plcom.c revision 1.28 1 /* $NetBSD: plcom.c,v 1.28 2008/06/11 23:24:43 cegger Exp $ */
2
3 /*-
4 * Copyright (c) 2001 ARM Ltd
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the company may not be used to endorse or promote
16 * products derived from this software without specific prior written
17 * permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
23 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
32 * All rights reserved.
33 *
34 * This code is derived from software contributed to The NetBSD Foundation
35 * by Charles M. Hannum.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
47 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
48 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
49 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
50 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
51 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
52 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
53 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
54 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
55 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
56 * POSSIBILITY OF SUCH DAMAGE.
57 */
58
59 /*
60 * Copyright (c) 1991 The Regents of the University of California.
61 * All rights reserved.
62 *
63 * Redistribution and use in source and binary forms, with or without
64 * modification, are permitted provided that the following conditions
65 * are met:
66 * 1. Redistributions of source code must retain the above copyright
67 * notice, this list of conditions and the following disclaimer.
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in the
70 * documentation and/or other materials provided with the distribution.
71 * 3. Neither the name of the University nor the names of its contributors
72 * may be used to endorse or promote products derived from this software
73 * without specific prior written permission.
74 *
75 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
76 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
77 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
78 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
79 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
80 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
81 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
82 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
83 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
84 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
85 * SUCH DAMAGE.
86 *
87 * @(#)com.c 7.5 (Berkeley) 5/16/91
88 */
89
90 /*
91 * COM driver for the Prime Cell PL010 UART, which is similar to the 16C550,
92 * but has a completely different programmer's model.
93 * Derived from the NS16550AF com driver.
94 */
95
96 #include <sys/cdefs.h>
97 __KERNEL_RCSID(0, "$NetBSD: plcom.c,v 1.28 2008/06/11 23:24:43 cegger Exp $");
98
99 #include "opt_plcom.h"
100 #include "opt_ddb.h"
101 #include "opt_kgdb.h"
102 #include "opt_lockdebug.h"
103 #include "opt_multiprocessor.h"
104
105 #include "rnd.h"
106 #if NRND > 0 && defined(RND_COM)
107 #include <sys/rnd.h>
108 #endif
109
110 /*
111 * Override cnmagic(9) macro before including <sys/systm.h>.
112 * We need to know if cn_check_magic triggered debugger, so set a flag.
113 * Callers of cn_check_magic must declare int cn_trapped = 0;
114 * XXX: this is *ugly*!
115 */
116 #define cn_trap() \
117 do { \
118 console_debugger(); \
119 cn_trapped = 1; \
120 } while (/* CONSTCOND */ 0)
121
122 #include <sys/param.h>
123 #include <sys/systm.h>
124 #include <sys/ioctl.h>
125 #include <sys/select.h>
126 #include <sys/tty.h>
127 #include <sys/proc.h>
128 #include <sys/user.h>
129 #include <sys/conf.h>
130 #include <sys/file.h>
131 #include <sys/uio.h>
132 #include <sys/kernel.h>
133 #include <sys/syslog.h>
134 #include <sys/types.h>
135 #include <sys/device.h>
136 #include <sys/malloc.h>
137 #include <sys/timepps.h>
138 #include <sys/vnode.h>
139 #include <sys/kauth.h>
140 #include <sys/intr.h>
141 #include <sys/bus.h>
142
143 #include <evbarm/dev/plcomreg.h>
144 #include <evbarm/dev/plcomvar.h>
145
146 #include <dev/cons.h>
147
148 static void plcom_enable_debugport (struct plcom_softc *);
149
150 void plcom_config (struct plcom_softc *);
151 void plcom_shutdown (struct plcom_softc *);
152 int plcomspeed (long, long);
153 static u_char cflag2lcr (tcflag_t);
154 int plcomparam (struct tty *, struct termios *);
155 void plcomstart (struct tty *);
156 int plcomhwiflow (struct tty *, int);
157
158 void plcom_loadchannelregs (struct plcom_softc *);
159 void plcom_hwiflow (struct plcom_softc *);
160 void plcom_break (struct plcom_softc *, int);
161 void plcom_modem (struct plcom_softc *, int);
162 void tiocm_to_plcom (struct plcom_softc *, u_long, int);
163 int plcom_to_tiocm (struct plcom_softc *);
164 void plcom_iflush (struct plcom_softc *);
165
166 int plcom_common_getc (dev_t, bus_space_tag_t, bus_space_handle_t);
167 void plcom_common_putc (dev_t, bus_space_tag_t, bus_space_handle_t, int);
168
169 int plcominit (bus_space_tag_t, bus_addr_t, int, int, tcflag_t,
170 bus_space_handle_t *);
171
172 dev_type_open(plcomopen);
173 dev_type_close(plcomclose);
174 dev_type_read(plcomread);
175 dev_type_write(plcomwrite);
176 dev_type_ioctl(plcomioctl);
177 dev_type_stop(plcomstop);
178 dev_type_tty(plcomtty);
179 dev_type_poll(plcompoll);
180
181 int plcomcngetc (dev_t);
182 void plcomcnputc (dev_t, int);
183 void plcomcnpollc (dev_t, int);
184
185 #define integrate static inline
186 void plcomsoft (void *);
187 integrate void plcom_rxsoft (struct plcom_softc *, struct tty *);
188 integrate void plcom_txsoft (struct plcom_softc *, struct tty *);
189 integrate void plcom_stsoft (struct plcom_softc *, struct tty *);
190 integrate void plcom_schedrx (struct plcom_softc *);
191 void plcomdiag (void *);
192
193 extern struct cfdriver plcom_cd;
194
195 const struct cdevsw plcom_cdevsw = {
196 plcomopen, plcomclose, plcomread, plcomwrite, plcomioctl,
197 plcomstop, plcomtty, plcompoll, nommap, ttykqfilter, D_TTY
198 };
199
200 /*
201 * Make this an option variable one can patch.
202 * But be warned: this must be a power of 2!
203 */
204 u_int plcom_rbuf_size = PLCOM_RING_SIZE;
205
206 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
207 u_int plcom_rbuf_hiwat = (PLCOM_RING_SIZE * 1) / 4;
208 u_int plcom_rbuf_lowat = (PLCOM_RING_SIZE * 3) / 4;
209
210 static int plcomconsunit = -1;
211 static bus_space_tag_t plcomconstag;
212 static bus_space_handle_t plcomconsioh;
213 static int plcomconsattached;
214 static int plcomconsrate;
215 static tcflag_t plcomconscflag;
216 static struct cnm_state plcom_cnm_state;
217
218 static int ppscap =
219 PPS_TSFMT_TSPEC |
220 PPS_CAPTUREASSERT |
221 PPS_CAPTURECLEAR |
222 #ifdef PPS_SYNC
223 PPS_HARDPPSONASSERT | PPS_HARDPPSONCLEAR |
224 #endif /* PPS_SYNC */
225 PPS_OFFSETASSERT | PPS_OFFSETCLEAR;
226
227 #ifdef KGDB
228 #include <sys/kgdb.h>
229
230 static int plcom_kgdb_unit;
231 static bus_space_tag_t plcom_kgdb_iot;
232 static bus_space_handle_t plcom_kgdb_ioh;
233 static int plcom_kgdb_attached;
234
235 int plcom_kgdb_getc (void *);
236 void plcom_kgdb_putc (void *, int);
237 #endif /* KGDB */
238
239 #define PLCOMUNIT_MASK 0x7ffff
240 #define PLCOMDIALOUT_MASK 0x80000
241
242 #define PLCOMUNIT(x) (minor(x) & PLCOMUNIT_MASK)
243 #define PLCOMDIALOUT(x) (minor(x) & PLCOMDIALOUT_MASK)
244
245 #define PLCOM_ISALIVE(sc) ((sc)->enabled != 0 && \
246 device_is_active(&(sc)->sc_dev))
247
248 #define BR BUS_SPACE_BARRIER_READ
249 #define BW BUS_SPACE_BARRIER_WRITE
250 #define PLCOM_BARRIER(t, h, f) bus_space_barrier((t), (h), 0, PLCOM_UART_SIZE, (f))
251
252 #define PLCOM_LOCK(sc) simple_lock(&(sc)->sc_lock)
253 #define PLCOM_UNLOCK(sc) simple_unlock(&(sc)->sc_lock)
254
255 int
256 plcomspeed(long speed, long frequency)
257 {
258 #define divrnd(n, q) (((n)*2/(q)+1)/2) /* divide and round off */
259
260 int x, err;
261
262 #if 0
263 if (speed == 0)
264 return 0;
265 #endif
266 if (speed <= 0)
267 return -1;
268 x = divrnd(frequency / 16, speed);
269 if (x <= 0)
270 return -1;
271 err = divrnd(((quad_t)frequency) * 1000 / 16, speed * x) - 1000;
272 if (err < 0)
273 err = -err;
274 if (err > PLCOM_TOLERANCE)
275 return -1;
276 return x;
277
278 #undef divrnd
279 }
280
281 #ifdef PLCOM_DEBUG
282 int plcom_debug = 0;
283
284 void plcomstatus (struct plcom_softc *, char *);
285 void
286 plcomstatus(struct plcom_softc *sc, char *str)
287 {
288 struct tty *tp = sc->sc_tty;
289
290 printf("%s: %s %sclocal %sdcd %sts_carr_on %sdtr %stx_stopped\n",
291 sc->sc_dev.dv_xname, str,
292 ISSET(tp->t_cflag, CLOCAL) ? "+" : "-",
293 ISSET(sc->sc_msr, MSR_DCD) ? "+" : "-",
294 ISSET(tp->t_state, TS_CARR_ON) ? "+" : "-",
295 ISSET(sc->sc_mcr, MCR_DTR) ? "+" : "-",
296 sc->sc_tx_stopped ? "+" : "-");
297
298 printf("%s: %s %scrtscts %scts %sts_ttstop %srts %xrx_flags\n",
299 sc->sc_dev.dv_xname, str,
300 ISSET(tp->t_cflag, CRTSCTS) ? "+" : "-",
301 ISSET(sc->sc_msr, MSR_CTS) ? "+" : "-",
302 ISSET(tp->t_state, TS_TTSTOP) ? "+" : "-",
303 ISSET(sc->sc_mcr, MCR_RTS) ? "+" : "-",
304 sc->sc_rx_flags);
305 }
306 #endif
307
308 int
309 plcomprobe1(bus_space_tag_t iot, bus_space_handle_t ioh)
310 {
311 int data;
312
313 /* Disable the UART. */
314 bus_space_write_1(iot, ioh, plcom_cr, 0);
315 /* Make sure the FIFO is off. */
316 bus_space_write_1(iot, ioh, plcom_lcr, LCR_8BITS);
317 /* Disable interrupts. */
318 bus_space_write_1(iot, ioh, plcom_iir, 0);
319
320 /* Make sure we swallow anything in the receiving register. */
321 data = bus_space_read_1(iot, ioh, plcom_dr);
322
323 if (bus_space_read_1(iot, ioh, plcom_lcr) != LCR_8BITS)
324 return 0;
325
326 data = bus_space_read_1(iot, ioh, plcom_fr) & (FR_RXFF | FR_RXFE);
327
328 if (data != FR_RXFE)
329 return 0;
330
331 return 1;
332 }
333
334 static void
335 plcom_enable_debugport(struct plcom_softc *sc)
336 {
337 int s;
338
339 /* Turn on line break interrupt, set carrier. */
340 s = splserial();
341 PLCOM_LOCK(sc);
342 sc->sc_cr = CR_RIE | CR_RTIE | CR_UARTEN;
343 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
344 SET(sc->sc_mcr, MCR_DTR | MCR_RTS);
345 /* XXX device_unit() abuse */
346 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev),
347 sc->sc_mcr);
348 PLCOM_UNLOCK(sc);
349 splx(s);
350 }
351
352 void
353 plcom_attach_subr(struct plcom_softc *sc)
354 {
355 int unit = sc->sc_iounit;
356 bus_space_tag_t iot = sc->sc_iot;
357 bus_space_handle_t ioh = sc->sc_ioh;
358 struct tty *tp;
359
360 callout_init(&sc->sc_diag_callout, 0);
361 simple_lock_init(&sc->sc_lock);
362
363 /* Disable interrupts before configuring the device. */
364 sc->sc_cr = 0;
365
366 if (plcomconstag && unit == plcomconsunit) {
367 plcomconsattached = 1;
368
369 plcomconstag = iot;
370 plcomconsioh = ioh;
371
372 /* Make sure the console is always "hardwired". */
373 delay(1000); /* wait for output to finish */
374 SET(sc->sc_hwflags, PLCOM_HW_CONSOLE);
375 SET(sc->sc_swflags, TIOCFLAG_SOFTCAR);
376 /* Must re-enable the console immediately, or we will
377 hang when trying to print. */
378 sc->sc_cr = CR_UARTEN;
379 }
380
381 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
382
383 /* The PL010 has a 16-byte fifo, but the tx interrupt triggers when
384 there is space for 8 more bytes. */
385 sc->sc_fifolen = 8;
386 printf("\n");
387
388 if (ISSET(sc->sc_hwflags, PLCOM_HW_TXFIFO_DISABLE)) {
389 sc->sc_fifolen = 1;
390 printf("%s: txfifo disabled\n", sc->sc_dev.dv_xname);
391 }
392
393 if (sc->sc_fifolen > 1)
394 SET(sc->sc_hwflags, PLCOM_HW_FIFO);
395
396 tp = ttymalloc();
397 tp->t_oproc = plcomstart;
398 tp->t_param = plcomparam;
399 tp->t_hwiflow = plcomhwiflow;
400
401 sc->sc_tty = tp;
402 sc->sc_rbuf = malloc(plcom_rbuf_size << 1, M_DEVBUF, M_NOWAIT);
403 sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
404 sc->sc_rbavail = plcom_rbuf_size;
405 if (sc->sc_rbuf == NULL) {
406 printf("%s: unable to allocate ring buffer\n",
407 sc->sc_dev.dv_xname);
408 return;
409 }
410 sc->sc_ebuf = sc->sc_rbuf + (plcom_rbuf_size << 1);
411
412 tty_attach(tp);
413
414 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
415 int maj;
416
417 /* locate the major number */
418 maj = cdevsw_lookup_major(&plcom_cdevsw);
419
420 cn_tab->cn_dev = makedev(maj, device_unit(&sc->sc_dev));
421
422 printf("%s: console\n", sc->sc_dev.dv_xname);
423 }
424
425 #ifdef KGDB
426 /*
427 * Allow kgdb to "take over" this port. If this is
428 * the kgdb device, it has exclusive use.
429 */
430 if (iot == plcom_kgdb_iot && unit == plcom_kgdb_unit) {
431 plcom_kgdb_attached = 1;
432
433 SET(sc->sc_hwflags, PLCOM_HW_KGDB);
434 printf("%s: kgdb\n", sc->sc_dev.dv_xname);
435 }
436 #endif
437
438 sc->sc_si = softint_establish(SOFTINT_SERIAL, plcomsoft, sc);
439
440 #if NRND > 0 && defined(RND_COM)
441 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
442 RND_TYPE_TTY, 0);
443 #endif
444
445 /* if there are no enable/disable functions, assume the device
446 is always enabled */
447 if (!sc->enable)
448 sc->enabled = 1;
449
450 plcom_config(sc);
451
452 SET(sc->sc_hwflags, PLCOM_HW_DEV_OK);
453 }
454
455 void
456 plcom_config(struct plcom_softc *sc)
457 {
458 bus_space_tag_t iot = sc->sc_iot;
459 bus_space_handle_t ioh = sc->sc_ioh;
460
461 /* Disable interrupts before configuring the device. */
462 sc->sc_cr = 0;
463 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
464
465 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE|PLCOM_HW_KGDB))
466 plcom_enable_debugport(sc);
467 }
468
469 int
470 plcom_detach(self, flags)
471 struct device *self;
472 int flags;
473 {
474 struct plcom_softc *sc = (struct plcom_softc *)self;
475 int maj, mn;
476
477 /* locate the major number */
478 maj = cdevsw_lookup_major(&plcom_cdevsw);
479
480 /* Nuke the vnodes for any open instances. */
481 mn = device_unit(self);
482 vdevgone(maj, mn, mn, VCHR);
483
484 mn |= PLCOMDIALOUT_MASK;
485 vdevgone(maj, mn, mn, VCHR);
486
487 /* Free the receive buffer. */
488 free(sc->sc_rbuf, M_DEVBUF);
489
490 /* Detach and free the tty. */
491 tty_detach(sc->sc_tty);
492 ttyfree(sc->sc_tty);
493
494 /* Unhook the soft interrupt handler. */
495 softint_disestablish(sc->sc_si);
496
497 #if NRND > 0 && defined(RND_COM)
498 /* Unhook the entropy source. */
499 rnd_detach_source(&sc->rnd_source);
500 #endif
501
502 return 0;
503 }
504
505 int
506 plcom_activate(struct device *self, enum devact act)
507 {
508 struct plcom_softc *sc = (struct plcom_softc *)self;
509 int s, rv = 0;
510
511 s = splserial();
512 PLCOM_LOCK(sc);
513 switch (act) {
514 case DVACT_ACTIVATE:
515 rv = EOPNOTSUPP;
516 break;
517
518 case DVACT_DEACTIVATE:
519 if (sc->sc_hwflags & (PLCOM_HW_CONSOLE|PLCOM_HW_KGDB)) {
520 rv = EBUSY;
521 break;
522 }
523
524 if (sc->disable != NULL && sc->enabled != 0) {
525 (*sc->disable)(sc);
526 sc->enabled = 0;
527 }
528 break;
529 }
530
531 PLCOM_UNLOCK(sc);
532 splx(s);
533 return rv;
534 }
535
536 void
537 plcom_shutdown(struct plcom_softc *sc)
538 {
539 struct tty *tp = sc->sc_tty;
540 int s;
541
542 s = splserial();
543 PLCOM_LOCK(sc);
544
545 /* If we were asserting flow control, then deassert it. */
546 SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
547 plcom_hwiflow(sc);
548
549 /* Clear any break condition set with TIOCSBRK. */
550 plcom_break(sc, 0);
551
552 /* Turn off PPS capture on last close. */
553 mutex_spin_enter(&timecounter_lock);
554 sc->sc_ppsmask = 0;
555 sc->ppsparam.mode = 0;
556 mutex_spin_exit(&timecounter_lock);
557
558 /*
559 * Hang up if necessary. Wait a bit, so the other side has time to
560 * notice even if we immediately open the port again.
561 * Avoid tsleeping above splhigh().
562 */
563 if (ISSET(tp->t_cflag, HUPCL)) {
564 plcom_modem(sc, 0);
565 PLCOM_UNLOCK(sc);
566 splx(s);
567 /* XXX tsleep will only timeout */
568 (void) tsleep(sc, TTIPRI, ttclos, hz);
569 s = splserial();
570 PLCOM_LOCK(sc);
571 }
572
573 /* Turn off interrupts. */
574 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE))
575 /* interrupt on break */
576 sc->sc_cr = CR_RIE | CR_RTIE | CR_UARTEN;
577 else
578 sc->sc_cr = 0;
579 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
580
581 if (sc->disable) {
582 #ifdef DIAGNOSTIC
583 if (!sc->enabled)
584 panic("plcom_shutdown: not enabled?");
585 #endif
586 (*sc->disable)(sc);
587 sc->enabled = 0;
588 }
589 PLCOM_UNLOCK(sc);
590 splx(s);
591 }
592
593 int
594 plcomopen(dev_t dev, int flag, int mode, struct lwp *l)
595 {
596 struct plcom_softc *sc;
597 struct tty *tp;
598 int s, s2;
599 int error;
600
601 sc = device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
602 if (sc == NULL || !ISSET(sc->sc_hwflags, PLCOM_HW_DEV_OK) ||
603 sc->sc_rbuf == NULL)
604 return ENXIO;
605
606 if (!device_is_active(&sc->sc_dev))
607 return ENXIO;
608
609 #ifdef KGDB
610 /*
611 * If this is the kgdb port, no other use is permitted.
612 */
613 if (ISSET(sc->sc_hwflags, PLCOM_HW_KGDB))
614 return EBUSY;
615 #endif
616
617 tp = sc->sc_tty;
618
619 if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
620 return (EBUSY);
621
622 s = spltty();
623
624 /*
625 * Do the following iff this is a first open.
626 */
627 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
628 struct termios t;
629
630 tp->t_dev = dev;
631
632 s2 = splserial();
633 PLCOM_LOCK(sc);
634
635 if (sc->enable) {
636 if ((*sc->enable)(sc)) {
637 PLCOM_UNLOCK(sc);
638 splx(s2);
639 splx(s);
640 printf("%s: device enable failed\n",
641 sc->sc_dev.dv_xname);
642 return EIO;
643 }
644 sc->enabled = 1;
645 plcom_config(sc);
646 }
647
648 /* Turn on interrupts. */
649 /* IER_ERXRDY | IER_ERLS | IER_EMSC; */
650 sc->sc_cr = CR_RIE | CR_RTIE | CR_MSIE | CR_UARTEN;
651 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
652
653 /* Fetch the current modem control status, needed later. */
654 sc->sc_msr = bus_space_read_1(sc->sc_iot, sc->sc_ioh, plcom_fr);
655
656 /* Clear PPS capture state on first open. */
657
658 mutex_spin_enter(&timecounter_lock);
659 sc->sc_ppsmask = 0;
660 sc->ppsparam.mode = 0;
661 mutex_spin_exit(&timecounter_lock);
662
663 PLCOM_UNLOCK(sc);
664 splx(s2);
665
666 /*
667 * Initialize the termios status to the defaults. Add in the
668 * sticky bits from TIOCSFLAGS.
669 */
670 t.c_ispeed = 0;
671 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
672 t.c_ospeed = plcomconsrate;
673 t.c_cflag = plcomconscflag;
674 } else {
675 t.c_ospeed = TTYDEF_SPEED;
676 t.c_cflag = TTYDEF_CFLAG;
677 }
678 if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL))
679 SET(t.c_cflag, CLOCAL);
680 if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS))
681 SET(t.c_cflag, CRTSCTS);
682 if (ISSET(sc->sc_swflags, TIOCFLAG_MDMBUF))
683 SET(t.c_cflag, MDMBUF);
684 /* Make sure plcomparam() will do something. */
685 tp->t_ospeed = 0;
686 (void) plcomparam(tp, &t);
687 tp->t_iflag = TTYDEF_IFLAG;
688 tp->t_oflag = TTYDEF_OFLAG;
689 tp->t_lflag = TTYDEF_LFLAG;
690 ttychars(tp);
691 ttsetwater(tp);
692
693 s2 = splserial();
694 PLCOM_LOCK(sc);
695
696 /*
697 * Turn on DTR. We must always do this, even if carrier is not
698 * present, because otherwise we'd have to use TIOCSDTR
699 * immediately after setting CLOCAL, which applications do not
700 * expect. We always assert DTR while the device is open
701 * unless explicitly requested to deassert it.
702 */
703 plcom_modem(sc, 1);
704
705 /* Clear the input ring, and unblock. */
706 sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
707 sc->sc_rbavail = plcom_rbuf_size;
708 plcom_iflush(sc);
709 CLR(sc->sc_rx_flags, RX_ANY_BLOCK);
710 plcom_hwiflow(sc);
711
712 #ifdef PLCOM_DEBUG
713 if (plcom_debug)
714 plcomstatus(sc, "plcomopen ");
715 #endif
716
717 PLCOM_UNLOCK(sc);
718 splx(s2);
719 }
720
721 splx(s);
722
723 error = ttyopen(tp, PLCOMDIALOUT(dev), ISSET(flag, O_NONBLOCK));
724 if (error)
725 goto bad;
726
727 error = (*tp->t_linesw->l_open)(dev, tp);
728 if (error)
729 goto bad;
730
731 return 0;
732
733 bad:
734 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
735 /*
736 * We failed to open the device, and nobody else had it opened.
737 * Clean up the state as appropriate.
738 */
739 plcom_shutdown(sc);
740 }
741
742 return error;
743 }
744
745 int
746 plcomclose(dev_t dev, int flag, int mode, struct lwp *l)
747 {
748 struct plcom_softc *sc =
749 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
750 struct tty *tp = sc->sc_tty;
751
752 /* XXX This is for cons.c. */
753 if (!ISSET(tp->t_state, TS_ISOPEN))
754 return 0;
755
756 (*tp->t_linesw->l_close)(tp, flag);
757 ttyclose(tp);
758
759 if (PLCOM_ISALIVE(sc) == 0)
760 return 0;
761
762 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
763 /*
764 * Although we got a last close, the device may still be in
765 * use; e.g. if this was the dialout node, and there are still
766 * processes waiting for carrier on the non-dialout node.
767 */
768 plcom_shutdown(sc);
769 }
770
771 return 0;
772 }
773
774 int
775 plcomread(dev_t dev, struct uio *uio, int flag)
776 {
777 struct plcom_softc *sc =
778 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
779 struct tty *tp = sc->sc_tty;
780
781 if (PLCOM_ISALIVE(sc) == 0)
782 return EIO;
783
784 return (*tp->t_linesw->l_read)(tp, uio, flag);
785 }
786
787 int
788 plcomwrite(dev_t dev, struct uio *uio, int flag)
789 {
790 struct plcom_softc *sc =
791 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
792 struct tty *tp = sc->sc_tty;
793
794 if (PLCOM_ISALIVE(sc) == 0)
795 return EIO;
796
797 return (*tp->t_linesw->l_write)(tp, uio, flag);
798 }
799
800 int
801 plcompoll(dev_t dev, int events, struct lwp *l)
802 {
803 struct plcom_softc *sc =
804 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
805 struct tty *tp = sc->sc_tty;
806
807 if (PLCOM_ISALIVE(sc) == 0)
808 return EIO;
809
810 return (*tp->t_linesw->l_poll)(tp, events, l);
811 }
812
813 struct tty *
814 plcomtty(dev_t dev)
815 {
816 struct plcom_softc *sc =
817 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
818 struct tty *tp = sc->sc_tty;
819
820 return tp;
821 }
822
823 int
824 plcomioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
825 {
826 struct plcom_softc *sc =
827 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
828 struct tty *tp = sc->sc_tty;
829 int error;
830 int s;
831
832 if (PLCOM_ISALIVE(sc) == 0)
833 return EIO;
834
835 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
836 if (error != EPASSTHROUGH)
837 return error;
838
839 error = ttioctl(tp, cmd, data, flag, l);
840 if (error != EPASSTHROUGH)
841 return error;
842
843 error = 0;
844
845 s = splserial();
846 PLCOM_LOCK(sc);
847
848 switch (cmd) {
849 case TIOCSBRK:
850 plcom_break(sc, 1);
851 break;
852
853 case TIOCCBRK:
854 plcom_break(sc, 0);
855 break;
856
857 case TIOCSDTR:
858 plcom_modem(sc, 1);
859 break;
860
861 case TIOCCDTR:
862 plcom_modem(sc, 0);
863 break;
864
865 case TIOCGFLAGS:
866 *(int *)data = sc->sc_swflags;
867 break;
868
869 case TIOCSFLAGS:
870 error = kauth_authorize_device_tty(l->l_cred,
871 KAUTH_DEVICE_TTY_PRIVSET, tp);
872 if (error)
873 break;
874 sc->sc_swflags = *(int *)data;
875 break;
876
877 case TIOCMSET:
878 case TIOCMBIS:
879 case TIOCMBIC:
880 tiocm_to_plcom(sc, cmd, *(int *)data);
881 break;
882
883 case TIOCMGET:
884 *(int *)data = plcom_to_tiocm(sc);
885 break;
886
887 case PPS_IOC_CREATE:
888 break;
889
890 case PPS_IOC_DESTROY:
891 break;
892
893 case PPS_IOC_GETPARAMS: {
894 pps_params_t *pp;
895 pp = (pps_params_t *)data;
896 mutex_spin_enter(&timecounter_lock);
897 *pp = sc->ppsparam;
898 mutex_spin_exit(&timecounter_lock);
899 break;
900 }
901
902 case PPS_IOC_SETPARAMS: {
903 pps_params_t *pp;
904 int mode;
905 pp = (pps_params_t *)data;
906 mutex_spin_enter(&timecounter_lock);
907 if (pp->mode & ~ppscap) {
908 error = EINVAL;
909 mutex_spin_exit(&timecounter_lock);
910 break;
911 }
912 sc->ppsparam = *pp;
913 /*
914 * Compute msr masks from user-specified timestamp state.
915 */
916 mode = sc->ppsparam.mode;
917 #ifdef PPS_SYNC
918 if (mode & PPS_HARDPPSONASSERT) {
919 mode |= PPS_CAPTUREASSERT;
920 /* XXX revoke any previous HARDPPS source */
921 }
922 if (mode & PPS_HARDPPSONCLEAR) {
923 mode |= PPS_CAPTURECLEAR;
924 /* XXX revoke any previous HARDPPS source */
925 }
926 #endif /* PPS_SYNC */
927 switch (mode & PPS_CAPTUREBOTH) {
928 case 0:
929 sc->sc_ppsmask = 0;
930 break;
931
932 case PPS_CAPTUREASSERT:
933 sc->sc_ppsmask = MSR_DCD;
934 sc->sc_ppsassert = MSR_DCD;
935 sc->sc_ppsclear = -1;
936 break;
937
938 case PPS_CAPTURECLEAR:
939 sc->sc_ppsmask = MSR_DCD;
940 sc->sc_ppsassert = -1;
941 sc->sc_ppsclear = 0;
942 break;
943
944 case PPS_CAPTUREBOTH:
945 sc->sc_ppsmask = MSR_DCD;
946 sc->sc_ppsassert = MSR_DCD;
947 sc->sc_ppsclear = 0;
948 break;
949
950 default:
951 error = EINVAL;
952 break;
953 }
954 mutex_spin_exit(&timecounter_lock);
955 break;
956 }
957
958 case PPS_IOC_GETCAP:
959 *(int*)data = ppscap;
960 break;
961
962 case PPS_IOC_FETCH: {
963 pps_info_t *pi;
964 pi = (pps_info_t *)data;
965 mutex_spin_enter(&timecounter_lock);
966 *pi = sc->ppsinfo;
967 mutex_spin_exit(&timecounter_lock);
968 break;
969 }
970
971 case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */
972 /*
973 * Some GPS clocks models use the falling rather than
974 * rising edge as the on-the-second signal.
975 * The old API has no way to specify PPS polarity.
976 */
977 mutex_spin_enter(&timecounter_lock);
978 sc->sc_ppsmask = MSR_DCD;
979 #ifndef PPS_TRAILING_EDGE
980 sc->sc_ppsassert = MSR_DCD;
981 sc->sc_ppsclear = -1;
982 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
983 &sc->ppsinfo.assert_timestamp);
984 #else
985 sc->sc_ppsassert = -1
986 sc->sc_ppsclear = 0;
987 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
988 &sc->ppsinfo.clear_timestamp);
989 #endif
990 mutex_spin_exit(&timecounter_lock);
991 break;
992
993 default:
994 error = EPASSTHROUGH;
995 break;
996 }
997
998 PLCOM_UNLOCK(sc);
999 splx(s);
1000
1001 #ifdef PLCOM_DEBUG
1002 if (plcom_debug)
1003 plcomstatus(sc, "plcomioctl ");
1004 #endif
1005
1006 return error;
1007 }
1008
1009 integrate void
1010 plcom_schedrx(struct plcom_softc *sc)
1011 {
1012
1013 sc->sc_rx_ready = 1;
1014
1015 /* Wake up the poller. */
1016 softint_schedule(sc->sc_si);
1017 }
1018
1019 void
1020 plcom_break(struct plcom_softc *sc, int onoff)
1021 {
1022
1023 if (onoff)
1024 SET(sc->sc_lcr, LCR_BRK);
1025 else
1026 CLR(sc->sc_lcr, LCR_BRK);
1027
1028 if (!sc->sc_heldchange) {
1029 if (sc->sc_tx_busy) {
1030 sc->sc_heldtbc = sc->sc_tbc;
1031 sc->sc_tbc = 0;
1032 sc->sc_heldchange = 1;
1033 } else
1034 plcom_loadchannelregs(sc);
1035 }
1036 }
1037
1038 void
1039 plcom_modem(struct plcom_softc *sc, int onoff)
1040 {
1041
1042 if (sc->sc_mcr_dtr == 0)
1043 return;
1044
1045 if (onoff)
1046 SET(sc->sc_mcr, sc->sc_mcr_dtr);
1047 else
1048 CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1049
1050 if (!sc->sc_heldchange) {
1051 if (sc->sc_tx_busy) {
1052 sc->sc_heldtbc = sc->sc_tbc;
1053 sc->sc_tbc = 0;
1054 sc->sc_heldchange = 1;
1055 } else
1056 plcom_loadchannelregs(sc);
1057 }
1058 }
1059
1060 void
1061 tiocm_to_plcom(struct plcom_softc *sc, u_long how, int ttybits)
1062 {
1063 u_char plcombits;
1064
1065 plcombits = 0;
1066 if (ISSET(ttybits, TIOCM_DTR))
1067 SET(plcombits, MCR_DTR);
1068 if (ISSET(ttybits, TIOCM_RTS))
1069 SET(plcombits, MCR_RTS);
1070
1071 switch (how) {
1072 case TIOCMBIC:
1073 CLR(sc->sc_mcr, plcombits);
1074 break;
1075
1076 case TIOCMBIS:
1077 SET(sc->sc_mcr, plcombits);
1078 break;
1079
1080 case TIOCMSET:
1081 CLR(sc->sc_mcr, MCR_DTR | MCR_RTS);
1082 SET(sc->sc_mcr, plcombits);
1083 break;
1084 }
1085
1086 if (!sc->sc_heldchange) {
1087 if (sc->sc_tx_busy) {
1088 sc->sc_heldtbc = sc->sc_tbc;
1089 sc->sc_tbc = 0;
1090 sc->sc_heldchange = 1;
1091 } else
1092 plcom_loadchannelregs(sc);
1093 }
1094 }
1095
1096 int
1097 plcom_to_tiocm(struct plcom_softc *sc)
1098 {
1099 u_char plcombits;
1100 int ttybits = 0;
1101
1102 plcombits = sc->sc_mcr;
1103 if (ISSET(plcombits, MCR_DTR))
1104 SET(ttybits, TIOCM_DTR);
1105 if (ISSET(plcombits, MCR_RTS))
1106 SET(ttybits, TIOCM_RTS);
1107
1108 plcombits = sc->sc_msr;
1109 if (ISSET(plcombits, MSR_DCD))
1110 SET(ttybits, TIOCM_CD);
1111 if (ISSET(plcombits, MSR_CTS))
1112 SET(ttybits, TIOCM_CTS);
1113 if (ISSET(plcombits, MSR_DSR))
1114 SET(ttybits, TIOCM_DSR);
1115
1116 if (sc->sc_cr != 0)
1117 SET(ttybits, TIOCM_LE);
1118
1119 return ttybits;
1120 }
1121
1122 static u_char
1123 cflag2lcr(tcflag_t cflag)
1124 {
1125 u_char lcr = 0;
1126
1127 switch (ISSET(cflag, CSIZE)) {
1128 case CS5:
1129 SET(lcr, LCR_5BITS);
1130 break;
1131 case CS6:
1132 SET(lcr, LCR_6BITS);
1133 break;
1134 case CS7:
1135 SET(lcr, LCR_7BITS);
1136 break;
1137 case CS8:
1138 SET(lcr, LCR_8BITS);
1139 break;
1140 }
1141 if (ISSET(cflag, PARENB)) {
1142 SET(lcr, LCR_PEN);
1143 if (!ISSET(cflag, PARODD))
1144 SET(lcr, LCR_EPS);
1145 }
1146 if (ISSET(cflag, CSTOPB))
1147 SET(lcr, LCR_STP2);
1148
1149 return lcr;
1150 }
1151
1152 int
1153 plcomparam(struct tty *tp, struct termios *t)
1154 {
1155 struct plcom_softc *sc =
1156 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1157 int ospeed;
1158 u_char lcr;
1159 int s;
1160
1161 if (PLCOM_ISALIVE(sc) == 0)
1162 return EIO;
1163
1164 ospeed = plcomspeed(t->c_ospeed, sc->sc_frequency);
1165
1166 /* Check requested parameters. */
1167 if (ospeed < 0)
1168 return EINVAL;
1169 if (t->c_ispeed && t->c_ispeed != t->c_ospeed)
1170 return EINVAL;
1171
1172 /*
1173 * For the console, always force CLOCAL and !HUPCL, so that the port
1174 * is always active.
1175 */
1176 if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR) ||
1177 ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
1178 SET(t->c_cflag, CLOCAL);
1179 CLR(t->c_cflag, HUPCL);
1180 }
1181
1182 /*
1183 * If there were no changes, don't do anything. This avoids dropping
1184 * input and improves performance when all we did was frob things like
1185 * VMIN and VTIME.
1186 */
1187 if (tp->t_ospeed == t->c_ospeed &&
1188 tp->t_cflag == t->c_cflag)
1189 return 0;
1190
1191 lcr = ISSET(sc->sc_lcr, LCR_BRK) | cflag2lcr(t->c_cflag);
1192
1193 s = splserial();
1194 PLCOM_LOCK(sc);
1195
1196 sc->sc_lcr = lcr;
1197
1198 /*
1199 * PL010 has a fixed-length FIFO trigger point.
1200 */
1201 if (ISSET(sc->sc_hwflags, PLCOM_HW_FIFO))
1202 sc->sc_fifo = 1;
1203 else
1204 sc->sc_fifo = 0;
1205
1206 if (sc->sc_fifo)
1207 SET(sc->sc_lcr, LCR_FEN);
1208
1209 /*
1210 * If we're not in a mode that assumes a connection is present, then
1211 * ignore carrier changes.
1212 */
1213 if (ISSET(t->c_cflag, CLOCAL | MDMBUF))
1214 sc->sc_msr_dcd = 0;
1215 else
1216 sc->sc_msr_dcd = MSR_DCD;
1217 /*
1218 * Set the flow control pins depending on the current flow control
1219 * mode.
1220 */
1221 if (ISSET(t->c_cflag, CRTSCTS)) {
1222 sc->sc_mcr_dtr = MCR_DTR;
1223 sc->sc_mcr_rts = MCR_RTS;
1224 sc->sc_msr_cts = MSR_CTS;
1225 } else if (ISSET(t->c_cflag, MDMBUF)) {
1226 /*
1227 * For DTR/DCD flow control, make sure we don't toggle DTR for
1228 * carrier detection.
1229 */
1230 sc->sc_mcr_dtr = 0;
1231 sc->sc_mcr_rts = MCR_DTR;
1232 sc->sc_msr_cts = MSR_DCD;
1233 } else {
1234 /*
1235 * If no flow control, then always set RTS. This will make
1236 * the other side happy if it mistakenly thinks we're doing
1237 * RTS/CTS flow control.
1238 */
1239 sc->sc_mcr_dtr = MCR_DTR | MCR_RTS;
1240 sc->sc_mcr_rts = 0;
1241 sc->sc_msr_cts = 0;
1242 if (ISSET(sc->sc_mcr, MCR_DTR))
1243 SET(sc->sc_mcr, MCR_RTS);
1244 else
1245 CLR(sc->sc_mcr, MCR_RTS);
1246 }
1247 sc->sc_msr_mask = sc->sc_msr_cts | sc->sc_msr_dcd;
1248
1249 #if 0
1250 if (ospeed == 0)
1251 CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1252 else
1253 SET(sc->sc_mcr, sc->sc_mcr_dtr);
1254 #endif
1255
1256 sc->sc_dlbl = ospeed;
1257 sc->sc_dlbh = ospeed >> 8;
1258
1259 /* And copy to tty. */
1260 tp->t_ispeed = 0;
1261 tp->t_ospeed = t->c_ospeed;
1262 tp->t_cflag = t->c_cflag;
1263
1264 if (!sc->sc_heldchange) {
1265 if (sc->sc_tx_busy) {
1266 sc->sc_heldtbc = sc->sc_tbc;
1267 sc->sc_tbc = 0;
1268 sc->sc_heldchange = 1;
1269 } else
1270 plcom_loadchannelregs(sc);
1271 }
1272
1273 if (!ISSET(t->c_cflag, CHWFLOW)) {
1274 /* Disable the high water mark. */
1275 sc->sc_r_hiwat = 0;
1276 sc->sc_r_lowat = 0;
1277 if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1278 CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1279 plcom_schedrx(sc);
1280 }
1281 if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
1282 CLR(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
1283 plcom_hwiflow(sc);
1284 }
1285 } else {
1286 sc->sc_r_hiwat = plcom_rbuf_hiwat;
1287 sc->sc_r_lowat = plcom_rbuf_lowat;
1288 }
1289
1290 PLCOM_UNLOCK(sc);
1291 splx(s);
1292
1293 /*
1294 * Update the tty layer's idea of the carrier bit, in case we changed
1295 * CLOCAL or MDMBUF. We don't hang up here; we only do that by
1296 * explicit request.
1297 */
1298 (void) (*tp->t_linesw->l_modem)(tp, ISSET(sc->sc_msr, MSR_DCD));
1299
1300 #ifdef PLCOM_DEBUG
1301 if (plcom_debug)
1302 plcomstatus(sc, "plcomparam ");
1303 #endif
1304
1305 if (!ISSET(t->c_cflag, CHWFLOW)) {
1306 if (sc->sc_tx_stopped) {
1307 sc->sc_tx_stopped = 0;
1308 plcomstart(tp);
1309 }
1310 }
1311
1312 return 0;
1313 }
1314
1315 void
1316 plcom_iflush(struct plcom_softc *sc)
1317 {
1318 bus_space_tag_t iot = sc->sc_iot;
1319 bus_space_handle_t ioh = sc->sc_ioh;
1320 #ifdef DIAGNOSTIC
1321 int reg;
1322 #endif
1323 int timo;
1324
1325 #ifdef DIAGNOSTIC
1326 reg = 0xffff;
1327 #endif
1328 timo = 50000;
1329 /* flush any pending I/O */
1330 while (! ISSET(bus_space_read_1(iot, ioh, plcom_fr), FR_RXFE)
1331 && --timo)
1332 #ifdef DIAGNOSTIC
1333 reg =
1334 #else
1335 (void)
1336 #endif
1337 bus_space_read_1(iot, ioh, plcom_dr);
1338 #ifdef DIAGNOSTIC
1339 if (!timo)
1340 printf("%s: plcom_iflush timeout %02x\n", sc->sc_dev.dv_xname,
1341 reg);
1342 #endif
1343 }
1344
1345 void
1346 plcom_loadchannelregs(struct plcom_softc *sc)
1347 {
1348 bus_space_tag_t iot = sc->sc_iot;
1349 bus_space_handle_t ioh = sc->sc_ioh;
1350
1351 /* XXXXX necessary? */
1352 plcom_iflush(sc);
1353
1354 bus_space_write_1(iot, ioh, plcom_cr, 0);
1355
1356 bus_space_write_1(iot, ioh, plcom_dlbl, sc->sc_dlbl);
1357 bus_space_write_1(iot, ioh, plcom_dlbh, sc->sc_dlbh);
1358 bus_space_write_1(iot, ioh, plcom_lcr, sc->sc_lcr);
1359 /* XXX device_unit() abuse */
1360 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev),
1361 sc->sc_mcr_active = sc->sc_mcr);
1362
1363 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
1364 }
1365
1366 int
1367 plcomhwiflow(struct tty *tp, int block)
1368 {
1369 struct plcom_softc *sc =
1370 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1371 int s;
1372
1373 if (PLCOM_ISALIVE(sc) == 0)
1374 return 0;
1375
1376 if (sc->sc_mcr_rts == 0)
1377 return 0;
1378
1379 s = splserial();
1380 PLCOM_LOCK(sc);
1381
1382 if (block) {
1383 if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1384 SET(sc->sc_rx_flags, RX_TTY_BLOCKED);
1385 plcom_hwiflow(sc);
1386 }
1387 } else {
1388 if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1389 CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1390 plcom_schedrx(sc);
1391 }
1392 if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1393 CLR(sc->sc_rx_flags, RX_TTY_BLOCKED);
1394 plcom_hwiflow(sc);
1395 }
1396 }
1397
1398 PLCOM_UNLOCK(sc);
1399 splx(s);
1400 return 1;
1401 }
1402
1403 /*
1404 * (un)block input via hw flowcontrol
1405 */
1406 void
1407 plcom_hwiflow(struct plcom_softc *sc)
1408 {
1409 if (sc->sc_mcr_rts == 0)
1410 return;
1411
1412 if (ISSET(sc->sc_rx_flags, RX_ANY_BLOCK)) {
1413 CLR(sc->sc_mcr, sc->sc_mcr_rts);
1414 CLR(sc->sc_mcr_active, sc->sc_mcr_rts);
1415 } else {
1416 SET(sc->sc_mcr, sc->sc_mcr_rts);
1417 SET(sc->sc_mcr_active, sc->sc_mcr_rts);
1418 }
1419 /* XXX device_unit() abuse */
1420 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev),
1421 sc->sc_mcr_active);
1422 }
1423
1424
1425 void
1426 plcomstart(struct tty *tp)
1427 {
1428 struct plcom_softc *sc =
1429 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1430 bus_space_tag_t iot = sc->sc_iot;
1431 bus_space_handle_t ioh = sc->sc_ioh;
1432 int s;
1433
1434 if (PLCOM_ISALIVE(sc) == 0)
1435 return;
1436
1437 s = spltty();
1438 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
1439 goto out;
1440 if (sc->sc_tx_stopped)
1441 goto out;
1442
1443 if (!ttypull(tp))
1444 goto out;
1445
1446 /* Grab the first contiguous region of buffer space. */
1447 {
1448 u_char *tba;
1449 int tbc;
1450
1451 tba = tp->t_outq.c_cf;
1452 tbc = ndqb(&tp->t_outq, 0);
1453
1454 (void)splserial();
1455 PLCOM_LOCK(sc);
1456
1457 sc->sc_tba = tba;
1458 sc->sc_tbc = tbc;
1459 }
1460
1461 SET(tp->t_state, TS_BUSY);
1462 sc->sc_tx_busy = 1;
1463
1464 /* Enable transmit completion interrupts if necessary. */
1465 if (!ISSET(sc->sc_cr, CR_TIE)) {
1466 SET(sc->sc_cr, CR_TIE);
1467 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
1468 }
1469
1470 /* Output the first chunk of the contiguous buffer. */
1471 {
1472 int n;
1473
1474 n = sc->sc_tbc;
1475 if (n > sc->sc_fifolen)
1476 n = sc->sc_fifolen;
1477 bus_space_write_multi_1(iot, ioh, plcom_dr, sc->sc_tba, n);
1478 sc->sc_tbc -= n;
1479 sc->sc_tba += n;
1480 }
1481 PLCOM_UNLOCK(sc);
1482 out:
1483 splx(s);
1484 return;
1485 }
1486
1487 /*
1488 * Stop output on a line.
1489 */
1490 void
1491 plcomstop(struct tty *tp, int flag)
1492 {
1493 struct plcom_softc *sc =
1494 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1495 int s;
1496
1497 s = splserial();
1498 PLCOM_LOCK(sc);
1499 if (ISSET(tp->t_state, TS_BUSY)) {
1500 /* Stop transmitting at the next chunk. */
1501 sc->sc_tbc = 0;
1502 sc->sc_heldtbc = 0;
1503 if (!ISSET(tp->t_state, TS_TTSTOP))
1504 SET(tp->t_state, TS_FLUSH);
1505 }
1506 PLCOM_UNLOCK(sc);
1507 splx(s);
1508 }
1509
1510 void
1511 plcomdiag(void *arg)
1512 {
1513 struct plcom_softc *sc = arg;
1514 int overflows, floods;
1515 int s;
1516
1517 s = splserial();
1518 PLCOM_LOCK(sc);
1519 overflows = sc->sc_overflows;
1520 sc->sc_overflows = 0;
1521 floods = sc->sc_floods;
1522 sc->sc_floods = 0;
1523 sc->sc_errors = 0;
1524 PLCOM_UNLOCK(sc);
1525 splx(s);
1526
1527 log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
1528 sc->sc_dev.dv_xname,
1529 overflows, overflows == 1 ? "" : "s",
1530 floods, floods == 1 ? "" : "s");
1531 }
1532
1533 integrate void
1534 plcom_rxsoft(struct plcom_softc *sc, struct tty *tp)
1535 {
1536 int (*rint) (int, struct tty *) = tp->t_linesw->l_rint;
1537 u_char *get, *end;
1538 u_int cc, scc;
1539 u_char rsr;
1540 int code;
1541 int s;
1542
1543 end = sc->sc_ebuf;
1544 get = sc->sc_rbget;
1545 scc = cc = plcom_rbuf_size - sc->sc_rbavail;
1546
1547 if (cc == plcom_rbuf_size) {
1548 sc->sc_floods++;
1549 if (sc->sc_errors++ == 0)
1550 callout_reset(&sc->sc_diag_callout, 60 * hz,
1551 plcomdiag, sc);
1552 }
1553
1554 while (cc) {
1555 code = get[0];
1556 rsr = get[1];
1557 if (ISSET(rsr, RSR_OE | RSR_BE | RSR_FE | RSR_PE)) {
1558 if (ISSET(rsr, RSR_OE)) {
1559 sc->sc_overflows++;
1560 if (sc->sc_errors++ == 0)
1561 callout_reset(&sc->sc_diag_callout,
1562 60 * hz, plcomdiag, sc);
1563 }
1564 if (ISSET(rsr, RSR_BE | RSR_FE))
1565 SET(code, TTY_FE);
1566 if (ISSET(rsr, RSR_PE))
1567 SET(code, TTY_PE);
1568 }
1569 if ((*rint)(code, tp) == -1) {
1570 /*
1571 * The line discipline's buffer is out of space.
1572 */
1573 if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1574 /*
1575 * We're either not using flow control, or the
1576 * line discipline didn't tell us to block for
1577 * some reason. Either way, we have no way to
1578 * know when there's more space available, so
1579 * just drop the rest of the data.
1580 */
1581 get += cc << 1;
1582 if (get >= end)
1583 get -= plcom_rbuf_size << 1;
1584 cc = 0;
1585 } else {
1586 /*
1587 * Don't schedule any more receive processing
1588 * until the line discipline tells us there's
1589 * space available (through plcomhwiflow()).
1590 * Leave the rest of the data in the input
1591 * buffer.
1592 */
1593 SET(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1594 }
1595 break;
1596 }
1597 get += 2;
1598 if (get >= end)
1599 get = sc->sc_rbuf;
1600 cc--;
1601 }
1602
1603 if (cc != scc) {
1604 sc->sc_rbget = get;
1605 s = splserial();
1606 PLCOM_LOCK(sc);
1607
1608 cc = sc->sc_rbavail += scc - cc;
1609 /* Buffers should be ok again, release possible block. */
1610 if (cc >= sc->sc_r_lowat) {
1611 if (ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1612 CLR(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
1613 SET(sc->sc_cr, CR_RIE | CR_RTIE);
1614 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
1615 }
1616 if (ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED)) {
1617 CLR(sc->sc_rx_flags, RX_IBUF_BLOCKED);
1618 plcom_hwiflow(sc);
1619 }
1620 }
1621 PLCOM_UNLOCK(sc);
1622 splx(s);
1623 }
1624 }
1625
1626 integrate void
1627 plcom_txsoft(struct plcom_softc *sc, struct tty *tp)
1628 {
1629
1630 CLR(tp->t_state, TS_BUSY);
1631 if (ISSET(tp->t_state, TS_FLUSH))
1632 CLR(tp->t_state, TS_FLUSH);
1633 else
1634 ndflush(&tp->t_outq, (int)(sc->sc_tba - tp->t_outq.c_cf));
1635 (*tp->t_linesw->l_start)(tp);
1636 }
1637
1638 integrate void
1639 plcom_stsoft(struct plcom_softc *sc, struct tty *tp)
1640 {
1641 u_char msr, delta;
1642 int s;
1643
1644 s = splserial();
1645 PLCOM_LOCK(sc);
1646 msr = sc->sc_msr;
1647 delta = sc->sc_msr_delta;
1648 sc->sc_msr_delta = 0;
1649 PLCOM_UNLOCK(sc);
1650 splx(s);
1651
1652 if (ISSET(delta, sc->sc_msr_dcd)) {
1653 /*
1654 * Inform the tty layer that carrier detect changed.
1655 */
1656 (void) (*tp->t_linesw->l_modem)(tp, ISSET(msr, MSR_DCD));
1657 }
1658
1659 if (ISSET(delta, sc->sc_msr_cts)) {
1660 /* Block or unblock output according to flow control. */
1661 if (ISSET(msr, sc->sc_msr_cts)) {
1662 sc->sc_tx_stopped = 0;
1663 (*tp->t_linesw->l_start)(tp);
1664 } else {
1665 sc->sc_tx_stopped = 1;
1666 }
1667 }
1668
1669 #ifdef PLCOM_DEBUG
1670 if (plcom_debug)
1671 plcomstatus(sc, "plcom_stsoft");
1672 #endif
1673 }
1674
1675 void
1676 plcomsoft(void *arg)
1677 {
1678 struct plcom_softc *sc = arg;
1679 struct tty *tp;
1680
1681 if (PLCOM_ISALIVE(sc) == 0)
1682 return;
1683
1684 tp = sc->sc_tty;
1685
1686 if (sc->sc_rx_ready) {
1687 sc->sc_rx_ready = 0;
1688 plcom_rxsoft(sc, tp);
1689 }
1690
1691 if (sc->sc_st_check) {
1692 sc->sc_st_check = 0;
1693 plcom_stsoft(sc, tp);
1694 }
1695
1696 if (sc->sc_tx_done) {
1697 sc->sc_tx_done = 0;
1698 plcom_txsoft(sc, tp);
1699 }
1700 }
1701
1702 int
1703 plcomintr(void *arg)
1704 {
1705 struct plcom_softc *sc = arg;
1706 bus_space_tag_t iot = sc->sc_iot;
1707 bus_space_handle_t ioh = sc->sc_ioh;
1708 u_char *put, *end;
1709 u_int cc;
1710 u_char rsr, iir;
1711
1712 if (PLCOM_ISALIVE(sc) == 0)
1713 return 0;
1714
1715 PLCOM_LOCK(sc);
1716 iir = bus_space_read_1(iot, ioh, plcom_iir);
1717 if (! ISSET(iir, IIR_IMASK)) {
1718 PLCOM_UNLOCK(sc);
1719 return 0;
1720 }
1721
1722 end = sc->sc_ebuf;
1723 put = sc->sc_rbput;
1724 cc = sc->sc_rbavail;
1725
1726 do {
1727 u_char msr, delta, fr;
1728
1729 fr = bus_space_read_1(iot, ioh, plcom_fr);
1730
1731 if (!ISSET(fr, FR_RXFE) &&
1732 !ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1733 while (cc > 0) {
1734 int cn_trapped = 0;
1735 put[0] = bus_space_read_1(iot, ioh,
1736 plcom_dr);
1737 rsr = bus_space_read_1(iot, ioh, plcom_rsr);
1738 /* Clear any error status. */
1739 if (ISSET(rsr,
1740 (RSR_BE | RSR_OE | RSR_PE | RSR_FE)))
1741 bus_space_write_1(iot, ioh, plcom_ecr,
1742 0);
1743 if (ISSET(rsr, RSR_BE)) {
1744 cn_trapped = 0;
1745 cn_check_magic(sc->sc_tty->t_dev,
1746 CNC_BREAK, plcom_cnm_state);
1747 if (cn_trapped)
1748 continue;
1749 #if defined(KGDB)
1750 if (ISSET(sc->sc_hwflags,
1751 PLCOM_HW_KGDB)) {
1752 kgdb_connect(1);
1753 continue;
1754 }
1755 #endif
1756 }
1757
1758 put[1] = rsr;
1759 cn_trapped = 0;
1760 cn_check_magic(sc->sc_tty->t_dev,
1761 put[0], plcom_cnm_state);
1762 if (cn_trapped) {
1763 fr = bus_space_read_1(iot, ioh,
1764 plcom_fr);
1765 if (ISSET(fr, FR_RXFE))
1766 break;
1767
1768 continue;
1769 }
1770 put += 2;
1771 if (put >= end)
1772 put = sc->sc_rbuf;
1773 cc--;
1774
1775 fr = bus_space_read_1(iot, ioh, plcom_fr);
1776 if (ISSET(fr, FR_RXFE))
1777 break;
1778 }
1779
1780 /*
1781 * Current string of incoming characters ended because
1782 * no more data was available or we ran out of space.
1783 * Schedule a receive event if any data was received.
1784 * If we're out of space, turn off receive interrupts.
1785 */
1786 sc->sc_rbput = put;
1787 sc->sc_rbavail = cc;
1788 if (!ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED))
1789 sc->sc_rx_ready = 1;
1790
1791 /*
1792 * See if we are in danger of overflowing a buffer. If
1793 * so, use hardware flow control to ease the pressure.
1794 */
1795 if (!ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED) &&
1796 cc < sc->sc_r_hiwat) {
1797 SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
1798 plcom_hwiflow(sc);
1799 }
1800
1801 /*
1802 * If we're out of space, disable receive interrupts
1803 * until the queue has drained a bit.
1804 */
1805 if (!cc) {
1806 SET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
1807 CLR(sc->sc_cr, CR_RIE | CR_RTIE);
1808 bus_space_write_1(iot, ioh, plcom_cr,
1809 sc->sc_cr);
1810 }
1811 } else {
1812 if (ISSET(iir, IIR_RIS)) {
1813 bus_space_write_1(iot, ioh, plcom_cr, 0);
1814 delay(10);
1815 bus_space_write_1(iot, ioh, plcom_cr,
1816 sc->sc_cr);
1817 continue;
1818 }
1819 }
1820
1821 msr = bus_space_read_1(iot, ioh, plcom_fr);
1822 delta = msr ^ sc->sc_msr;
1823 sc->sc_msr = msr;
1824 /* Clear any pending modem status interrupt. */
1825 if (iir & IIR_MIS)
1826 bus_space_write_1(iot, ioh, plcom_icr, 0);
1827 /*
1828 * Pulse-per-second (PSS) signals on edge of DCD?
1829 * Process these even if line discipline is ignoring DCD.
1830 */
1831 if (delta & sc->sc_ppsmask) {
1832 struct timeval tv;
1833 mutex_spin_enter(&timecounter_lock);
1834 if ((msr & sc->sc_ppsmask) == sc->sc_ppsassert) {
1835 /* XXX nanotime() */
1836 microtime(&tv);
1837 TIMEVAL_TO_TIMESPEC(&tv,
1838 &sc->ppsinfo.assert_timestamp);
1839 if (sc->ppsparam.mode & PPS_OFFSETASSERT) {
1840 timespecadd(&sc->ppsinfo.assert_timestamp,
1841 &sc->ppsparam.assert_offset,
1842 &sc->ppsinfo.assert_timestamp);
1843 }
1844
1845 #ifdef PPS_SYNC
1846 if (sc->ppsparam.mode & PPS_HARDPPSONASSERT)
1847 hardpps(&tv, tv.tv_usec);
1848 #endif
1849 sc->ppsinfo.assert_sequence++;
1850 sc->ppsinfo.current_mode = sc->ppsparam.mode;
1851
1852 } else if ((msr & sc->sc_ppsmask) == sc->sc_ppsclear) {
1853 /* XXX nanotime() */
1854 microtime(&tv);
1855 TIMEVAL_TO_TIMESPEC(&tv,
1856 &sc->ppsinfo.clear_timestamp);
1857 if (sc->ppsparam.mode & PPS_OFFSETCLEAR) {
1858 timespecadd(&sc->ppsinfo.clear_timestamp,
1859 &sc->ppsparam.clear_offset,
1860 &sc->ppsinfo.clear_timestamp);
1861 }
1862
1863 #ifdef PPS_SYNC
1864 if (sc->ppsparam.mode & PPS_HARDPPSONCLEAR)
1865 hardpps(&tv, tv.tv_usec);
1866 #endif
1867 sc->ppsinfo.clear_sequence++;
1868 sc->ppsinfo.current_mode = sc->ppsparam.mode;
1869 }
1870 mutex_spin_exit(&timecounter_lock);
1871 }
1872
1873 /*
1874 * Process normal status changes
1875 */
1876 if (ISSET(delta, sc->sc_msr_mask)) {
1877 SET(sc->sc_msr_delta, delta);
1878
1879 /*
1880 * Stop output immediately if we lose the output
1881 * flow control signal or carrier detect.
1882 */
1883 if (ISSET(~msr, sc->sc_msr_mask)) {
1884 sc->sc_tbc = 0;
1885 sc->sc_heldtbc = 0;
1886 #ifdef PLCOM_DEBUG
1887 if (plcom_debug)
1888 plcomstatus(sc, "plcomintr ");
1889 #endif
1890 }
1891
1892 sc->sc_st_check = 1;
1893 }
1894
1895 /*
1896 * Done handling any receive interrupts. See if data
1897 * can be * transmitted as well. Schedule tx done
1898 * event if no data left * and tty was marked busy.
1899 */
1900 if (ISSET(iir, IIR_TIS)) {
1901 /*
1902 * If we've delayed a parameter change, do it
1903 * now, and restart * output.
1904 */
1905 if (sc->sc_heldchange) {
1906 plcom_loadchannelregs(sc);
1907 sc->sc_heldchange = 0;
1908 sc->sc_tbc = sc->sc_heldtbc;
1909 sc->sc_heldtbc = 0;
1910 }
1911
1912 /*
1913 * Output the next chunk of the contiguous
1914 * buffer, if any.
1915 */
1916 if (sc->sc_tbc > 0) {
1917 int n;
1918
1919 n = sc->sc_tbc;
1920 if (n > sc->sc_fifolen)
1921 n = sc->sc_fifolen;
1922 bus_space_write_multi_1(iot, ioh, plcom_dr,
1923 sc->sc_tba, n);
1924 sc->sc_tbc -= n;
1925 sc->sc_tba += n;
1926 } else {
1927 /*
1928 * Disable transmit plcompletion
1929 * interrupts if necessary.
1930 */
1931 if (ISSET(sc->sc_cr, CR_TIE)) {
1932 CLR(sc->sc_cr, CR_TIE);
1933 bus_space_write_1(iot, ioh, plcom_cr,
1934 sc->sc_cr);
1935 }
1936 if (sc->sc_tx_busy) {
1937 sc->sc_tx_busy = 0;
1938 sc->sc_tx_done = 1;
1939 }
1940 }
1941 }
1942 } while (ISSET((iir = bus_space_read_1(iot, ioh, plcom_iir)),
1943 IIR_IMASK));
1944
1945 PLCOM_UNLOCK(sc);
1946
1947 /* Wake up the poller. */
1948 softint_schedule(sc->sc_si);
1949
1950 #if NRND > 0 && defined(RND_COM)
1951 rnd_add_uint32(&sc->rnd_source, iir | rsr);
1952 #endif
1953
1954 return 1;
1955 }
1956
1957 /*
1958 * The following functions are polled getc and putc routines, shared
1959 * by the console and kgdb glue.
1960 *
1961 * The read-ahead code is so that you can detect pending in-band
1962 * cn_magic in polled mode while doing output rather than having to
1963 * wait until the kernel decides it needs input.
1964 */
1965
1966 #define MAX_READAHEAD 20
1967 static int plcom_readahead[MAX_READAHEAD];
1968 static int plcom_readaheadcount = 0;
1969
1970 int
1971 plcom_common_getc(dev_t dev, bus_space_tag_t iot, bus_space_handle_t ioh)
1972 {
1973 int s = splserial();
1974 u_char stat, c;
1975
1976 /* got a character from reading things earlier */
1977 if (plcom_readaheadcount > 0) {
1978 int i;
1979
1980 c = plcom_readahead[0];
1981 for (i = 1; i < plcom_readaheadcount; i++) {
1982 plcom_readahead[i-1] = plcom_readahead[i];
1983 }
1984 plcom_readaheadcount--;
1985 splx(s);
1986 return c;
1987 }
1988
1989 /* block until a character becomes available */
1990 while (ISSET(stat = bus_space_read_1(iot, ioh, plcom_fr), FR_RXFE))
1991 ;
1992
1993 c = bus_space_read_1(iot, ioh, plcom_dr);
1994 stat = bus_space_read_1(iot, ioh, plcom_iir);
1995 {
1996 int cn_trapped = 0; /* unused */
1997 #ifdef DDB
1998 extern int db_active;
1999 if (!db_active)
2000 #endif
2001 cn_check_magic(dev, c, plcom_cnm_state);
2002 }
2003 splx(s);
2004 return c;
2005 }
2006
2007 void
2008 plcom_common_putc(dev_t dev, bus_space_tag_t iot, bus_space_handle_t ioh,
2009 int c)
2010 {
2011 int s = splserial();
2012 int timo;
2013
2014 int cin, stat;
2015 if (plcom_readaheadcount < MAX_READAHEAD
2016 && !ISSET(stat = bus_space_read_1(iot, ioh, plcom_fr), FR_RXFE)) {
2017 int cn_trapped = 0;
2018 cin = bus_space_read_1(iot, ioh, plcom_dr);
2019 stat = bus_space_read_1(iot, ioh, plcom_iir);
2020 cn_check_magic(dev, cin, plcom_cnm_state);
2021 plcom_readahead[plcom_readaheadcount++] = cin;
2022 }
2023
2024 /* wait for any pending transmission to finish */
2025 timo = 150000;
2026 while (!ISSET(bus_space_read_1(iot, ioh, plcom_fr), FR_TXFE) && --timo)
2027 continue;
2028
2029 bus_space_write_1(iot, ioh, plcom_dr, c);
2030 PLCOM_BARRIER(iot, ioh, BR | BW);
2031
2032 /* wait for this transmission to complete */
2033 timo = 1500000;
2034 while (!ISSET(bus_space_read_1(iot, ioh, plcom_fr), FR_TXFE) && --timo)
2035 continue;
2036
2037 splx(s);
2038 }
2039
2040 /*
2041 * Initialize UART for use as console or KGDB line.
2042 */
2043 int
2044 plcominit(bus_space_tag_t iot, bus_addr_t iobase, int rate, int frequency,
2045 tcflag_t cflag, bus_space_handle_t *iohp)
2046 {
2047 bus_space_handle_t ioh;
2048
2049 if (bus_space_map(iot, iobase, PLCOM_UART_SIZE, 0, &ioh))
2050 return ENOMEM; /* ??? */
2051
2052 rate = plcomspeed(rate, frequency);
2053 bus_space_write_1(iot, ioh, plcom_cr, 0);
2054 bus_space_write_1(iot, ioh, plcom_dlbl, rate);
2055 bus_space_write_1(iot, ioh, plcom_dlbh, rate >> 8);
2056 bus_space_write_1(iot, ioh, plcom_lcr, cflag2lcr(cflag) | LCR_FEN);
2057 bus_space_write_1(iot, ioh, plcom_cr, CR_UARTEN);
2058
2059 #if 0
2060 /* Ought to do something like this, but we have no sc to
2061 dereference. */
2062 /* XXX device_unit() abuse */
2063 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev),
2064 MCR_DTR | MCR_RTS);
2065 #endif
2066
2067 *iohp = ioh;
2068 return 0;
2069 }
2070
2071 /*
2072 * Following are all routines needed for PLCOM to act as console
2073 */
2074 struct consdev plcomcons = {
2075 NULL, NULL, plcomcngetc, plcomcnputc, plcomcnpollc, NULL,
2076 NULL, NULL, NODEV, CN_NORMAL
2077 };
2078
2079
2080 int
2081 plcomcnattach(bus_space_tag_t iot, bus_addr_t iobase, int rate, int frequency,
2082 tcflag_t cflag, int unit)
2083 {
2084 int res;
2085
2086 res = plcominit(iot, iobase, rate, frequency, cflag, &plcomconsioh);
2087 if (res)
2088 return res;
2089
2090 cn_tab = &plcomcons;
2091 cn_init_magic(&plcom_cnm_state);
2092 cn_set_magic("\047\001"); /* default magic is BREAK */
2093
2094 plcomconstag = iot;
2095 plcomconsunit = unit;
2096 plcomconsrate = rate;
2097 plcomconscflag = cflag;
2098
2099 return 0;
2100 }
2101
2102 void
2103 plcomcndetach(void)
2104 {
2105 bus_space_unmap(plcomconstag, plcomconsioh, PLCOM_UART_SIZE);
2106 plcomconstag = NULL;
2107
2108 cn_tab = NULL;
2109 }
2110
2111 int
2112 plcomcngetc(dev_t dev)
2113 {
2114 return plcom_common_getc(dev, plcomconstag, plcomconsioh);
2115 }
2116
2117 /*
2118 * Console kernel output character routine.
2119 */
2120 void
2121 plcomcnputc(dev_t dev, int c)
2122 {
2123 plcom_common_putc(dev, plcomconstag, plcomconsioh, c);
2124 }
2125
2126 void
2127 plcomcnpollc(dev_t dev, int on)
2128 {
2129
2130 }
2131
2132 #ifdef KGDB
2133 int
2134 plcom_kgdb_attach(bus_space_tag_t iot, bus_addr_t iobase, int rate,
2135 int frequency, tcflag_t cflag, int unit)
2136 {
2137 int res;
2138
2139 if (iot == plcomconstag && iobase == plcomconsunit)
2140 return EBUSY; /* cannot share with console */
2141
2142 res = plcominit(iot, iobase, rate, frequency, cflag, &plcom_kgdb_ioh);
2143 if (res)
2144 return res;
2145
2146 kgdb_attach(plcom_kgdb_getc, plcom_kgdb_putc, NULL);
2147 kgdb_dev = 123; /* unneeded, only to satisfy some tests */
2148
2149 plcom_kgdb_iot = iot;
2150 plcom_kgdb_unit = unit;
2151
2152 return 0;
2153 }
2154
2155 /* ARGSUSED */
2156 int
2157 plcom_kgdb_getc(void *arg)
2158 {
2159 return plcom_common_getc(NODEV, plcom_kgdb_iot, plcom_kgdb_ioh);
2160 }
2161
2162 /* ARGSUSED */
2163 void
2164 plcom_kgdb_putc(void *arg, int c)
2165 {
2166 plcom_common_putc(NODEV, plcom_kgdb_iot, plcom_kgdb_ioh, c);
2167 }
2168 #endif /* KGDB */
2169
2170 /* helper function to identify the plcom ports used by
2171 console or KGDB (and not yet autoconf attached) */
2172 int
2173 plcom_is_console(bus_space_tag_t iot, int unit,
2174 bus_space_handle_t *ioh)
2175 {
2176 bus_space_handle_t help;
2177
2178 if (!plcomconsattached &&
2179 iot == plcomconstag && unit == plcomconsunit)
2180 help = plcomconsioh;
2181 #ifdef KGDB
2182 else if (!plcom_kgdb_attached &&
2183 iot == plcom_kgdb_iot && unit == plcom_kgdb_unit)
2184 help = plcom_kgdb_ioh;
2185 #endif
2186 else
2187 return 0;
2188
2189 if (ioh)
2190 *ioh = help;
2191 return 1;
2192 }
2193