plcom.c revision 1.30 1 /* $NetBSD: plcom.c,v 1.30 2009/11/21 20:32:28 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2001 ARM Ltd
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the company may not be used to endorse or promote
16 * products derived from this software without specific prior written
17 * permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
23 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
32 * All rights reserved.
33 *
34 * This code is derived from software contributed to The NetBSD Foundation
35 * by Charles M. Hannum.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
47 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
48 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
49 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
50 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
51 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
52 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
53 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
54 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
55 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
56 * POSSIBILITY OF SUCH DAMAGE.
57 */
58
59 /*
60 * Copyright (c) 1991 The Regents of the University of California.
61 * All rights reserved.
62 *
63 * Redistribution and use in source and binary forms, with or without
64 * modification, are permitted provided that the following conditions
65 * are met:
66 * 1. Redistributions of source code must retain the above copyright
67 * notice, this list of conditions and the following disclaimer.
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in the
70 * documentation and/or other materials provided with the distribution.
71 * 3. Neither the name of the University nor the names of its contributors
72 * may be used to endorse or promote products derived from this software
73 * without specific prior written permission.
74 *
75 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
76 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
77 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
78 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
79 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
80 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
81 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
82 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
83 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
84 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
85 * SUCH DAMAGE.
86 *
87 * @(#)com.c 7.5 (Berkeley) 5/16/91
88 */
89
90 /*
91 * COM driver for the Prime Cell PL010 UART, which is similar to the 16C550,
92 * but has a completely different programmer's model.
93 * Derived from the NS16550AF com driver.
94 */
95
96 #include <sys/cdefs.h>
97 __KERNEL_RCSID(0, "$NetBSD: plcom.c,v 1.30 2009/11/21 20:32:28 rmind Exp $");
98
99 #include "opt_plcom.h"
100 #include "opt_ddb.h"
101 #include "opt_kgdb.h"
102 #include "opt_lockdebug.h"
103 #include "opt_multiprocessor.h"
104
105 #include "rnd.h"
106 #if NRND > 0 && defined(RND_COM)
107 #include <sys/rnd.h>
108 #endif
109
110 /*
111 * Override cnmagic(9) macro before including <sys/systm.h>.
112 * We need to know if cn_check_magic triggered debugger, so set a flag.
113 * Callers of cn_check_magic must declare int cn_trapped = 0;
114 * XXX: this is *ugly*!
115 */
116 #define cn_trap() \
117 do { \
118 console_debugger(); \
119 cn_trapped = 1; \
120 } while (/* CONSTCOND */ 0)
121
122 #include <sys/param.h>
123 #include <sys/systm.h>
124 #include <sys/ioctl.h>
125 #include <sys/select.h>
126 #include <sys/tty.h>
127 #include <sys/proc.h>
128 #include <sys/conf.h>
129 #include <sys/file.h>
130 #include <sys/uio.h>
131 #include <sys/kernel.h>
132 #include <sys/syslog.h>
133 #include <sys/types.h>
134 #include <sys/device.h>
135 #include <sys/malloc.h>
136 #include <sys/timepps.h>
137 #include <sys/vnode.h>
138 #include <sys/kauth.h>
139 #include <sys/intr.h>
140 #include <sys/bus.h>
141
142 #include <evbarm/dev/plcomreg.h>
143 #include <evbarm/dev/plcomvar.h>
144
145 #include <dev/cons.h>
146
147 static void plcom_enable_debugport (struct plcom_softc *);
148
149 void plcom_config (struct plcom_softc *);
150 void plcom_shutdown (struct plcom_softc *);
151 int plcomspeed (long, long);
152 static u_char cflag2lcr (tcflag_t);
153 int plcomparam (struct tty *, struct termios *);
154 void plcomstart (struct tty *);
155 int plcomhwiflow (struct tty *, int);
156
157 void plcom_loadchannelregs (struct plcom_softc *);
158 void plcom_hwiflow (struct plcom_softc *);
159 void plcom_break (struct plcom_softc *, int);
160 void plcom_modem (struct plcom_softc *, int);
161 void tiocm_to_plcom (struct plcom_softc *, u_long, int);
162 int plcom_to_tiocm (struct plcom_softc *);
163 void plcom_iflush (struct plcom_softc *);
164
165 int plcom_common_getc (dev_t, bus_space_tag_t, bus_space_handle_t);
166 void plcom_common_putc (dev_t, bus_space_tag_t, bus_space_handle_t, int);
167
168 int plcominit (bus_space_tag_t, bus_addr_t, int, int, tcflag_t,
169 bus_space_handle_t *);
170
171 dev_type_open(plcomopen);
172 dev_type_close(plcomclose);
173 dev_type_read(plcomread);
174 dev_type_write(plcomwrite);
175 dev_type_ioctl(plcomioctl);
176 dev_type_stop(plcomstop);
177 dev_type_tty(plcomtty);
178 dev_type_poll(plcompoll);
179
180 int plcomcngetc (dev_t);
181 void plcomcnputc (dev_t, int);
182 void plcomcnpollc (dev_t, int);
183
184 #define integrate static inline
185 void plcomsoft (void *);
186 integrate void plcom_rxsoft (struct plcom_softc *, struct tty *);
187 integrate void plcom_txsoft (struct plcom_softc *, struct tty *);
188 integrate void plcom_stsoft (struct plcom_softc *, struct tty *);
189 integrate void plcom_schedrx (struct plcom_softc *);
190 void plcomdiag (void *);
191
192 extern struct cfdriver plcom_cd;
193
194 const struct cdevsw plcom_cdevsw = {
195 plcomopen, plcomclose, plcomread, plcomwrite, plcomioctl,
196 plcomstop, plcomtty, plcompoll, nommap, ttykqfilter, D_TTY
197 };
198
199 /*
200 * Make this an option variable one can patch.
201 * But be warned: this must be a power of 2!
202 */
203 u_int plcom_rbuf_size = PLCOM_RING_SIZE;
204
205 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
206 u_int plcom_rbuf_hiwat = (PLCOM_RING_SIZE * 1) / 4;
207 u_int plcom_rbuf_lowat = (PLCOM_RING_SIZE * 3) / 4;
208
209 static int plcomconsunit = -1;
210 static bus_space_tag_t plcomconstag;
211 static bus_space_handle_t plcomconsioh;
212 static int plcomconsattached;
213 static int plcomconsrate;
214 static tcflag_t plcomconscflag;
215 static struct cnm_state plcom_cnm_state;
216
217 static int ppscap =
218 PPS_TSFMT_TSPEC |
219 PPS_CAPTUREASSERT |
220 PPS_CAPTURECLEAR |
221 #ifdef PPS_SYNC
222 PPS_HARDPPSONASSERT | PPS_HARDPPSONCLEAR |
223 #endif /* PPS_SYNC */
224 PPS_OFFSETASSERT | PPS_OFFSETCLEAR;
225
226 #ifdef KGDB
227 #include <sys/kgdb.h>
228
229 static int plcom_kgdb_unit;
230 static bus_space_tag_t plcom_kgdb_iot;
231 static bus_space_handle_t plcom_kgdb_ioh;
232 static int plcom_kgdb_attached;
233
234 int plcom_kgdb_getc (void *);
235 void plcom_kgdb_putc (void *, int);
236 #endif /* KGDB */
237
238 #define PLCOMUNIT_MASK 0x7ffff
239 #define PLCOMDIALOUT_MASK 0x80000
240
241 #define PLCOMUNIT(x) (minor(x) & PLCOMUNIT_MASK)
242 #define PLCOMDIALOUT(x) (minor(x) & PLCOMDIALOUT_MASK)
243
244 #define PLCOM_ISALIVE(sc) ((sc)->enabled != 0 && \
245 device_is_active(&(sc)->sc_dev))
246
247 #define BR BUS_SPACE_BARRIER_READ
248 #define BW BUS_SPACE_BARRIER_WRITE
249 #define PLCOM_BARRIER(t, h, f) bus_space_barrier((t), (h), 0, PLCOM_UART_SIZE, (f))
250
251 #define PLCOM_LOCK(sc) simple_lock(&(sc)->sc_lock)
252 #define PLCOM_UNLOCK(sc) simple_unlock(&(sc)->sc_lock)
253
254 int
255 plcomspeed(long speed, long frequency)
256 {
257 #define divrnd(n, q) (((n)*2/(q)+1)/2) /* divide and round off */
258
259 int x, err;
260
261 #if 0
262 if (speed == 0)
263 return 0;
264 #endif
265 if (speed <= 0)
266 return -1;
267 x = divrnd(frequency / 16, speed);
268 if (x <= 0)
269 return -1;
270 err = divrnd(((quad_t)frequency) * 1000 / 16, speed * x) - 1000;
271 if (err < 0)
272 err = -err;
273 if (err > PLCOM_TOLERANCE)
274 return -1;
275 return x;
276
277 #undef divrnd
278 }
279
280 #ifdef PLCOM_DEBUG
281 int plcom_debug = 0;
282
283 void plcomstatus (struct plcom_softc *, char *);
284 void
285 plcomstatus(struct plcom_softc *sc, char *str)
286 {
287 struct tty *tp = sc->sc_tty;
288
289 printf("%s: %s %sclocal %sdcd %sts_carr_on %sdtr %stx_stopped\n",
290 sc->sc_dev.dv_xname, str,
291 ISSET(tp->t_cflag, CLOCAL) ? "+" : "-",
292 ISSET(sc->sc_msr, MSR_DCD) ? "+" : "-",
293 ISSET(tp->t_state, TS_CARR_ON) ? "+" : "-",
294 ISSET(sc->sc_mcr, MCR_DTR) ? "+" : "-",
295 sc->sc_tx_stopped ? "+" : "-");
296
297 printf("%s: %s %scrtscts %scts %sts_ttstop %srts %xrx_flags\n",
298 sc->sc_dev.dv_xname, str,
299 ISSET(tp->t_cflag, CRTSCTS) ? "+" : "-",
300 ISSET(sc->sc_msr, MSR_CTS) ? "+" : "-",
301 ISSET(tp->t_state, TS_TTSTOP) ? "+" : "-",
302 ISSET(sc->sc_mcr, MCR_RTS) ? "+" : "-",
303 sc->sc_rx_flags);
304 }
305 #endif
306
307 int
308 plcomprobe1(bus_space_tag_t iot, bus_space_handle_t ioh)
309 {
310 int data;
311
312 /* Disable the UART. */
313 bus_space_write_1(iot, ioh, plcom_cr, 0);
314 /* Make sure the FIFO is off. */
315 bus_space_write_1(iot, ioh, plcom_lcr, LCR_8BITS);
316 /* Disable interrupts. */
317 bus_space_write_1(iot, ioh, plcom_iir, 0);
318
319 /* Make sure we swallow anything in the receiving register. */
320 data = bus_space_read_1(iot, ioh, plcom_dr);
321
322 if (bus_space_read_1(iot, ioh, plcom_lcr) != LCR_8BITS)
323 return 0;
324
325 data = bus_space_read_1(iot, ioh, plcom_fr) & (FR_RXFF | FR_RXFE);
326
327 if (data != FR_RXFE)
328 return 0;
329
330 return 1;
331 }
332
333 static void
334 plcom_enable_debugport(struct plcom_softc *sc)
335 {
336 int s;
337
338 /* Turn on line break interrupt, set carrier. */
339 s = splserial();
340 PLCOM_LOCK(sc);
341 sc->sc_cr = CR_RIE | CR_RTIE | CR_UARTEN;
342 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
343 SET(sc->sc_mcr, MCR_DTR | MCR_RTS);
344 /* XXX device_unit() abuse */
345 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev),
346 sc->sc_mcr);
347 PLCOM_UNLOCK(sc);
348 splx(s);
349 }
350
351 void
352 plcom_attach_subr(struct plcom_softc *sc)
353 {
354 int unit = sc->sc_iounit;
355 bus_space_tag_t iot = sc->sc_iot;
356 bus_space_handle_t ioh = sc->sc_ioh;
357 struct tty *tp;
358
359 callout_init(&sc->sc_diag_callout, 0);
360 simple_lock_init(&sc->sc_lock);
361
362 /* Disable interrupts before configuring the device. */
363 sc->sc_cr = 0;
364
365 if (plcomconstag && unit == plcomconsunit) {
366 plcomconsattached = 1;
367
368 plcomconstag = iot;
369 plcomconsioh = ioh;
370
371 /* Make sure the console is always "hardwired". */
372 delay(1000); /* wait for output to finish */
373 SET(sc->sc_hwflags, PLCOM_HW_CONSOLE);
374 SET(sc->sc_swflags, TIOCFLAG_SOFTCAR);
375 /* Must re-enable the console immediately, or we will
376 hang when trying to print. */
377 sc->sc_cr = CR_UARTEN;
378 }
379
380 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
381
382 /* The PL010 has a 16-byte fifo, but the tx interrupt triggers when
383 there is space for 8 more bytes. */
384 sc->sc_fifolen = 8;
385 printf("\n");
386
387 if (ISSET(sc->sc_hwflags, PLCOM_HW_TXFIFO_DISABLE)) {
388 sc->sc_fifolen = 1;
389 printf("%s: txfifo disabled\n", sc->sc_dev.dv_xname);
390 }
391
392 if (sc->sc_fifolen > 1)
393 SET(sc->sc_hwflags, PLCOM_HW_FIFO);
394
395 tp = ttymalloc();
396 tp->t_oproc = plcomstart;
397 tp->t_param = plcomparam;
398 tp->t_hwiflow = plcomhwiflow;
399
400 sc->sc_tty = tp;
401 sc->sc_rbuf = malloc(plcom_rbuf_size << 1, M_DEVBUF, M_NOWAIT);
402 sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
403 sc->sc_rbavail = plcom_rbuf_size;
404 if (sc->sc_rbuf == NULL) {
405 printf("%s: unable to allocate ring buffer\n",
406 sc->sc_dev.dv_xname);
407 return;
408 }
409 sc->sc_ebuf = sc->sc_rbuf + (plcom_rbuf_size << 1);
410
411 tty_attach(tp);
412
413 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
414 int maj;
415
416 /* locate the major number */
417 maj = cdevsw_lookup_major(&plcom_cdevsw);
418
419 cn_tab->cn_dev = makedev(maj, device_unit(&sc->sc_dev));
420
421 printf("%s: console\n", sc->sc_dev.dv_xname);
422 }
423
424 #ifdef KGDB
425 /*
426 * Allow kgdb to "take over" this port. If this is
427 * the kgdb device, it has exclusive use.
428 */
429 if (iot == plcom_kgdb_iot && unit == plcom_kgdb_unit) {
430 plcom_kgdb_attached = 1;
431
432 SET(sc->sc_hwflags, PLCOM_HW_KGDB);
433 printf("%s: kgdb\n", sc->sc_dev.dv_xname);
434 }
435 #endif
436
437 sc->sc_si = softint_establish(SOFTINT_SERIAL, plcomsoft, sc);
438
439 #if NRND > 0 && defined(RND_COM)
440 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
441 RND_TYPE_TTY, 0);
442 #endif
443
444 /* if there are no enable/disable functions, assume the device
445 is always enabled */
446 if (!sc->enable)
447 sc->enabled = 1;
448
449 plcom_config(sc);
450
451 SET(sc->sc_hwflags, PLCOM_HW_DEV_OK);
452 }
453
454 void
455 plcom_config(struct plcom_softc *sc)
456 {
457 bus_space_tag_t iot = sc->sc_iot;
458 bus_space_handle_t ioh = sc->sc_ioh;
459
460 /* Disable interrupts before configuring the device. */
461 sc->sc_cr = 0;
462 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
463
464 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE|PLCOM_HW_KGDB))
465 plcom_enable_debugport(sc);
466 }
467
468 int
469 plcom_detach(struct device *self, int flags)
470 {
471 struct plcom_softc *sc = (struct plcom_softc *)self;
472 int maj, mn;
473
474 /* locate the major number */
475 maj = cdevsw_lookup_major(&plcom_cdevsw);
476
477 /* Nuke the vnodes for any open instances. */
478 mn = device_unit(self);
479 vdevgone(maj, mn, mn, VCHR);
480
481 mn |= PLCOMDIALOUT_MASK;
482 vdevgone(maj, mn, mn, VCHR);
483
484 /* Free the receive buffer. */
485 free(sc->sc_rbuf, M_DEVBUF);
486
487 /* Detach and free the tty. */
488 tty_detach(sc->sc_tty);
489 ttyfree(sc->sc_tty);
490
491 /* Unhook the soft interrupt handler. */
492 softint_disestablish(sc->sc_si);
493
494 #if NRND > 0 && defined(RND_COM)
495 /* Unhook the entropy source. */
496 rnd_detach_source(&sc->rnd_source);
497 #endif
498
499 return 0;
500 }
501
502 int
503 plcom_activate(struct device *self, enum devact act)
504 {
505 struct plcom_softc *sc = (struct plcom_softc *)self;
506 int s, rv = 0;
507
508 s = splserial();
509 PLCOM_LOCK(sc);
510 switch (act) {
511 case DVACT_ACTIVATE:
512 rv = EOPNOTSUPP;
513 break;
514
515 case DVACT_DEACTIVATE:
516 if (sc->sc_hwflags & (PLCOM_HW_CONSOLE|PLCOM_HW_KGDB)) {
517 rv = EBUSY;
518 break;
519 }
520
521 if (sc->disable != NULL && sc->enabled != 0) {
522 (*sc->disable)(sc);
523 sc->enabled = 0;
524 }
525 break;
526 }
527
528 PLCOM_UNLOCK(sc);
529 splx(s);
530 return rv;
531 }
532
533 void
534 plcom_shutdown(struct plcom_softc *sc)
535 {
536 struct tty *tp = sc->sc_tty;
537 int s;
538
539 s = splserial();
540 PLCOM_LOCK(sc);
541
542 /* If we were asserting flow control, then deassert it. */
543 SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
544 plcom_hwiflow(sc);
545
546 /* Clear any break condition set with TIOCSBRK. */
547 plcom_break(sc, 0);
548
549 /* Turn off PPS capture on last close. */
550 mutex_spin_enter(&timecounter_lock);
551 sc->sc_ppsmask = 0;
552 sc->ppsparam.mode = 0;
553 mutex_spin_exit(&timecounter_lock);
554
555 /*
556 * Hang up if necessary. Wait a bit, so the other side has time to
557 * notice even if we immediately open the port again.
558 * Avoid tsleeping above splhigh().
559 */
560 if (ISSET(tp->t_cflag, HUPCL)) {
561 plcom_modem(sc, 0);
562 PLCOM_UNLOCK(sc);
563 splx(s);
564 /* XXX tsleep will only timeout */
565 (void) tsleep(sc, TTIPRI, ttclos, hz);
566 s = splserial();
567 PLCOM_LOCK(sc);
568 }
569
570 /* Turn off interrupts. */
571 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE))
572 /* interrupt on break */
573 sc->sc_cr = CR_RIE | CR_RTIE | CR_UARTEN;
574 else
575 sc->sc_cr = 0;
576 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
577
578 if (sc->disable) {
579 #ifdef DIAGNOSTIC
580 if (!sc->enabled)
581 panic("plcom_shutdown: not enabled?");
582 #endif
583 (*sc->disable)(sc);
584 sc->enabled = 0;
585 }
586 PLCOM_UNLOCK(sc);
587 splx(s);
588 }
589
590 int
591 plcomopen(dev_t dev, int flag, int mode, struct lwp *l)
592 {
593 struct plcom_softc *sc;
594 struct tty *tp;
595 int s, s2;
596 int error;
597
598 sc = device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
599 if (sc == NULL || !ISSET(sc->sc_hwflags, PLCOM_HW_DEV_OK) ||
600 sc->sc_rbuf == NULL)
601 return ENXIO;
602
603 if (!device_is_active(&sc->sc_dev))
604 return ENXIO;
605
606 #ifdef KGDB
607 /*
608 * If this is the kgdb port, no other use is permitted.
609 */
610 if (ISSET(sc->sc_hwflags, PLCOM_HW_KGDB))
611 return EBUSY;
612 #endif
613
614 tp = sc->sc_tty;
615
616 if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
617 return (EBUSY);
618
619 s = spltty();
620
621 /*
622 * Do the following iff this is a first open.
623 */
624 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
625 struct termios t;
626
627 tp->t_dev = dev;
628
629 s2 = splserial();
630 PLCOM_LOCK(sc);
631
632 if (sc->enable) {
633 if ((*sc->enable)(sc)) {
634 PLCOM_UNLOCK(sc);
635 splx(s2);
636 splx(s);
637 printf("%s: device enable failed\n",
638 sc->sc_dev.dv_xname);
639 return EIO;
640 }
641 sc->enabled = 1;
642 plcom_config(sc);
643 }
644
645 /* Turn on interrupts. */
646 /* IER_ERXRDY | IER_ERLS | IER_EMSC; */
647 sc->sc_cr = CR_RIE | CR_RTIE | CR_MSIE | CR_UARTEN;
648 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
649
650 /* Fetch the current modem control status, needed later. */
651 sc->sc_msr = bus_space_read_1(sc->sc_iot, sc->sc_ioh, plcom_fr);
652
653 /* Clear PPS capture state on first open. */
654
655 mutex_spin_enter(&timecounter_lock);
656 sc->sc_ppsmask = 0;
657 sc->ppsparam.mode = 0;
658 mutex_spin_exit(&timecounter_lock);
659
660 PLCOM_UNLOCK(sc);
661 splx(s2);
662
663 /*
664 * Initialize the termios status to the defaults. Add in the
665 * sticky bits from TIOCSFLAGS.
666 */
667 t.c_ispeed = 0;
668 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
669 t.c_ospeed = plcomconsrate;
670 t.c_cflag = plcomconscflag;
671 } else {
672 t.c_ospeed = TTYDEF_SPEED;
673 t.c_cflag = TTYDEF_CFLAG;
674 }
675 if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL))
676 SET(t.c_cflag, CLOCAL);
677 if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS))
678 SET(t.c_cflag, CRTSCTS);
679 if (ISSET(sc->sc_swflags, TIOCFLAG_MDMBUF))
680 SET(t.c_cflag, MDMBUF);
681 /* Make sure plcomparam() will do something. */
682 tp->t_ospeed = 0;
683 (void) plcomparam(tp, &t);
684 tp->t_iflag = TTYDEF_IFLAG;
685 tp->t_oflag = TTYDEF_OFLAG;
686 tp->t_lflag = TTYDEF_LFLAG;
687 ttychars(tp);
688 ttsetwater(tp);
689
690 s2 = splserial();
691 PLCOM_LOCK(sc);
692
693 /*
694 * Turn on DTR. We must always do this, even if carrier is not
695 * present, because otherwise we'd have to use TIOCSDTR
696 * immediately after setting CLOCAL, which applications do not
697 * expect. We always assert DTR while the device is open
698 * unless explicitly requested to deassert it.
699 */
700 plcom_modem(sc, 1);
701
702 /* Clear the input ring, and unblock. */
703 sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
704 sc->sc_rbavail = plcom_rbuf_size;
705 plcom_iflush(sc);
706 CLR(sc->sc_rx_flags, RX_ANY_BLOCK);
707 plcom_hwiflow(sc);
708
709 #ifdef PLCOM_DEBUG
710 if (plcom_debug)
711 plcomstatus(sc, "plcomopen ");
712 #endif
713
714 PLCOM_UNLOCK(sc);
715 splx(s2);
716 }
717
718 splx(s);
719
720 error = ttyopen(tp, PLCOMDIALOUT(dev), ISSET(flag, O_NONBLOCK));
721 if (error)
722 goto bad;
723
724 error = (*tp->t_linesw->l_open)(dev, tp);
725 if (error)
726 goto bad;
727
728 return 0;
729
730 bad:
731 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
732 /*
733 * We failed to open the device, and nobody else had it opened.
734 * Clean up the state as appropriate.
735 */
736 plcom_shutdown(sc);
737 }
738
739 return error;
740 }
741
742 int
743 plcomclose(dev_t dev, int flag, int mode, struct lwp *l)
744 {
745 struct plcom_softc *sc =
746 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
747 struct tty *tp = sc->sc_tty;
748
749 /* XXX This is for cons.c. */
750 if (!ISSET(tp->t_state, TS_ISOPEN))
751 return 0;
752
753 (*tp->t_linesw->l_close)(tp, flag);
754 ttyclose(tp);
755
756 if (PLCOM_ISALIVE(sc) == 0)
757 return 0;
758
759 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
760 /*
761 * Although we got a last close, the device may still be in
762 * use; e.g. if this was the dialout node, and there are still
763 * processes waiting for carrier on the non-dialout node.
764 */
765 plcom_shutdown(sc);
766 }
767
768 return 0;
769 }
770
771 int
772 plcomread(dev_t dev, struct uio *uio, int flag)
773 {
774 struct plcom_softc *sc =
775 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
776 struct tty *tp = sc->sc_tty;
777
778 if (PLCOM_ISALIVE(sc) == 0)
779 return EIO;
780
781 return (*tp->t_linesw->l_read)(tp, uio, flag);
782 }
783
784 int
785 plcomwrite(dev_t dev, struct uio *uio, int flag)
786 {
787 struct plcom_softc *sc =
788 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
789 struct tty *tp = sc->sc_tty;
790
791 if (PLCOM_ISALIVE(sc) == 0)
792 return EIO;
793
794 return (*tp->t_linesw->l_write)(tp, uio, flag);
795 }
796
797 int
798 plcompoll(dev_t dev, int events, struct lwp *l)
799 {
800 struct plcom_softc *sc =
801 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
802 struct tty *tp = sc->sc_tty;
803
804 if (PLCOM_ISALIVE(sc) == 0)
805 return EIO;
806
807 return (*tp->t_linesw->l_poll)(tp, events, l);
808 }
809
810 struct tty *
811 plcomtty(dev_t dev)
812 {
813 struct plcom_softc *sc =
814 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
815 struct tty *tp = sc->sc_tty;
816
817 return tp;
818 }
819
820 int
821 plcomioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
822 {
823 struct plcom_softc *sc =
824 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
825 struct tty *tp = sc->sc_tty;
826 int error;
827 int s;
828
829 if (PLCOM_ISALIVE(sc) == 0)
830 return EIO;
831
832 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
833 if (error != EPASSTHROUGH)
834 return error;
835
836 error = ttioctl(tp, cmd, data, flag, l);
837 if (error != EPASSTHROUGH)
838 return error;
839
840 error = 0;
841
842 s = splserial();
843 PLCOM_LOCK(sc);
844
845 switch (cmd) {
846 case TIOCSBRK:
847 plcom_break(sc, 1);
848 break;
849
850 case TIOCCBRK:
851 plcom_break(sc, 0);
852 break;
853
854 case TIOCSDTR:
855 plcom_modem(sc, 1);
856 break;
857
858 case TIOCCDTR:
859 plcom_modem(sc, 0);
860 break;
861
862 case TIOCGFLAGS:
863 *(int *)data = sc->sc_swflags;
864 break;
865
866 case TIOCSFLAGS:
867 error = kauth_authorize_device_tty(l->l_cred,
868 KAUTH_DEVICE_TTY_PRIVSET, tp);
869 if (error)
870 break;
871 sc->sc_swflags = *(int *)data;
872 break;
873
874 case TIOCMSET:
875 case TIOCMBIS:
876 case TIOCMBIC:
877 tiocm_to_plcom(sc, cmd, *(int *)data);
878 break;
879
880 case TIOCMGET:
881 *(int *)data = plcom_to_tiocm(sc);
882 break;
883
884 case PPS_IOC_CREATE:
885 break;
886
887 case PPS_IOC_DESTROY:
888 break;
889
890 case PPS_IOC_GETPARAMS: {
891 pps_params_t *pp;
892 pp = (pps_params_t *)data;
893 mutex_spin_enter(&timecounter_lock);
894 *pp = sc->ppsparam;
895 mutex_spin_exit(&timecounter_lock);
896 break;
897 }
898
899 case PPS_IOC_SETPARAMS: {
900 pps_params_t *pp;
901 int mode;
902 pp = (pps_params_t *)data;
903 mutex_spin_enter(&timecounter_lock);
904 if (pp->mode & ~ppscap) {
905 error = EINVAL;
906 mutex_spin_exit(&timecounter_lock);
907 break;
908 }
909 sc->ppsparam = *pp;
910 /*
911 * Compute msr masks from user-specified timestamp state.
912 */
913 mode = sc->ppsparam.mode;
914 #ifdef PPS_SYNC
915 if (mode & PPS_HARDPPSONASSERT) {
916 mode |= PPS_CAPTUREASSERT;
917 /* XXX revoke any previous HARDPPS source */
918 }
919 if (mode & PPS_HARDPPSONCLEAR) {
920 mode |= PPS_CAPTURECLEAR;
921 /* XXX revoke any previous HARDPPS source */
922 }
923 #endif /* PPS_SYNC */
924 switch (mode & PPS_CAPTUREBOTH) {
925 case 0:
926 sc->sc_ppsmask = 0;
927 break;
928
929 case PPS_CAPTUREASSERT:
930 sc->sc_ppsmask = MSR_DCD;
931 sc->sc_ppsassert = MSR_DCD;
932 sc->sc_ppsclear = -1;
933 break;
934
935 case PPS_CAPTURECLEAR:
936 sc->sc_ppsmask = MSR_DCD;
937 sc->sc_ppsassert = -1;
938 sc->sc_ppsclear = 0;
939 break;
940
941 case PPS_CAPTUREBOTH:
942 sc->sc_ppsmask = MSR_DCD;
943 sc->sc_ppsassert = MSR_DCD;
944 sc->sc_ppsclear = 0;
945 break;
946
947 default:
948 error = EINVAL;
949 break;
950 }
951 mutex_spin_exit(&timecounter_lock);
952 break;
953 }
954
955 case PPS_IOC_GETCAP:
956 *(int*)data = ppscap;
957 break;
958
959 case PPS_IOC_FETCH: {
960 pps_info_t *pi;
961 pi = (pps_info_t *)data;
962 mutex_spin_enter(&timecounter_lock);
963 *pi = sc->ppsinfo;
964 mutex_spin_exit(&timecounter_lock);
965 break;
966 }
967
968 case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */
969 /*
970 * Some GPS clocks models use the falling rather than
971 * rising edge as the on-the-second signal.
972 * The old API has no way to specify PPS polarity.
973 */
974 mutex_spin_enter(&timecounter_lock);
975 sc->sc_ppsmask = MSR_DCD;
976 #ifndef PPS_TRAILING_EDGE
977 sc->sc_ppsassert = MSR_DCD;
978 sc->sc_ppsclear = -1;
979 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
980 &sc->ppsinfo.assert_timestamp);
981 #else
982 sc->sc_ppsassert = -1
983 sc->sc_ppsclear = 0;
984 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
985 &sc->ppsinfo.clear_timestamp);
986 #endif
987 mutex_spin_exit(&timecounter_lock);
988 break;
989
990 default:
991 error = EPASSTHROUGH;
992 break;
993 }
994
995 PLCOM_UNLOCK(sc);
996 splx(s);
997
998 #ifdef PLCOM_DEBUG
999 if (plcom_debug)
1000 plcomstatus(sc, "plcomioctl ");
1001 #endif
1002
1003 return error;
1004 }
1005
1006 integrate void
1007 plcom_schedrx(struct plcom_softc *sc)
1008 {
1009
1010 sc->sc_rx_ready = 1;
1011
1012 /* Wake up the poller. */
1013 softint_schedule(sc->sc_si);
1014 }
1015
1016 void
1017 plcom_break(struct plcom_softc *sc, int onoff)
1018 {
1019
1020 if (onoff)
1021 SET(sc->sc_lcr, LCR_BRK);
1022 else
1023 CLR(sc->sc_lcr, LCR_BRK);
1024
1025 if (!sc->sc_heldchange) {
1026 if (sc->sc_tx_busy) {
1027 sc->sc_heldtbc = sc->sc_tbc;
1028 sc->sc_tbc = 0;
1029 sc->sc_heldchange = 1;
1030 } else
1031 plcom_loadchannelregs(sc);
1032 }
1033 }
1034
1035 void
1036 plcom_modem(struct plcom_softc *sc, int onoff)
1037 {
1038
1039 if (sc->sc_mcr_dtr == 0)
1040 return;
1041
1042 if (onoff)
1043 SET(sc->sc_mcr, sc->sc_mcr_dtr);
1044 else
1045 CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1046
1047 if (!sc->sc_heldchange) {
1048 if (sc->sc_tx_busy) {
1049 sc->sc_heldtbc = sc->sc_tbc;
1050 sc->sc_tbc = 0;
1051 sc->sc_heldchange = 1;
1052 } else
1053 plcom_loadchannelregs(sc);
1054 }
1055 }
1056
1057 void
1058 tiocm_to_plcom(struct plcom_softc *sc, u_long how, int ttybits)
1059 {
1060 u_char plcombits;
1061
1062 plcombits = 0;
1063 if (ISSET(ttybits, TIOCM_DTR))
1064 SET(plcombits, MCR_DTR);
1065 if (ISSET(ttybits, TIOCM_RTS))
1066 SET(plcombits, MCR_RTS);
1067
1068 switch (how) {
1069 case TIOCMBIC:
1070 CLR(sc->sc_mcr, plcombits);
1071 break;
1072
1073 case TIOCMBIS:
1074 SET(sc->sc_mcr, plcombits);
1075 break;
1076
1077 case TIOCMSET:
1078 CLR(sc->sc_mcr, MCR_DTR | MCR_RTS);
1079 SET(sc->sc_mcr, plcombits);
1080 break;
1081 }
1082
1083 if (!sc->sc_heldchange) {
1084 if (sc->sc_tx_busy) {
1085 sc->sc_heldtbc = sc->sc_tbc;
1086 sc->sc_tbc = 0;
1087 sc->sc_heldchange = 1;
1088 } else
1089 plcom_loadchannelregs(sc);
1090 }
1091 }
1092
1093 int
1094 plcom_to_tiocm(struct plcom_softc *sc)
1095 {
1096 u_char plcombits;
1097 int ttybits = 0;
1098
1099 plcombits = sc->sc_mcr;
1100 if (ISSET(plcombits, MCR_DTR))
1101 SET(ttybits, TIOCM_DTR);
1102 if (ISSET(plcombits, MCR_RTS))
1103 SET(ttybits, TIOCM_RTS);
1104
1105 plcombits = sc->sc_msr;
1106 if (ISSET(plcombits, MSR_DCD))
1107 SET(ttybits, TIOCM_CD);
1108 if (ISSET(plcombits, MSR_CTS))
1109 SET(ttybits, TIOCM_CTS);
1110 if (ISSET(plcombits, MSR_DSR))
1111 SET(ttybits, TIOCM_DSR);
1112
1113 if (sc->sc_cr != 0)
1114 SET(ttybits, TIOCM_LE);
1115
1116 return ttybits;
1117 }
1118
1119 static u_char
1120 cflag2lcr(tcflag_t cflag)
1121 {
1122 u_char lcr = 0;
1123
1124 switch (ISSET(cflag, CSIZE)) {
1125 case CS5:
1126 SET(lcr, LCR_5BITS);
1127 break;
1128 case CS6:
1129 SET(lcr, LCR_6BITS);
1130 break;
1131 case CS7:
1132 SET(lcr, LCR_7BITS);
1133 break;
1134 case CS8:
1135 SET(lcr, LCR_8BITS);
1136 break;
1137 }
1138 if (ISSET(cflag, PARENB)) {
1139 SET(lcr, LCR_PEN);
1140 if (!ISSET(cflag, PARODD))
1141 SET(lcr, LCR_EPS);
1142 }
1143 if (ISSET(cflag, CSTOPB))
1144 SET(lcr, LCR_STP2);
1145
1146 return lcr;
1147 }
1148
1149 int
1150 plcomparam(struct tty *tp, struct termios *t)
1151 {
1152 struct plcom_softc *sc =
1153 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1154 int ospeed;
1155 u_char lcr;
1156 int s;
1157
1158 if (PLCOM_ISALIVE(sc) == 0)
1159 return EIO;
1160
1161 ospeed = plcomspeed(t->c_ospeed, sc->sc_frequency);
1162
1163 /* Check requested parameters. */
1164 if (ospeed < 0)
1165 return EINVAL;
1166 if (t->c_ispeed && t->c_ispeed != t->c_ospeed)
1167 return EINVAL;
1168
1169 /*
1170 * For the console, always force CLOCAL and !HUPCL, so that the port
1171 * is always active.
1172 */
1173 if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR) ||
1174 ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
1175 SET(t->c_cflag, CLOCAL);
1176 CLR(t->c_cflag, HUPCL);
1177 }
1178
1179 /*
1180 * If there were no changes, don't do anything. This avoids dropping
1181 * input and improves performance when all we did was frob things like
1182 * VMIN and VTIME.
1183 */
1184 if (tp->t_ospeed == t->c_ospeed &&
1185 tp->t_cflag == t->c_cflag)
1186 return 0;
1187
1188 lcr = ISSET(sc->sc_lcr, LCR_BRK) | cflag2lcr(t->c_cflag);
1189
1190 s = splserial();
1191 PLCOM_LOCK(sc);
1192
1193 sc->sc_lcr = lcr;
1194
1195 /*
1196 * PL010 has a fixed-length FIFO trigger point.
1197 */
1198 if (ISSET(sc->sc_hwflags, PLCOM_HW_FIFO))
1199 sc->sc_fifo = 1;
1200 else
1201 sc->sc_fifo = 0;
1202
1203 if (sc->sc_fifo)
1204 SET(sc->sc_lcr, LCR_FEN);
1205
1206 /*
1207 * If we're not in a mode that assumes a connection is present, then
1208 * ignore carrier changes.
1209 */
1210 if (ISSET(t->c_cflag, CLOCAL | MDMBUF))
1211 sc->sc_msr_dcd = 0;
1212 else
1213 sc->sc_msr_dcd = MSR_DCD;
1214 /*
1215 * Set the flow control pins depending on the current flow control
1216 * mode.
1217 */
1218 if (ISSET(t->c_cflag, CRTSCTS)) {
1219 sc->sc_mcr_dtr = MCR_DTR;
1220 sc->sc_mcr_rts = MCR_RTS;
1221 sc->sc_msr_cts = MSR_CTS;
1222 } else if (ISSET(t->c_cflag, MDMBUF)) {
1223 /*
1224 * For DTR/DCD flow control, make sure we don't toggle DTR for
1225 * carrier detection.
1226 */
1227 sc->sc_mcr_dtr = 0;
1228 sc->sc_mcr_rts = MCR_DTR;
1229 sc->sc_msr_cts = MSR_DCD;
1230 } else {
1231 /*
1232 * If no flow control, then always set RTS. This will make
1233 * the other side happy if it mistakenly thinks we're doing
1234 * RTS/CTS flow control.
1235 */
1236 sc->sc_mcr_dtr = MCR_DTR | MCR_RTS;
1237 sc->sc_mcr_rts = 0;
1238 sc->sc_msr_cts = 0;
1239 if (ISSET(sc->sc_mcr, MCR_DTR))
1240 SET(sc->sc_mcr, MCR_RTS);
1241 else
1242 CLR(sc->sc_mcr, MCR_RTS);
1243 }
1244 sc->sc_msr_mask = sc->sc_msr_cts | sc->sc_msr_dcd;
1245
1246 #if 0
1247 if (ospeed == 0)
1248 CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1249 else
1250 SET(sc->sc_mcr, sc->sc_mcr_dtr);
1251 #endif
1252
1253 sc->sc_dlbl = ospeed;
1254 sc->sc_dlbh = ospeed >> 8;
1255
1256 /* And copy to tty. */
1257 tp->t_ispeed = 0;
1258 tp->t_ospeed = t->c_ospeed;
1259 tp->t_cflag = t->c_cflag;
1260
1261 if (!sc->sc_heldchange) {
1262 if (sc->sc_tx_busy) {
1263 sc->sc_heldtbc = sc->sc_tbc;
1264 sc->sc_tbc = 0;
1265 sc->sc_heldchange = 1;
1266 } else
1267 plcom_loadchannelregs(sc);
1268 }
1269
1270 if (!ISSET(t->c_cflag, CHWFLOW)) {
1271 /* Disable the high water mark. */
1272 sc->sc_r_hiwat = 0;
1273 sc->sc_r_lowat = 0;
1274 if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1275 CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1276 plcom_schedrx(sc);
1277 }
1278 if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
1279 CLR(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
1280 plcom_hwiflow(sc);
1281 }
1282 } else {
1283 sc->sc_r_hiwat = plcom_rbuf_hiwat;
1284 sc->sc_r_lowat = plcom_rbuf_lowat;
1285 }
1286
1287 PLCOM_UNLOCK(sc);
1288 splx(s);
1289
1290 /*
1291 * Update the tty layer's idea of the carrier bit, in case we changed
1292 * CLOCAL or MDMBUF. We don't hang up here; we only do that by
1293 * explicit request.
1294 */
1295 (void) (*tp->t_linesw->l_modem)(tp, ISSET(sc->sc_msr, MSR_DCD));
1296
1297 #ifdef PLCOM_DEBUG
1298 if (plcom_debug)
1299 plcomstatus(sc, "plcomparam ");
1300 #endif
1301
1302 if (!ISSET(t->c_cflag, CHWFLOW)) {
1303 if (sc->sc_tx_stopped) {
1304 sc->sc_tx_stopped = 0;
1305 plcomstart(tp);
1306 }
1307 }
1308
1309 return 0;
1310 }
1311
1312 void
1313 plcom_iflush(struct plcom_softc *sc)
1314 {
1315 bus_space_tag_t iot = sc->sc_iot;
1316 bus_space_handle_t ioh = sc->sc_ioh;
1317 #ifdef DIAGNOSTIC
1318 int reg;
1319 #endif
1320 int timo;
1321
1322 #ifdef DIAGNOSTIC
1323 reg = 0xffff;
1324 #endif
1325 timo = 50000;
1326 /* flush any pending I/O */
1327 while (! ISSET(bus_space_read_1(iot, ioh, plcom_fr), FR_RXFE)
1328 && --timo)
1329 #ifdef DIAGNOSTIC
1330 reg =
1331 #else
1332 (void)
1333 #endif
1334 bus_space_read_1(iot, ioh, plcom_dr);
1335 #ifdef DIAGNOSTIC
1336 if (!timo)
1337 printf("%s: plcom_iflush timeout %02x\n", sc->sc_dev.dv_xname,
1338 reg);
1339 #endif
1340 }
1341
1342 void
1343 plcom_loadchannelregs(struct plcom_softc *sc)
1344 {
1345 bus_space_tag_t iot = sc->sc_iot;
1346 bus_space_handle_t ioh = sc->sc_ioh;
1347
1348 /* XXXXX necessary? */
1349 plcom_iflush(sc);
1350
1351 bus_space_write_1(iot, ioh, plcom_cr, 0);
1352
1353 bus_space_write_1(iot, ioh, plcom_dlbl, sc->sc_dlbl);
1354 bus_space_write_1(iot, ioh, plcom_dlbh, sc->sc_dlbh);
1355 bus_space_write_1(iot, ioh, plcom_lcr, sc->sc_lcr);
1356 /* XXX device_unit() abuse */
1357 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev),
1358 sc->sc_mcr_active = sc->sc_mcr);
1359
1360 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
1361 }
1362
1363 int
1364 plcomhwiflow(struct tty *tp, int block)
1365 {
1366 struct plcom_softc *sc =
1367 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1368 int s;
1369
1370 if (PLCOM_ISALIVE(sc) == 0)
1371 return 0;
1372
1373 if (sc->sc_mcr_rts == 0)
1374 return 0;
1375
1376 s = splserial();
1377 PLCOM_LOCK(sc);
1378
1379 if (block) {
1380 if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1381 SET(sc->sc_rx_flags, RX_TTY_BLOCKED);
1382 plcom_hwiflow(sc);
1383 }
1384 } else {
1385 if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1386 CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1387 plcom_schedrx(sc);
1388 }
1389 if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1390 CLR(sc->sc_rx_flags, RX_TTY_BLOCKED);
1391 plcom_hwiflow(sc);
1392 }
1393 }
1394
1395 PLCOM_UNLOCK(sc);
1396 splx(s);
1397 return 1;
1398 }
1399
1400 /*
1401 * (un)block input via hw flowcontrol
1402 */
1403 void
1404 plcom_hwiflow(struct plcom_softc *sc)
1405 {
1406 if (sc->sc_mcr_rts == 0)
1407 return;
1408
1409 if (ISSET(sc->sc_rx_flags, RX_ANY_BLOCK)) {
1410 CLR(sc->sc_mcr, sc->sc_mcr_rts);
1411 CLR(sc->sc_mcr_active, sc->sc_mcr_rts);
1412 } else {
1413 SET(sc->sc_mcr, sc->sc_mcr_rts);
1414 SET(sc->sc_mcr_active, sc->sc_mcr_rts);
1415 }
1416 /* XXX device_unit() abuse */
1417 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev),
1418 sc->sc_mcr_active);
1419 }
1420
1421
1422 void
1423 plcomstart(struct tty *tp)
1424 {
1425 struct plcom_softc *sc =
1426 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1427 bus_space_tag_t iot = sc->sc_iot;
1428 bus_space_handle_t ioh = sc->sc_ioh;
1429 int s;
1430
1431 if (PLCOM_ISALIVE(sc) == 0)
1432 return;
1433
1434 s = spltty();
1435 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
1436 goto out;
1437 if (sc->sc_tx_stopped)
1438 goto out;
1439
1440 if (!ttypull(tp))
1441 goto out;
1442
1443 /* Grab the first contiguous region of buffer space. */
1444 {
1445 u_char *tba;
1446 int tbc;
1447
1448 tba = tp->t_outq.c_cf;
1449 tbc = ndqb(&tp->t_outq, 0);
1450
1451 (void)splserial();
1452 PLCOM_LOCK(sc);
1453
1454 sc->sc_tba = tba;
1455 sc->sc_tbc = tbc;
1456 }
1457
1458 SET(tp->t_state, TS_BUSY);
1459 sc->sc_tx_busy = 1;
1460
1461 /* Enable transmit completion interrupts if necessary. */
1462 if (!ISSET(sc->sc_cr, CR_TIE)) {
1463 SET(sc->sc_cr, CR_TIE);
1464 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
1465 }
1466
1467 /* Output the first chunk of the contiguous buffer. */
1468 {
1469 int n;
1470
1471 n = sc->sc_tbc;
1472 if (n > sc->sc_fifolen)
1473 n = sc->sc_fifolen;
1474 bus_space_write_multi_1(iot, ioh, plcom_dr, sc->sc_tba, n);
1475 sc->sc_tbc -= n;
1476 sc->sc_tba += n;
1477 }
1478 PLCOM_UNLOCK(sc);
1479 out:
1480 splx(s);
1481 return;
1482 }
1483
1484 /*
1485 * Stop output on a line.
1486 */
1487 void
1488 plcomstop(struct tty *tp, int flag)
1489 {
1490 struct plcom_softc *sc =
1491 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1492 int s;
1493
1494 s = splserial();
1495 PLCOM_LOCK(sc);
1496 if (ISSET(tp->t_state, TS_BUSY)) {
1497 /* Stop transmitting at the next chunk. */
1498 sc->sc_tbc = 0;
1499 sc->sc_heldtbc = 0;
1500 if (!ISSET(tp->t_state, TS_TTSTOP))
1501 SET(tp->t_state, TS_FLUSH);
1502 }
1503 PLCOM_UNLOCK(sc);
1504 splx(s);
1505 }
1506
1507 void
1508 plcomdiag(void *arg)
1509 {
1510 struct plcom_softc *sc = arg;
1511 int overflows, floods;
1512 int s;
1513
1514 s = splserial();
1515 PLCOM_LOCK(sc);
1516 overflows = sc->sc_overflows;
1517 sc->sc_overflows = 0;
1518 floods = sc->sc_floods;
1519 sc->sc_floods = 0;
1520 sc->sc_errors = 0;
1521 PLCOM_UNLOCK(sc);
1522 splx(s);
1523
1524 log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
1525 sc->sc_dev.dv_xname,
1526 overflows, overflows == 1 ? "" : "s",
1527 floods, floods == 1 ? "" : "s");
1528 }
1529
1530 integrate void
1531 plcom_rxsoft(struct plcom_softc *sc, struct tty *tp)
1532 {
1533 int (*rint) (int, struct tty *) = tp->t_linesw->l_rint;
1534 u_char *get, *end;
1535 u_int cc, scc;
1536 u_char rsr;
1537 int code;
1538 int s;
1539
1540 end = sc->sc_ebuf;
1541 get = sc->sc_rbget;
1542 scc = cc = plcom_rbuf_size - sc->sc_rbavail;
1543
1544 if (cc == plcom_rbuf_size) {
1545 sc->sc_floods++;
1546 if (sc->sc_errors++ == 0)
1547 callout_reset(&sc->sc_diag_callout, 60 * hz,
1548 plcomdiag, sc);
1549 }
1550
1551 while (cc) {
1552 code = get[0];
1553 rsr = get[1];
1554 if (ISSET(rsr, RSR_OE | RSR_BE | RSR_FE | RSR_PE)) {
1555 if (ISSET(rsr, RSR_OE)) {
1556 sc->sc_overflows++;
1557 if (sc->sc_errors++ == 0)
1558 callout_reset(&sc->sc_diag_callout,
1559 60 * hz, plcomdiag, sc);
1560 }
1561 if (ISSET(rsr, RSR_BE | RSR_FE))
1562 SET(code, TTY_FE);
1563 if (ISSET(rsr, RSR_PE))
1564 SET(code, TTY_PE);
1565 }
1566 if ((*rint)(code, tp) == -1) {
1567 /*
1568 * The line discipline's buffer is out of space.
1569 */
1570 if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1571 /*
1572 * We're either not using flow control, or the
1573 * line discipline didn't tell us to block for
1574 * some reason. Either way, we have no way to
1575 * know when there's more space available, so
1576 * just drop the rest of the data.
1577 */
1578 get += cc << 1;
1579 if (get >= end)
1580 get -= plcom_rbuf_size << 1;
1581 cc = 0;
1582 } else {
1583 /*
1584 * Don't schedule any more receive processing
1585 * until the line discipline tells us there's
1586 * space available (through plcomhwiflow()).
1587 * Leave the rest of the data in the input
1588 * buffer.
1589 */
1590 SET(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1591 }
1592 break;
1593 }
1594 get += 2;
1595 if (get >= end)
1596 get = sc->sc_rbuf;
1597 cc--;
1598 }
1599
1600 if (cc != scc) {
1601 sc->sc_rbget = get;
1602 s = splserial();
1603 PLCOM_LOCK(sc);
1604
1605 cc = sc->sc_rbavail += scc - cc;
1606 /* Buffers should be ok again, release possible block. */
1607 if (cc >= sc->sc_r_lowat) {
1608 if (ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1609 CLR(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
1610 SET(sc->sc_cr, CR_RIE | CR_RTIE);
1611 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
1612 }
1613 if (ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED)) {
1614 CLR(sc->sc_rx_flags, RX_IBUF_BLOCKED);
1615 plcom_hwiflow(sc);
1616 }
1617 }
1618 PLCOM_UNLOCK(sc);
1619 splx(s);
1620 }
1621 }
1622
1623 integrate void
1624 plcom_txsoft(struct plcom_softc *sc, struct tty *tp)
1625 {
1626
1627 CLR(tp->t_state, TS_BUSY);
1628 if (ISSET(tp->t_state, TS_FLUSH))
1629 CLR(tp->t_state, TS_FLUSH);
1630 else
1631 ndflush(&tp->t_outq, (int)(sc->sc_tba - tp->t_outq.c_cf));
1632 (*tp->t_linesw->l_start)(tp);
1633 }
1634
1635 integrate void
1636 plcom_stsoft(struct plcom_softc *sc, struct tty *tp)
1637 {
1638 u_char msr, delta;
1639 int s;
1640
1641 s = splserial();
1642 PLCOM_LOCK(sc);
1643 msr = sc->sc_msr;
1644 delta = sc->sc_msr_delta;
1645 sc->sc_msr_delta = 0;
1646 PLCOM_UNLOCK(sc);
1647 splx(s);
1648
1649 if (ISSET(delta, sc->sc_msr_dcd)) {
1650 /*
1651 * Inform the tty layer that carrier detect changed.
1652 */
1653 (void) (*tp->t_linesw->l_modem)(tp, ISSET(msr, MSR_DCD));
1654 }
1655
1656 if (ISSET(delta, sc->sc_msr_cts)) {
1657 /* Block or unblock output according to flow control. */
1658 if (ISSET(msr, sc->sc_msr_cts)) {
1659 sc->sc_tx_stopped = 0;
1660 (*tp->t_linesw->l_start)(tp);
1661 } else {
1662 sc->sc_tx_stopped = 1;
1663 }
1664 }
1665
1666 #ifdef PLCOM_DEBUG
1667 if (plcom_debug)
1668 plcomstatus(sc, "plcom_stsoft");
1669 #endif
1670 }
1671
1672 void
1673 plcomsoft(void *arg)
1674 {
1675 struct plcom_softc *sc = arg;
1676 struct tty *tp;
1677
1678 if (PLCOM_ISALIVE(sc) == 0)
1679 return;
1680
1681 tp = sc->sc_tty;
1682
1683 if (sc->sc_rx_ready) {
1684 sc->sc_rx_ready = 0;
1685 plcom_rxsoft(sc, tp);
1686 }
1687
1688 if (sc->sc_st_check) {
1689 sc->sc_st_check = 0;
1690 plcom_stsoft(sc, tp);
1691 }
1692
1693 if (sc->sc_tx_done) {
1694 sc->sc_tx_done = 0;
1695 plcom_txsoft(sc, tp);
1696 }
1697 }
1698
1699 int
1700 plcomintr(void *arg)
1701 {
1702 struct plcom_softc *sc = arg;
1703 bus_space_tag_t iot = sc->sc_iot;
1704 bus_space_handle_t ioh = sc->sc_ioh;
1705 u_char *put, *end;
1706 u_int cc;
1707 u_char rsr, iir;
1708
1709 if (PLCOM_ISALIVE(sc) == 0)
1710 return 0;
1711
1712 PLCOM_LOCK(sc);
1713 iir = bus_space_read_1(iot, ioh, plcom_iir);
1714 if (! ISSET(iir, IIR_IMASK)) {
1715 PLCOM_UNLOCK(sc);
1716 return 0;
1717 }
1718
1719 end = sc->sc_ebuf;
1720 put = sc->sc_rbput;
1721 cc = sc->sc_rbavail;
1722
1723 do {
1724 u_char msr, delta, fr;
1725
1726 fr = bus_space_read_1(iot, ioh, plcom_fr);
1727
1728 if (!ISSET(fr, FR_RXFE) &&
1729 !ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1730 while (cc > 0) {
1731 int cn_trapped = 0;
1732 put[0] = bus_space_read_1(iot, ioh,
1733 plcom_dr);
1734 rsr = bus_space_read_1(iot, ioh, plcom_rsr);
1735 /* Clear any error status. */
1736 if (ISSET(rsr,
1737 (RSR_BE | RSR_OE | RSR_PE | RSR_FE)))
1738 bus_space_write_1(iot, ioh, plcom_ecr,
1739 0);
1740 if (ISSET(rsr, RSR_BE)) {
1741 cn_trapped = 0;
1742 cn_check_magic(sc->sc_tty->t_dev,
1743 CNC_BREAK, plcom_cnm_state);
1744 if (cn_trapped)
1745 continue;
1746 #if defined(KGDB)
1747 if (ISSET(sc->sc_hwflags,
1748 PLCOM_HW_KGDB)) {
1749 kgdb_connect(1);
1750 continue;
1751 }
1752 #endif
1753 }
1754
1755 put[1] = rsr;
1756 cn_trapped = 0;
1757 cn_check_magic(sc->sc_tty->t_dev,
1758 put[0], plcom_cnm_state);
1759 if (cn_trapped) {
1760 fr = bus_space_read_1(iot, ioh,
1761 plcom_fr);
1762 if (ISSET(fr, FR_RXFE))
1763 break;
1764
1765 continue;
1766 }
1767 put += 2;
1768 if (put >= end)
1769 put = sc->sc_rbuf;
1770 cc--;
1771
1772 fr = bus_space_read_1(iot, ioh, plcom_fr);
1773 if (ISSET(fr, FR_RXFE))
1774 break;
1775 }
1776
1777 /*
1778 * Current string of incoming characters ended because
1779 * no more data was available or we ran out of space.
1780 * Schedule a receive event if any data was received.
1781 * If we're out of space, turn off receive interrupts.
1782 */
1783 sc->sc_rbput = put;
1784 sc->sc_rbavail = cc;
1785 if (!ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED))
1786 sc->sc_rx_ready = 1;
1787
1788 /*
1789 * See if we are in danger of overflowing a buffer. If
1790 * so, use hardware flow control to ease the pressure.
1791 */
1792 if (!ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED) &&
1793 cc < sc->sc_r_hiwat) {
1794 SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
1795 plcom_hwiflow(sc);
1796 }
1797
1798 /*
1799 * If we're out of space, disable receive interrupts
1800 * until the queue has drained a bit.
1801 */
1802 if (!cc) {
1803 SET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
1804 CLR(sc->sc_cr, CR_RIE | CR_RTIE);
1805 bus_space_write_1(iot, ioh, plcom_cr,
1806 sc->sc_cr);
1807 }
1808 } else {
1809 if (ISSET(iir, IIR_RIS)) {
1810 bus_space_write_1(iot, ioh, plcom_cr, 0);
1811 delay(10);
1812 bus_space_write_1(iot, ioh, plcom_cr,
1813 sc->sc_cr);
1814 continue;
1815 }
1816 }
1817
1818 msr = bus_space_read_1(iot, ioh, plcom_fr);
1819 delta = msr ^ sc->sc_msr;
1820 sc->sc_msr = msr;
1821 /* Clear any pending modem status interrupt. */
1822 if (iir & IIR_MIS)
1823 bus_space_write_1(iot, ioh, plcom_icr, 0);
1824 /*
1825 * Pulse-per-second (PSS) signals on edge of DCD?
1826 * Process these even if line discipline is ignoring DCD.
1827 */
1828 if (delta & sc->sc_ppsmask) {
1829 struct timeval tv;
1830 mutex_spin_enter(&timecounter_lock);
1831 if ((msr & sc->sc_ppsmask) == sc->sc_ppsassert) {
1832 /* XXX nanotime() */
1833 microtime(&tv);
1834 TIMEVAL_TO_TIMESPEC(&tv,
1835 &sc->ppsinfo.assert_timestamp);
1836 if (sc->ppsparam.mode & PPS_OFFSETASSERT) {
1837 timespecadd(&sc->ppsinfo.assert_timestamp,
1838 &sc->ppsparam.assert_offset,
1839 &sc->ppsinfo.assert_timestamp);
1840 }
1841
1842 #ifdef PPS_SYNC
1843 if (sc->ppsparam.mode & PPS_HARDPPSONASSERT)
1844 hardpps(&tv, tv.tv_usec);
1845 #endif
1846 sc->ppsinfo.assert_sequence++;
1847 sc->ppsinfo.current_mode = sc->ppsparam.mode;
1848
1849 } else if ((msr & sc->sc_ppsmask) == sc->sc_ppsclear) {
1850 /* XXX nanotime() */
1851 microtime(&tv);
1852 TIMEVAL_TO_TIMESPEC(&tv,
1853 &sc->ppsinfo.clear_timestamp);
1854 if (sc->ppsparam.mode & PPS_OFFSETCLEAR) {
1855 timespecadd(&sc->ppsinfo.clear_timestamp,
1856 &sc->ppsparam.clear_offset,
1857 &sc->ppsinfo.clear_timestamp);
1858 }
1859
1860 #ifdef PPS_SYNC
1861 if (sc->ppsparam.mode & PPS_HARDPPSONCLEAR)
1862 hardpps(&tv, tv.tv_usec);
1863 #endif
1864 sc->ppsinfo.clear_sequence++;
1865 sc->ppsinfo.current_mode = sc->ppsparam.mode;
1866 }
1867 mutex_spin_exit(&timecounter_lock);
1868 }
1869
1870 /*
1871 * Process normal status changes
1872 */
1873 if (ISSET(delta, sc->sc_msr_mask)) {
1874 SET(sc->sc_msr_delta, delta);
1875
1876 /*
1877 * Stop output immediately if we lose the output
1878 * flow control signal or carrier detect.
1879 */
1880 if (ISSET(~msr, sc->sc_msr_mask)) {
1881 sc->sc_tbc = 0;
1882 sc->sc_heldtbc = 0;
1883 #ifdef PLCOM_DEBUG
1884 if (plcom_debug)
1885 plcomstatus(sc, "plcomintr ");
1886 #endif
1887 }
1888
1889 sc->sc_st_check = 1;
1890 }
1891
1892 /*
1893 * Done handling any receive interrupts. See if data
1894 * can be * transmitted as well. Schedule tx done
1895 * event if no data left * and tty was marked busy.
1896 */
1897 if (ISSET(iir, IIR_TIS)) {
1898 /*
1899 * If we've delayed a parameter change, do it
1900 * now, and restart * output.
1901 */
1902 if (sc->sc_heldchange) {
1903 plcom_loadchannelregs(sc);
1904 sc->sc_heldchange = 0;
1905 sc->sc_tbc = sc->sc_heldtbc;
1906 sc->sc_heldtbc = 0;
1907 }
1908
1909 /*
1910 * Output the next chunk of the contiguous
1911 * buffer, if any.
1912 */
1913 if (sc->sc_tbc > 0) {
1914 int n;
1915
1916 n = sc->sc_tbc;
1917 if (n > sc->sc_fifolen)
1918 n = sc->sc_fifolen;
1919 bus_space_write_multi_1(iot, ioh, plcom_dr,
1920 sc->sc_tba, n);
1921 sc->sc_tbc -= n;
1922 sc->sc_tba += n;
1923 } else {
1924 /*
1925 * Disable transmit plcompletion
1926 * interrupts if necessary.
1927 */
1928 if (ISSET(sc->sc_cr, CR_TIE)) {
1929 CLR(sc->sc_cr, CR_TIE);
1930 bus_space_write_1(iot, ioh, plcom_cr,
1931 sc->sc_cr);
1932 }
1933 if (sc->sc_tx_busy) {
1934 sc->sc_tx_busy = 0;
1935 sc->sc_tx_done = 1;
1936 }
1937 }
1938 }
1939 } while (ISSET((iir = bus_space_read_1(iot, ioh, plcom_iir)),
1940 IIR_IMASK));
1941
1942 PLCOM_UNLOCK(sc);
1943
1944 /* Wake up the poller. */
1945 softint_schedule(sc->sc_si);
1946
1947 #if NRND > 0 && defined(RND_COM)
1948 rnd_add_uint32(&sc->rnd_source, iir | rsr);
1949 #endif
1950
1951 return 1;
1952 }
1953
1954 /*
1955 * The following functions are polled getc and putc routines, shared
1956 * by the console and kgdb glue.
1957 *
1958 * The read-ahead code is so that you can detect pending in-band
1959 * cn_magic in polled mode while doing output rather than having to
1960 * wait until the kernel decides it needs input.
1961 */
1962
1963 #define MAX_READAHEAD 20
1964 static int plcom_readahead[MAX_READAHEAD];
1965 static int plcom_readaheadcount = 0;
1966
1967 int
1968 plcom_common_getc(dev_t dev, bus_space_tag_t iot, bus_space_handle_t ioh)
1969 {
1970 int s = splserial();
1971 u_char stat, c;
1972
1973 /* got a character from reading things earlier */
1974 if (plcom_readaheadcount > 0) {
1975 int i;
1976
1977 c = plcom_readahead[0];
1978 for (i = 1; i < plcom_readaheadcount; i++) {
1979 plcom_readahead[i-1] = plcom_readahead[i];
1980 }
1981 plcom_readaheadcount--;
1982 splx(s);
1983 return c;
1984 }
1985
1986 /* block until a character becomes available */
1987 while (ISSET(stat = bus_space_read_1(iot, ioh, plcom_fr), FR_RXFE))
1988 ;
1989
1990 c = bus_space_read_1(iot, ioh, plcom_dr);
1991 stat = bus_space_read_1(iot, ioh, plcom_iir);
1992 {
1993 int cn_trapped = 0; /* unused */
1994 #ifdef DDB
1995 extern int db_active;
1996 if (!db_active)
1997 #endif
1998 cn_check_magic(dev, c, plcom_cnm_state);
1999 }
2000 splx(s);
2001 return c;
2002 }
2003
2004 void
2005 plcom_common_putc(dev_t dev, bus_space_tag_t iot, bus_space_handle_t ioh,
2006 int c)
2007 {
2008 int s = splserial();
2009 int timo;
2010
2011 int cin, stat;
2012 if (plcom_readaheadcount < MAX_READAHEAD
2013 && !ISSET(stat = bus_space_read_1(iot, ioh, plcom_fr), FR_RXFE)) {
2014 int cn_trapped = 0;
2015 cin = bus_space_read_1(iot, ioh, plcom_dr);
2016 stat = bus_space_read_1(iot, ioh, plcom_iir);
2017 cn_check_magic(dev, cin, plcom_cnm_state);
2018 plcom_readahead[plcom_readaheadcount++] = cin;
2019 }
2020
2021 /* wait for any pending transmission to finish */
2022 timo = 150000;
2023 while (!ISSET(bus_space_read_1(iot, ioh, plcom_fr), FR_TXFE) && --timo)
2024 continue;
2025
2026 bus_space_write_1(iot, ioh, plcom_dr, c);
2027 PLCOM_BARRIER(iot, ioh, BR | BW);
2028
2029 /* wait for this transmission to complete */
2030 timo = 1500000;
2031 while (!ISSET(bus_space_read_1(iot, ioh, plcom_fr), FR_TXFE) && --timo)
2032 continue;
2033
2034 splx(s);
2035 }
2036
2037 /*
2038 * Initialize UART for use as console or KGDB line.
2039 */
2040 int
2041 plcominit(bus_space_tag_t iot, bus_addr_t iobase, int rate, int frequency,
2042 tcflag_t cflag, bus_space_handle_t *iohp)
2043 {
2044 bus_space_handle_t ioh;
2045
2046 if (bus_space_map(iot, iobase, PLCOM_UART_SIZE, 0, &ioh))
2047 return ENOMEM; /* ??? */
2048
2049 rate = plcomspeed(rate, frequency);
2050 bus_space_write_1(iot, ioh, plcom_cr, 0);
2051 bus_space_write_1(iot, ioh, plcom_dlbl, rate);
2052 bus_space_write_1(iot, ioh, plcom_dlbh, rate >> 8);
2053 bus_space_write_1(iot, ioh, plcom_lcr, cflag2lcr(cflag) | LCR_FEN);
2054 bus_space_write_1(iot, ioh, plcom_cr, CR_UARTEN);
2055
2056 #if 0
2057 /* Ought to do something like this, but we have no sc to
2058 dereference. */
2059 /* XXX device_unit() abuse */
2060 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev),
2061 MCR_DTR | MCR_RTS);
2062 #endif
2063
2064 *iohp = ioh;
2065 return 0;
2066 }
2067
2068 /*
2069 * Following are all routines needed for PLCOM to act as console
2070 */
2071 struct consdev plcomcons = {
2072 NULL, NULL, plcomcngetc, plcomcnputc, plcomcnpollc, NULL,
2073 NULL, NULL, NODEV, CN_NORMAL
2074 };
2075
2076
2077 int
2078 plcomcnattach(bus_space_tag_t iot, bus_addr_t iobase, int rate, int frequency,
2079 tcflag_t cflag, int unit)
2080 {
2081 int res;
2082
2083 res = plcominit(iot, iobase, rate, frequency, cflag, &plcomconsioh);
2084 if (res)
2085 return res;
2086
2087 cn_tab = &plcomcons;
2088 cn_init_magic(&plcom_cnm_state);
2089 cn_set_magic("\047\001"); /* default magic is BREAK */
2090
2091 plcomconstag = iot;
2092 plcomconsunit = unit;
2093 plcomconsrate = rate;
2094 plcomconscflag = cflag;
2095
2096 return 0;
2097 }
2098
2099 void
2100 plcomcndetach(void)
2101 {
2102 bus_space_unmap(plcomconstag, plcomconsioh, PLCOM_UART_SIZE);
2103 plcomconstag = NULL;
2104
2105 cn_tab = NULL;
2106 }
2107
2108 int
2109 plcomcngetc(dev_t dev)
2110 {
2111 return plcom_common_getc(dev, plcomconstag, plcomconsioh);
2112 }
2113
2114 /*
2115 * Console kernel output character routine.
2116 */
2117 void
2118 plcomcnputc(dev_t dev, int c)
2119 {
2120 plcom_common_putc(dev, plcomconstag, plcomconsioh, c);
2121 }
2122
2123 void
2124 plcomcnpollc(dev_t dev, int on)
2125 {
2126
2127 }
2128
2129 #ifdef KGDB
2130 int
2131 plcom_kgdb_attach(bus_space_tag_t iot, bus_addr_t iobase, int rate,
2132 int frequency, tcflag_t cflag, int unit)
2133 {
2134 int res;
2135
2136 if (iot == plcomconstag && iobase == plcomconsunit)
2137 return EBUSY; /* cannot share with console */
2138
2139 res = plcominit(iot, iobase, rate, frequency, cflag, &plcom_kgdb_ioh);
2140 if (res)
2141 return res;
2142
2143 kgdb_attach(plcom_kgdb_getc, plcom_kgdb_putc, NULL);
2144 kgdb_dev = 123; /* unneeded, only to satisfy some tests */
2145
2146 plcom_kgdb_iot = iot;
2147 plcom_kgdb_unit = unit;
2148
2149 return 0;
2150 }
2151
2152 /* ARGSUSED */
2153 int
2154 plcom_kgdb_getc(void *arg)
2155 {
2156 return plcom_common_getc(NODEV, plcom_kgdb_iot, plcom_kgdb_ioh);
2157 }
2158
2159 /* ARGSUSED */
2160 void
2161 plcom_kgdb_putc(void *arg, int c)
2162 {
2163 plcom_common_putc(NODEV, plcom_kgdb_iot, plcom_kgdb_ioh, c);
2164 }
2165 #endif /* KGDB */
2166
2167 /* helper function to identify the plcom ports used by
2168 console or KGDB (and not yet autoconf attached) */
2169 int
2170 plcom_is_console(bus_space_tag_t iot, int unit,
2171 bus_space_handle_t *ioh)
2172 {
2173 bus_space_handle_t help;
2174
2175 if (!plcomconsattached &&
2176 iot == plcomconstag && unit == plcomconsunit)
2177 help = plcomconsioh;
2178 #ifdef KGDB
2179 else if (!plcom_kgdb_attached &&
2180 iot == plcom_kgdb_iot && unit == plcom_kgdb_unit)
2181 help = plcom_kgdb_ioh;
2182 #endif
2183 else
2184 return 0;
2185
2186 if (ioh)
2187 *ioh = help;
2188 return 1;
2189 }
2190