plcom.c revision 1.35 1 /* $NetBSD: plcom.c,v 1.35 2012/05/14 19:40:06 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 2001 ARM Ltd
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the company may not be used to endorse or promote
16 * products derived from this software without specific prior written
17 * permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
23 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
32 * All rights reserved.
33 *
34 * This code is derived from software contributed to The NetBSD Foundation
35 * by Charles M. Hannum.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
47 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
48 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
49 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
50 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
51 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
52 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
53 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
54 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
55 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
56 * POSSIBILITY OF SUCH DAMAGE.
57 */
58
59 /*
60 * Copyright (c) 1991 The Regents of the University of California.
61 * All rights reserved.
62 *
63 * Redistribution and use in source and binary forms, with or without
64 * modification, are permitted provided that the following conditions
65 * are met:
66 * 1. Redistributions of source code must retain the above copyright
67 * notice, this list of conditions and the following disclaimer.
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in the
70 * documentation and/or other materials provided with the distribution.
71 * 3. Neither the name of the University nor the names of its contributors
72 * may be used to endorse or promote products derived from this software
73 * without specific prior written permission.
74 *
75 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
76 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
77 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
78 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
79 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
80 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
81 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
82 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
83 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
84 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
85 * SUCH DAMAGE.
86 *
87 * @(#)com.c 7.5 (Berkeley) 5/16/91
88 */
89
90 /*
91 * COM driver for the Prime Cell PL010 UART, which is similar to the 16C550,
92 * but has a completely different programmer's model.
93 * Derived from the NS16550AF com driver.
94 */
95
96 #include <sys/cdefs.h>
97 __KERNEL_RCSID(0, "$NetBSD: plcom.c,v 1.35 2012/05/14 19:40:06 skrll Exp $");
98
99 #include "opt_plcom.h"
100 #include "opt_ddb.h"
101 #include "opt_kgdb.h"
102 #include "opt_lockdebug.h"
103 #include "opt_multiprocessor.h"
104
105 #include "rnd.h"
106 #ifdef RND_COM
107 #include <sys/rnd.h>
108 #endif
109
110 /*
111 * Override cnmagic(9) macro before including <sys/systm.h>.
112 * We need to know if cn_check_magic triggered debugger, so set a flag.
113 * Callers of cn_check_magic must declare int cn_trapped = 0;
114 * XXX: this is *ugly*!
115 */
116 #define cn_trap() \
117 do { \
118 console_debugger(); \
119 cn_trapped = 1; \
120 } while (/* CONSTCOND */ 0)
121
122 #include <sys/param.h>
123 #include <sys/systm.h>
124 #include <sys/ioctl.h>
125 #include <sys/select.h>
126 #include <sys/tty.h>
127 #include <sys/proc.h>
128 #include <sys/conf.h>
129 #include <sys/file.h>
130 #include <sys/uio.h>
131 #include <sys/kernel.h>
132 #include <sys/syslog.h>
133 #include <sys/types.h>
134 #include <sys/device.h>
135 #include <sys/malloc.h>
136 #include <sys/timepps.h>
137 #include <sys/vnode.h>
138 #include <sys/kauth.h>
139 #include <sys/intr.h>
140 #include <sys/bus.h>
141
142 #include <evbarm/dev/plcomreg.h>
143 #include <evbarm/dev/plcomvar.h>
144
145 #include <dev/cons.h>
146
147 static void plcom_enable_debugport (struct plcom_softc *);
148
149 void plcom_config (struct plcom_softc *);
150 void plcom_shutdown (struct plcom_softc *);
151 int plcomspeed (long, long);
152 static u_char cflag2lcr (tcflag_t);
153 int plcomparam (struct tty *, struct termios *);
154 void plcomstart (struct tty *);
155 int plcomhwiflow (struct tty *, int);
156
157 void plcom_loadchannelregs (struct plcom_softc *);
158 void plcom_hwiflow (struct plcom_softc *);
159 void plcom_break (struct plcom_softc *, int);
160 void plcom_modem (struct plcom_softc *, int);
161 void tiocm_to_plcom (struct plcom_softc *, u_long, int);
162 int plcom_to_tiocm (struct plcom_softc *);
163 void plcom_iflush (struct plcom_softc *);
164
165 int plcom_common_getc (dev_t, bus_space_tag_t, bus_space_handle_t);
166 void plcom_common_putc (dev_t, bus_space_tag_t, bus_space_handle_t, int);
167
168 int plcominit (bus_space_tag_t, bus_addr_t, int, int, tcflag_t,
169 bus_space_handle_t *);
170
171 dev_type_open(plcomopen);
172 dev_type_close(plcomclose);
173 dev_type_read(plcomread);
174 dev_type_write(plcomwrite);
175 dev_type_ioctl(plcomioctl);
176 dev_type_stop(plcomstop);
177 dev_type_tty(plcomtty);
178 dev_type_poll(plcompoll);
179
180 int plcomcngetc (dev_t);
181 void plcomcnputc (dev_t, int);
182 void plcomcnpollc (dev_t, int);
183
184 #define integrate static inline
185 void plcomsoft (void *);
186 integrate void plcom_rxsoft (struct plcom_softc *, struct tty *);
187 integrate void plcom_txsoft (struct plcom_softc *, struct tty *);
188 integrate void plcom_stsoft (struct plcom_softc *, struct tty *);
189 integrate void plcom_schedrx (struct plcom_softc *);
190 void plcomdiag (void *);
191
192 extern struct cfdriver plcom_cd;
193
194 const struct cdevsw plcom_cdevsw = {
195 plcomopen, plcomclose, plcomread, plcomwrite, plcomioctl,
196 plcomstop, plcomtty, plcompoll, nommap, ttykqfilter, D_TTY
197 };
198
199 /*
200 * Make this an option variable one can patch.
201 * But be warned: this must be a power of 2!
202 */
203 u_int plcom_rbuf_size = PLCOM_RING_SIZE;
204
205 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
206 u_int plcom_rbuf_hiwat = (PLCOM_RING_SIZE * 1) / 4;
207 u_int plcom_rbuf_lowat = (PLCOM_RING_SIZE * 3) / 4;
208
209 static int plcomconsunit = -1;
210 static bus_space_tag_t plcomconstag;
211 static bus_space_handle_t plcomconsioh;
212 static int plcomconsattached;
213 static int plcomconsrate;
214 static tcflag_t plcomconscflag;
215 static struct cnm_state plcom_cnm_state;
216
217 static int ppscap =
218 PPS_TSFMT_TSPEC |
219 PPS_CAPTUREASSERT |
220 PPS_CAPTURECLEAR |
221 #ifdef PPS_SYNC
222 PPS_HARDPPSONASSERT | PPS_HARDPPSONCLEAR |
223 #endif /* PPS_SYNC */
224 PPS_OFFSETASSERT | PPS_OFFSETCLEAR;
225
226 #ifdef KGDB
227 #include <sys/kgdb.h>
228
229 static int plcom_kgdb_unit;
230 static bus_space_tag_t plcom_kgdb_iot;
231 static bus_space_handle_t plcom_kgdb_ioh;
232 static int plcom_kgdb_attached;
233
234 int plcom_kgdb_getc (void *);
235 void plcom_kgdb_putc (void *, int);
236 #endif /* KGDB */
237
238 #define PLCOMUNIT_MASK 0x7ffff
239 #define PLCOMDIALOUT_MASK 0x80000
240
241 #define PLCOMUNIT(x) (minor(x) & PLCOMUNIT_MASK)
242 #define PLCOMDIALOUT(x) (minor(x) & PLCOMDIALOUT_MASK)
243
244 #define PLCOM_ISALIVE(sc) ((sc)->enabled != 0 && \
245 device_is_active(&(sc)->sc_dev))
246
247 #define BR BUS_SPACE_BARRIER_READ
248 #define BW BUS_SPACE_BARRIER_WRITE
249 #define PLCOM_BARRIER(t, h, f) bus_space_barrier((t), (h), 0, PLCOM_UART_SIZE, (f))
250
251 #define PLCOM_LOCK(sc) simple_lock(&(sc)->sc_lock)
252 #define PLCOM_UNLOCK(sc) simple_unlock(&(sc)->sc_lock)
253
254 int
255 plcomspeed(long speed, long frequency)
256 {
257 #define divrnd(n, q) (((n)*2/(q)+1)/2) /* divide and round off */
258
259 int x, err;
260
261 #if 0
262 if (speed == 0)
263 return 0;
264 #endif
265 if (speed <= 0)
266 return -1;
267 x = divrnd(frequency / 16, speed);
268 if (x <= 0)
269 return -1;
270 err = divrnd(((quad_t)frequency) * 1000 / 16, speed * x) - 1000;
271 if (err < 0)
272 err = -err;
273 if (err > PLCOM_TOLERANCE)
274 return -1;
275 return x;
276
277 #undef divrnd
278 }
279
280 #ifdef PLCOM_DEBUG
281 int plcom_debug = 0;
282
283 void plcomstatus (struct plcom_softc *, const char *);
284 void
285 plcomstatus(struct plcom_softc *sc, const char *str)
286 {
287 struct tty *tp = sc->sc_tty;
288
289 printf("%s: %s %sclocal %sdcd %sts_carr_on %sdtr %stx_stopped\n",
290 sc->sc_dev.dv_xname, str,
291 ISSET(tp->t_cflag, CLOCAL) ? "+" : "-",
292 ISSET(sc->sc_msr, PL01X_MSR_DCD) ? "+" : "-",
293 ISSET(tp->t_state, TS_CARR_ON) ? "+" : "-",
294 ISSET(sc->sc_mcr, PL01X_MCR_DTR) ? "+" : "-",
295 sc->sc_tx_stopped ? "+" : "-");
296
297 printf("%s: %s %scrtscts %scts %sts_ttstop %srts %xrx_flags\n",
298 sc->sc_dev.dv_xname, str,
299 ISSET(tp->t_cflag, CRTSCTS) ? "+" : "-",
300 ISSET(sc->sc_msr, PL01X_MSR_CTS) ? "+" : "-",
301 ISSET(tp->t_state, TS_TTSTOP) ? "+" : "-",
302 ISSET(sc->sc_mcr, PL01X_MCR_RTS) ? "+" : "-",
303 sc->sc_rx_flags);
304 }
305 #endif
306
307 /* XXX this function is not used? */
308 int
309 plcomprobe1(bus_space_tag_t iot, bus_space_handle_t ioh)
310 {
311 int data;
312
313 /* Disable the UART. */
314 bus_space_write_1(iot, ioh, plcom_cr, 0);
315 /* Make sure the FIFO is off. */
316 bus_space_write_1(iot, ioh, plcom_lcr, PL01X_LCR_8BITS);
317 /* Disable interrupts. */
318 bus_space_write_1(iot, ioh, plcom_iir, 0);
319
320 /* Make sure we swallow anything in the receiving register. */
321 data = bus_space_read_1(iot, ioh, plcom_dr);
322
323 if (bus_space_read_1(iot, ioh, plcom_lcr) != PL01X_LCR_8BITS)
324 return 0;
325
326 data = bus_space_read_1(iot, ioh, plcom_fr) & (PL01X_FR_RXFF | PL01X_FR_RXFE);
327
328 if (data != PL01X_FR_RXFE)
329 return 0;
330
331 return 1;
332 }
333
334 static void
335 plcom_enable_debugport(struct plcom_softc *sc)
336 {
337 int s;
338
339 /* Turn on line break interrupt, set carrier. */
340 s = splserial();
341 PLCOM_LOCK(sc);
342 sc->sc_cr = PL010_CR_RIE | PL010_CR_RTIE | PL01X_CR_UARTEN;
343 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
344 SET(sc->sc_mcr, PL01X_MCR_DTR | PL01X_MCR_RTS);
345 /* XXX device_unit() abuse */
346 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev),
347 sc->sc_mcr);
348 PLCOM_UNLOCK(sc);
349 splx(s);
350 }
351
352 void
353 plcom_attach_subr(struct plcom_softc *sc)
354 {
355 int unit = sc->sc_iounit;
356 bus_space_tag_t iot = sc->sc_iot;
357 bus_space_handle_t ioh = sc->sc_ioh;
358 struct tty *tp;
359
360 callout_init(&sc->sc_diag_callout, 0);
361 simple_lock_init(&sc->sc_lock);
362
363 /* Disable interrupts before configuring the device. */
364 sc->sc_cr = 0;
365
366 if (plcomconstag && unit == plcomconsunit) {
367 plcomconsattached = 1;
368
369 plcomconstag = iot;
370 plcomconsioh = ioh;
371
372 /* Make sure the console is always "hardwired". */
373 delay(1000); /* wait for output to finish */
374 SET(sc->sc_hwflags, PLCOM_HW_CONSOLE);
375 SET(sc->sc_swflags, TIOCFLAG_SOFTCAR);
376 /* Must re-enable the console immediately, or we will
377 hang when trying to print. */
378 sc->sc_cr = PL01X_CR_UARTEN;
379 }
380
381 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
382
383 /* The PL010 has a 16-byte fifo, but the tx interrupt triggers when
384 there is space for 8 more bytes. */
385 sc->sc_fifolen = 8;
386 printf("\n");
387
388 if (ISSET(sc->sc_hwflags, PLCOM_HW_TXFIFO_DISABLE)) {
389 sc->sc_fifolen = 1;
390 printf("%s: txfifo disabled\n", sc->sc_dev.dv_xname);
391 }
392
393 if (sc->sc_fifolen > 1)
394 SET(sc->sc_hwflags, PLCOM_HW_FIFO);
395
396 tp = tty_alloc();
397 tp->t_oproc = plcomstart;
398 tp->t_param = plcomparam;
399 tp->t_hwiflow = plcomhwiflow;
400
401 sc->sc_tty = tp;
402 sc->sc_rbuf = malloc(plcom_rbuf_size << 1, M_DEVBUF, M_NOWAIT);
403 sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
404 sc->sc_rbavail = plcom_rbuf_size;
405 if (sc->sc_rbuf == NULL) {
406 printf("%s: unable to allocate ring buffer\n",
407 sc->sc_dev.dv_xname);
408 return;
409 }
410 sc->sc_ebuf = sc->sc_rbuf + (plcom_rbuf_size << 1);
411
412 tty_attach(tp);
413
414 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
415 int maj;
416
417 /* locate the major number */
418 maj = cdevsw_lookup_major(&plcom_cdevsw);
419
420 cn_tab->cn_dev = makedev(maj, device_unit(&sc->sc_dev));
421
422 printf("%s: console\n", sc->sc_dev.dv_xname);
423 }
424
425 #ifdef KGDB
426 /*
427 * Allow kgdb to "take over" this port. If this is
428 * the kgdb device, it has exclusive use.
429 */
430 if (iot == plcom_kgdb_iot && unit == plcom_kgdb_unit) {
431 plcom_kgdb_attached = 1;
432
433 SET(sc->sc_hwflags, PLCOM_HW_KGDB);
434 printf("%s: kgdb\n", sc->sc_dev.dv_xname);
435 }
436 #endif
437
438 sc->sc_si = softint_establish(SOFTINT_SERIAL, plcomsoft, sc);
439
440 #ifdef RND_COM
441 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
442 RND_TYPE_TTY, 0);
443 #endif
444
445 /* if there are no enable/disable functions, assume the device
446 is always enabled */
447 if (!sc->enable)
448 sc->enabled = 1;
449
450 plcom_config(sc);
451
452 SET(sc->sc_hwflags, PLCOM_HW_DEV_OK);
453 }
454
455 void
456 plcom_config(struct plcom_softc *sc)
457 {
458 bus_space_tag_t iot = sc->sc_iot;
459 bus_space_handle_t ioh = sc->sc_ioh;
460
461 /* Disable interrupts before configuring the device. */
462 sc->sc_cr = 0;
463 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
464
465 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE|PLCOM_HW_KGDB))
466 plcom_enable_debugport(sc);
467 }
468
469 int
470 plcom_detach(struct device *self, int flags)
471 {
472 struct plcom_softc *sc = (struct plcom_softc *)self;
473 int maj, mn;
474
475 if (sc->sc_hwflags & (PLCOM_HW_CONSOLE|PLCOM_HW_KGDB))
476 return EBUSY;
477
478 if (sc->disable != NULL && sc->enabled != 0) {
479 (*sc->disable)(sc);
480 sc->enabled = 0;
481 }
482
483 /* locate the major number */
484 maj = cdevsw_lookup_major(&plcom_cdevsw);
485
486 /* Nuke the vnodes for any open instances. */
487 mn = device_unit(self);
488 vdevgone(maj, mn, mn, VCHR);
489
490 mn |= PLCOMDIALOUT_MASK;
491 vdevgone(maj, mn, mn, VCHR);
492
493 /* Free the receive buffer. */
494 free(sc->sc_rbuf, M_DEVBUF);
495
496 /* Detach and free the tty. */
497 tty_detach(sc->sc_tty);
498 tty_free(sc->sc_tty);
499
500 /* Unhook the soft interrupt handler. */
501 softint_disestablish(sc->sc_si);
502
503 #ifdef RND_COM
504 /* Unhook the entropy source. */
505 rnd_detach_source(&sc->rnd_source);
506 #endif
507
508 return 0;
509 }
510
511 int
512 plcom_activate(device_t self, enum devact act)
513 {
514 struct plcom_softc *sc = device_private(self);
515
516 switch (act) {
517 case DVACT_DEACTIVATE:
518 sc->enabled = 0;
519 return 0;
520 default:
521 return EOPNOTSUPP;
522 }
523 }
524
525 void
526 plcom_shutdown(struct plcom_softc *sc)
527 {
528 struct tty *tp = sc->sc_tty;
529 int s;
530
531 s = splserial();
532 PLCOM_LOCK(sc);
533
534 /* If we were asserting flow control, then deassert it. */
535 SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
536 plcom_hwiflow(sc);
537
538 /* Clear any break condition set with TIOCSBRK. */
539 plcom_break(sc, 0);
540
541 /* Turn off PPS capture on last close. */
542 mutex_spin_enter(&timecounter_lock);
543 sc->sc_ppsmask = 0;
544 sc->ppsparam.mode = 0;
545 mutex_spin_exit(&timecounter_lock);
546
547 /*
548 * Hang up if necessary. Wait a bit, so the other side has time to
549 * notice even if we immediately open the port again.
550 * Avoid tsleeping above splhigh().
551 */
552 if (ISSET(tp->t_cflag, HUPCL)) {
553 plcom_modem(sc, 0);
554 PLCOM_UNLOCK(sc);
555 splx(s);
556 /* XXX tsleep will only timeout */
557 (void) tsleep(sc, TTIPRI, ttclos, hz);
558 s = splserial();
559 PLCOM_LOCK(sc);
560 }
561
562 /* Turn off interrupts. */
563 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE))
564 /* interrupt on break */
565 sc->sc_cr = PL010_CR_RIE | PL010_CR_RTIE | PL01X_CR_UARTEN;
566 else
567 sc->sc_cr = 0;
568 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
569
570 if (sc->disable) {
571 #ifdef DIAGNOSTIC
572 if (!sc->enabled)
573 panic("plcom_shutdown: not enabled?");
574 #endif
575 (*sc->disable)(sc);
576 sc->enabled = 0;
577 }
578 PLCOM_UNLOCK(sc);
579 splx(s);
580 }
581
582 int
583 plcomopen(dev_t dev, int flag, int mode, struct lwp *l)
584 {
585 struct plcom_softc *sc;
586 struct tty *tp;
587 int s, s2;
588 int error;
589
590 sc = device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
591 if (sc == NULL || !ISSET(sc->sc_hwflags, PLCOM_HW_DEV_OK) ||
592 sc->sc_rbuf == NULL)
593 return ENXIO;
594
595 if (!device_is_active(&sc->sc_dev))
596 return ENXIO;
597
598 #ifdef KGDB
599 /*
600 * If this is the kgdb port, no other use is permitted.
601 */
602 if (ISSET(sc->sc_hwflags, PLCOM_HW_KGDB))
603 return EBUSY;
604 #endif
605
606 tp = sc->sc_tty;
607
608 if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
609 return (EBUSY);
610
611 s = spltty();
612
613 /*
614 * Do the following iff this is a first open.
615 */
616 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
617 struct termios t;
618
619 tp->t_dev = dev;
620
621 s2 = splserial();
622 PLCOM_LOCK(sc);
623
624 if (sc->enable) {
625 if ((*sc->enable)(sc)) {
626 PLCOM_UNLOCK(sc);
627 splx(s2);
628 splx(s);
629 printf("%s: device enable failed\n",
630 sc->sc_dev.dv_xname);
631 return EIO;
632 }
633 sc->enabled = 1;
634 plcom_config(sc);
635 }
636
637 /* Turn on interrupts. */
638 /* IER_ERXRDY | IER_ERLS | IER_EMSC; */
639 sc->sc_cr = PL010_CR_RIE | PL010_CR_RTIE | PL010_CR_MSIE | PL01X_CR_UARTEN;
640 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
641
642 /* Fetch the current modem control status, needed later. */
643 sc->sc_msr = bus_space_read_1(sc->sc_iot, sc->sc_ioh, plcom_fr);
644
645 /* Clear PPS capture state on first open. */
646
647 mutex_spin_enter(&timecounter_lock);
648 sc->sc_ppsmask = 0;
649 sc->ppsparam.mode = 0;
650 mutex_spin_exit(&timecounter_lock);
651
652 PLCOM_UNLOCK(sc);
653 splx(s2);
654
655 /*
656 * Initialize the termios status to the defaults. Add in the
657 * sticky bits from TIOCSFLAGS.
658 */
659 t.c_ispeed = 0;
660 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
661 t.c_ospeed = plcomconsrate;
662 t.c_cflag = plcomconscflag;
663 } else {
664 t.c_ospeed = TTYDEF_SPEED;
665 t.c_cflag = TTYDEF_CFLAG;
666 }
667 if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL))
668 SET(t.c_cflag, CLOCAL);
669 if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS))
670 SET(t.c_cflag, CRTSCTS);
671 if (ISSET(sc->sc_swflags, TIOCFLAG_MDMBUF))
672 SET(t.c_cflag, MDMBUF);
673 /* Make sure plcomparam() will do something. */
674 tp->t_ospeed = 0;
675 (void) plcomparam(tp, &t);
676 tp->t_iflag = TTYDEF_IFLAG;
677 tp->t_oflag = TTYDEF_OFLAG;
678 tp->t_lflag = TTYDEF_LFLAG;
679 ttychars(tp);
680 ttsetwater(tp);
681
682 s2 = splserial();
683 PLCOM_LOCK(sc);
684
685 /*
686 * Turn on DTR. We must always do this, even if carrier is not
687 * present, because otherwise we'd have to use TIOCSDTR
688 * immediately after setting CLOCAL, which applications do not
689 * expect. We always assert DTR while the device is open
690 * unless explicitly requested to deassert it.
691 */
692 plcom_modem(sc, 1);
693
694 /* Clear the input ring, and unblock. */
695 sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
696 sc->sc_rbavail = plcom_rbuf_size;
697 plcom_iflush(sc);
698 CLR(sc->sc_rx_flags, RX_ANY_BLOCK);
699 plcom_hwiflow(sc);
700
701 #ifdef PLCOM_DEBUG
702 if (plcom_debug)
703 plcomstatus(sc, "plcomopen ");
704 #endif
705
706 PLCOM_UNLOCK(sc);
707 splx(s2);
708 }
709
710 splx(s);
711
712 error = ttyopen(tp, PLCOMDIALOUT(dev), ISSET(flag, O_NONBLOCK));
713 if (error)
714 goto bad;
715
716 error = (*tp->t_linesw->l_open)(dev, tp);
717 if (error)
718 goto bad;
719
720 return 0;
721
722 bad:
723 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
724 /*
725 * We failed to open the device, and nobody else had it opened.
726 * Clean up the state as appropriate.
727 */
728 plcom_shutdown(sc);
729 }
730
731 return error;
732 }
733
734 int
735 plcomclose(dev_t dev, int flag, int mode, struct lwp *l)
736 {
737 struct plcom_softc *sc =
738 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
739 struct tty *tp = sc->sc_tty;
740
741 /* XXX This is for cons.c. */
742 if (!ISSET(tp->t_state, TS_ISOPEN))
743 return 0;
744
745 (*tp->t_linesw->l_close)(tp, flag);
746 ttyclose(tp);
747
748 if (PLCOM_ISALIVE(sc) == 0)
749 return 0;
750
751 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
752 /*
753 * Although we got a last close, the device may still be in
754 * use; e.g. if this was the dialout node, and there are still
755 * processes waiting for carrier on the non-dialout node.
756 */
757 plcom_shutdown(sc);
758 }
759
760 return 0;
761 }
762
763 int
764 plcomread(dev_t dev, struct uio *uio, int flag)
765 {
766 struct plcom_softc *sc =
767 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
768 struct tty *tp = sc->sc_tty;
769
770 if (PLCOM_ISALIVE(sc) == 0)
771 return EIO;
772
773 return (*tp->t_linesw->l_read)(tp, uio, flag);
774 }
775
776 int
777 plcomwrite(dev_t dev, struct uio *uio, int flag)
778 {
779 struct plcom_softc *sc =
780 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
781 struct tty *tp = sc->sc_tty;
782
783 if (PLCOM_ISALIVE(sc) == 0)
784 return EIO;
785
786 return (*tp->t_linesw->l_write)(tp, uio, flag);
787 }
788
789 int
790 plcompoll(dev_t dev, int events, struct lwp *l)
791 {
792 struct plcom_softc *sc =
793 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
794 struct tty *tp = sc->sc_tty;
795
796 if (PLCOM_ISALIVE(sc) == 0)
797 return EIO;
798
799 return (*tp->t_linesw->l_poll)(tp, events, l);
800 }
801
802 struct tty *
803 plcomtty(dev_t dev)
804 {
805 struct plcom_softc *sc =
806 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
807 struct tty *tp = sc->sc_tty;
808
809 return tp;
810 }
811
812 int
813 plcomioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
814 {
815 struct plcom_softc *sc =
816 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
817 struct tty *tp = sc->sc_tty;
818 int error;
819 int s;
820
821 if (PLCOM_ISALIVE(sc) == 0)
822 return EIO;
823
824 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
825 if (error != EPASSTHROUGH)
826 return error;
827
828 error = ttioctl(tp, cmd, data, flag, l);
829 if (error != EPASSTHROUGH)
830 return error;
831
832 error = 0;
833
834 s = splserial();
835 PLCOM_LOCK(sc);
836
837 switch (cmd) {
838 case TIOCSBRK:
839 plcom_break(sc, 1);
840 break;
841
842 case TIOCCBRK:
843 plcom_break(sc, 0);
844 break;
845
846 case TIOCSDTR:
847 plcom_modem(sc, 1);
848 break;
849
850 case TIOCCDTR:
851 plcom_modem(sc, 0);
852 break;
853
854 case TIOCGFLAGS:
855 *(int *)data = sc->sc_swflags;
856 break;
857
858 case TIOCSFLAGS:
859 error = kauth_authorize_device_tty(l->l_cred,
860 KAUTH_DEVICE_TTY_PRIVSET, tp);
861 if (error)
862 break;
863 sc->sc_swflags = *(int *)data;
864 break;
865
866 case TIOCMSET:
867 case TIOCMBIS:
868 case TIOCMBIC:
869 tiocm_to_plcom(sc, cmd, *(int *)data);
870 break;
871
872 case TIOCMGET:
873 *(int *)data = plcom_to_tiocm(sc);
874 break;
875
876 case PPS_IOC_CREATE:
877 break;
878
879 case PPS_IOC_DESTROY:
880 break;
881
882 case PPS_IOC_GETPARAMS: {
883 pps_params_t *pp;
884 pp = (pps_params_t *)data;
885 mutex_spin_enter(&timecounter_lock);
886 *pp = sc->ppsparam;
887 mutex_spin_exit(&timecounter_lock);
888 break;
889 }
890
891 case PPS_IOC_SETPARAMS: {
892 pps_params_t *pp;
893 int mode;
894 pp = (pps_params_t *)data;
895 mutex_spin_enter(&timecounter_lock);
896 if (pp->mode & ~ppscap) {
897 error = EINVAL;
898 mutex_spin_exit(&timecounter_lock);
899 break;
900 }
901 sc->ppsparam = *pp;
902 /*
903 * Compute msr masks from user-specified timestamp state.
904 */
905 mode = sc->ppsparam.mode;
906 #ifdef PPS_SYNC
907 if (mode & PPS_HARDPPSONASSERT) {
908 mode |= PPS_CAPTUREASSERT;
909 /* XXX revoke any previous HARDPPS source */
910 }
911 if (mode & PPS_HARDPPSONCLEAR) {
912 mode |= PPS_CAPTURECLEAR;
913 /* XXX revoke any previous HARDPPS source */
914 }
915 #endif /* PPS_SYNC */
916 switch (mode & PPS_CAPTUREBOTH) {
917 case 0:
918 sc->sc_ppsmask = 0;
919 break;
920
921 case PPS_CAPTUREASSERT:
922 sc->sc_ppsmask = PL01X_MSR_DCD;
923 sc->sc_ppsassert = PL01X_MSR_DCD;
924 sc->sc_ppsclear = -1;
925 break;
926
927 case PPS_CAPTURECLEAR:
928 sc->sc_ppsmask = PL01X_MSR_DCD;
929 sc->sc_ppsassert = -1;
930 sc->sc_ppsclear = 0;
931 break;
932
933 case PPS_CAPTUREBOTH:
934 sc->sc_ppsmask = PL01X_MSR_DCD;
935 sc->sc_ppsassert = PL01X_MSR_DCD;
936 sc->sc_ppsclear = 0;
937 break;
938
939 default:
940 error = EINVAL;
941 break;
942 }
943 mutex_spin_exit(&timecounter_lock);
944 break;
945 }
946
947 case PPS_IOC_GETCAP:
948 *(int*)data = ppscap;
949 break;
950
951 case PPS_IOC_FETCH: {
952 pps_info_t *pi;
953 pi = (pps_info_t *)data;
954 mutex_spin_enter(&timecounter_lock);
955 *pi = sc->ppsinfo;
956 mutex_spin_exit(&timecounter_lock);
957 break;
958 }
959
960 case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */
961 /*
962 * Some GPS clocks models use the falling rather than
963 * rising edge as the on-the-second signal.
964 * The old API has no way to specify PPS polarity.
965 */
966 mutex_spin_enter(&timecounter_lock);
967 sc->sc_ppsmask = PL01X_MSR_DCD;
968 #ifndef PPS_TRAILING_EDGE
969 sc->sc_ppsassert = PL01X_MSR_DCD;
970 sc->sc_ppsclear = -1;
971 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
972 &sc->ppsinfo.assert_timestamp);
973 #else
974 sc->sc_ppsassert = -1
975 sc->sc_ppsclear = 0;
976 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
977 &sc->ppsinfo.clear_timestamp);
978 #endif
979 mutex_spin_exit(&timecounter_lock);
980 break;
981
982 default:
983 error = EPASSTHROUGH;
984 break;
985 }
986
987 PLCOM_UNLOCK(sc);
988 splx(s);
989
990 #ifdef PLCOM_DEBUG
991 if (plcom_debug)
992 plcomstatus(sc, "plcomioctl ");
993 #endif
994
995 return error;
996 }
997
998 integrate void
999 plcom_schedrx(struct plcom_softc *sc)
1000 {
1001
1002 sc->sc_rx_ready = 1;
1003
1004 /* Wake up the poller. */
1005 softint_schedule(sc->sc_si);
1006 }
1007
1008 void
1009 plcom_break(struct plcom_softc *sc, int onoff)
1010 {
1011
1012 if (onoff)
1013 SET(sc->sc_lcr, PL01X_LCR_BRK);
1014 else
1015 CLR(sc->sc_lcr, PL01X_LCR_BRK);
1016
1017 if (!sc->sc_heldchange) {
1018 if (sc->sc_tx_busy) {
1019 sc->sc_heldtbc = sc->sc_tbc;
1020 sc->sc_tbc = 0;
1021 sc->sc_heldchange = 1;
1022 } else
1023 plcom_loadchannelregs(sc);
1024 }
1025 }
1026
1027 void
1028 plcom_modem(struct plcom_softc *sc, int onoff)
1029 {
1030
1031 if (sc->sc_mcr_dtr == 0)
1032 return;
1033
1034 if (onoff)
1035 SET(sc->sc_mcr, sc->sc_mcr_dtr);
1036 else
1037 CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1038
1039 if (!sc->sc_heldchange) {
1040 if (sc->sc_tx_busy) {
1041 sc->sc_heldtbc = sc->sc_tbc;
1042 sc->sc_tbc = 0;
1043 sc->sc_heldchange = 1;
1044 } else
1045 plcom_loadchannelregs(sc);
1046 }
1047 }
1048
1049 void
1050 tiocm_to_plcom(struct plcom_softc *sc, u_long how, int ttybits)
1051 {
1052 u_char plcombits;
1053
1054 plcombits = 0;
1055 if (ISSET(ttybits, TIOCM_DTR))
1056 SET(plcombits, PL01X_MCR_DTR);
1057 if (ISSET(ttybits, TIOCM_RTS))
1058 SET(plcombits, PL01X_MCR_RTS);
1059
1060 switch (how) {
1061 case TIOCMBIC:
1062 CLR(sc->sc_mcr, plcombits);
1063 break;
1064
1065 case TIOCMBIS:
1066 SET(sc->sc_mcr, plcombits);
1067 break;
1068
1069 case TIOCMSET:
1070 CLR(sc->sc_mcr, PL01X_MCR_DTR | PL01X_MCR_RTS);
1071 SET(sc->sc_mcr, plcombits);
1072 break;
1073 }
1074
1075 if (!sc->sc_heldchange) {
1076 if (sc->sc_tx_busy) {
1077 sc->sc_heldtbc = sc->sc_tbc;
1078 sc->sc_tbc = 0;
1079 sc->sc_heldchange = 1;
1080 } else
1081 plcom_loadchannelregs(sc);
1082 }
1083 }
1084
1085 int
1086 plcom_to_tiocm(struct plcom_softc *sc)
1087 {
1088 u_char plcombits;
1089 int ttybits = 0;
1090
1091 plcombits = sc->sc_mcr;
1092 if (ISSET(plcombits, PL01X_MCR_DTR))
1093 SET(ttybits, TIOCM_DTR);
1094 if (ISSET(plcombits, PL01X_MCR_RTS))
1095 SET(ttybits, TIOCM_RTS);
1096
1097 plcombits = sc->sc_msr;
1098 if (ISSET(plcombits, PL01X_MSR_DCD))
1099 SET(ttybits, TIOCM_CD);
1100 if (ISSET(plcombits, PL01X_MSR_CTS))
1101 SET(ttybits, TIOCM_CTS);
1102 if (ISSET(plcombits, PL01X_MSR_DSR))
1103 SET(ttybits, TIOCM_DSR);
1104
1105 if (sc->sc_cr != 0)
1106 SET(ttybits, TIOCM_LE);
1107
1108 return ttybits;
1109 }
1110
1111 static u_char
1112 cflag2lcr(tcflag_t cflag)
1113 {
1114 u_char lcr = 0;
1115
1116 switch (ISSET(cflag, CSIZE)) {
1117 case CS5:
1118 SET(lcr, PL01X_LCR_5BITS);
1119 break;
1120 case CS6:
1121 SET(lcr, PL01X_LCR_6BITS);
1122 break;
1123 case CS7:
1124 SET(lcr, PL01X_LCR_7BITS);
1125 break;
1126 case CS8:
1127 SET(lcr, PL01X_LCR_8BITS);
1128 break;
1129 }
1130 if (ISSET(cflag, PARENB)) {
1131 SET(lcr, PL01X_LCR_PEN);
1132 if (!ISSET(cflag, PARODD))
1133 SET(lcr, PL01X_LCR_EPS);
1134 }
1135 if (ISSET(cflag, CSTOPB))
1136 SET(lcr, PL01X_LCR_STP2);
1137
1138 return lcr;
1139 }
1140
1141 int
1142 plcomparam(struct tty *tp, struct termios *t)
1143 {
1144 struct plcom_softc *sc =
1145 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1146 int ospeed;
1147 u_char lcr;
1148 int s;
1149
1150 if (PLCOM_ISALIVE(sc) == 0)
1151 return EIO;
1152
1153 ospeed = plcomspeed(t->c_ospeed, sc->sc_frequency);
1154
1155 /* Check requested parameters. */
1156 if (ospeed < 0)
1157 return EINVAL;
1158 if (t->c_ispeed && t->c_ispeed != t->c_ospeed)
1159 return EINVAL;
1160
1161 /*
1162 * For the console, always force CLOCAL and !HUPCL, so that the port
1163 * is always active.
1164 */
1165 if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR) ||
1166 ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
1167 SET(t->c_cflag, CLOCAL);
1168 CLR(t->c_cflag, HUPCL);
1169 }
1170
1171 /*
1172 * If there were no changes, don't do anything. This avoids dropping
1173 * input and improves performance when all we did was frob things like
1174 * VMIN and VTIME.
1175 */
1176 if (tp->t_ospeed == t->c_ospeed &&
1177 tp->t_cflag == t->c_cflag)
1178 return 0;
1179
1180 lcr = ISSET(sc->sc_lcr, PL01X_LCR_BRK) | cflag2lcr(t->c_cflag);
1181
1182 s = splserial();
1183 PLCOM_LOCK(sc);
1184
1185 sc->sc_lcr = lcr;
1186
1187 /*
1188 * PL010 has a fixed-length FIFO trigger point.
1189 */
1190 if (ISSET(sc->sc_hwflags, PLCOM_HW_FIFO))
1191 sc->sc_fifo = 1;
1192 else
1193 sc->sc_fifo = 0;
1194
1195 if (sc->sc_fifo)
1196 SET(sc->sc_lcr, PL01X_LCR_FEN);
1197
1198 /*
1199 * If we're not in a mode that assumes a connection is present, then
1200 * ignore carrier changes.
1201 */
1202 if (ISSET(t->c_cflag, CLOCAL | MDMBUF))
1203 sc->sc_msr_dcd = 0;
1204 else
1205 sc->sc_msr_dcd = PL01X_MSR_DCD;
1206 /*
1207 * Set the flow control pins depending on the current flow control
1208 * mode.
1209 */
1210 if (ISSET(t->c_cflag, CRTSCTS)) {
1211 sc->sc_mcr_dtr = PL01X_MCR_DTR;
1212 sc->sc_mcr_rts = PL01X_MCR_RTS;
1213 sc->sc_msr_cts = PL01X_MSR_CTS;
1214 } else if (ISSET(t->c_cflag, MDMBUF)) {
1215 /*
1216 * For DTR/DCD flow control, make sure we don't toggle DTR for
1217 * carrier detection.
1218 */
1219 sc->sc_mcr_dtr = 0;
1220 sc->sc_mcr_rts = PL01X_MCR_DTR;
1221 sc->sc_msr_cts = PL01X_MSR_DCD;
1222 } else {
1223 /*
1224 * If no flow control, then always set RTS. This will make
1225 * the other side happy if it mistakenly thinks we're doing
1226 * RTS/CTS flow control.
1227 */
1228 sc->sc_mcr_dtr = PL01X_MCR_DTR | PL01X_MCR_RTS;
1229 sc->sc_mcr_rts = 0;
1230 sc->sc_msr_cts = 0;
1231 if (ISSET(sc->sc_mcr, PL01X_MCR_DTR))
1232 SET(sc->sc_mcr, PL01X_MCR_RTS);
1233 else
1234 CLR(sc->sc_mcr, PL01X_MCR_RTS);
1235 }
1236 sc->sc_msr_mask = sc->sc_msr_cts | sc->sc_msr_dcd;
1237
1238 #if 0
1239 if (ospeed == 0)
1240 CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1241 else
1242 SET(sc->sc_mcr, sc->sc_mcr_dtr);
1243 #endif
1244
1245 sc->sc_dlbl = ospeed;
1246 sc->sc_dlbh = ospeed >> 8;
1247
1248 /* And copy to tty. */
1249 tp->t_ispeed = 0;
1250 tp->t_ospeed = t->c_ospeed;
1251 tp->t_cflag = t->c_cflag;
1252
1253 if (!sc->sc_heldchange) {
1254 if (sc->sc_tx_busy) {
1255 sc->sc_heldtbc = sc->sc_tbc;
1256 sc->sc_tbc = 0;
1257 sc->sc_heldchange = 1;
1258 } else
1259 plcom_loadchannelregs(sc);
1260 }
1261
1262 if (!ISSET(t->c_cflag, CHWFLOW)) {
1263 /* Disable the high water mark. */
1264 sc->sc_r_hiwat = 0;
1265 sc->sc_r_lowat = 0;
1266 if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1267 CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1268 plcom_schedrx(sc);
1269 }
1270 if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
1271 CLR(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
1272 plcom_hwiflow(sc);
1273 }
1274 } else {
1275 sc->sc_r_hiwat = plcom_rbuf_hiwat;
1276 sc->sc_r_lowat = plcom_rbuf_lowat;
1277 }
1278
1279 PLCOM_UNLOCK(sc);
1280 splx(s);
1281
1282 /*
1283 * Update the tty layer's idea of the carrier bit, in case we changed
1284 * CLOCAL or MDMBUF. We don't hang up here; we only do that by
1285 * explicit request.
1286 */
1287 (void) (*tp->t_linesw->l_modem)(tp, ISSET(sc->sc_msr, PL01X_MSR_DCD));
1288
1289 #ifdef PLCOM_DEBUG
1290 if (plcom_debug)
1291 plcomstatus(sc, "plcomparam ");
1292 #endif
1293
1294 if (!ISSET(t->c_cflag, CHWFLOW)) {
1295 if (sc->sc_tx_stopped) {
1296 sc->sc_tx_stopped = 0;
1297 plcomstart(tp);
1298 }
1299 }
1300
1301 return 0;
1302 }
1303
1304 void
1305 plcom_iflush(struct plcom_softc *sc)
1306 {
1307 bus_space_tag_t iot = sc->sc_iot;
1308 bus_space_handle_t ioh = sc->sc_ioh;
1309 #ifdef DIAGNOSTIC
1310 int reg;
1311 #endif
1312 int timo;
1313
1314 #ifdef DIAGNOSTIC
1315 reg = 0xffff;
1316 #endif
1317 timo = 50000;
1318 /* flush any pending I/O */
1319 while (! ISSET(bus_space_read_1(iot, ioh, plcom_fr), PL01X_FR_RXFE)
1320 && --timo)
1321 #ifdef DIAGNOSTIC
1322 reg =
1323 #else
1324 (void)
1325 #endif
1326 bus_space_read_1(iot, ioh, plcom_dr);
1327 #ifdef DIAGNOSTIC
1328 if (!timo)
1329 printf("%s: plcom_iflush timeout %02x\n", sc->sc_dev.dv_xname,
1330 reg);
1331 #endif
1332 }
1333
1334 void
1335 plcom_loadchannelregs(struct plcom_softc *sc)
1336 {
1337 bus_space_tag_t iot = sc->sc_iot;
1338 bus_space_handle_t ioh = sc->sc_ioh;
1339
1340 /* XXXXX necessary? */
1341 plcom_iflush(sc);
1342
1343 bus_space_write_1(iot, ioh, plcom_cr, 0);
1344
1345 bus_space_write_1(iot, ioh, plcom_dlbl, sc->sc_dlbl);
1346 bus_space_write_1(iot, ioh, plcom_dlbh, sc->sc_dlbh);
1347 bus_space_write_1(iot, ioh, plcom_lcr, sc->sc_lcr);
1348 /* XXX device_unit() abuse */
1349 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev),
1350 sc->sc_mcr_active = sc->sc_mcr);
1351
1352 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
1353 }
1354
1355 int
1356 plcomhwiflow(struct tty *tp, int block)
1357 {
1358 struct plcom_softc *sc =
1359 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1360 int s;
1361
1362 if (PLCOM_ISALIVE(sc) == 0)
1363 return 0;
1364
1365 if (sc->sc_mcr_rts == 0)
1366 return 0;
1367
1368 s = splserial();
1369 PLCOM_LOCK(sc);
1370
1371 if (block) {
1372 if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1373 SET(sc->sc_rx_flags, RX_TTY_BLOCKED);
1374 plcom_hwiflow(sc);
1375 }
1376 } else {
1377 if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1378 CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1379 plcom_schedrx(sc);
1380 }
1381 if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1382 CLR(sc->sc_rx_flags, RX_TTY_BLOCKED);
1383 plcom_hwiflow(sc);
1384 }
1385 }
1386
1387 PLCOM_UNLOCK(sc);
1388 splx(s);
1389 return 1;
1390 }
1391
1392 /*
1393 * (un)block input via hw flowcontrol
1394 */
1395 void
1396 plcom_hwiflow(struct plcom_softc *sc)
1397 {
1398 if (sc->sc_mcr_rts == 0)
1399 return;
1400
1401 if (ISSET(sc->sc_rx_flags, RX_ANY_BLOCK)) {
1402 CLR(sc->sc_mcr, sc->sc_mcr_rts);
1403 CLR(sc->sc_mcr_active, sc->sc_mcr_rts);
1404 } else {
1405 SET(sc->sc_mcr, sc->sc_mcr_rts);
1406 SET(sc->sc_mcr_active, sc->sc_mcr_rts);
1407 }
1408 /* XXX device_unit() abuse */
1409 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev),
1410 sc->sc_mcr_active);
1411 }
1412
1413
1414 void
1415 plcomstart(struct tty *tp)
1416 {
1417 struct plcom_softc *sc =
1418 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1419 bus_space_tag_t iot = sc->sc_iot;
1420 bus_space_handle_t ioh = sc->sc_ioh;
1421 int s;
1422
1423 if (PLCOM_ISALIVE(sc) == 0)
1424 return;
1425
1426 s = spltty();
1427 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
1428 goto out;
1429 if (sc->sc_tx_stopped)
1430 goto out;
1431
1432 if (!ttypull(tp))
1433 goto out;
1434
1435 /* Grab the first contiguous region of buffer space. */
1436 {
1437 u_char *tba;
1438 int tbc;
1439
1440 tba = tp->t_outq.c_cf;
1441 tbc = ndqb(&tp->t_outq, 0);
1442
1443 (void)splserial();
1444 PLCOM_LOCK(sc);
1445
1446 sc->sc_tba = tba;
1447 sc->sc_tbc = tbc;
1448 }
1449
1450 SET(tp->t_state, TS_BUSY);
1451 sc->sc_tx_busy = 1;
1452
1453 /* Enable transmit completion interrupts if necessary. */
1454 if (!ISSET(sc->sc_cr, PL010_CR_TIE)) {
1455 SET(sc->sc_cr, PL010_CR_TIE);
1456 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
1457 }
1458
1459 /* Output the first chunk of the contiguous buffer. */
1460 {
1461 int n;
1462
1463 n = sc->sc_tbc;
1464 if (n > sc->sc_fifolen)
1465 n = sc->sc_fifolen;
1466 bus_space_write_multi_1(iot, ioh, plcom_dr, sc->sc_tba, n);
1467 sc->sc_tbc -= n;
1468 sc->sc_tba += n;
1469 }
1470 PLCOM_UNLOCK(sc);
1471 out:
1472 splx(s);
1473 return;
1474 }
1475
1476 /*
1477 * Stop output on a line.
1478 */
1479 void
1480 plcomstop(struct tty *tp, int flag)
1481 {
1482 struct plcom_softc *sc =
1483 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1484 int s;
1485
1486 s = splserial();
1487 PLCOM_LOCK(sc);
1488 if (ISSET(tp->t_state, TS_BUSY)) {
1489 /* Stop transmitting at the next chunk. */
1490 sc->sc_tbc = 0;
1491 sc->sc_heldtbc = 0;
1492 if (!ISSET(tp->t_state, TS_TTSTOP))
1493 SET(tp->t_state, TS_FLUSH);
1494 }
1495 PLCOM_UNLOCK(sc);
1496 splx(s);
1497 }
1498
1499 void
1500 plcomdiag(void *arg)
1501 {
1502 struct plcom_softc *sc = arg;
1503 int overflows, floods;
1504 int s;
1505
1506 s = splserial();
1507 PLCOM_LOCK(sc);
1508 overflows = sc->sc_overflows;
1509 sc->sc_overflows = 0;
1510 floods = sc->sc_floods;
1511 sc->sc_floods = 0;
1512 sc->sc_errors = 0;
1513 PLCOM_UNLOCK(sc);
1514 splx(s);
1515
1516 log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
1517 sc->sc_dev.dv_xname,
1518 overflows, overflows == 1 ? "" : "s",
1519 floods, floods == 1 ? "" : "s");
1520 }
1521
1522 integrate void
1523 plcom_rxsoft(struct plcom_softc *sc, struct tty *tp)
1524 {
1525 int (*rint) (int, struct tty *) = tp->t_linesw->l_rint;
1526 u_char *get, *end;
1527 u_int cc, scc;
1528 u_char rsr;
1529 int code;
1530 int s;
1531
1532 end = sc->sc_ebuf;
1533 get = sc->sc_rbget;
1534 scc = cc = plcom_rbuf_size - sc->sc_rbavail;
1535
1536 if (cc == plcom_rbuf_size) {
1537 sc->sc_floods++;
1538 if (sc->sc_errors++ == 0)
1539 callout_reset(&sc->sc_diag_callout, 60 * hz,
1540 plcomdiag, sc);
1541 }
1542
1543 while (cc) {
1544 code = get[0];
1545 rsr = get[1];
1546 if (ISSET(rsr, PL01X_RSR_ERROR)) {
1547 if (ISSET(rsr, PL01X_RSR_OE)) {
1548 sc->sc_overflows++;
1549 if (sc->sc_errors++ == 0)
1550 callout_reset(&sc->sc_diag_callout,
1551 60 * hz, plcomdiag, sc);
1552 }
1553 if (ISSET(rsr, PL01X_RSR_BE | PL01X_RSR_FE))
1554 SET(code, TTY_FE);
1555 if (ISSET(rsr, PL01X_RSR_PE))
1556 SET(code, TTY_PE);
1557 }
1558 if ((*rint)(code, tp) == -1) {
1559 /*
1560 * The line discipline's buffer is out of space.
1561 */
1562 if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1563 /*
1564 * We're either not using flow control, or the
1565 * line discipline didn't tell us to block for
1566 * some reason. Either way, we have no way to
1567 * know when there's more space available, so
1568 * just drop the rest of the data.
1569 */
1570 get += cc << 1;
1571 if (get >= end)
1572 get -= plcom_rbuf_size << 1;
1573 cc = 0;
1574 } else {
1575 /*
1576 * Don't schedule any more receive processing
1577 * until the line discipline tells us there's
1578 * space available (through plcomhwiflow()).
1579 * Leave the rest of the data in the input
1580 * buffer.
1581 */
1582 SET(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1583 }
1584 break;
1585 }
1586 get += 2;
1587 if (get >= end)
1588 get = sc->sc_rbuf;
1589 cc--;
1590 }
1591
1592 if (cc != scc) {
1593 sc->sc_rbget = get;
1594 s = splserial();
1595 PLCOM_LOCK(sc);
1596
1597 cc = sc->sc_rbavail += scc - cc;
1598 /* Buffers should be ok again, release possible block. */
1599 if (cc >= sc->sc_r_lowat) {
1600 if (ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1601 CLR(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
1602 SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE);
1603 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
1604 }
1605 if (ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED)) {
1606 CLR(sc->sc_rx_flags, RX_IBUF_BLOCKED);
1607 plcom_hwiflow(sc);
1608 }
1609 }
1610 PLCOM_UNLOCK(sc);
1611 splx(s);
1612 }
1613 }
1614
1615 integrate void
1616 plcom_txsoft(struct plcom_softc *sc, struct tty *tp)
1617 {
1618
1619 CLR(tp->t_state, TS_BUSY);
1620 if (ISSET(tp->t_state, TS_FLUSH))
1621 CLR(tp->t_state, TS_FLUSH);
1622 else
1623 ndflush(&tp->t_outq, (int)(sc->sc_tba - tp->t_outq.c_cf));
1624 (*tp->t_linesw->l_start)(tp);
1625 }
1626
1627 integrate void
1628 plcom_stsoft(struct plcom_softc *sc, struct tty *tp)
1629 {
1630 u_char msr, delta;
1631 int s;
1632
1633 s = splserial();
1634 PLCOM_LOCK(sc);
1635 msr = sc->sc_msr;
1636 delta = sc->sc_msr_delta;
1637 sc->sc_msr_delta = 0;
1638 PLCOM_UNLOCK(sc);
1639 splx(s);
1640
1641 if (ISSET(delta, sc->sc_msr_dcd)) {
1642 /*
1643 * Inform the tty layer that carrier detect changed.
1644 */
1645 (void) (*tp->t_linesw->l_modem)(tp, ISSET(msr, PL01X_MSR_DCD));
1646 }
1647
1648 if (ISSET(delta, sc->sc_msr_cts)) {
1649 /* Block or unblock output according to flow control. */
1650 if (ISSET(msr, sc->sc_msr_cts)) {
1651 sc->sc_tx_stopped = 0;
1652 (*tp->t_linesw->l_start)(tp);
1653 } else {
1654 sc->sc_tx_stopped = 1;
1655 }
1656 }
1657
1658 #ifdef PLCOM_DEBUG
1659 if (plcom_debug)
1660 plcomstatus(sc, "plcom_stsoft");
1661 #endif
1662 }
1663
1664 void
1665 plcomsoft(void *arg)
1666 {
1667 struct plcom_softc *sc = arg;
1668 struct tty *tp;
1669
1670 if (PLCOM_ISALIVE(sc) == 0)
1671 return;
1672
1673 tp = sc->sc_tty;
1674
1675 if (sc->sc_rx_ready) {
1676 sc->sc_rx_ready = 0;
1677 plcom_rxsoft(sc, tp);
1678 }
1679
1680 if (sc->sc_st_check) {
1681 sc->sc_st_check = 0;
1682 plcom_stsoft(sc, tp);
1683 }
1684
1685 if (sc->sc_tx_done) {
1686 sc->sc_tx_done = 0;
1687 plcom_txsoft(sc, tp);
1688 }
1689 }
1690
1691 int
1692 plcomintr(void *arg)
1693 {
1694 struct plcom_softc *sc = arg;
1695 bus_space_tag_t iot = sc->sc_iot;
1696 bus_space_handle_t ioh = sc->sc_ioh;
1697 u_char *put, *end;
1698 u_int cc;
1699 u_char rsr, iir;
1700
1701 if (PLCOM_ISALIVE(sc) == 0)
1702 return 0;
1703
1704 PLCOM_LOCK(sc);
1705 iir = bus_space_read_1(iot, ioh, plcom_iir);
1706 if (! ISSET(iir, PL010_IIR_IMASK)) {
1707 PLCOM_UNLOCK(sc);
1708 return 0;
1709 }
1710
1711 end = sc->sc_ebuf;
1712 put = sc->sc_rbput;
1713 cc = sc->sc_rbavail;
1714
1715 do {
1716 u_char msr, delta, fr;
1717
1718 fr = bus_space_read_1(iot, ioh, plcom_fr);
1719
1720 if (!ISSET(fr, PL01X_FR_RXFE) &&
1721 !ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1722 while (cc > 0) {
1723 int cn_trapped = 0;
1724 put[0] = bus_space_read_1(iot, ioh,
1725 plcom_dr);
1726 rsr = bus_space_read_1(iot, ioh, plcom_rsr);
1727 /* Clear any error status. */
1728 if (ISSET(rsr, PL01X_RSR_ERROR))
1729 bus_space_write_1(iot, ioh, plcom_ecr,
1730 0);
1731 if (ISSET(rsr, PL01X_RSR_BE)) {
1732 cn_trapped = 0;
1733 cn_check_magic(sc->sc_tty->t_dev,
1734 CNC_BREAK, plcom_cnm_state);
1735 if (cn_trapped)
1736 continue;
1737 #if defined(KGDB)
1738 if (ISSET(sc->sc_hwflags,
1739 PLCOM_HW_KGDB)) {
1740 kgdb_connect(1);
1741 continue;
1742 }
1743 #endif
1744 }
1745
1746 put[1] = rsr;
1747 cn_trapped = 0;
1748 cn_check_magic(sc->sc_tty->t_dev,
1749 put[0], plcom_cnm_state);
1750 if (cn_trapped) {
1751 fr = bus_space_read_1(iot, ioh,
1752 plcom_fr);
1753 if (ISSET(fr, PL01X_FR_RXFE))
1754 break;
1755
1756 continue;
1757 }
1758 put += 2;
1759 if (put >= end)
1760 put = sc->sc_rbuf;
1761 cc--;
1762
1763 fr = bus_space_read_1(iot, ioh, plcom_fr);
1764 if (ISSET(fr, PL01X_FR_RXFE))
1765 break;
1766 }
1767
1768 /*
1769 * Current string of incoming characters ended because
1770 * no more data was available or we ran out of space.
1771 * Schedule a receive event if any data was received.
1772 * If we're out of space, turn off receive interrupts.
1773 */
1774 sc->sc_rbput = put;
1775 sc->sc_rbavail = cc;
1776 if (!ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED))
1777 sc->sc_rx_ready = 1;
1778
1779 /*
1780 * See if we are in danger of overflowing a buffer. If
1781 * so, use hardware flow control to ease the pressure.
1782 */
1783 if (!ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED) &&
1784 cc < sc->sc_r_hiwat) {
1785 SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
1786 plcom_hwiflow(sc);
1787 }
1788
1789 /*
1790 * If we're out of space, disable receive interrupts
1791 * until the queue has drained a bit.
1792 */
1793 if (!cc) {
1794 SET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
1795 CLR(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE);
1796 bus_space_write_1(iot, ioh, plcom_cr,
1797 sc->sc_cr);
1798 }
1799 } else {
1800 if (ISSET(iir, PL010_IIR_RIS)) {
1801 bus_space_write_1(iot, ioh, plcom_cr, 0);
1802 delay(10);
1803 bus_space_write_1(iot, ioh, plcom_cr,
1804 sc->sc_cr);
1805 continue;
1806 }
1807 }
1808
1809 msr = bus_space_read_1(iot, ioh, plcom_fr);
1810 delta = msr ^ sc->sc_msr;
1811 sc->sc_msr = msr;
1812 /* Clear any pending modem status interrupt. */
1813 if (iir & PL010_IIR_MIS)
1814 bus_space_write_1(iot, ioh, plcom_icr, 0);
1815 /*
1816 * Pulse-per-second (PSS) signals on edge of DCD?
1817 * Process these even if line discipline is ignoring DCD.
1818 */
1819 if (delta & sc->sc_ppsmask) {
1820 struct timeval tv;
1821 mutex_spin_enter(&timecounter_lock);
1822 if ((msr & sc->sc_ppsmask) == sc->sc_ppsassert) {
1823 /* XXX nanotime() */
1824 microtime(&tv);
1825 TIMEVAL_TO_TIMESPEC(&tv,
1826 &sc->ppsinfo.assert_timestamp);
1827 if (sc->ppsparam.mode & PPS_OFFSETASSERT) {
1828 timespecadd(&sc->ppsinfo.assert_timestamp,
1829 &sc->ppsparam.assert_offset,
1830 &sc->ppsinfo.assert_timestamp);
1831 }
1832
1833 #ifdef PPS_SYNC
1834 if (sc->ppsparam.mode & PPS_HARDPPSONASSERT)
1835 hardpps(&tv, tv.tv_usec);
1836 #endif
1837 sc->ppsinfo.assert_sequence++;
1838 sc->ppsinfo.current_mode = sc->ppsparam.mode;
1839
1840 } else if ((msr & sc->sc_ppsmask) == sc->sc_ppsclear) {
1841 /* XXX nanotime() */
1842 microtime(&tv);
1843 TIMEVAL_TO_TIMESPEC(&tv,
1844 &sc->ppsinfo.clear_timestamp);
1845 if (sc->ppsparam.mode & PPS_OFFSETCLEAR) {
1846 timespecadd(&sc->ppsinfo.clear_timestamp,
1847 &sc->ppsparam.clear_offset,
1848 &sc->ppsinfo.clear_timestamp);
1849 }
1850
1851 #ifdef PPS_SYNC
1852 if (sc->ppsparam.mode & PPS_HARDPPSONCLEAR)
1853 hardpps(&tv, tv.tv_usec);
1854 #endif
1855 sc->ppsinfo.clear_sequence++;
1856 sc->ppsinfo.current_mode = sc->ppsparam.mode;
1857 }
1858 mutex_spin_exit(&timecounter_lock);
1859 }
1860
1861 /*
1862 * Process normal status changes
1863 */
1864 if (ISSET(delta, sc->sc_msr_mask)) {
1865 SET(sc->sc_msr_delta, delta);
1866
1867 /*
1868 * Stop output immediately if we lose the output
1869 * flow control signal or carrier detect.
1870 */
1871 if (ISSET(~msr, sc->sc_msr_mask)) {
1872 sc->sc_tbc = 0;
1873 sc->sc_heldtbc = 0;
1874 #ifdef PLCOM_DEBUG
1875 if (plcom_debug)
1876 plcomstatus(sc, "plcomintr ");
1877 #endif
1878 }
1879
1880 sc->sc_st_check = 1;
1881 }
1882
1883 /*
1884 * Done handling any receive interrupts. See if data
1885 * can be * transmitted as well. Schedule tx done
1886 * event if no data left * and tty was marked busy.
1887 */
1888 if (ISSET(iir, PL010_IIR_TIS)) {
1889 /*
1890 * If we've delayed a parameter change, do it
1891 * now, and restart * output.
1892 */
1893 if (sc->sc_heldchange) {
1894 plcom_loadchannelregs(sc);
1895 sc->sc_heldchange = 0;
1896 sc->sc_tbc = sc->sc_heldtbc;
1897 sc->sc_heldtbc = 0;
1898 }
1899
1900 /*
1901 * Output the next chunk of the contiguous
1902 * buffer, if any.
1903 */
1904 if (sc->sc_tbc > 0) {
1905 int n;
1906
1907 n = sc->sc_tbc;
1908 if (n > sc->sc_fifolen)
1909 n = sc->sc_fifolen;
1910 bus_space_write_multi_1(iot, ioh, plcom_dr,
1911 sc->sc_tba, n);
1912 sc->sc_tbc -= n;
1913 sc->sc_tba += n;
1914 } else {
1915 /*
1916 * Disable transmit plcompletion
1917 * interrupts if necessary.
1918 */
1919 if (ISSET(sc->sc_cr, PL010_CR_TIE)) {
1920 CLR(sc->sc_cr, PL010_CR_TIE);
1921 bus_space_write_1(iot, ioh, plcom_cr,
1922 sc->sc_cr);
1923 }
1924 if (sc->sc_tx_busy) {
1925 sc->sc_tx_busy = 0;
1926 sc->sc_tx_done = 1;
1927 }
1928 }
1929 }
1930 } while (ISSET((iir = bus_space_read_1(iot, ioh, plcom_iir)),
1931 PL010_IIR_IMASK));
1932
1933 PLCOM_UNLOCK(sc);
1934
1935 /* Wake up the poller. */
1936 softint_schedule(sc->sc_si);
1937
1938 #ifdef RND_COM
1939 rnd_add_uint32(&sc->rnd_source, iir | rsr);
1940 #endif
1941
1942 return 1;
1943 }
1944
1945 /*
1946 * The following functions are polled getc and putc routines, shared
1947 * by the console and kgdb glue.
1948 *
1949 * The read-ahead code is so that you can detect pending in-band
1950 * cn_magic in polled mode while doing output rather than having to
1951 * wait until the kernel decides it needs input.
1952 */
1953
1954 #define MAX_READAHEAD 20
1955 static int plcom_readahead[MAX_READAHEAD];
1956 static int plcom_readaheadcount = 0;
1957
1958 int
1959 plcom_common_getc(dev_t dev, bus_space_tag_t iot, bus_space_handle_t ioh)
1960 {
1961 int s = splserial();
1962 u_char stat, c;
1963
1964 /* got a character from reading things earlier */
1965 if (plcom_readaheadcount > 0) {
1966 int i;
1967
1968 c = plcom_readahead[0];
1969 for (i = 1; i < plcom_readaheadcount; i++) {
1970 plcom_readahead[i-1] = plcom_readahead[i];
1971 }
1972 plcom_readaheadcount--;
1973 splx(s);
1974 return c;
1975 }
1976
1977 /* block until a character becomes available */
1978 while (ISSET(stat = bus_space_read_1(iot, ioh, plcom_fr), PL01X_FR_RXFE))
1979 ;
1980
1981 c = bus_space_read_1(iot, ioh, plcom_dr);
1982 stat = bus_space_read_1(iot, ioh, plcom_iir);
1983 {
1984 int cn_trapped = 0; /* unused */
1985 #ifdef DDB
1986 extern int db_active;
1987 if (!db_active)
1988 #endif
1989 cn_check_magic(dev, c, plcom_cnm_state);
1990 }
1991 splx(s);
1992 return c;
1993 }
1994
1995 void
1996 plcom_common_putc(dev_t dev, bus_space_tag_t iot, bus_space_handle_t ioh,
1997 int c)
1998 {
1999 int s = splserial();
2000 int timo;
2001
2002 int cin, stat;
2003 if (plcom_readaheadcount < MAX_READAHEAD
2004 && !ISSET(stat = bus_space_read_1(iot, ioh, plcom_fr), PL01X_FR_RXFE)) {
2005 int cn_trapped = 0;
2006 cin = bus_space_read_1(iot, ioh, plcom_dr);
2007 stat = bus_space_read_1(iot, ioh, plcom_iir);
2008 cn_check_magic(dev, cin, plcom_cnm_state);
2009 plcom_readahead[plcom_readaheadcount++] = cin;
2010 }
2011
2012 /* wait for any pending transmission to finish */
2013 timo = 150000;
2014 while (!ISSET(bus_space_read_1(iot, ioh, plcom_fr), PL01X_FR_TXFE) && --timo)
2015 continue;
2016
2017 bus_space_write_1(iot, ioh, plcom_dr, c);
2018 PLCOM_BARRIER(iot, ioh, BR | BW);
2019
2020 /* wait for this transmission to complete */
2021 timo = 1500000;
2022 while (!ISSET(bus_space_read_1(iot, ioh, plcom_fr), PL01X_FR_TXFE) && --timo)
2023 continue;
2024
2025 splx(s);
2026 }
2027
2028 /*
2029 * Initialize UART for use as console or KGDB line.
2030 */
2031 int
2032 plcominit(bus_space_tag_t iot, bus_addr_t iobase, int rate, int frequency,
2033 tcflag_t cflag, bus_space_handle_t *iohp)
2034 {
2035 bus_space_handle_t ioh;
2036
2037 if (bus_space_map(iot, iobase, PLCOM_UART_SIZE, 0, &ioh))
2038 return ENOMEM; /* ??? */
2039
2040 rate = plcomspeed(rate, frequency);
2041 bus_space_write_1(iot, ioh, plcom_cr, 0);
2042 bus_space_write_1(iot, ioh, plcom_dlbl, rate);
2043 bus_space_write_1(iot, ioh, plcom_dlbh, rate >> 8);
2044 bus_space_write_1(iot, ioh, plcom_lcr, cflag2lcr(cflag) | PL01X_LCR_FEN);
2045 bus_space_write_1(iot, ioh, plcom_cr, PL01X_CR_UARTEN);
2046
2047 #if 0
2048 /* Ought to do something like this, but we have no sc to
2049 dereference. */
2050 /* XXX device_unit() abuse */
2051 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev),
2052 PL01X_MCR_DTR | PL01X_MCR_RTS);
2053 #endif
2054
2055 *iohp = ioh;
2056 return 0;
2057 }
2058
2059 /*
2060 * Following are all routines needed for PLCOM to act as console
2061 */
2062 struct consdev plcomcons = {
2063 NULL, NULL, plcomcngetc, plcomcnputc, plcomcnpollc, NULL,
2064 NULL, NULL, NODEV, CN_NORMAL
2065 };
2066
2067
2068 int
2069 plcomcnattach(bus_space_tag_t iot, bus_addr_t iobase, int rate, int frequency,
2070 tcflag_t cflag, int unit)
2071 {
2072 int res;
2073
2074 res = plcominit(iot, iobase, rate, frequency, cflag, &plcomconsioh);
2075 if (res)
2076 return res;
2077
2078 cn_tab = &plcomcons;
2079 cn_init_magic(&plcom_cnm_state);
2080 cn_set_magic("\047\001"); /* default magic is BREAK */
2081
2082 plcomconstag = iot;
2083 plcomconsunit = unit;
2084 plcomconsrate = rate;
2085 plcomconscflag = cflag;
2086
2087 return 0;
2088 }
2089
2090 void
2091 plcomcndetach(void)
2092 {
2093 bus_space_unmap(plcomconstag, plcomconsioh, PLCOM_UART_SIZE);
2094 plcomconstag = NULL;
2095
2096 cn_tab = NULL;
2097 }
2098
2099 int
2100 plcomcngetc(dev_t dev)
2101 {
2102 return plcom_common_getc(dev, plcomconstag, plcomconsioh);
2103 }
2104
2105 /*
2106 * Console kernel output character routine.
2107 */
2108 void
2109 plcomcnputc(dev_t dev, int c)
2110 {
2111 plcom_common_putc(dev, plcomconstag, plcomconsioh, c);
2112 }
2113
2114 void
2115 plcomcnpollc(dev_t dev, int on)
2116 {
2117
2118 }
2119
2120 #ifdef KGDB
2121 int
2122 plcom_kgdb_attach(bus_space_tag_t iot, bus_addr_t iobase, int rate,
2123 int frequency, tcflag_t cflag, int unit)
2124 {
2125 int res;
2126
2127 if (iot == plcomconstag && iobase == plcomconsunit)
2128 return EBUSY; /* cannot share with console */
2129
2130 res = plcominit(iot, iobase, rate, frequency, cflag, &plcom_kgdb_ioh);
2131 if (res)
2132 return res;
2133
2134 kgdb_attach(plcom_kgdb_getc, plcom_kgdb_putc, NULL);
2135 kgdb_dev = 123; /* unneeded, only to satisfy some tests */
2136
2137 plcom_kgdb_iot = iot;
2138 plcom_kgdb_unit = unit;
2139
2140 return 0;
2141 }
2142
2143 /* ARGSUSED */
2144 int
2145 plcom_kgdb_getc(void *arg)
2146 {
2147 return plcom_common_getc(NODEV, plcom_kgdb_iot, plcom_kgdb_ioh);
2148 }
2149
2150 /* ARGSUSED */
2151 void
2152 plcom_kgdb_putc(void *arg, int c)
2153 {
2154 plcom_common_putc(NODEV, plcom_kgdb_iot, plcom_kgdb_ioh, c);
2155 }
2156 #endif /* KGDB */
2157
2158 /* helper function to identify the plcom ports used by
2159 console or KGDB (and not yet autoconf attached) */
2160 int
2161 plcom_is_console(bus_space_tag_t iot, int unit,
2162 bus_space_handle_t *ioh)
2163 {
2164 bus_space_handle_t help;
2165
2166 if (!plcomconsattached &&
2167 iot == plcomconstag && unit == plcomconsunit)
2168 help = plcomconsioh;
2169 #ifdef KGDB
2170 else if (!plcom_kgdb_attached &&
2171 iot == plcom_kgdb_iot && unit == plcom_kgdb_unit)
2172 help = plcom_kgdb_ioh;
2173 #endif
2174 else
2175 return 0;
2176
2177 if (ioh)
2178 *ioh = help;
2179 return 1;
2180 }
2181