
1233 sc->sc_mcr_rts = 0;
1234 sc->sc_msr_cts = 0;
1235 if (ISSET(sc->sc_mcr, MCR_DTR))
1236 SET(sc->sc_mcr, MCR_RTS);
1237 else
1238 CLR(sc->sc_mcr, MCR_RTS);
1239 }
1240 sc->sc_msr_mask = sc->sc_msr_cts | sc->sc_msr_dcd;
1241
1242 #if 0
1243 if (ospeed == 0)
1244 CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1245 else
1246 SET(sc->sc_mcr, sc->sc_mcr_dtr);
1247 #endif
1248
1249 sc->sc_dlbl = ospeed;
1250 sc->sc_dlbh = ospeed >> 8;
1251
1252 /* And copy to tty. */
1253 tp->t_ispeed = 0;
1254 tp->t_ospeed = t->c_ospeed;
1255 tp->t_cflag = t->c_cflag;
1256
1257 if (!sc->sc_heldchange) {
1258 if (sc->sc_tx_busy) {
1259 sc->sc_heldtbc = sc->sc_tbc;
1260 sc->sc_tbc = 0;
1261 sc->sc_heldchange = 1;
1262 } else
1263 plcom_loadchannelregs(sc);
1264 }
1265
1266 if (!ISSET(t->c_cflag, CHWFLOW)) {
1267 /* Disable the high water mark. */
1268 sc->sc_r_hiwat = 0;
1269 sc->sc_r_lowat = 0;
1270 if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1271 CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1272 plcom_schedrx(sc);
1273 }
1274 if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
1275 CLR(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
1276 plcom_hwiflow(sc);
1277 }
1278 } else {
1279 sc->sc_r_hiwat = plcom_rbuf_hiwat;
1280 sc->sc_r_lowat = plcom_rbuf_lowat;
1281 }
1282
1283 PLCOM_UNLOCK(sc);
1284 splx(s);
1285
1286 /*
1287 * Update the tty layer's idea of the carrier bit, in case we changed
1288 * CLOCAL or MDMBUF. We don't hang up here; we only do that by
1289 * explicit request.
1290 */
1291 (void) (*tp->t_linesw->l_modem)(tp, ISSET(sc->sc_msr, MSR_DCD));
1292
1293 #ifdef PLCOM_DEBUG
1294 if (plcom_debug)
1295 plcomstatus(sc, "plcomparam ");
1296 #endif
1297
1298 if (!ISSET(t->c_cflag, CHWFLOW)) {
1299 if (sc->sc_tx_stopped) {
1300 sc->sc_tx_stopped = 0;
1301 plcomstart(tp);
1302 }
1303 }
1304
1305 return 0;
1306 }
1307
1308 void
1309 plcom_iflush(struct plcom_softc *sc)
1310 {
1311 bus_space_tag_t iot = sc->sc_iot;
1312 bus_space_handle_t ioh = sc->sc_ioh;
1313 #ifdef DIAGNOSTIC
1314 int reg;
1315 #endif
1316 int timo;
1317
1318 #ifdef DIAGNOSTIC
1319 reg = 0xffff;
1320 #endif
1321 timo = 50000;
1322 /* flush any pending I/O */
1323 while (! ISSET(bus_space_read_1(iot, ioh, plcom_fr), FR_RXFE)
1324 && --timo)
1325 #ifdef DIAGNOSTIC
1326 reg =
1327 #else
1328 (void)
1329 #endif
1330 bus_space_read_1(iot, ioh, plcom_dr);
1331 #ifdef DIAGNOSTIC
1332 if (!timo)
1333 printf("%s: plcom_iflush timeout %02x\n", sc->sc_dev.dv_xname,
1334 reg);
1335 #endif
1336 }
1337
1338 void
1339 plcom_loadchannelregs(struct plcom_softc *sc)
1340 {
1341 bus_space_tag_t iot = sc->sc_iot;
1342 bus_space_handle_t ioh = sc->sc_ioh;
1343
1344 /* XXXXX necessary? */
1345 plcom_iflush(sc);
1346
1347 bus_space_write_1(iot, ioh, plcom_cr, 0);
1348
1349 bus_space_write_1(iot, ioh, plcom_dlbl, sc->sc_dlbl);
1350 bus_space_write_1(iot, ioh, plcom_dlbh, sc->sc_dlbh);
1351 bus_space_write_1(iot, ioh, plcom_lcr, sc->sc_lcr);
1352 /* XXX device_unit() abuse */
1353 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev),
1354 sc->sc_mcr_active = sc->sc_mcr);
1355
1356 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
1357 }
1358
1359 int
1360 plcomhwiflow(struct tty *tp, int block)
1361 {
1362 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(tp->t_dev));
1363 int s;
1364
1365 if (PLCOM_ISALIVE(sc) == 0)
1366 return 0;
1367
1368 if (sc->sc_mcr_rts == 0)
1369 return 0;
1370
1371 s = splserial();
1372 PLCOM_LOCK(sc);
1373
1374 if (block) {
1375 if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1376 SET(sc->sc_rx_flags, RX_TTY_BLOCKED);
1377 plcom_hwiflow(sc);
1378 }
1379 } else {
1380 if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1381 CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1382 plcom_schedrx(sc);
1383 }
1384 if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1385 CLR(sc->sc_rx_flags, RX_TTY_BLOCKED);
1386 plcom_hwiflow(sc);
1387 }
1388 }
1389
1390 PLCOM_UNLOCK(sc);
1391 splx(s);
1392 return 1;
1393 }
1394
1395 /*
1396 * (un)block input via hw flowcontrol
1397 */
1398 void
1399 plcom_hwiflow(struct plcom_softc *sc)
1400 {
1401 if (sc->sc_mcr_rts == 0)
1402 return;
1403
1404 if (ISSET(sc->sc_rx_flags, RX_ANY_BLOCK)) {
1405 CLR(sc->sc_mcr, sc->sc_mcr_rts);
1406 CLR(sc->sc_mcr_active, sc->sc_mcr_rts);
1407 } else {
1408 SET(sc->sc_mcr, sc->sc_mcr_rts);
1409 SET(sc->sc_mcr_active, sc->sc_mcr_rts);
1410 }
1411 /* XXX device_unit() abuse */
1412 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev),
1413 sc->sc_mcr_active);
1414 }
1415
1416
1417 void
1418 plcomstart(struct tty *tp)
1419 {
1420 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(tp->t_dev));
1421 bus_space_tag_t iot = sc->sc_iot;
1422 bus_space_handle_t ioh = sc->sc_ioh;
1423 int s;
1424
1425 if (PLCOM_ISALIVE(sc) == 0)
1426 return;
1427
1428 s = spltty();
1429 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
1430 goto out;
1431 if (sc->sc_tx_stopped)
1432 goto out;
1433
1434 if (!ttypull(tp))
1435 goto out;
1436
1437 /* Grab the first contiguous region of buffer space. */
1438 {
1439 u_char *tba;
1440 int tbc;
1441
1442 tba = tp->t_outq.c_cf;
1443 tbc = ndqb(&tp->t_outq, 0);
1444
1445 (void)splserial();
1446 PLCOM_LOCK(sc);
1447
1448 sc->sc_tba = tba;
1449 sc->sc_tbc = tbc;
1450 }
1451
1452 SET(tp->t_state, TS_BUSY);
1453 sc->sc_tx_busy = 1;
1454
1455 /* Enable transmit completion interrupts if necessary. */
1456 if (!ISSET(sc->sc_cr, CR_TIE)) {
1457 SET(sc->sc_cr, CR_TIE);
1458 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
1459 }
1460
1461 /* Output the first chunk of the contiguous buffer. */
1462 {
1463 int n;
1464
1465 n = sc->sc_tbc;
1466 if (n > sc->sc_fifolen)
1467 n = sc->sc_fifolen;
1468 bus_space_write_multi_1(iot, ioh, plcom_dr, sc->sc_tba, n);
1469 sc->sc_tbc -= n;
1470 sc->sc_tba += n;
1471 }
1472 PLCOM_UNLOCK(sc);
1473 out:
1474 splx(s);
1475 return;
1476 }
1477
1478 /*
1479 * Stop output on a line.
1480 */
1481 void
1482 plcomstop(struct tty *tp, int flag)
1483 {
1484 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(tp->t_dev));
1485 int s;
1486
1487 s = splserial();
1488 PLCOM_LOCK(sc);
1489 if (ISSET(tp->t_state, TS_BUSY)) {
1490 /* Stop transmitting at the next chunk. */
1491 sc->sc_tbc = 0;
1492 sc->sc_heldtbc = 0;
1493 if (!ISSET(tp->t_state, TS_TTSTOP))
1494 SET(tp->t_state, TS_FLUSH);
1495 }
1496 PLCOM_UNLOCK(sc);
1497 splx(s);
1498 }
1499
1500 void
1501 plcomdiag(void *arg)
1502 {
1503 struct plcom_softc *sc = arg;
1504 int overflows, floods;
1505 int s;
1506
1507 s = splserial();
1508 PLCOM_LOCK(sc);
1509 overflows = sc->sc_overflows;
1510 sc->sc_overflows = 0;
1511 floods = sc->sc_floods;
1512 sc->sc_floods = 0;
1513 sc->sc_errors = 0;
1514 PLCOM_UNLOCK(sc);
1515 splx(s);
1516
1517 log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
1518 sc->sc_dev.dv_xname,
1519 overflows, overflows == 1 ? "" : "s",
1520 floods, floods == 1 ? "" : "s");
1521 }
1522
1523 integrate void
1524 plcom_rxsoft(struct plcom_softc *sc, struct tty *tp)
1525 {
1526 int (*rint) (int, struct tty *) = tp->t_linesw->l_rint;
1527 u_char *get, *end;
1528 u_int cc, scc;
1529 u_char rsr;
1530 int code;
1531 int s;
1532
1533 end = sc->sc_ebuf;
1534 get = sc->sc_rbget;
1535 scc = cc = plcom_rbuf_size - sc->sc_rbavail;
1536
1537 if (cc == plcom_rbuf_size) {
1538 sc->sc_floods++;
1539 if (sc->sc_errors++ == 0)
1540 callout_reset(&sc->sc_diag_callout, 60 * hz,
1541 plcomdiag, sc);
1542 }
1543
1544 while (cc) {
1545 code = get[0];
1546 rsr = get[1];
1547 if (ISSET(rsr, RSR_OE | RSR_BE | RSR_FE | RSR_PE)) {
1548 if (ISSET(rsr, RSR_OE)) {
1549 sc->sc_overflows++;
1550 if (sc->sc_errors++ == 0)
1551 callout_reset(&sc->sc_diag_callout,
1552 60 * hz, plcomdiag, sc);
1553 }
1554 if (ISSET(rsr, RSR_BE | RSR_FE))
1555 SET(code, TTY_FE);
1556 if (ISSET(rsr, RSR_PE))
1557 SET(code, TTY_PE);
1558 }
1559 if ((*rint)(code, tp) == -1) {
1560 /*
1561 * The line discipline's buffer is out of space.
1562 */
1563 if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1564 /*
1565 * We're either not using flow control, or the
1566 * line discipline didn't tell us to block for
1567 * some reason. Either way, we have no way to
1568 * know when there's more space available, so
1569 * just drop the rest of the data.
1570 */
1571 get += cc << 1;
1572 if (get >= end)
1573 get -= plcom_rbuf_size << 1;
1574 cc = 0;
1575 } else {
1576 /*
1577 * Don't schedule any more receive processing
1578 * until the line discipline tells us there's
1579 * space available (through plcomhwiflow()).
1580 * Leave the rest of the data in the input
1581 * buffer.
1582 */
1583 SET(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1584 }
1585 break;
1586 }
1587 get += 2;
1588 if (get >= end)
1589 get = sc->sc_rbuf;
1590 cc--;
1591 }
1592
1593 if (cc != scc) {
1594 sc->sc_rbget = get;
1595 s = splserial();
1596 PLCOM_LOCK(sc);
1597
1598 cc = sc->sc_rbavail += scc - cc;
1599 /* Buffers should be ok again, release possible block. */
1600 if (cc >= sc->sc_r_lowat) {
1601 if (ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1602 CLR(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
1603 SET(sc->sc_cr, CR_RIE | CR_RTIE);
1604 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
1605 }
1606 if (ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED)) {
1607 CLR(sc->sc_rx_flags, RX_IBUF_BLOCKED);
1608 plcom_hwiflow(sc);
1609 }
1610 }
1611 PLCOM_UNLOCK(sc);
1612 splx(s);
1613 }
1614 }
1615
1616 integrate void
1617 plcom_txsoft(struct plcom_softc *sc, struct tty *tp)
1618 {
1619
1620 CLR(tp->t_state, TS_BUSY);
1621 if (ISSET(tp->t_state, TS_FLUSH))
1622 CLR(tp->t_state, TS_FLUSH);
1623 else
1624 ndflush(&tp->t_outq, (int)(sc->sc_tba - tp->t_outq.c_cf));
1625 (*tp->t_linesw->l_start)(tp);
1626 }
1627
1628 integrate void
1629 plcom_stsoft(struct plcom_softc *sc, struct tty *tp)
1630 {
1631 u_char msr, delta;
1632 int s;
1633
1634 s = splserial();
1635 PLCOM_LOCK(sc);
1636 msr = sc->sc_msr;
1637 delta = sc->sc_msr_delta;
1638 sc->sc_msr_delta = 0;
1639 PLCOM_UNLOCK(sc);
1640 splx(s);
1641
1642 if (ISSET(delta, sc->sc_msr_dcd)) {
1643 /*
1644 * Inform the tty layer that carrier detect changed.
1645 */
1646 (void) (*tp->t_linesw->l_modem)(tp, ISSET(msr, MSR_DCD));
1647 }
1648
1649 if (ISSET(delta, sc->sc_msr_cts)) {
1650 /* Block or unblock output according to flow control. */
1651 if (ISSET(msr, sc->sc_msr_cts)) {
1652 sc->sc_tx_stopped = 0;
1653 (*tp->t_linesw->l_start)(tp);
1654 } else {
1655 sc->sc_tx_stopped = 1;
1656 }
1657 }
1658
1659 #ifdef PLCOM_DEBUG
1660 if (plcom_debug)
1661 plcomstatus(sc, "plcom_stsoft");
1662 #endif
1663 }
1664
1665 void
1666 plcomsoft(void *arg)
1667 {
1668 struct plcom_softc *sc = arg;
1669 struct tty *tp;
1670
1671 if (PLCOM_ISALIVE(sc) == 0)
1672 return;
1673
1674 tp = sc->sc_tty;
1675
1676 if (sc->sc_rx_ready) {
1677 sc->sc_rx_ready = 0;
1678 plcom_rxsoft(sc, tp);
1679 }
1680
1681 if (sc->sc_st_check) {
1682 sc->sc_st_check = 0;
1683 plcom_stsoft(sc, tp);
1684 }
1685
1686 if (sc->sc_tx_done) {
1687 sc->sc_tx_done = 0;
1688 plcom_txsoft(sc, tp);
1689 }
1690 }
1691
1692 int
1693 plcomintr(void *arg)
1694 {
1695 struct plcom_softc *sc = arg;
1696 bus_space_tag_t iot = sc->sc_iot;
1697 bus_space_handle_t ioh = sc->sc_ioh;
1698 u_char *put, *end;
1699 u_int cc;
1700 u_char rsr, iir;
1701
1702 if (PLCOM_ISALIVE(sc) == 0)
1703 return 0;
1704
1705 PLCOM_LOCK(sc);
1706 iir = bus_space_read_1(iot, ioh, plcom_iir);
1707 if (! ISSET(iir, IIR_IMASK)) {
1708 PLCOM_UNLOCK(sc);
1709 return 0;
1710 }
1711
1712 end = sc->sc_ebuf;
1713 put = sc->sc_rbput;
1714 cc = sc->sc_rbavail;
1715
1716 do {
1717 u_char msr, delta, fr;
1718
1719 fr = bus_space_read_1(iot, ioh, plcom_fr);
1720
1721 if (!ISSET(fr, FR_RXFE) &&
1722 !ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1723 while (cc > 0) {
1724 int cn_trapped = 0;
1725 put[0] = bus_space_read_1(iot, ioh,
1726 plcom_dr);
1727 rsr = bus_space_read_1(iot, ioh, plcom_rsr);
1728 /* Clear any error status. */
1729 if (ISSET(rsr,
1730 (RSR_BE | RSR_OE | RSR_PE | RSR_FE)))
1731 bus_space_write_1(iot, ioh, plcom_ecr,
1732 0);
1733 if (ISSET(rsr, RSR_BE)) {
1734 cn_trapped = 0;
1735 cn_check_magic(sc->sc_tty->t_dev,
1736 CNC_BREAK, plcom_cnm_state);
1737 if (cn_trapped)
1738 continue;
1739 #if defined(KGDB)
1740 if (ISSET(sc->sc_hwflags,
1741 PLCOM_HW_KGDB)) {
1742 kgdb_connect(1);
1743 continue;
1744 }
1745 #endif
1746 }
1747
1748 put[1] = rsr;
1749 cn_trapped = 0;
1750 cn_check_magic(sc->sc_tty->t_dev,
1751 put[0], plcom_cnm_state);
1752 if (cn_trapped) {
1753 fr = bus_space_read_1(iot, ioh,
1754 plcom_fr);
1755 if (ISSET(fr, FR_RXFE))
1756 break;
1757
1758 continue;
1759 }
1760 put += 2;
1761 if (put >= end)
1762 put = sc->sc_rbuf;
1763 cc--;
1764
1765 fr = bus_space_read_1(iot, ioh, plcom_fr);
1766 if (ISSET(fr, FR_RXFE))
1767 break;
1768 }
1769
1770 /*
1771 * Current string of incoming characters ended because
1772 * no more data was available or we ran out of space.
1773 * Schedule a receive event if any data was received.
1774 * If we're out of space, turn off receive interrupts.
1775 */
1776 sc->sc_rbput = put;
1777 sc->sc_rbavail = cc;
1778 if (!ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED))
1779 sc->sc_rx_ready = 1;
1780
1781 /*
1782 * See if we are in danger of overflowing a buffer. If
1783 * so, use hardware flow control to ease the pressure.
1784 */
1785 if (!ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED) &&
1786 cc < sc->sc_r_hiwat) {
1787 SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
1788 plcom_hwiflow(sc);
1789 }
1790
1791 /*
1792 * If we're out of space, disable receive interrupts
1793 * until the queue has drained a bit.
1794 */
1795 if (!cc) {
1796 SET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
1797 CLR(sc->sc_cr, CR_RIE | CR_RTIE);
1798 bus_space_write_1(iot, ioh, plcom_cr,
1799 sc->sc_cr);
1800 }
1801 } else {
1802 if (ISSET(iir, IIR_RIS)) {
1803 bus_space_write_1(iot, ioh, plcom_cr, 0);
1804 delay(10);
1805 bus_space_write_1(iot, ioh, plcom_cr,
1806 sc->sc_cr);
1807 continue;
1808 }
1809 }
1810
1811 msr = bus_space_read_1(iot, ioh, plcom_fr);
1812 delta = msr ^ sc->sc_msr;
1813 sc->sc_msr = msr;
1814 /* Clear any pending modem status interrupt. */
1815 if (iir & IIR_MIS)
1816 bus_space_write_1(iot, ioh, plcom_icr, 0);
1817 /*
1818 * Pulse-per-second (PSS) signals on edge of DCD?
1819 * Process these even if line discipline is ignoring DCD.
1820 */
1821 if (delta & sc->sc_ppsmask) {
1822 struct timeval tv;
1823 mutex_spin_enter(&timecounter_lock);
1824 if ((msr & sc->sc_ppsmask) == sc->sc_ppsassert) {
1825 /* XXX nanotime() */
1826 microtime(&tv);
1827 TIMEVAL_TO_TIMESPEC(&tv,
1828 &sc->ppsinfo.assert_timestamp);
1829 if (sc->ppsparam.mode & PPS_OFFSETASSERT) {
1830 timespecadd(&sc->ppsinfo.assert_timestamp,
1831 &sc->ppsparam.assert_offset,
1832 &sc->ppsinfo.assert_timestamp);
1833 }
1834
1835 #ifdef PPS_SYNC
1836 if (sc->ppsparam.mode & PPS_HARDPPSONASSERT)
1837 hardpps(&tv, tv.tv_usec);
1838 #endif
1839 sc->ppsinfo.assert_sequence++;
1840 sc->ppsinfo.current_mode = sc->ppsparam.mode;
1841
1842 } else if ((msr & sc->sc_ppsmask) == sc->sc_ppsclear) {
1843 /* XXX nanotime() */
1844 microtime(&tv);
1845 TIMEVAL_TO_TIMESPEC(&tv,
1846 &sc->ppsinfo.clear_timestamp);
1847 if (sc->ppsparam.mode & PPS_OFFSETCLEAR) {
1848 timespecadd(&sc->ppsinfo.clear_timestamp,
1849 &sc->ppsparam.clear_offset,
1850 &sc->ppsinfo.clear_timestamp);
1851 }
1852
1853 #ifdef PPS_SYNC
1854 if (sc->ppsparam.mode & PPS_HARDPPSONCLEAR)
1855 hardpps(&tv, tv.tv_usec);
1856 #endif
1857 sc->ppsinfo.clear_sequence++;
1858 sc->ppsinfo.current_mode = sc->ppsparam.mode;
1859 }
1860 mutex_spin_exit(&timecounter_lock);
1861 }
1862
1863 /*
1864 * Process normal status changes
1865 */
1866 if (ISSET(delta, sc->sc_msr_mask)) {
1867 SET(sc->sc_msr_delta, delta);
1868
1869 /*
1870 * Stop output immediately if we lose the output
1871 * flow control signal or carrier detect.
1872 */
1873 if (ISSET(~msr, sc->sc_msr_mask)) {
1874 sc->sc_tbc = 0;
1875 sc->sc_heldtbc = 0;
1876 #ifdef PLCOM_DEBUG
1877 if (plcom_debug)
1878 plcomstatus(sc, "plcomintr ");
1879 #endif
1880 }
1881
1882 sc->sc_st_check = 1;
1883 }
1884
1885 /*
1886 * Done handling any receive interrupts. See if data
1887 * can be * transmitted as well. Schedule tx done
1888 * event if no data left * and tty was marked busy.
1889 */
1890 if (ISSET(iir, IIR_TIS)) {
1891 /*
1892 * If we've delayed a parameter change, do it
1893 * now, and restart * output.
1894 */
1895 if (sc->sc_heldchange) {
1896 plcom_loadchannelregs(sc);
1897 sc->sc_heldchange = 0;
1898 sc->sc_tbc = sc->sc_heldtbc;
1899 sc->sc_heldtbc = 0;
1900 }
1901
1902 /*
1903 * Output the next chunk of the contiguous
1904 * buffer, if any.
1905 */
1906 if (sc->sc_tbc > 0) {
1907 int n;
1908
1909 n = sc->sc_tbc;
1910 if (n > sc->sc_fifolen)
1911 n = sc->sc_fifolen;
1912 bus_space_write_multi_1(iot, ioh, plcom_dr,
1913 sc->sc_tba, n);
1914 sc->sc_tbc -= n;
1915 sc->sc_tba += n;
1916 } else {
1917 /*
1918 * Disable transmit plcompletion
1919 * interrupts if necessary.
1920 */
1921 if (ISSET(sc->sc_cr, CR_TIE)) {
1922 CLR(sc->sc_cr, CR_TIE);
1923 bus_space_write_1(iot, ioh, plcom_cr,
1924 sc->sc_cr);
1925 }
1926 if (sc->sc_tx_busy) {
1927 sc->sc_tx_busy = 0;
1928 sc->sc_tx_done = 1;
1929 }
1930 }
1931 }
1932 } while (ISSET((iir = bus_space_read_1(iot, ioh, plcom_iir)),
1933 IIR_IMASK));
1934
1935 PLCOM_UNLOCK(sc);
1936
1937 /* Wake up the poller. */
1938 softint_schedule(sc->sc_si);
1939
1940 #if NRND > 0 && defined(RND_COM)
1941 rnd_add_uint32(&sc->rnd_source, iir | rsr);
1942 #endif
1943
1944 return 1;
1945 }
1946
1947 /*
1948 * The following functions are polled getc and putc routines, shared
1949 * by the console and kgdb glue.
1950 *
1951 * The read-ahead code is so that you can detect pending in-band
1952 * cn_magic in polled mode while doing output rather than having to
1953 * wait until the kernel decides it needs input.
1954 */
1955
1956 #define MAX_READAHEAD 20
1957 static int plcom_readahead[MAX_READAHEAD];
1958 static int plcom_readaheadcount = 0;
1959
1960 int
1961 plcom_common_getc(dev_t dev, bus_space_tag_t iot, bus_space_handle_t ioh)
1962 {
1963 int s = splserial();
1964 u_char stat, c;
1965
1966 /* got a character from reading things earlier */
1967 if (plcom_readaheadcount > 0) {
1968 int i;
1969
1970 c = plcom_readahead[0];
1971 for (i = 1; i < plcom_readaheadcount; i++) {
1972 plcom_readahead[i-1] = plcom_readahead[i];
1973 }
1974 plcom_readaheadcount--;
1975 splx(s);
1976 return c;
1977 }
1978
1979 /* block until a character becomes available */
1980 while (ISSET(stat = bus_space_read_1(iot, ioh, plcom_fr), FR_RXFE))
1981 ;
1982
1983 c = bus_space_read_1(iot, ioh, plcom_dr);
1984 stat = bus_space_read_1(iot, ioh, plcom_iir);
1985 {
1986 int cn_trapped = 0; /* unused */
1987 #ifdef DDB
1988 extern int db_active;
1989 if (!db_active)
1990 #endif
1991 cn_check_magic(dev, c, plcom_cnm_state);
1992 }
1993 splx(s);
1994 return c;
1995 }
1996
1997 void
1998 plcom_common_putc(dev_t dev, bus_space_tag_t iot, bus_space_handle_t ioh,
1999 int c)
2000 {
2001 int s = splserial();
2002 int timo;
2003
2004 int cin, stat;
2005 if (plcom_readaheadcount < MAX_READAHEAD
2006 && !ISSET(stat = bus_space_read_1(iot, ioh, plcom_fr), FR_RXFE)) {
2007 int cn_trapped = 0;
2008 cin = bus_space_read_1(iot, ioh, plcom_dr);
2009 stat = bus_space_read_1(iot, ioh, plcom_iir);
2010 cn_check_magic(dev, cin, plcom_cnm_state);
2011 plcom_readahead[plcom_readaheadcount++] = cin;
2012 }
2013
2014 /* wait for any pending transmission to finish */
2015 timo = 150000;
2016 while (!ISSET(bus_space_read_1(iot, ioh, plcom_fr), FR_TXFE) && --timo)
2017 continue;
2018
2019 bus_space_write_1(iot, ioh, plcom_dr, c);
2020 PLCOM_BARRIER(iot, ioh, BR | BW);
2021
2022 /* wait for this transmission to complete */
2023 timo = 1500000;
2024 while (!ISSET(bus_space_read_1(iot, ioh, plcom_fr), FR_TXFE) && --timo)
2025 continue;
2026
2027 splx(s);
2028 }
2029
2030 /*
2031 * Initialize UART for use as console or KGDB line.
2032 */
2033 int
2034 plcominit(bus_space_tag_t iot, bus_addr_t iobase, int rate, int frequency,
2035 tcflag_t cflag, bus_space_handle_t *iohp)
2036 {
2037 bus_space_handle_t ioh;
2038
2039 if (bus_space_map(iot, iobase, PLCOM_UART_SIZE, 0, &ioh))
2040 return ENOMEM; /* ??? */
2041
2042 rate = plcomspeed(rate, frequency);
2043 bus_space_write_1(iot, ioh, plcom_cr, 0);
2044 bus_space_write_1(iot, ioh, plcom_dlbl, rate);
2045 bus_space_write_1(iot, ioh, plcom_dlbh, rate >> 8);
2046 bus_space_write_1(iot, ioh, plcom_lcr, cflag2lcr(cflag) | LCR_FEN);
2047 bus_space_write_1(iot, ioh, plcom_cr, CR_UARTEN);
2048
2049 #if 0
2050 /* Ought to do something like this, but we have no sc to
2051 dereference. */
2052 /* XXX device_unit() abuse */
2053 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev),
2054 MCR_DTR | MCR_RTS);
2055 #endif
2056
2057 *iohp = ioh;
2058 return 0;
2059 }
2060
2061 /*
2062 * Following are all routines needed for PLCOM to act as console
2063 */
2064 struct consdev plcomcons = {
2065 NULL, NULL, plcomcngetc, plcomcnputc, plcomcnpollc, NULL,
2066 NULL, NULL, NODEV, CN_NORMAL
2067 };
2068
2069
2070 int
2071 plcomcnattach(bus_space_tag_t iot, bus_addr_t iobase, int rate, int frequency,
2072 tcflag_t cflag, int unit)
2073 {
2074 int res;
2075
2076 res = plcominit(iot, iobase, rate, frequency, cflag, &plcomconsioh);
2077 if (res)
2078 return res;
2079
2080 cn_tab = &plcomcons;
2081 cn_init_magic(&plcom_cnm_state);
2082 cn_set_magic("\047\001"); /* default magic is BREAK */
2083
2084 plcomconstag = iot;
2085 plcomconsunit = unit;
2086 plcomconsrate = rate;
2087 plcomconscflag = cflag;
2088
2089 return 0;
2090 }
2091
2092 void
2093 plcomcndetach(void)
2094 {
2095 bus_space_unmap(plcomconstag, plcomconsioh, PLCOM_UART_SIZE);
2096 plcomconstag = NULL;
2097
2098 cn_tab = NULL;
2099 }
2100
2101 int
2102 plcomcngetc(dev_t dev)
2103 {
2104 return plcom_common_getc(dev, plcomconstag, plcomconsioh);
2105 }
2106
2107 /*
2108 * Console kernel output character routine.
2109 */
2110 void
2111 plcomcnputc(dev_t dev, int c)
2112 {
2113 plcom_common_putc(dev, plcomconstag, plcomconsioh, c);
2114 }
2115
2116 void
2117 plcomcnpollc(dev_t dev, int on)
2118 {
2119
2120 }
2121
2122 #ifdef KGDB
2123 int
2124 plcom_kgdb_attach(bus_space_tag_t iot, bus_addr_t iobase, int rate,
2125 int frequency, tcflag_t cflag, int unit)
2126 {
2127 int res;
2128
2129 if (iot == plcomconstag && iobase == plcomconsunit)
2130 return EBUSY; /* cannot share with console */
2131
2132 res = plcominit(iot, iobase, rate, frequency, cflag, &plcom_kgdb_ioh);
2133 if (res)
2134 return res;
2135
2136 kgdb_attach(plcom_kgdb_getc, plcom_kgdb_putc, NULL);
2137 kgdb_dev = 123; /* unneeded, only to satisfy some tests */
2138
2139 plcom_kgdb_iot = iot;
2140 plcom_kgdb_unit = unit;
2141
2142 return 0;
2143 }
2144
2145 /* ARGSUSED */
2146 int
2147 plcom_kgdb_getc(void *arg)
2148 {
2149 return plcom_common_getc(NODEV, plcom_kgdb_iot, plcom_kgdb_ioh);
2150 }
2151
2152 /* ARGSUSED */
2153 void
2154 plcom_kgdb_putc(void *arg, int c)
2155 {
2156 plcom_common_putc(NODEV, plcom_kgdb_iot, plcom_kgdb_ioh, c);
2157 }
2158 #endif /* KGDB */
2159
2160 /* helper function to identify the plcom ports used by
2161 console or KGDB (and not yet autoconf attached) */
2162 int
2163 plcom_is_console(bus_space_tag_t iot, int unit,
2164 bus_space_handle_t *ioh)
2165 {
2166 bus_space_handle_t help;
2167
2168 if (!plcomconsattached &&
2169 iot == plcomconstag && unit == plcomconsunit)
2170 help = plcomconsioh;
2171 #ifdef KGDB
2172 else if (!plcom_kgdb_attached &&
2173 iot == plcom_kgdb_iot && unit == plcom_kgdb_unit)
2174 help = plcom_kgdb_ioh;
2175 #endif
2176 else
2177 return 0;
2178
2179 if (ioh)
2180 *ioh = help;
2181 return 1;
2182 }
2183