plcom.c revision 1.46 1 /* $NetBSD: plcom.c,v 1.46 2013/09/05 07:09:14 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 2001 ARM Ltd
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the company may not be used to endorse or promote
16 * products derived from this software without specific prior written
17 * permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
23 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * Copyright (c) 1998, 1999, 2012 The NetBSD Foundation, Inc.
32 * All rights reserved.
33 *
34 * This code is derived from software contributed to The NetBSD Foundation
35 * by Charles M. Hannum and Nick Hudson.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
47 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
48 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
49 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
50 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
51 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
52 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
53 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
54 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
55 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
56 * POSSIBILITY OF SUCH DAMAGE.
57 */
58
59 /*
60 * Copyright (c) 1991 The Regents of the University of California.
61 * All rights reserved.
62 *
63 * Redistribution and use in source and binary forms, with or without
64 * modification, are permitted provided that the following conditions
65 * are met:
66 * 1. Redistributions of source code must retain the above copyright
67 * notice, this list of conditions and the following disclaimer.
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in the
70 * documentation and/or other materials provided with the distribution.
71 * 3. Neither the name of the University nor the names of its contributors
72 * may be used to endorse or promote products derived from this software
73 * without specific prior written permission.
74 *
75 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
76 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
77 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
78 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
79 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
80 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
81 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
82 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
83 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
84 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
85 * SUCH DAMAGE.
86 *
87 * @(#)com.c 7.5 (Berkeley) 5/16/91
88 */
89
90 /*
91 * COM driver for the Prime Cell PL010 and PL011 UARTs. Both are is similar to
92 * the 16C550, but have a completely different programmer's model.
93 * Derived from the NS16550AF com driver.
94 */
95
96 #include <sys/cdefs.h>
97 __KERNEL_RCSID(0, "$NetBSD: plcom.c,v 1.46 2013/09/05 07:09:14 skrll Exp $");
98
99 #include "opt_plcom.h"
100 #include "opt_ddb.h"
101 #include "opt_kgdb.h"
102 #include "opt_lockdebug.h"
103 #include "opt_multiprocessor.h"
104
105 #include "rnd.h"
106
107 /*
108 * Override cnmagic(9) macro before including <sys/systm.h>.
109 * We need to know if cn_check_magic triggered debugger, so set a flag.
110 * Callers of cn_check_magic must declare int cn_trapped = 0;
111 * XXX: this is *ugly*!
112 */
113 #define cn_trap() \
114 do { \
115 console_debugger(); \
116 cn_trapped = 1; \
117 } while (/* CONSTCOND */ 0)
118
119 #include <sys/param.h>
120 #include <sys/systm.h>
121 #include <sys/ioctl.h>
122 #include <sys/select.h>
123 #include <sys/tty.h>
124 #include <sys/proc.h>
125 #include <sys/conf.h>
126 #include <sys/file.h>
127 #include <sys/uio.h>
128 #include <sys/kernel.h>
129 #include <sys/syslog.h>
130 #include <sys/types.h>
131 #include <sys/device.h>
132 #include <sys/malloc.h>
133 #include <sys/timepps.h>
134 #include <sys/vnode.h>
135 #include <sys/kauth.h>
136 #include <sys/intr.h>
137 #include <sys/bus.h>
138 #ifdef RND_COM
139 #include <sys/rnd.h>
140 #endif
141
142 #include <evbarm/dev/plcomreg.h>
143 #include <evbarm/dev/plcomvar.h>
144
145 #include <dev/cons.h>
146
147 static void plcom_enable_debugport (struct plcom_softc *);
148
149 void plcom_config (struct plcom_softc *);
150 void plcom_shutdown (struct plcom_softc *);
151 int pl010comspeed (long, long);
152 int pl011comspeed (long, long);
153 static u_char cflag2lcr (tcflag_t);
154 int plcomparam (struct tty *, struct termios *);
155 void plcomstart (struct tty *);
156 int plcomhwiflow (struct tty *, int);
157
158 void plcom_loadchannelregs (struct plcom_softc *);
159 void plcom_hwiflow (struct plcom_softc *);
160 void plcom_break (struct plcom_softc *, int);
161 void plcom_modem (struct plcom_softc *, int);
162 void tiocm_to_plcom (struct plcom_softc *, u_long, int);
163 int plcom_to_tiocm (struct plcom_softc *);
164 void plcom_iflush (struct plcom_softc *);
165
166 int plcom_common_getc (dev_t, struct plcom_instance *);
167 void plcom_common_putc (dev_t, struct plcom_instance *, int);
168
169 int plcominit (struct plcom_instance *, int, int, tcflag_t);
170
171 dev_type_open(plcomopen);
172 dev_type_close(plcomclose);
173 dev_type_read(plcomread);
174 dev_type_write(plcomwrite);
175 dev_type_ioctl(plcomioctl);
176 dev_type_stop(plcomstop);
177 dev_type_tty(plcomtty);
178 dev_type_poll(plcompoll);
179
180 int plcomcngetc (dev_t);
181 void plcomcnputc (dev_t, int);
182 void plcomcnpollc (dev_t, int);
183
184 #define integrate static inline
185 void plcomsoft (void *);
186 integrate void plcom_rxsoft (struct plcom_softc *, struct tty *);
187 integrate void plcom_txsoft (struct plcom_softc *, struct tty *);
188 integrate void plcom_stsoft (struct plcom_softc *, struct tty *);
189 integrate void plcom_schedrx (struct plcom_softc *);
190 void plcomdiag (void *);
191
192 bool plcom_intstatus(struct plcom_instance *, u_int *);
193
194 extern struct cfdriver plcom_cd;
195
196 const struct cdevsw plcom_cdevsw = {
197 plcomopen, plcomclose, plcomread, plcomwrite, plcomioctl,
198 plcomstop, plcomtty, plcompoll, nommap, ttykqfilter, D_TTY
199 };
200
201 /*
202 * Make this an option variable one can patch.
203 * But be warned: this must be a power of 2!
204 */
205 u_int plcom_rbuf_size = PLCOM_RING_SIZE;
206
207 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
208 u_int plcom_rbuf_hiwat = (PLCOM_RING_SIZE * 1) / 4;
209 u_int plcom_rbuf_lowat = (PLCOM_RING_SIZE * 3) / 4;
210
211 static int plcomconsunit = -1;
212 static struct plcom_instance plcomcons_info;
213
214 static int plcomconsattached;
215 static int plcomconsrate;
216 static tcflag_t plcomconscflag;
217 static struct cnm_state plcom_cnm_state;
218
219 static int ppscap =
220 PPS_TSFMT_TSPEC |
221 PPS_CAPTUREASSERT |
222 PPS_CAPTURECLEAR |
223 #ifdef PPS_SYNC
224 PPS_HARDPPSONASSERT | PPS_HARDPPSONCLEAR |
225 #endif /* PPS_SYNC */
226 PPS_OFFSETASSERT | PPS_OFFSETCLEAR;
227
228 #ifdef KGDB
229 #include <sys/kgdb.h>
230
231 static struct plcom_instance plcomkgdb_info;
232 static int plcom_kgdb_attached;
233
234 int plcom_kgdb_getc (void *);
235 void plcom_kgdb_putc (void *, int);
236 #endif /* KGDB */
237
238 #define PLCOMUNIT_MASK 0x7ffff
239 #define PLCOMDIALOUT_MASK 0x80000
240
241 #define PLCOMUNIT(x) (minor(x) & PLCOMUNIT_MASK)
242 #define PLCOMDIALOUT(x) (minor(x) & PLCOMDIALOUT_MASK)
243
244 #define PLCOM_ISALIVE(sc) ((sc)->enabled != 0 && \
245 device_is_active((sc)->sc_dev))
246
247 #define BR BUS_SPACE_BARRIER_READ
248 #define BW BUS_SPACE_BARRIER_WRITE
249 #define PLCOM_BARRIER(pi, f) \
250 bus_space_barrier((pi)->pi_iot, (pi)->pi_ioh, 0, (pi)->pi_size, (f))
251
252 static uint8_t
253 pread1(struct plcom_instance *pi, bus_size_t reg)
254 {
255 if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS))
256 return bus_space_read_1(pi->pi_iot, pi->pi_ioh, reg);
257
258 return bus_space_read_4(pi->pi_iot, pi->pi_ioh, reg & -4) >>
259 (8 * (reg & 3));
260 }
261 int nhcr;
262 static void
263 pwrite1(struct plcom_instance *pi, bus_size_t o, uint8_t val)
264 {
265 if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS)) {
266 bus_space_write_1(pi->pi_iot, pi->pi_ioh, o, val);
267 } else {
268 const size_t shift = 8 * (o & 3);
269 o &= -4;
270 uint32_t tmp = bus_space_read_4(pi->pi_iot, pi->pi_ioh, o);
271 tmp = (val << shift) | (tmp & ~(0xff << shift));
272 bus_space_write_4(pi->pi_iot, pi->pi_ioh, o, tmp);
273 }
274 }
275
276 static void
277 pwritem1(struct plcom_instance *pi, bus_size_t o, const uint8_t *datap,
278 bus_size_t count)
279 {
280 if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS)) {
281 bus_space_write_multi_1(pi->pi_iot, pi->pi_ioh, o, datap, count);
282 } else {
283 KASSERT((o & 3) == 0);
284 while (count--) {
285 bus_space_write_4(pi->pi_iot, pi->pi_ioh, o, *datap++);
286 };
287 }
288 }
289
290 #define PREAD1(pi, reg) pread1(pi, reg)
291 #define PREAD4(pi, reg) \
292 (bus_space_read_4((pi)->pi_iot, (pi)->pi_ioh, (reg)))
293
294 #define PWRITE1(pi, reg, val) pwrite1(pi, reg, val)
295 #define PWRITEM1(pi, reg, d, c) pwritem1(pi, reg, d, c)
296 #define PWRITE4(pi, reg, val) \
297 (bus_space_write_4((pi)->pi_iot, (pi)->pi_ioh, (reg), (val)))
298
299 int
300 pl010comspeed(long speed, long frequency)
301 {
302 #define divrnd(n, q) (((n)*2/(q)+1)/2) /* divide and round off */
303
304 int x, err;
305
306 #if 0
307 if (speed == 0)
308 return 0;
309 #endif
310 if (speed <= 0)
311 return -1;
312 x = divrnd(frequency / 16, speed);
313 if (x <= 0)
314 return -1;
315 err = divrnd(((quad_t)frequency) * 1000 / 16, speed * x) - 1000;
316 if (err < 0)
317 err = -err;
318 if (err > PLCOM_TOLERANCE)
319 return -1;
320 return x;
321
322 #undef divrnd
323 }
324
325 int
326 pl011comspeed(long speed, long frequency)
327 {
328 int denom = 16 * speed;
329 int div = frequency / denom;
330 int rem = frequency % denom;
331
332 int ibrd = div << 6;
333 int fbrd = (((8 * rem) / speed) + 1) / 2;
334
335 /* Tolerance? */
336 return ibrd | fbrd;
337 }
338
339 #ifdef PLCOM_DEBUG
340 int plcom_debug = 0;
341
342 void plcomstatus (struct plcom_softc *, const char *);
343 void
344 plcomstatus(struct plcom_softc *sc, const char *str)
345 {
346 struct tty *tp = sc->sc_tty;
347
348 printf("%s: %s %sclocal %sdcd %sts_carr_on %sdtr %stx_stopped\n",
349 device_xname(sc->sc_dev), str,
350 ISSET(tp->t_cflag, CLOCAL) ? "+" : "-",
351 ISSET(sc->sc_msr, PL01X_MSR_DCD) ? "+" : "-",
352 ISSET(tp->t_state, TS_CARR_ON) ? "+" : "-",
353 ISSET(sc->sc_mcr, PL01X_MCR_DTR) ? "+" : "-",
354 sc->sc_tx_stopped ? "+" : "-");
355
356 printf("%s: %s %scrtscts %scts %sts_ttstop %srts %xrx_flags\n",
357 device_xname(sc->sc_dev), str,
358 ISSET(tp->t_cflag, CRTSCTS) ? "+" : "-",
359 ISSET(sc->sc_msr, PL01X_MSR_CTS) ? "+" : "-",
360 ISSET(tp->t_state, TS_TTSTOP) ? "+" : "-",
361 ISSET(sc->sc_mcr, PL01X_MCR_RTS) ? "+" : "-",
362 sc->sc_rx_flags);
363 }
364 #endif
365
366 #if 0
367 int
368 plcomprobe1(bus_space_tag_t iot, bus_space_handle_t ioh)
369 {
370 int data;
371
372 /* Disable the UART. */
373 bus_space_write_1(iot, ioh, plcom_cr, 0);
374 /* Make sure the FIFO is off. */
375 bus_space_write_1(iot, ioh, plcom_lcr, PL01X_LCR_8BITS);
376 /* Disable interrupts. */
377 bus_space_write_1(iot, ioh, plcom_iir, 0);
378
379 /* Make sure we swallow anything in the receiving register. */
380 data = bus_space_read_1(iot, ioh, plcom_dr);
381
382 if (bus_space_read_1(iot, ioh, plcom_lcr) != PL01X_LCR_8BITS)
383 return 0;
384
385 data = bus_space_read_1(iot, ioh, plcom_fr) & (PL01X_FR_RXFF | PL01X_FR_RXFE);
386
387 if (data != PL01X_FR_RXFE)
388 return 0;
389
390 return 1;
391 }
392 #endif
393
394 /*
395 * No locking in this routine; it is only called during attach,
396 * or with the port already locked.
397 */
398 static void
399 plcom_enable_debugport(struct plcom_softc *sc)
400 {
401 struct plcom_instance *pi = &sc->sc_pi;
402
403 sc->sc_cr = PL01X_CR_UARTEN;
404 SET(sc->sc_mcr, PL01X_MCR_DTR | PL01X_MCR_RTS);
405
406 /* Turn on line break interrupt, set carrier. */
407 switch (pi->pi_type) {
408 case PLCOM_TYPE_PL010:
409 SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE);
410 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
411 if (sc->sc_set_mcr) {
412 /* XXX device_unit() abuse */
413 sc->sc_set_mcr(sc->sc_set_mcr_arg,
414 device_unit(sc->sc_dev), sc->sc_mcr);
415 }
416 break;
417 case PLCOM_TYPE_PL011:
418 sc->sc_imsc = PL011_INT_RX | PL011_INT_RT;
419 SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
420 SET(sc->sc_cr, PL011_MCR(sc->sc_mcr));
421 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
422 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
423 break;
424 }
425
426 }
427
428 void
429 plcom_attach_subr(struct plcom_softc *sc)
430 {
431 struct plcom_instance *pi = &sc->sc_pi;
432 struct tty *tp;
433
434 aprint_naive("\n");
435
436 callout_init(&sc->sc_diag_callout, 0);
437 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_HIGH);
438
439 switch (pi->pi_type) {
440 case PLCOM_TYPE_PL010:
441 case PLCOM_TYPE_PL011:
442 break;
443 default:
444 aprint_error_dev(sc->sc_dev,
445 "Unknown plcom type: %d\n", pi->pi_type);
446 return;
447 }
448
449 /* Disable interrupts before configuring the device. */
450 sc->sc_cr = 0;
451 sc->sc_imsc = 0;
452
453 if (bus_space_is_equal(pi->pi_iot, plcomcons_info.pi_iot) &&
454 pi->pi_iobase == plcomcons_info.pi_iobase) {
455 plcomconsattached = 1;
456
457 /* Make sure the console is always "hardwired". */
458 delay(1000); /* wait for output to finish */
459 SET(sc->sc_hwflags, PLCOM_HW_CONSOLE);
460 SET(sc->sc_swflags, TIOCFLAG_SOFTCAR);
461 /*
462 * Must re-enable the console immediately, or we will
463 * hang when trying to print.
464 */
465 sc->sc_cr = PL01X_CR_UARTEN;
466 if (pi->pi_type == PLCOM_TYPE_PL011)
467 SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
468 }
469
470 switch (pi->pi_type) {
471 case PLCOM_TYPE_PL010:
472 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
473 break;
474
475 case PLCOM_TYPE_PL011:
476 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
477 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
478 break;
479 }
480
481 if (sc->sc_fifolen == 0) {
482 switch (pi->pi_type) {
483 case PLCOM_TYPE_PL010:
484 /*
485 * The PL010 has a 16-byte fifo, but the tx interrupt
486 * triggers when there is space for 8 more bytes.
487 */
488 sc->sc_fifolen = 8;
489 break;
490 case PLCOM_TYPE_PL011:
491 /* Some revisions have a 32 byte TX FIFO */
492 sc->sc_fifolen = 16;
493 break;
494 }
495 }
496 aprint_normal("\n");
497
498 if (ISSET(sc->sc_hwflags, PLCOM_HW_TXFIFO_DISABLE)) {
499 sc->sc_fifolen = 1;
500 aprint_normal_dev(sc->sc_dev, "txfifo disabled\n");
501 }
502
503 if (sc->sc_fifolen > 1)
504 SET(sc->sc_hwflags, PLCOM_HW_FIFO);
505
506 tp = tty_alloc();
507 tp->t_oproc = plcomstart;
508 tp->t_param = plcomparam;
509 tp->t_hwiflow = plcomhwiflow;
510
511 sc->sc_tty = tp;
512 sc->sc_rbuf = malloc(plcom_rbuf_size << 1, M_DEVBUF, M_NOWAIT);
513 sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
514 sc->sc_rbavail = plcom_rbuf_size;
515 if (sc->sc_rbuf == NULL) {
516 aprint_error_dev(sc->sc_dev,
517 "unable to allocate ring buffer\n");
518 return;
519 }
520 sc->sc_ebuf = sc->sc_rbuf + (plcom_rbuf_size << 1);
521
522 tty_attach(tp);
523
524 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
525 int maj;
526
527 /* locate the major number */
528 maj = cdevsw_lookup_major(&plcom_cdevsw);
529
530 tp->t_dev = cn_tab->cn_dev = makedev(maj, device_unit(sc->sc_dev));
531
532 aprint_normal_dev(sc->sc_dev, "console\n");
533 }
534
535 #ifdef KGDB
536 /*
537 * Allow kgdb to "take over" this port. If this is
538 * the kgdb device, it has exclusive use.
539 */
540 if (bus_space_is_equal(pi->pi_iot, plcomkgdb_info.pi_iot) &&
541 pi->pi_iobase == plcomkgdb_info.pi_iobase) {
542 if (!ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
543 plcom_kgdb_attached = 1;
544
545 SET(sc->sc_hwflags, PLCOM_HW_KGDB);
546 }
547 aprint_normal_dev(sc->sc_dev, "kgdb\n");
548 }
549 #endif
550
551 sc->sc_si = softint_establish(SOFTINT_SERIAL, plcomsoft, sc);
552
553 #ifdef RND_COM
554 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
555 RND_TYPE_TTY, 0);
556 #endif
557
558 /*
559 * if there are no enable/disable functions, assume the device
560 * is always enabled
561 */
562 if (!sc->enable)
563 sc->enabled = 1;
564
565 plcom_config(sc);
566
567 SET(sc->sc_hwflags, PLCOM_HW_DEV_OK);
568 }
569
570 void
571 plcom_config(struct plcom_softc *sc)
572 {
573 struct plcom_instance *pi = &sc->sc_pi;
574
575 /* Disable interrupts before configuring the device. */
576 sc->sc_cr = 0;
577 sc->sc_imsc = 0;
578 switch (pi->pi_type) {
579 case PLCOM_TYPE_PL010:
580 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
581 break;
582
583 case PLCOM_TYPE_PL011:
584 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
585 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
586 break;
587 }
588
589 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE|PLCOM_HW_KGDB))
590 plcom_enable_debugport(sc);
591 }
592
593 int
594 plcom_detach(device_t self, int flags)
595 {
596 struct plcom_softc *sc = device_private(self);
597 int maj, mn;
598
599 if (sc->sc_hwflags & (PLCOM_HW_CONSOLE|PLCOM_HW_KGDB))
600 return EBUSY;
601
602 if (sc->disable != NULL && sc->enabled != 0) {
603 (*sc->disable)(sc);
604 sc->enabled = 0;
605 }
606
607 /* locate the major number */
608 maj = cdevsw_lookup_major(&plcom_cdevsw);
609
610 /* Nuke the vnodes for any open instances. */
611 mn = device_unit(self);
612 vdevgone(maj, mn, mn, VCHR);
613
614 mn |= PLCOMDIALOUT_MASK;
615 vdevgone(maj, mn, mn, VCHR);
616
617 if (sc->sc_rbuf == NULL) {
618 /*
619 * Ring buffer allocation failed in the plcom_attach_subr,
620 * only the tty is allocated, and nothing else.
621 */
622 tty_free(sc->sc_tty);
623 return 0;
624 }
625
626 /* Free the receive buffer. */
627 free(sc->sc_rbuf, M_DEVBUF);
628
629 /* Detach and free the tty. */
630 tty_detach(sc->sc_tty);
631 tty_free(sc->sc_tty);
632
633 /* Unhook the soft interrupt handler. */
634 softint_disestablish(sc->sc_si);
635
636 #ifdef RND_COM
637 /* Unhook the entropy source. */
638 rnd_detach_source(&sc->rnd_source);
639 #endif
640 callout_destroy(&sc->sc_diag_callout);
641
642 /* Destroy the lock. */
643 mutex_destroy(&sc->sc_lock);
644
645 return 0;
646 }
647
648 int
649 plcom_activate(device_t self, enum devact act)
650 {
651 struct plcom_softc *sc = device_private(self);
652
653 switch (act) {
654 case DVACT_DEACTIVATE:
655 sc->enabled = 0;
656 return 0;
657 default:
658 return EOPNOTSUPP;
659 }
660 }
661
662 void
663 plcom_shutdown(struct plcom_softc *sc)
664 {
665 struct plcom_instance *pi = &sc->sc_pi;
666 struct tty *tp = sc->sc_tty;
667 mutex_spin_enter(&sc->sc_lock);
668
669 /* If we were asserting flow control, then deassert it. */
670 SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
671 plcom_hwiflow(sc);
672
673 /* Clear any break condition set with TIOCSBRK. */
674 plcom_break(sc, 0);
675
676 /* Turn off PPS capture on last close. */
677 mutex_spin_enter(&timecounter_lock);
678 sc->sc_ppsmask = 0;
679 sc->ppsparam.mode = 0;
680 mutex_spin_exit(&timecounter_lock);
681
682 /*
683 * Hang up if necessary. Wait a bit, so the other side has time to
684 * notice even if we immediately open the port again.
685 * Avoid tsleeping above splhigh().
686 */
687 if (ISSET(tp->t_cflag, HUPCL)) {
688 plcom_modem(sc, 0);
689 mutex_spin_exit(&sc->sc_lock);
690 /* XXX will only timeout */
691 (void) kpause(ttclos, false, hz, NULL);
692 mutex_spin_enter(&sc->sc_lock);
693 }
694
695 sc->sc_cr = 0;
696 sc->sc_imsc = 0;
697 /* Turn off interrupts. */
698 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
699 /* interrupt on break */
700
701 sc->sc_cr = PL01X_CR_UARTEN;
702 sc->sc_imsc = 0;
703 switch (pi->pi_type) {
704 case PLCOM_TYPE_PL010:
705 SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE);
706 break;
707 case PLCOM_TYPE_PL011:
708 SET(sc->sc_cr, PL011_CR_RXE);
709 SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX);
710 break;
711 }
712 }
713 switch (pi->pi_type) {
714 case PLCOM_TYPE_PL010:
715 SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE);
716 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
717 break;
718 case PLCOM_TYPE_PL011:
719 SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
720 SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX);
721 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
722 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
723 break;
724 }
725
726 mutex_spin_exit(&sc->sc_lock);
727 if (sc->disable) {
728 #ifdef DIAGNOSTIC
729 if (!sc->enabled)
730 panic("plcom_shutdown: not enabled?");
731 #endif
732 (*sc->disable)(sc);
733 sc->enabled = 0;
734 }
735 }
736
737 int
738 plcomopen(dev_t dev, int flag, int mode, struct lwp *l)
739 {
740 struct plcom_softc *sc;
741 struct plcom_instance *pi;
742 struct tty *tp;
743 int s;
744 int error;
745
746 sc = device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
747 if (sc == NULL || !ISSET(sc->sc_hwflags, PLCOM_HW_DEV_OK) ||
748 sc->sc_rbuf == NULL)
749 return ENXIO;
750
751 if (!device_is_active(sc->sc_dev))
752 return ENXIO;
753
754 pi = &sc->sc_pi;
755
756 #ifdef KGDB
757 /*
758 * If this is the kgdb port, no other use is permitted.
759 */
760 if (ISSET(sc->sc_hwflags, PLCOM_HW_KGDB))
761 return EBUSY;
762 #endif
763
764 tp = sc->sc_tty;
765
766 if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
767 return (EBUSY);
768
769 s = spltty();
770
771 /*
772 * Do the following iff this is a first open.
773 */
774 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
775 struct termios t;
776
777 tp->t_dev = dev;
778
779 if (sc->enable) {
780 if ((*sc->enable)(sc)) {
781 splx(s);
782 aprint_error_dev(sc->sc_dev,
783 "device enable failed\n");
784 return EIO;
785 }
786 mutex_spin_enter(&sc->sc_lock);
787 sc->enabled = 1;
788 plcom_config(sc);
789 } else {
790 mutex_spin_enter(&sc->sc_lock);
791 }
792
793 /* Turn on interrupts. */
794 /* IER_ERXRDY | IER_ERLS | IER_EMSC; */
795 /* Fetch the current modem control status, needed later. */
796 sc->sc_cr = PL01X_CR_UARTEN;
797 switch (pi->pi_type) {
798 case PLCOM_TYPE_PL010:
799 SET(sc->sc_cr,
800 PL010_CR_RIE | PL010_CR_RTIE | PL010_CR_MSIE);
801 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
802 sc->sc_msr = PREAD1(pi, PL01XCOM_FR);
803 break;
804 case PLCOM_TYPE_PL011:
805 SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
806 SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX |
807 PL011_INT_MSMASK);
808 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
809 sc->sc_msr = PREAD4(pi, PL01XCOM_FR);
810 break;
811 }
812
813 /* Clear PPS capture state on first open. */
814
815 mutex_spin_enter(&timecounter_lock);
816 sc->sc_ppsmask = 0;
817 sc->ppsparam.mode = 0;
818 mutex_spin_exit(&timecounter_lock);
819
820 mutex_spin_exit(&sc->sc_lock);
821
822 /*
823 * Initialize the termios status to the defaults. Add in the
824 * sticky bits from TIOCSFLAGS.
825 */
826 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
827 t.c_ospeed = plcomconsrate;
828 t.c_cflag = plcomconscflag;
829 } else {
830 t.c_ospeed = TTYDEF_SPEED;
831 t.c_cflag = TTYDEF_CFLAG;
832 }
833 t.c_ispeed = t.c_ospeed;
834
835 if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL))
836 SET(t.c_cflag, CLOCAL);
837 if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS))
838 SET(t.c_cflag, CRTSCTS);
839 if (ISSET(sc->sc_swflags, TIOCFLAG_MDMBUF))
840 SET(t.c_cflag, MDMBUF);
841 /* Make sure plcomparam() will do something. */
842 tp->t_ospeed = 0;
843 (void) plcomparam(tp, &t);
844 tp->t_iflag = TTYDEF_IFLAG;
845 tp->t_oflag = TTYDEF_OFLAG;
846 tp->t_lflag = TTYDEF_LFLAG;
847 ttychars(tp);
848 ttsetwater(tp);
849
850 mutex_spin_enter(&sc->sc_lock);
851
852 /*
853 * Turn on DTR. We must always do this, even if carrier is not
854 * present, because otherwise we'd have to use TIOCSDTR
855 * immediately after setting CLOCAL, which applications do not
856 * expect. We always assert DTR while the device is open
857 * unless explicitly requested to deassert it.
858 */
859 plcom_modem(sc, 1);
860
861 /* Clear the input ring, and unblock. */
862 sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
863 sc->sc_rbavail = plcom_rbuf_size;
864 plcom_iflush(sc);
865 CLR(sc->sc_rx_flags, RX_ANY_BLOCK);
866 plcom_hwiflow(sc);
867
868 #ifdef PLCOM_DEBUG
869 if (plcom_debug)
870 plcomstatus(sc, "plcomopen ");
871 #endif
872
873 mutex_spin_exit(&sc->sc_lock);
874 }
875
876 splx(s);
877
878 error = ttyopen(tp, PLCOMDIALOUT(dev), ISSET(flag, O_NONBLOCK));
879 if (error)
880 goto bad;
881
882 error = (*tp->t_linesw->l_open)(dev, tp);
883 if (error)
884 goto bad;
885
886 return 0;
887
888 bad:
889 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
890 /*
891 * We failed to open the device, and nobody else had it opened.
892 * Clean up the state as appropriate.
893 */
894 plcom_shutdown(sc);
895 }
896
897 return error;
898 }
899
900 int
901 plcomclose(dev_t dev, int flag, int mode, struct lwp *l)
902 {
903 struct plcom_softc *sc =
904 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
905 struct tty *tp = sc->sc_tty;
906
907 /* XXX This is for cons.c. */
908 if (!ISSET(tp->t_state, TS_ISOPEN))
909 return 0;
910
911 (*tp->t_linesw->l_close)(tp, flag);
912 ttyclose(tp);
913
914 if (PLCOM_ISALIVE(sc) == 0)
915 return 0;
916
917 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
918 /*
919 * Although we got a last close, the device may still be in
920 * use; e.g. if this was the dialout node, and there are still
921 * processes waiting for carrier on the non-dialout node.
922 */
923 plcom_shutdown(sc);
924 }
925
926 return 0;
927 }
928
929 int
930 plcomread(dev_t dev, struct uio *uio, int flag)
931 {
932 struct plcom_softc *sc =
933 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
934 struct tty *tp = sc->sc_tty;
935
936 if (PLCOM_ISALIVE(sc) == 0)
937 return EIO;
938
939 return (*tp->t_linesw->l_read)(tp, uio, flag);
940 }
941
942 int
943 plcomwrite(dev_t dev, struct uio *uio, int flag)
944 {
945 struct plcom_softc *sc =
946 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
947 struct tty *tp = sc->sc_tty;
948
949 if (PLCOM_ISALIVE(sc) == 0)
950 return EIO;
951
952 return (*tp->t_linesw->l_write)(tp, uio, flag);
953 }
954
955 int
956 plcompoll(dev_t dev, int events, struct lwp *l)
957 {
958 struct plcom_softc *sc =
959 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
960 struct tty *tp = sc->sc_tty;
961
962 if (PLCOM_ISALIVE(sc) == 0)
963 return EIO;
964
965 return (*tp->t_linesw->l_poll)(tp, events, l);
966 }
967
968 struct tty *
969 plcomtty(dev_t dev)
970 {
971 struct plcom_softc *sc =
972 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
973 struct tty *tp = sc->sc_tty;
974
975 return tp;
976 }
977
978 int
979 plcomioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
980 {
981 struct plcom_softc *sc =
982 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
983 struct tty *tp;
984 int error;
985
986 if (sc == NULL)
987 return ENXIO;
988 if (PLCOM_ISALIVE(sc) == 0)
989 return EIO;
990
991 tp = sc->sc_tty;
992
993 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
994 if (error != EPASSTHROUGH)
995 return error;
996
997 error = ttioctl(tp, cmd, data, flag, l);
998 if (error != EPASSTHROUGH)
999 return error;
1000
1001 error = 0;
1002 switch (cmd) {
1003 case TIOCSFLAGS:
1004 error = kauth_authorize_device_tty(l->l_cred,
1005 KAUTH_DEVICE_TTY_PRIVSET, tp);
1006 break;
1007 default:
1008 /* nothing */
1009 break;
1010 }
1011 if (error) {
1012 return error;
1013 }
1014
1015 mutex_spin_enter(&sc->sc_lock);
1016 switch (cmd) {
1017 case TIOCSBRK:
1018 plcom_break(sc, 1);
1019 break;
1020
1021 case TIOCCBRK:
1022 plcom_break(sc, 0);
1023 break;
1024
1025 case TIOCSDTR:
1026 plcom_modem(sc, 1);
1027 break;
1028
1029 case TIOCCDTR:
1030 plcom_modem(sc, 0);
1031 break;
1032
1033 case TIOCGFLAGS:
1034 *(int *)data = sc->sc_swflags;
1035 break;
1036
1037 case TIOCSFLAGS:
1038 sc->sc_swflags = *(int *)data;
1039 break;
1040
1041 case TIOCMSET:
1042 case TIOCMBIS:
1043 case TIOCMBIC:
1044 tiocm_to_plcom(sc, cmd, *(int *)data);
1045 break;
1046
1047 case TIOCMGET:
1048 *(int *)data = plcom_to_tiocm(sc);
1049 break;
1050
1051 case PPS_IOC_CREATE:
1052 break;
1053
1054 case PPS_IOC_DESTROY:
1055 break;
1056
1057 case PPS_IOC_GETPARAMS: {
1058 pps_params_t *pp;
1059 pp = (pps_params_t *)data;
1060 mutex_spin_enter(&timecounter_lock);
1061 *pp = sc->ppsparam;
1062 mutex_spin_exit(&timecounter_lock);
1063 break;
1064 }
1065
1066 case PPS_IOC_SETPARAMS: {
1067 pps_params_t *pp;
1068 int mode;
1069 pp = (pps_params_t *)data;
1070 mutex_spin_enter(&timecounter_lock);
1071 if (pp->mode & ~ppscap) {
1072 error = EINVAL;
1073 mutex_spin_exit(&timecounter_lock);
1074 break;
1075 }
1076 sc->ppsparam = *pp;
1077 /*
1078 * Compute msr masks from user-specified timestamp state.
1079 */
1080 mode = sc->ppsparam.mode;
1081 #ifdef PPS_SYNC
1082 if (mode & PPS_HARDPPSONASSERT) {
1083 mode |= PPS_CAPTUREASSERT;
1084 /* XXX revoke any previous HARDPPS source */
1085 }
1086 if (mode & PPS_HARDPPSONCLEAR) {
1087 mode |= PPS_CAPTURECLEAR;
1088 /* XXX revoke any previous HARDPPS source */
1089 }
1090 #endif /* PPS_SYNC */
1091 switch (mode & PPS_CAPTUREBOTH) {
1092 case 0:
1093 sc->sc_ppsmask = 0;
1094 break;
1095
1096 case PPS_CAPTUREASSERT:
1097 sc->sc_ppsmask = PL01X_MSR_DCD;
1098 sc->sc_ppsassert = PL01X_MSR_DCD;
1099 sc->sc_ppsclear = -1;
1100 break;
1101
1102 case PPS_CAPTURECLEAR:
1103 sc->sc_ppsmask = PL01X_MSR_DCD;
1104 sc->sc_ppsassert = -1;
1105 sc->sc_ppsclear = 0;
1106 break;
1107
1108 case PPS_CAPTUREBOTH:
1109 sc->sc_ppsmask = PL01X_MSR_DCD;
1110 sc->sc_ppsassert = PL01X_MSR_DCD;
1111 sc->sc_ppsclear = 0;
1112 break;
1113
1114 default:
1115 error = EINVAL;
1116 break;
1117 }
1118 mutex_spin_exit(&timecounter_lock);
1119 break;
1120 }
1121
1122 case PPS_IOC_GETCAP:
1123 *(int*)data = ppscap;
1124 break;
1125
1126 case PPS_IOC_FETCH: {
1127 pps_info_t *pi;
1128 pi = (pps_info_t *)data;
1129 mutex_spin_enter(&timecounter_lock);
1130 *pi = sc->ppsinfo;
1131 mutex_spin_exit(&timecounter_lock);
1132 break;
1133 }
1134
1135 case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */
1136 /*
1137 * Some GPS clocks models use the falling rather than
1138 * rising edge as the on-the-second signal.
1139 * The old API has no way to specify PPS polarity.
1140 */
1141 mutex_spin_enter(&timecounter_lock);
1142 sc->sc_ppsmask = PL01X_MSR_DCD;
1143 #ifndef PPS_TRAILING_EDGE
1144 sc->sc_ppsassert = PL01X_MSR_DCD;
1145 sc->sc_ppsclear = -1;
1146 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
1147 &sc->ppsinfo.assert_timestamp);
1148 #else
1149 sc->sc_ppsassert = -1
1150 sc->sc_ppsclear = 0;
1151 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
1152 &sc->ppsinfo.clear_timestamp);
1153 #endif
1154 mutex_spin_exit(&timecounter_lock);
1155 break;
1156
1157 default:
1158 error = EPASSTHROUGH;
1159 break;
1160 }
1161
1162 mutex_spin_exit(&sc->sc_lock);
1163
1164 #ifdef PLCOM_DEBUG
1165 if (plcom_debug)
1166 plcomstatus(sc, "plcomioctl ");
1167 #endif
1168
1169 return error;
1170 }
1171
1172 integrate void
1173 plcom_schedrx(struct plcom_softc *sc)
1174 {
1175
1176 sc->sc_rx_ready = 1;
1177
1178 /* Wake up the poller. */
1179 softint_schedule(sc->sc_si);
1180 }
1181
1182 void
1183 plcom_break(struct plcom_softc *sc, int onoff)
1184 {
1185
1186 if (onoff)
1187 SET(sc->sc_lcr, PL01X_LCR_BRK);
1188 else
1189 CLR(sc->sc_lcr, PL01X_LCR_BRK);
1190
1191 if (!sc->sc_heldchange) {
1192 if (sc->sc_tx_busy) {
1193 sc->sc_heldtbc = sc->sc_tbc;
1194 sc->sc_tbc = 0;
1195 sc->sc_heldchange = 1;
1196 } else
1197 plcom_loadchannelregs(sc);
1198 }
1199 }
1200
1201 void
1202 plcom_modem(struct plcom_softc *sc, int onoff)
1203 {
1204
1205 if (sc->sc_mcr_dtr == 0)
1206 return;
1207
1208 if (onoff)
1209 SET(sc->sc_mcr, sc->sc_mcr_dtr);
1210 else
1211 CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1212
1213 if (!sc->sc_heldchange) {
1214 if (sc->sc_tx_busy) {
1215 sc->sc_heldtbc = sc->sc_tbc;
1216 sc->sc_tbc = 0;
1217 sc->sc_heldchange = 1;
1218 } else
1219 plcom_loadchannelregs(sc);
1220 }
1221 }
1222
1223 void
1224 tiocm_to_plcom(struct plcom_softc *sc, u_long how, int ttybits)
1225 {
1226 u_char plcombits;
1227
1228 plcombits = 0;
1229 if (ISSET(ttybits, TIOCM_DTR))
1230 SET(plcombits, PL01X_MCR_DTR);
1231 if (ISSET(ttybits, TIOCM_RTS))
1232 SET(plcombits, PL01X_MCR_RTS);
1233
1234 switch (how) {
1235 case TIOCMBIC:
1236 CLR(sc->sc_mcr, plcombits);
1237 break;
1238
1239 case TIOCMBIS:
1240 SET(sc->sc_mcr, plcombits);
1241 break;
1242
1243 case TIOCMSET:
1244 CLR(sc->sc_mcr, PL01X_MCR_DTR | PL01X_MCR_RTS);
1245 SET(sc->sc_mcr, plcombits);
1246 break;
1247 }
1248
1249 if (!sc->sc_heldchange) {
1250 if (sc->sc_tx_busy) {
1251 sc->sc_heldtbc = sc->sc_tbc;
1252 sc->sc_tbc = 0;
1253 sc->sc_heldchange = 1;
1254 } else
1255 plcom_loadchannelregs(sc);
1256 }
1257 }
1258
1259 int
1260 plcom_to_tiocm(struct plcom_softc *sc)
1261 {
1262 u_char plcombits;
1263 int ttybits = 0;
1264
1265 plcombits = sc->sc_mcr;
1266 if (ISSET(plcombits, PL01X_MCR_DTR))
1267 SET(ttybits, TIOCM_DTR);
1268 if (ISSET(plcombits, PL01X_MCR_RTS))
1269 SET(ttybits, TIOCM_RTS);
1270
1271 plcombits = sc->sc_msr;
1272 if (ISSET(plcombits, PL01X_MSR_DCD))
1273 SET(ttybits, TIOCM_CD);
1274 if (ISSET(plcombits, PL01X_MSR_CTS))
1275 SET(ttybits, TIOCM_CTS);
1276 if (ISSET(plcombits, PL01X_MSR_DSR))
1277 SET(ttybits, TIOCM_DSR);
1278 if (ISSET(plcombits, PL011_MSR_RI))
1279 SET(ttybits, TIOCM_RI);
1280
1281 if (sc->sc_cr != 0)
1282 SET(ttybits, TIOCM_LE);
1283
1284 return ttybits;
1285 }
1286
1287 static u_char
1288 cflag2lcr(tcflag_t cflag)
1289 {
1290 u_char lcr = 0;
1291
1292 switch (ISSET(cflag, CSIZE)) {
1293 case CS5:
1294 SET(lcr, PL01X_LCR_5BITS);
1295 break;
1296 case CS6:
1297 SET(lcr, PL01X_LCR_6BITS);
1298 break;
1299 case CS7:
1300 SET(lcr, PL01X_LCR_7BITS);
1301 break;
1302 case CS8:
1303 SET(lcr, PL01X_LCR_8BITS);
1304 break;
1305 }
1306 if (ISSET(cflag, PARENB)) {
1307 SET(lcr, PL01X_LCR_PEN);
1308 if (!ISSET(cflag, PARODD))
1309 SET(lcr, PL01X_LCR_EPS);
1310 }
1311 if (ISSET(cflag, CSTOPB))
1312 SET(lcr, PL01X_LCR_STP2);
1313
1314 return lcr;
1315 }
1316
1317 int
1318 plcomparam(struct tty *tp, struct termios *t)
1319 {
1320 struct plcom_softc *sc =
1321 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1322 struct plcom_instance *pi = &sc->sc_pi;
1323 int ospeed = -1;
1324 u_char lcr;
1325
1326 if (PLCOM_ISALIVE(sc) == 0)
1327 return EIO;
1328
1329 switch (pi->pi_type) {
1330 case PLCOM_TYPE_PL010:
1331 ospeed = pl010comspeed(t->c_ospeed, sc->sc_frequency);
1332 break;
1333 case PLCOM_TYPE_PL011:
1334 ospeed = pl011comspeed(t->c_ospeed, sc->sc_frequency);
1335 break;
1336 }
1337
1338 /* Check requested parameters. */
1339 if (ospeed < 0)
1340 return EINVAL;
1341 if (t->c_ispeed && t->c_ispeed != t->c_ospeed)
1342 return EINVAL;
1343
1344 /*
1345 * For the console, always force CLOCAL and !HUPCL, so that the port
1346 * is always active.
1347 */
1348 if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR) ||
1349 ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
1350 SET(t->c_cflag, CLOCAL);
1351 CLR(t->c_cflag, HUPCL);
1352 }
1353
1354 /*
1355 * If there were no changes, don't do anything. This avoids dropping
1356 * input and improves performance when all we did was frob things like
1357 * VMIN and VTIME.
1358 */
1359 if (tp->t_ospeed == t->c_ospeed &&
1360 tp->t_cflag == t->c_cflag)
1361 return 0;
1362
1363 lcr = ISSET(sc->sc_lcr, PL01X_LCR_BRK) | cflag2lcr(t->c_cflag);
1364
1365 mutex_spin_enter(&sc->sc_lock);
1366
1367 sc->sc_lcr = lcr;
1368
1369 /*
1370 * PL010 has a fixed-length FIFO trigger point.
1371 */
1372 if (ISSET(sc->sc_hwflags, PLCOM_HW_FIFO))
1373 sc->sc_fifo = 1;
1374 else
1375 sc->sc_fifo = 0;
1376
1377 if (sc->sc_fifo)
1378 SET(sc->sc_lcr, PL01X_LCR_FEN);
1379
1380 /*
1381 * If we're not in a mode that assumes a connection is present, then
1382 * ignore carrier changes.
1383 */
1384 if (ISSET(t->c_cflag, CLOCAL | MDMBUF))
1385 sc->sc_msr_dcd = 0;
1386 else
1387 sc->sc_msr_dcd = PL01X_MSR_DCD;
1388 /*
1389 * Set the flow control pins depending on the current flow control
1390 * mode.
1391 */
1392 if (ISSET(t->c_cflag, CRTSCTS)) {
1393 sc->sc_mcr_dtr = PL01X_MCR_DTR;
1394 sc->sc_mcr_rts = PL01X_MCR_RTS;
1395 sc->sc_msr_cts = PL01X_MSR_CTS;
1396 } else if (ISSET(t->c_cflag, MDMBUF)) {
1397 /*
1398 * For DTR/DCD flow control, make sure we don't toggle DTR for
1399 * carrier detection.
1400 */
1401 sc->sc_mcr_dtr = 0;
1402 sc->sc_mcr_rts = PL01X_MCR_DTR;
1403 sc->sc_msr_cts = PL01X_MSR_DCD;
1404 } else {
1405 /*
1406 * If no flow control, then always set RTS. This will make
1407 * the other side happy if it mistakenly thinks we're doing
1408 * RTS/CTS flow control.
1409 */
1410 sc->sc_mcr_dtr = PL01X_MCR_DTR | PL01X_MCR_RTS;
1411 sc->sc_mcr_rts = 0;
1412 sc->sc_msr_cts = 0;
1413 if (ISSET(sc->sc_mcr, PL01X_MCR_DTR))
1414 SET(sc->sc_mcr, PL01X_MCR_RTS);
1415 else
1416 CLR(sc->sc_mcr, PL01X_MCR_RTS);
1417 }
1418 sc->sc_msr_mask = sc->sc_msr_cts | sc->sc_msr_dcd;
1419
1420 #if 0
1421 if (ospeed == 0)
1422 CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1423 else
1424 SET(sc->sc_mcr, sc->sc_mcr_dtr);
1425 #endif
1426
1427 switch (pi->pi_type) {
1428 case PLCOM_TYPE_PL010:
1429 sc->sc_ratel = ospeed & 0xff;
1430 sc->sc_rateh = (ospeed >> 8) & 0xff;
1431 break;
1432 case PLCOM_TYPE_PL011:
1433 sc->sc_ratel = ospeed & ((1 << 6) - 1);
1434 sc->sc_rateh = ospeed >> 6;
1435 break;
1436 }
1437
1438 /* And copy to tty. */
1439 tp->t_ispeed = t->c_ospeed;
1440 tp->t_ospeed = t->c_ospeed;
1441 tp->t_cflag = t->c_cflag;
1442
1443 if (!sc->sc_heldchange) {
1444 if (sc->sc_tx_busy) {
1445 sc->sc_heldtbc = sc->sc_tbc;
1446 sc->sc_tbc = 0;
1447 sc->sc_heldchange = 1;
1448 } else
1449 plcom_loadchannelregs(sc);
1450 }
1451
1452 if (!ISSET(t->c_cflag, CHWFLOW)) {
1453 /* Disable the high water mark. */
1454 sc->sc_r_hiwat = 0;
1455 sc->sc_r_lowat = 0;
1456 if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1457 CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1458 plcom_schedrx(sc);
1459 }
1460 if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
1461 CLR(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
1462 plcom_hwiflow(sc);
1463 }
1464 } else {
1465 sc->sc_r_hiwat = plcom_rbuf_hiwat;
1466 sc->sc_r_lowat = plcom_rbuf_lowat;
1467 }
1468
1469 mutex_spin_exit(&sc->sc_lock);
1470
1471 /*
1472 * Update the tty layer's idea of the carrier bit, in case we changed
1473 * CLOCAL or MDMBUF. We don't hang up here; we only do that by
1474 * explicit request.
1475 */
1476 (void) (*tp->t_linesw->l_modem)(tp, ISSET(sc->sc_msr, PL01X_MSR_DCD));
1477
1478 #ifdef PLCOM_DEBUG
1479 if (plcom_debug)
1480 plcomstatus(sc, "plcomparam ");
1481 #endif
1482
1483 if (!ISSET(t->c_cflag, CHWFLOW)) {
1484 if (sc->sc_tx_stopped) {
1485 sc->sc_tx_stopped = 0;
1486 plcomstart(tp);
1487 }
1488 }
1489
1490 return 0;
1491 }
1492
1493 void
1494 plcom_iflush(struct plcom_softc *sc)
1495 {
1496 struct plcom_instance *pi = &sc->sc_pi;
1497 #ifdef DIAGNOSTIC
1498 int reg;
1499 #endif
1500 int timo;
1501
1502 #ifdef DIAGNOSTIC
1503 reg = 0xffff;
1504 #endif
1505 timo = 50000;
1506 /* flush any pending I/O */
1507 while (! ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE)
1508 && --timo)
1509 #ifdef DIAGNOSTIC
1510 reg =
1511 #else
1512 (void)
1513 #endif
1514 PREAD1(pi, PL01XCOM_DR);
1515 #ifdef DIAGNOSTIC
1516 if (!timo)
1517 aprint_error_dev(sc->sc_dev, ": %s timeout %02x\n", __func__,
1518 reg);
1519 #endif
1520 }
1521
1522 void
1523 plcom_loadchannelregs(struct plcom_softc *sc)
1524 {
1525 struct plcom_instance *pi = &sc->sc_pi;
1526
1527 /* XXXXX necessary? */
1528 plcom_iflush(sc);
1529
1530 switch (pi->pi_type) {
1531 case PLCOM_TYPE_PL010:
1532 PWRITE1(pi, PL010COM_CR, 0);
1533 PWRITE1(pi, PL010COM_DLBL, sc->sc_ratel);
1534 PWRITE1(pi, PL010COM_DLBH, sc->sc_rateh);
1535 PWRITE1(pi, PL010COM_LCR, sc->sc_lcr);
1536
1537 /* XXX device_unit() abuse */
1538 if (sc->sc_set_mcr)
1539 sc->sc_set_mcr(sc->sc_set_mcr_arg,
1540 device_unit(sc->sc_dev),
1541 sc->sc_mcr_active = sc->sc_mcr);
1542
1543 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
1544 break;
1545
1546 case PLCOM_TYPE_PL011:
1547 PWRITE4(pi, PL011COM_CR, 0);
1548 PWRITE1(pi, PL011COM_FBRD, sc->sc_ratel);
1549 PWRITE4(pi, PL011COM_IBRD, sc->sc_rateh);
1550 PWRITE1(pi, PL011COM_LCRH, sc->sc_lcr);
1551 sc->sc_mcr_active = sc->sc_mcr;
1552 CLR(sc->sc_cr, PL011_MCR(PL01X_MCR_RTS | PL01X_MCR_DTR));
1553 SET(sc->sc_cr, PL011_MCR(sc->sc_mcr_active));
1554 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
1555 break;
1556 }
1557 }
1558
1559 int
1560 plcomhwiflow(struct tty *tp, int block)
1561 {
1562 struct plcom_softc *sc =
1563 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1564
1565 if (PLCOM_ISALIVE(sc) == 0)
1566 return 0;
1567
1568 if (sc->sc_mcr_rts == 0)
1569 return 0;
1570
1571 mutex_spin_enter(&sc->sc_lock);
1572
1573 if (block) {
1574 if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1575 SET(sc->sc_rx_flags, RX_TTY_BLOCKED);
1576 plcom_hwiflow(sc);
1577 }
1578 } else {
1579 if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1580 CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1581 plcom_schedrx(sc);
1582 }
1583 if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1584 CLR(sc->sc_rx_flags, RX_TTY_BLOCKED);
1585 plcom_hwiflow(sc);
1586 }
1587 }
1588
1589 mutex_spin_exit(&sc->sc_lock);
1590 return 1;
1591 }
1592
1593 /*
1594 * (un)block input via hw flowcontrol
1595 */
1596 void
1597 plcom_hwiflow(struct plcom_softc *sc)
1598 {
1599 struct plcom_instance *pi = &sc->sc_pi;
1600
1601 if (sc->sc_mcr_rts == 0)
1602 return;
1603
1604 if (ISSET(sc->sc_rx_flags, RX_ANY_BLOCK)) {
1605 CLR(sc->sc_mcr, sc->sc_mcr_rts);
1606 CLR(sc->sc_mcr_active, sc->sc_mcr_rts);
1607 } else {
1608 SET(sc->sc_mcr, sc->sc_mcr_rts);
1609 SET(sc->sc_mcr_active, sc->sc_mcr_rts);
1610 }
1611 switch (pi->pi_type) {
1612 case PLCOM_TYPE_PL010:
1613 if (sc->sc_set_mcr)
1614 /* XXX device_unit() abuse */
1615 sc->sc_set_mcr(sc->sc_set_mcr_arg,
1616 device_unit(sc->sc_dev), sc->sc_mcr_active);
1617 break;
1618 case PLCOM_TYPE_PL011:
1619 CLR(sc->sc_cr, PL011_MCR(PL01X_MCR_RTS | PL01X_MCR_DTR));
1620 SET(sc->sc_cr, PL011_MCR(sc->sc_mcr_active));
1621 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
1622 break;
1623 }
1624 }
1625
1626
1627 void
1628 plcomstart(struct tty *tp)
1629 {
1630 struct plcom_softc *sc =
1631 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1632 struct plcom_instance *pi = &sc->sc_pi;
1633 int s;
1634
1635 if (PLCOM_ISALIVE(sc) == 0)
1636 return;
1637
1638 s = spltty();
1639 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
1640 goto out;
1641 if (sc->sc_tx_stopped)
1642 goto out;
1643
1644 if (!ttypull(tp))
1645 goto out;
1646
1647 /* Grab the first contiguous region of buffer space. */
1648 {
1649 u_char *tba;
1650 int tbc;
1651
1652 tba = tp->t_outq.c_cf;
1653 tbc = ndqb(&tp->t_outq, 0);
1654
1655 mutex_spin_enter(&sc->sc_lock);
1656
1657 sc->sc_tba = tba;
1658 sc->sc_tbc = tbc;
1659 }
1660
1661 SET(tp->t_state, TS_BUSY);
1662 sc->sc_tx_busy = 1;
1663
1664 /* Enable transmit completion interrupts if necessary. */
1665 switch (pi->pi_type) {
1666 case PLCOM_TYPE_PL010:
1667 if (!ISSET(sc->sc_cr, PL010_CR_TIE)) {
1668 SET(sc->sc_cr, PL010_CR_TIE);
1669 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
1670 }
1671 break;
1672 case PLCOM_TYPE_PL011:
1673 if (!ISSET(sc->sc_imsc, PL011_INT_TX)) {
1674 SET(sc->sc_imsc, PL011_INT_TX);
1675 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
1676 }
1677 break;
1678 }
1679
1680 /* Output the first chunk of the contiguous buffer. */
1681 {
1682 int n;
1683
1684 n = sc->sc_tbc;
1685 if (n > sc->sc_fifolen)
1686 n = sc->sc_fifolen;
1687 PWRITEM1(pi, PL01XCOM_DR, sc->sc_tba, n);
1688 sc->sc_tbc -= n;
1689 sc->sc_tba += n;
1690 }
1691 mutex_spin_exit(&sc->sc_lock);
1692 out:
1693 splx(s);
1694 return;
1695 }
1696
1697 /*
1698 * Stop output on a line.
1699 */
1700 void
1701 plcomstop(struct tty *tp, int flag)
1702 {
1703 struct plcom_softc *sc =
1704 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1705
1706 mutex_spin_enter(&sc->sc_lock);
1707 if (ISSET(tp->t_state, TS_BUSY)) {
1708 /* Stop transmitting at the next chunk. */
1709 sc->sc_tbc = 0;
1710 sc->sc_heldtbc = 0;
1711 if (!ISSET(tp->t_state, TS_TTSTOP))
1712 SET(tp->t_state, TS_FLUSH);
1713 }
1714 mutex_spin_exit(&sc->sc_lock);
1715 }
1716
1717 void
1718 plcomdiag(void *arg)
1719 {
1720 struct plcom_softc *sc = arg;
1721 int overflows, floods;
1722
1723 mutex_spin_enter(&sc->sc_lock);
1724 overflows = sc->sc_overflows;
1725 sc->sc_overflows = 0;
1726 floods = sc->sc_floods;
1727 sc->sc_floods = 0;
1728 sc->sc_errors = 0;
1729 mutex_spin_exit(&sc->sc_lock);
1730
1731 log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
1732 device_xname(sc->sc_dev),
1733 overflows, overflows == 1 ? "" : "s",
1734 floods, floods == 1 ? "" : "s");
1735 }
1736
1737 integrate void
1738 plcom_rxsoft(struct plcom_softc *sc, struct tty *tp)
1739 {
1740 int (*rint) (int, struct tty *) = tp->t_linesw->l_rint;
1741 struct plcom_instance *pi = &sc->sc_pi;
1742 u_char *get, *end;
1743 u_int cc, scc;
1744 u_char rsr;
1745 int code;
1746
1747 end = sc->sc_ebuf;
1748 get = sc->sc_rbget;
1749 scc = cc = plcom_rbuf_size - sc->sc_rbavail;
1750
1751 if (cc == plcom_rbuf_size) {
1752 sc->sc_floods++;
1753 if (sc->sc_errors++ == 0)
1754 callout_reset(&sc->sc_diag_callout, 60 * hz,
1755 plcomdiag, sc);
1756 }
1757
1758 while (cc) {
1759 code = get[0];
1760 rsr = get[1];
1761 if (ISSET(rsr, PL01X_RSR_ERROR)) {
1762 if (ISSET(rsr, PL01X_RSR_OE)) {
1763 sc->sc_overflows++;
1764 if (sc->sc_errors++ == 0)
1765 callout_reset(&sc->sc_diag_callout,
1766 60 * hz, plcomdiag, sc);
1767 }
1768 if (ISSET(rsr, PL01X_RSR_BE | PL01X_RSR_FE))
1769 SET(code, TTY_FE);
1770 if (ISSET(rsr, PL01X_RSR_PE))
1771 SET(code, TTY_PE);
1772 }
1773 if ((*rint)(code, tp) == -1) {
1774 /*
1775 * The line discipline's buffer is out of space.
1776 */
1777 if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1778 /*
1779 * We're either not using flow control, or the
1780 * line discipline didn't tell us to block for
1781 * some reason. Either way, we have no way to
1782 * know when there's more space available, so
1783 * just drop the rest of the data.
1784 */
1785 get += cc << 1;
1786 if (get >= end)
1787 get -= plcom_rbuf_size << 1;
1788 cc = 0;
1789 } else {
1790 /*
1791 * Don't schedule any more receive processing
1792 * until the line discipline tells us there's
1793 * space available (through plcomhwiflow()).
1794 * Leave the rest of the data in the input
1795 * buffer.
1796 */
1797 SET(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1798 }
1799 break;
1800 }
1801 get += 2;
1802 if (get >= end)
1803 get = sc->sc_rbuf;
1804 cc--;
1805 }
1806
1807 if (cc != scc) {
1808 sc->sc_rbget = get;
1809 mutex_spin_enter(&sc->sc_lock);
1810
1811 cc = sc->sc_rbavail += scc - cc;
1812 /* Buffers should be ok again, release possible block. */
1813 if (cc >= sc->sc_r_lowat) {
1814 if (ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1815 CLR(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
1816 switch (pi->pi_type) {
1817 case PLCOM_TYPE_PL010:
1818 SET(sc->sc_cr,
1819 PL010_CR_RIE | PL010_CR_RTIE);
1820 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
1821 break;
1822 case PLCOM_TYPE_PL011:
1823 SET(sc->sc_imsc,
1824 PL011_INT_RX | PL011_INT_RT);
1825 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
1826 break;
1827 }
1828 }
1829 if (ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED)) {
1830 CLR(sc->sc_rx_flags, RX_IBUF_BLOCKED);
1831 plcom_hwiflow(sc);
1832 }
1833 }
1834 mutex_spin_exit(&sc->sc_lock);
1835 }
1836 }
1837
1838 integrate void
1839 plcom_txsoft(struct plcom_softc *sc, struct tty *tp)
1840 {
1841
1842 CLR(tp->t_state, TS_BUSY);
1843 if (ISSET(tp->t_state, TS_FLUSH))
1844 CLR(tp->t_state, TS_FLUSH);
1845 else
1846 ndflush(&tp->t_outq, (int)(sc->sc_tba - tp->t_outq.c_cf));
1847 (*tp->t_linesw->l_start)(tp);
1848 }
1849
1850 integrate void
1851 plcom_stsoft(struct plcom_softc *sc, struct tty *tp)
1852 {
1853 u_char msr, delta;
1854
1855 mutex_spin_enter(&sc->sc_lock);
1856 msr = sc->sc_msr;
1857 delta = sc->sc_msr_delta;
1858 sc->sc_msr_delta = 0;
1859 mutex_spin_exit(&sc->sc_lock);
1860
1861 if (ISSET(delta, sc->sc_msr_dcd)) {
1862 /*
1863 * Inform the tty layer that carrier detect changed.
1864 */
1865 (void) (*tp->t_linesw->l_modem)(tp, ISSET(msr, PL01X_MSR_DCD));
1866 }
1867
1868 if (ISSET(delta, sc->sc_msr_cts)) {
1869 /* Block or unblock output according to flow control. */
1870 if (ISSET(msr, sc->sc_msr_cts)) {
1871 sc->sc_tx_stopped = 0;
1872 (*tp->t_linesw->l_start)(tp);
1873 } else {
1874 sc->sc_tx_stopped = 1;
1875 }
1876 }
1877
1878 #ifdef PLCOM_DEBUG
1879 if (plcom_debug)
1880 plcomstatus(sc, "plcom_stsoft");
1881 #endif
1882 }
1883
1884 void
1885 plcomsoft(void *arg)
1886 {
1887 struct plcom_softc *sc = arg;
1888 struct tty *tp;
1889
1890 if (PLCOM_ISALIVE(sc) == 0)
1891 return;
1892
1893 tp = sc->sc_tty;
1894
1895 if (sc->sc_rx_ready) {
1896 sc->sc_rx_ready = 0;
1897 plcom_rxsoft(sc, tp);
1898 }
1899
1900 if (sc->sc_st_check) {
1901 sc->sc_st_check = 0;
1902 plcom_stsoft(sc, tp);
1903 }
1904
1905 if (sc->sc_tx_done) {
1906 sc->sc_tx_done = 0;
1907 plcom_txsoft(sc, tp);
1908 }
1909 }
1910
1911 bool
1912 plcom_intstatus(struct plcom_instance *pi, u_int *istatus)
1913 {
1914 bool ret = false;
1915 u_int stat = 0;
1916
1917 switch (pi->pi_type) {
1918 case PLCOM_TYPE_PL010:
1919 stat = PREAD1(pi, PL010COM_IIR);
1920 ret = ISSET(stat, PL010_IIR_IMASK);
1921 break;
1922 case PLCOM_TYPE_PL011:
1923 stat = PREAD4(pi, PL011COM_MIS);
1924 ret = ISSET(stat, PL011_INT_ALLMASK);
1925 break;
1926 }
1927 *istatus = stat;
1928
1929 return ret;
1930 }
1931
1932 int
1933 plcomintr(void *arg)
1934 {
1935 struct plcom_softc *sc = arg;
1936 struct plcom_instance *pi = &sc->sc_pi;
1937 u_char *put, *end;
1938 u_int cc;
1939 u_int istatus = 0;
1940 u_char rsr;
1941 bool intr = false;
1942
1943 PLCOM_BARRIER(pi, BR | BW);
1944
1945 if (PLCOM_ISALIVE(sc) == 0)
1946 return 0;
1947
1948 mutex_spin_enter(&sc->sc_lock);
1949 intr = plcom_intstatus(pi, &istatus);
1950 if (!intr) {
1951 mutex_spin_exit(&sc->sc_lock);
1952 return 0;
1953 }
1954
1955 end = sc->sc_ebuf;
1956 put = sc->sc_rbput;
1957 cc = sc->sc_rbavail;
1958
1959 do {
1960 u_int msr = 0, delta, fr;
1961 bool rxintr = false, txintr = false, msintr;
1962
1963 /* don't need RI here*/
1964 fr = PREAD1(pi, PL01XCOM_FR);
1965
1966 if (!ISSET(fr, PL01X_FR_RXFE) &&
1967 !ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1968 while (cc > 0) {
1969 int cn_trapped = 0;
1970 put[0] = PREAD1(pi, PL01XCOM_DR);
1971 rsr = PREAD1(pi, PL01XCOM_RSR);
1972 /* Clear any error status. */
1973 if (ISSET(rsr, PL01X_RSR_ERROR))
1974 PWRITE1(pi, PL01XCOM_ECR, 0);
1975 if (ISSET(rsr, PL01X_RSR_BE)) {
1976 cn_trapped = 0;
1977 cn_check_magic(sc->sc_tty->t_dev,
1978 CNC_BREAK, plcom_cnm_state);
1979 if (cn_trapped)
1980 continue;
1981 #if defined(KGDB)
1982 if (ISSET(sc->sc_hwflags,
1983 PLCOM_HW_KGDB)) {
1984 kgdb_connect(1);
1985 continue;
1986 }
1987 #endif
1988 }
1989
1990 put[1] = rsr;
1991 cn_trapped = 0;
1992 cn_check_magic(sc->sc_tty->t_dev, put[0],
1993 plcom_cnm_state);
1994 if (cn_trapped) {
1995 fr = PREAD1(pi, PL01XCOM_FR);
1996 if (ISSET(fr, PL01X_FR_RXFE))
1997 break;
1998
1999 continue;
2000 }
2001 put += 2;
2002 if (put >= end)
2003 put = sc->sc_rbuf;
2004 cc--;
2005
2006 /* don't need RI here*/
2007 fr = PREAD1(pi, PL01XCOM_FR);
2008 if (ISSET(fr, PL01X_FR_RXFE))
2009 break;
2010 }
2011
2012 /*
2013 * Current string of incoming characters ended because
2014 * no more data was available or we ran out of space.
2015 * Schedule a receive event if any data was received.
2016 * If we're out of space, turn off receive interrupts.
2017 */
2018 sc->sc_rbput = put;
2019 sc->sc_rbavail = cc;
2020 if (!ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED))
2021 sc->sc_rx_ready = 1;
2022
2023 /*
2024 * See if we are in danger of overflowing a buffer. If
2025 * so, use hardware flow control to ease the pressure.
2026 */
2027 if (!ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED) &&
2028 cc < sc->sc_r_hiwat) {
2029 SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
2030 plcom_hwiflow(sc);
2031 }
2032
2033 /*
2034 * If we're out of space, disable receive interrupts
2035 * until the queue has drained a bit.
2036 */
2037 if (!cc) {
2038 SET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
2039 switch (pi->pi_type) {
2040 case PLCOM_TYPE_PL010:
2041 CLR(sc->sc_cr,
2042 PL010_CR_RIE | PL010_CR_RTIE);
2043 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
2044 break;
2045 case PLCOM_TYPE_PL011:
2046 CLR(sc->sc_imsc,
2047 PL011_INT_RT | PL011_INT_RX);
2048 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
2049 break;
2050 }
2051 }
2052 } else {
2053 switch (pi->pi_type) {
2054 case PLCOM_TYPE_PL010:
2055 rxintr = ISSET(istatus, PL010_IIR_RIS);
2056 if (rxintr) {
2057 PWRITE1(pi, PL010COM_CR, 0);
2058 delay(10);
2059 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
2060 continue;
2061 }
2062 break;
2063 case PLCOM_TYPE_PL011:
2064 rxintr = ISSET(istatus, PL011_INT_RX);
2065 if (rxintr) {
2066 PWRITE4(pi, PL011COM_CR, 0);
2067 delay(10);
2068 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
2069 continue;
2070 }
2071 break;
2072 }
2073 }
2074
2075 switch (pi->pi_type) {
2076 case PLCOM_TYPE_PL010:
2077 msr = PREAD1(pi, PL01XCOM_FR);
2078 break;
2079 case PLCOM_TYPE_PL011:
2080 msr = PREAD4(pi, PL01XCOM_FR);
2081 break;
2082 }
2083 delta = msr ^ sc->sc_msr;
2084 sc->sc_msr = msr;
2085
2086 /* Clear any pending modem status interrupt. */
2087 switch (pi->pi_type) {
2088 case PLCOM_TYPE_PL010:
2089 msintr = ISSET(istatus, PL010_IIR_MIS);
2090 if (msintr) {
2091 PWRITE1(pi, PL010COM_ICR, 0);
2092 }
2093 break;
2094 case PLCOM_TYPE_PL011:
2095 msintr = ISSET(istatus, PL011_INT_MSMASK);
2096 if (msintr) {
2097 PWRITE4(pi, PL011COM_ICR, PL011_INT_MSMASK);
2098 }
2099 break;
2100 }
2101 /*
2102 * Pulse-per-second (PSS) signals on edge of DCD?
2103 * Process these even if line discipline is ignoring DCD.
2104 */
2105 if (delta & sc->sc_ppsmask) {
2106 struct timeval tv;
2107 mutex_spin_enter(&timecounter_lock);
2108 if ((msr & sc->sc_ppsmask) == sc->sc_ppsassert) {
2109 /* XXX nanotime() */
2110 microtime(&tv);
2111 TIMEVAL_TO_TIMESPEC(&tv,
2112 &sc->ppsinfo.assert_timestamp);
2113 if (sc->ppsparam.mode & PPS_OFFSETASSERT) {
2114 timespecadd(&sc->ppsinfo.assert_timestamp,
2115 &sc->ppsparam.assert_offset,
2116 &sc->ppsinfo.assert_timestamp);
2117 }
2118
2119 #ifdef PPS_SYNC
2120 if (sc->ppsparam.mode & PPS_HARDPPSONASSERT)
2121 hardpps(&tv, tv.tv_usec);
2122 #endif
2123 sc->ppsinfo.assert_sequence++;
2124 sc->ppsinfo.current_mode = sc->ppsparam.mode;
2125
2126 } else if ((msr & sc->sc_ppsmask) == sc->sc_ppsclear) {
2127 /* XXX nanotime() */
2128 microtime(&tv);
2129 TIMEVAL_TO_TIMESPEC(&tv,
2130 &sc->ppsinfo.clear_timestamp);
2131 if (sc->ppsparam.mode & PPS_OFFSETCLEAR) {
2132 timespecadd(&sc->ppsinfo.clear_timestamp,
2133 &sc->ppsparam.clear_offset,
2134 &sc->ppsinfo.clear_timestamp);
2135 }
2136
2137 #ifdef PPS_SYNC
2138 if (sc->ppsparam.mode & PPS_HARDPPSONCLEAR)
2139 hardpps(&tv, tv.tv_usec);
2140 #endif
2141 sc->ppsinfo.clear_sequence++;
2142 sc->ppsinfo.current_mode = sc->ppsparam.mode;
2143 }
2144 mutex_spin_exit(&timecounter_lock);
2145 }
2146
2147 /*
2148 * Process normal status changes
2149 */
2150 if (ISSET(delta, sc->sc_msr_mask)) {
2151 SET(sc->sc_msr_delta, delta);
2152
2153 /*
2154 * Stop output immediately if we lose the output
2155 * flow control signal or carrier detect.
2156 */
2157 if (ISSET(~msr, sc->sc_msr_mask)) {
2158 sc->sc_tbc = 0;
2159 sc->sc_heldtbc = 0;
2160 #ifdef PLCOM_DEBUG
2161 if (plcom_debug)
2162 plcomstatus(sc, "plcomintr ");
2163 #endif
2164 }
2165
2166 sc->sc_st_check = 1;
2167 }
2168
2169 /*
2170 * Done handling any receive interrupts. See if data
2171 * can be transmitted as well. Schedule tx done
2172 * event if no data left and tty was marked busy.
2173 */
2174
2175 switch (pi->pi_type) {
2176 case PLCOM_TYPE_PL010:
2177 txintr = ISSET(istatus, PL010_IIR_TIS);
2178 break;
2179 case PLCOM_TYPE_PL011:
2180 txintr = ISSET(istatus, PL011_INT_TX);
2181 break;
2182 }
2183 if (txintr) {
2184 /*
2185 * If we've delayed a parameter change, do it
2186 * now, and restart * output.
2187 */
2188 // PWRITE4(pi, PL011COM_ICR, PL011_INT_TX);
2189 if (sc->sc_heldchange) {
2190 plcom_loadchannelregs(sc);
2191 sc->sc_heldchange = 0;
2192 sc->sc_tbc = sc->sc_heldtbc;
2193 sc->sc_heldtbc = 0;
2194 }
2195
2196 /*
2197 * Output the next chunk of the contiguous
2198 * buffer, if any.
2199 */
2200 if (sc->sc_tbc > 0) {
2201 int n;
2202
2203 n = sc->sc_tbc;
2204 if (n > sc->sc_fifolen)
2205 n = sc->sc_fifolen;
2206 PWRITEM1(pi, PL01XCOM_DR, sc->sc_tba, n);
2207 sc->sc_tbc -= n;
2208 sc->sc_tba += n;
2209 } else {
2210 /*
2211 * Disable transmit completion
2212 * interrupts if necessary.
2213 */
2214 switch (pi->pi_type) {
2215 case PLCOM_TYPE_PL010:
2216 if (ISSET(sc->sc_cr, PL010_CR_TIE)) {
2217 CLR(sc->sc_cr, PL010_CR_TIE);
2218 PWRITE1(pi, PL010COM_CR,
2219 sc->sc_cr);
2220 }
2221 break;
2222 case PLCOM_TYPE_PL011:
2223 if (ISSET(sc->sc_imsc, PL011_INT_TX)) {
2224 CLR(sc->sc_imsc, PL011_INT_TX);
2225 PWRITE4(pi, PL011COM_IMSC,
2226 sc->sc_imsc);
2227 }
2228 break;
2229 }
2230 if (sc->sc_tx_busy) {
2231 sc->sc_tx_busy = 0;
2232 sc->sc_tx_done = 1;
2233 }
2234 }
2235 }
2236
2237 } while (plcom_intstatus(pi, &istatus));
2238
2239 mutex_spin_exit(&sc->sc_lock);
2240
2241 /* Wake up the poller. */
2242 softint_schedule(sc->sc_si);
2243
2244 #ifdef RND_COM
2245 rnd_add_uint32(&sc->rnd_source, istatus | rsr);
2246 #endif
2247
2248 PLCOM_BARRIER(pi, BR | BW);
2249
2250 return 1;
2251 }
2252
2253 /*
2254 * The following functions are polled getc and putc routines, shared
2255 * by the console and kgdb glue.
2256 *
2257 * The read-ahead code is so that you can detect pending in-band
2258 * cn_magic in polled mode while doing output rather than having to
2259 * wait until the kernel decides it needs input.
2260 */
2261
2262 #define MAX_READAHEAD 20
2263 static int plcom_readahead[MAX_READAHEAD];
2264 static int plcom_readaheadcount = 0;
2265
2266 int
2267 plcom_common_getc(dev_t dev, struct plcom_instance *pi)
2268 {
2269 int s = splserial();
2270 u_char stat, c;
2271
2272 /* got a character from reading things earlier */
2273 if (plcom_readaheadcount > 0) {
2274 int i;
2275
2276 c = plcom_readahead[0];
2277 for (i = 1; i < plcom_readaheadcount; i++) {
2278 plcom_readahead[i-1] = plcom_readahead[i];
2279 }
2280 plcom_readaheadcount--;
2281 splx(s);
2282 return c;
2283 }
2284
2285 /* block until a character becomes available */
2286 while (ISSET(stat = PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE))
2287 ;
2288
2289 c = PREAD1(pi, PL01XCOM_DR);
2290 {
2291 int cn_trapped = 0; /* unused */
2292 #ifdef DDB
2293 extern int db_active;
2294 if (!db_active)
2295 #endif
2296 cn_check_magic(dev, c, plcom_cnm_state);
2297 }
2298 splx(s);
2299 return c;
2300 }
2301
2302 void
2303 plcom_common_putc(dev_t dev, struct plcom_instance *pi, int c)
2304 {
2305 int s = splserial();
2306 int timo;
2307
2308 int cin, stat;
2309 if (plcom_readaheadcount < MAX_READAHEAD
2310 && !ISSET(stat = PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE)) {
2311 int cn_trapped = 0;
2312 cin = PREAD1(pi, PL01XCOM_DR);
2313 cn_check_magic(dev, cin, plcom_cnm_state);
2314 plcom_readahead[plcom_readaheadcount++] = cin;
2315 }
2316
2317 /* wait for any pending transmission to finish */
2318 timo = 150000;
2319 while (!ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_TXFE) && --timo)
2320 continue;
2321
2322 PWRITE1(pi, PL01XCOM_DR, c);
2323 PLCOM_BARRIER(pi, BR | BW);
2324
2325 /* wait for this transmission to complete */
2326 timo = 1500000;
2327 while (!ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_TXFE) && --timo)
2328 continue;
2329
2330 splx(s);
2331 }
2332
2333 /*
2334 * Initialize UART for use as console or KGDB line.
2335 */
2336 int
2337 plcominit(struct plcom_instance *pi, int rate, int frequency, tcflag_t cflag)
2338 {
2339 u_char lcr;
2340
2341 switch (pi->pi_type) {
2342 case PLCOM_TYPE_PL010:
2343 if (pi->pi_size == 0)
2344 pi->pi_size = PL010COM_UART_SIZE;
2345 break;
2346 case PLCOM_TYPE_PL011:
2347 if (pi->pi_size == 0)
2348 pi->pi_size = PL011COM_UART_SIZE;
2349 break;
2350 default:
2351 panic("Unknown plcom type");
2352 }
2353
2354 if (bus_space_map(pi->pi_iot, pi->pi_iobase, pi->pi_size, 0,
2355 &pi->pi_ioh))
2356 return ENOMEM; /* ??? */
2357
2358 lcr = cflag2lcr(cflag) | PL01X_LCR_FEN;
2359 switch (pi->pi_type) {
2360 case PLCOM_TYPE_PL010:
2361 PWRITE1(pi, PL010COM_CR, 0);
2362
2363 rate = pl010comspeed(rate, frequency);
2364 PWRITE1(pi, PL010COM_DLBL, (rate & 0xff));
2365 PWRITE1(pi, PL010COM_DLBH, ((rate >> 8) & 0xff));
2366 PWRITE1(pi, PL010COM_LCR, lcr);
2367 PWRITE1(pi, PL010COM_CR, PL01X_CR_UARTEN);
2368 break;
2369 case PLCOM_TYPE_PL011:
2370 PWRITE4(pi, PL011COM_CR, 0);
2371
2372 rate = pl011comspeed(rate, frequency);
2373 PWRITE1(pi, PL011COM_FBRD, rate & ((1 << 6) - 1));
2374 PWRITE4(pi, PL011COM_IBRD, rate >> 6);
2375 PWRITE1(pi, PL011COM_LCRH, lcr);
2376 PWRITE4(pi, PL011COM_CR,
2377 PL01X_CR_UARTEN | PL011_CR_RXE | PL011_CR_TXE);
2378 break;
2379 }
2380
2381 #if 0
2382 /* Ought to do something like this, but we have no sc to
2383 dereference. */
2384 /* XXX device_unit() abuse */
2385 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(sc->sc_dev),
2386 PL01X_MCR_DTR | PL01X_MCR_RTS);
2387 #endif
2388
2389 return 0;
2390 }
2391
2392 /*
2393 * Following are all routines needed for PLCOM to act as console
2394 */
2395 struct consdev plcomcons = {
2396 NULL, NULL, plcomcngetc, plcomcnputc, plcomcnpollc, NULL,
2397 NULL, NULL, NODEV, CN_NORMAL
2398 };
2399
2400 int
2401 plcomcnattach(struct plcom_instance *pi, int rate, int frequency,
2402 tcflag_t cflag, int unit)
2403 {
2404 int res;
2405
2406 plcomcons_info = *pi;
2407
2408 res = plcominit(&plcomcons_info, rate, frequency, cflag);
2409 if (res)
2410 return res;
2411
2412 cn_tab = &plcomcons;
2413 cn_init_magic(&plcom_cnm_state);
2414 cn_set_magic("\047\001"); /* default magic is BREAK */
2415
2416 plcomconsunit = unit;
2417 plcomconsrate = rate;
2418 plcomconscflag = cflag;
2419
2420 return 0;
2421 }
2422
2423 void
2424 plcomcndetach(void)
2425 {
2426
2427 bus_space_unmap(plcomcons_info.pi_iot, plcomcons_info.pi_ioh,
2428 plcomcons_info.pi_size);
2429 plcomcons_info.pi_iot = NULL;
2430
2431 cn_tab = NULL;
2432 }
2433
2434 int
2435 plcomcngetc(dev_t dev)
2436 {
2437 return plcom_common_getc(dev, &plcomcons_info);
2438 }
2439
2440 /*
2441 * Console kernel output character routine.
2442 */
2443 void
2444 plcomcnputc(dev_t dev, int c)
2445 {
2446 plcom_common_putc(dev, &plcomcons_info, c);
2447 }
2448
2449 void
2450 plcomcnpollc(dev_t dev, int on)
2451 {
2452
2453 plcom_readaheadcount = 0;
2454 }
2455
2456 #ifdef KGDB
2457 int
2458 plcom_kgdb_attach(struct plcom_instance *pi, int rate, int frequency,
2459 tcflag_t cflag, int unit)
2460 {
2461 int res;
2462
2463 if (pi->pi_iot == plcomcons_info.pi_iot &&
2464 pi->pi_iobase == plcomcons_info.pi_iobase)
2465 return EBUSY; /* cannot share with console */
2466
2467 res = plcominit(pi, rate, frequency, cflag);
2468 if (res)
2469 return res;
2470
2471 kgdb_attach(plcom_kgdb_getc, plcom_kgdb_putc, NULL);
2472 kgdb_dev = 123; /* unneeded, only to satisfy some tests */
2473
2474 plcomkgdb_info.pi_iot = pi->pi_iot;
2475 plcomkgdb_info.pi_ioh = pi->pi_ioh;
2476 plcomkgdb_info.pi_iobase = pi->pi_iobase;
2477
2478 return 0;
2479 }
2480
2481 /* ARGSUSED */
2482 int
2483 plcom_kgdb_getc(void *arg)
2484 {
2485 return plcom_common_getc(NODEV, &plcomkgdb_info);
2486 }
2487
2488 /* ARGSUSED */
2489 void
2490 plcom_kgdb_putc(void *arg, int c)
2491 {
2492 plcom_common_putc(NODEV, &plcomkgdb_info, c);
2493 }
2494 #endif /* KGDB */
2495
2496 /* helper function to identify the plcom ports used by
2497 console or KGDB (and not yet autoconf attached) */
2498 int
2499 plcom_is_console(bus_space_tag_t iot, bus_addr_t iobase,
2500 bus_space_handle_t *ioh)
2501 {
2502 bus_space_handle_t help;
2503
2504 if (!plcomconsattached &&
2505 bus_space_is_equal(iot, plcomcons_info.pi_iot) &&
2506 iobase == plcomcons_info.pi_iobase)
2507 help = plcomcons_info.pi_ioh;
2508 #ifdef KGDB
2509 else if (!plcom_kgdb_attached &&
2510 bus_space_is_equal(iot, plcomkgdb_info.pi_iot) &&
2511 iobase == plcomkgdb_info.pi_iobase)
2512 help = plcomkgdb_info.pi_ioh;
2513 #endif
2514 else
2515 return 0;
2516
2517 if (ioh)
2518 *ioh = help;
2519 return 1;
2520 }
2521