plcom.c revision 1.50 1 /* $NetBSD: plcom.c,v 1.50 2014/08/10 16:44:34 tls Exp $ */
2
3 /*-
4 * Copyright (c) 2001 ARM Ltd
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the company may not be used to endorse or promote
16 * products derived from this software without specific prior written
17 * permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
23 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * Copyright (c) 1998, 1999, 2012 The NetBSD Foundation, Inc.
32 * All rights reserved.
33 *
34 * This code is derived from software contributed to The NetBSD Foundation
35 * by Charles M. Hannum and Nick Hudson.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
47 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
48 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
49 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
50 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
51 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
52 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
53 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
54 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
55 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
56 * POSSIBILITY OF SUCH DAMAGE.
57 */
58
59 /*
60 * Copyright (c) 1991 The Regents of the University of California.
61 * All rights reserved.
62 *
63 * Redistribution and use in source and binary forms, with or without
64 * modification, are permitted provided that the following conditions
65 * are met:
66 * 1. Redistributions of source code must retain the above copyright
67 * notice, this list of conditions and the following disclaimer.
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in the
70 * documentation and/or other materials provided with the distribution.
71 * 3. Neither the name of the University nor the names of its contributors
72 * may be used to endorse or promote products derived from this software
73 * without specific prior written permission.
74 *
75 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
76 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
77 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
78 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
79 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
80 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
81 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
82 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
83 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
84 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
85 * SUCH DAMAGE.
86 *
87 * @(#)com.c 7.5 (Berkeley) 5/16/91
88 */
89
90 /*
91 * COM driver for the Prime Cell PL010 and PL011 UARTs. Both are is similar to
92 * the 16C550, but have a completely different programmer's model.
93 * Derived from the NS16550AF com driver.
94 */
95
96 #include <sys/cdefs.h>
97 __KERNEL_RCSID(0, "$NetBSD: plcom.c,v 1.50 2014/08/10 16:44:34 tls Exp $");
98
99 #include "opt_plcom.h"
100 #include "opt_ddb.h"
101 #include "opt_kgdb.h"
102 #include "opt_lockdebug.h"
103 #include "opt_multiprocessor.h"
104
105 #include "rnd.h"
106
107 /*
108 * Override cnmagic(9) macro before including <sys/systm.h>.
109 * We need to know if cn_check_magic triggered debugger, so set a flag.
110 * Callers of cn_check_magic must declare int cn_trapped = 0;
111 * XXX: this is *ugly*!
112 */
113 #define cn_trap() \
114 do { \
115 console_debugger(); \
116 cn_trapped = 1; \
117 } while (/* CONSTCOND */ 0)
118
119 #include <sys/param.h>
120 #include <sys/systm.h>
121 #include <sys/ioctl.h>
122 #include <sys/select.h>
123 #include <sys/tty.h>
124 #include <sys/proc.h>
125 #include <sys/conf.h>
126 #include <sys/file.h>
127 #include <sys/uio.h>
128 #include <sys/kernel.h>
129 #include <sys/syslog.h>
130 #include <sys/types.h>
131 #include <sys/device.h>
132 #include <sys/malloc.h>
133 #include <sys/timepps.h>
134 #include <sys/vnode.h>
135 #include <sys/kauth.h>
136 #include <sys/intr.h>
137 #include <sys/bus.h>
138 #ifdef RND_COM
139 #include <sys/rnd.h>
140 #endif
141
142 #include <evbarm/dev/plcomreg.h>
143 #include <evbarm/dev/plcomvar.h>
144
145 #include <dev/cons.h>
146
147 static void plcom_enable_debugport (struct plcom_softc *);
148
149 void plcom_config (struct plcom_softc *);
150 void plcom_shutdown (struct plcom_softc *);
151 int pl010comspeed (long, long);
152 int pl011comspeed (long, long);
153 static u_char cflag2lcr (tcflag_t);
154 int plcomparam (struct tty *, struct termios *);
155 void plcomstart (struct tty *);
156 int plcomhwiflow (struct tty *, int);
157
158 void plcom_loadchannelregs (struct plcom_softc *);
159 void plcom_hwiflow (struct plcom_softc *);
160 void plcom_break (struct plcom_softc *, int);
161 void plcom_modem (struct plcom_softc *, int);
162 void tiocm_to_plcom (struct plcom_softc *, u_long, int);
163 int plcom_to_tiocm (struct plcom_softc *);
164 void plcom_iflush (struct plcom_softc *);
165
166 int plcom_common_getc (dev_t, struct plcom_instance *);
167 void plcom_common_putc (dev_t, struct plcom_instance *, int);
168
169 int plcominit (struct plcom_instance *, int, int, tcflag_t);
170
171 dev_type_open(plcomopen);
172 dev_type_close(plcomclose);
173 dev_type_read(plcomread);
174 dev_type_write(plcomwrite);
175 dev_type_ioctl(plcomioctl);
176 dev_type_stop(plcomstop);
177 dev_type_tty(plcomtty);
178 dev_type_poll(plcompoll);
179
180 int plcomcngetc (dev_t);
181 void plcomcnputc (dev_t, int);
182 void plcomcnpollc (dev_t, int);
183
184 #define integrate static inline
185 void plcomsoft (void *);
186 integrate void plcom_rxsoft (struct plcom_softc *, struct tty *);
187 integrate void plcom_txsoft (struct plcom_softc *, struct tty *);
188 integrate void plcom_stsoft (struct plcom_softc *, struct tty *);
189 integrate void plcom_schedrx (struct plcom_softc *);
190 void plcomdiag (void *);
191
192 bool plcom_intstatus(struct plcom_instance *, u_int *);
193
194 extern struct cfdriver plcom_cd;
195
196 const struct cdevsw plcom_cdevsw = {
197 .d_open = plcomopen,
198 .d_close = plcomclose,
199 .d_read = plcomread,
200 .d_write = plcomwrite,
201 .d_ioctl = plcomioctl,
202 .d_stop = plcomstop,
203 .d_tty = plcomtty,
204 .d_poll = plcompoll,
205 .d_mmap = nommap,
206 .d_kqfilter = ttykqfilter,
207 .d_discard = nodiscard,
208 .d_flag = D_TTY
209 };
210
211 /*
212 * Make this an option variable one can patch.
213 * But be warned: this must be a power of 2!
214 */
215 u_int plcom_rbuf_size = PLCOM_RING_SIZE;
216
217 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
218 u_int plcom_rbuf_hiwat = (PLCOM_RING_SIZE * 1) / 4;
219 u_int plcom_rbuf_lowat = (PLCOM_RING_SIZE * 3) / 4;
220
221 static int plcomconsunit = -1;
222 static struct plcom_instance plcomcons_info;
223
224 static int plcomconsattached;
225 static int plcomconsrate;
226 static tcflag_t plcomconscflag;
227 static struct cnm_state plcom_cnm_state;
228
229 static int ppscap =
230 PPS_TSFMT_TSPEC |
231 PPS_CAPTUREASSERT |
232 PPS_CAPTURECLEAR |
233 #ifdef PPS_SYNC
234 PPS_HARDPPSONASSERT | PPS_HARDPPSONCLEAR |
235 #endif /* PPS_SYNC */
236 PPS_OFFSETASSERT | PPS_OFFSETCLEAR;
237
238 #ifdef KGDB
239 #include <sys/kgdb.h>
240
241 static struct plcom_instance plcomkgdb_info;
242 static int plcom_kgdb_attached;
243
244 int plcom_kgdb_getc (void *);
245 void plcom_kgdb_putc (void *, int);
246 #endif /* KGDB */
247
248 #define PLCOMUNIT_MASK 0x7ffff
249 #define PLCOMDIALOUT_MASK 0x80000
250
251 #define PLCOMUNIT(x) (minor(x) & PLCOMUNIT_MASK)
252 #define PLCOMDIALOUT(x) (minor(x) & PLCOMDIALOUT_MASK)
253
254 #define PLCOM_ISALIVE(sc) ((sc)->enabled != 0 && \
255 device_is_active((sc)->sc_dev))
256
257 #define BR BUS_SPACE_BARRIER_READ
258 #define BW BUS_SPACE_BARRIER_WRITE
259 #define PLCOM_BARRIER(pi, f) \
260 bus_space_barrier((pi)->pi_iot, (pi)->pi_ioh, 0, (pi)->pi_size, (f))
261
262 static uint8_t
263 pread1(struct plcom_instance *pi, bus_size_t reg)
264 {
265 if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS))
266 return bus_space_read_1(pi->pi_iot, pi->pi_ioh, reg);
267
268 return bus_space_read_4(pi->pi_iot, pi->pi_ioh, reg & -4) >>
269 (8 * (reg & 3));
270 }
271 int nhcr;
272 static void
273 pwrite1(struct plcom_instance *pi, bus_size_t o, uint8_t val)
274 {
275 if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS)) {
276 bus_space_write_1(pi->pi_iot, pi->pi_ioh, o, val);
277 } else {
278 const size_t shift = 8 * (o & 3);
279 o &= -4;
280 uint32_t tmp = bus_space_read_4(pi->pi_iot, pi->pi_ioh, o);
281 tmp = (val << shift) | (tmp & ~(0xff << shift));
282 bus_space_write_4(pi->pi_iot, pi->pi_ioh, o, tmp);
283 }
284 }
285
286 static void
287 pwritem1(struct plcom_instance *pi, bus_size_t o, const uint8_t *datap,
288 bus_size_t count)
289 {
290 if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS)) {
291 bus_space_write_multi_1(pi->pi_iot, pi->pi_ioh, o, datap, count);
292 } else {
293 KASSERT((o & 3) == 0);
294 while (count--) {
295 bus_space_write_4(pi->pi_iot, pi->pi_ioh, o, *datap++);
296 };
297 }
298 }
299
300 #define PREAD1(pi, reg) pread1(pi, reg)
301 #define PREAD4(pi, reg) \
302 (bus_space_read_4((pi)->pi_iot, (pi)->pi_ioh, (reg)))
303
304 #define PWRITE1(pi, reg, val) pwrite1(pi, reg, val)
305 #define PWRITEM1(pi, reg, d, c) pwritem1(pi, reg, d, c)
306 #define PWRITE4(pi, reg, val) \
307 (bus_space_write_4((pi)->pi_iot, (pi)->pi_ioh, (reg), (val)))
308
309 int
310 pl010comspeed(long speed, long frequency)
311 {
312 #define divrnd(n, q) (((n)*2/(q)+1)/2) /* divide and round off */
313
314 int x, err;
315
316 #if 0
317 if (speed == 0)
318 return 0;
319 #endif
320 if (speed <= 0)
321 return -1;
322 x = divrnd(frequency / 16, speed);
323 if (x <= 0)
324 return -1;
325 err = divrnd(((quad_t)frequency) * 1000 / 16, speed * x) - 1000;
326 if (err < 0)
327 err = -err;
328 if (err > PLCOM_TOLERANCE)
329 return -1;
330 return x;
331
332 #undef divrnd
333 }
334
335 int
336 pl011comspeed(long speed, long frequency)
337 {
338 int denom = 16 * speed;
339 int div = frequency / denom;
340 int rem = frequency % denom;
341
342 int ibrd = div << 6;
343 int fbrd = (((8 * rem) / speed) + 1) / 2;
344
345 /* Tolerance? */
346 return ibrd | fbrd;
347 }
348
349 #ifdef PLCOM_DEBUG
350 int plcom_debug = 0;
351
352 void plcomstatus (struct plcom_softc *, const char *);
353 void
354 plcomstatus(struct plcom_softc *sc, const char *str)
355 {
356 struct tty *tp = sc->sc_tty;
357
358 printf("%s: %s %sclocal %sdcd %sts_carr_on %sdtr %stx_stopped\n",
359 device_xname(sc->sc_dev), str,
360 ISSET(tp->t_cflag, CLOCAL) ? "+" : "-",
361 ISSET(sc->sc_msr, PL01X_MSR_DCD) ? "+" : "-",
362 ISSET(tp->t_state, TS_CARR_ON) ? "+" : "-",
363 ISSET(sc->sc_mcr, PL01X_MCR_DTR) ? "+" : "-",
364 sc->sc_tx_stopped ? "+" : "-");
365
366 printf("%s: %s %scrtscts %scts %sts_ttstop %srts %xrx_flags\n",
367 device_xname(sc->sc_dev), str,
368 ISSET(tp->t_cflag, CRTSCTS) ? "+" : "-",
369 ISSET(sc->sc_msr, PL01X_MSR_CTS) ? "+" : "-",
370 ISSET(tp->t_state, TS_TTSTOP) ? "+" : "-",
371 ISSET(sc->sc_mcr, PL01X_MCR_RTS) ? "+" : "-",
372 sc->sc_rx_flags);
373 }
374 #endif
375
376 #if 0
377 int
378 plcomprobe1(bus_space_tag_t iot, bus_space_handle_t ioh)
379 {
380 int data;
381
382 /* Disable the UART. */
383 bus_space_write_1(iot, ioh, plcom_cr, 0);
384 /* Make sure the FIFO is off. */
385 bus_space_write_1(iot, ioh, plcom_lcr, PL01X_LCR_8BITS);
386 /* Disable interrupts. */
387 bus_space_write_1(iot, ioh, plcom_iir, 0);
388
389 /* Make sure we swallow anything in the receiving register. */
390 data = bus_space_read_1(iot, ioh, plcom_dr);
391
392 if (bus_space_read_1(iot, ioh, plcom_lcr) != PL01X_LCR_8BITS)
393 return 0;
394
395 data = bus_space_read_1(iot, ioh, plcom_fr) & (PL01X_FR_RXFF | PL01X_FR_RXFE);
396
397 if (data != PL01X_FR_RXFE)
398 return 0;
399
400 return 1;
401 }
402 #endif
403
404 /*
405 * No locking in this routine; it is only called during attach,
406 * or with the port already locked.
407 */
408 static void
409 plcom_enable_debugport(struct plcom_softc *sc)
410 {
411 struct plcom_instance *pi = &sc->sc_pi;
412
413 sc->sc_cr = PL01X_CR_UARTEN;
414 SET(sc->sc_mcr, PL01X_MCR_DTR | PL01X_MCR_RTS);
415
416 /* Turn on line break interrupt, set carrier. */
417 switch (pi->pi_type) {
418 case PLCOM_TYPE_PL010:
419 SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE);
420 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
421 if (sc->sc_set_mcr) {
422 /* XXX device_unit() abuse */
423 sc->sc_set_mcr(sc->sc_set_mcr_arg,
424 device_unit(sc->sc_dev), sc->sc_mcr);
425 }
426 break;
427 case PLCOM_TYPE_PL011:
428 sc->sc_imsc = PL011_INT_RX | PL011_INT_RT;
429 SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
430 SET(sc->sc_cr, PL011_MCR(sc->sc_mcr));
431 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
432 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
433 break;
434 }
435
436 }
437
438 void
439 plcom_attach_subr(struct plcom_softc *sc)
440 {
441 struct plcom_instance *pi = &sc->sc_pi;
442 struct tty *tp;
443
444 aprint_naive("\n");
445
446 callout_init(&sc->sc_diag_callout, 0);
447 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_HIGH);
448
449 switch (pi->pi_type) {
450 case PLCOM_TYPE_PL010:
451 case PLCOM_TYPE_PL011:
452 break;
453 default:
454 aprint_error_dev(sc->sc_dev,
455 "Unknown plcom type: %d\n", pi->pi_type);
456 return;
457 }
458
459 /* Disable interrupts before configuring the device. */
460 sc->sc_cr = 0;
461 sc->sc_imsc = 0;
462
463 if (bus_space_is_equal(pi->pi_iot, plcomcons_info.pi_iot) &&
464 pi->pi_iobase == plcomcons_info.pi_iobase) {
465 plcomconsattached = 1;
466
467 /* Make sure the console is always "hardwired". */
468 delay(1000); /* wait for output to finish */
469 SET(sc->sc_hwflags, PLCOM_HW_CONSOLE);
470 SET(sc->sc_swflags, TIOCFLAG_SOFTCAR);
471 /*
472 * Must re-enable the console immediately, or we will
473 * hang when trying to print.
474 */
475 sc->sc_cr = PL01X_CR_UARTEN;
476 if (pi->pi_type == PLCOM_TYPE_PL011)
477 SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
478 }
479
480 switch (pi->pi_type) {
481 case PLCOM_TYPE_PL010:
482 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
483 break;
484
485 case PLCOM_TYPE_PL011:
486 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
487 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
488 break;
489 }
490
491 if (sc->sc_fifolen == 0) {
492 switch (pi->pi_type) {
493 case PLCOM_TYPE_PL010:
494 /*
495 * The PL010 has a 16-byte fifo, but the tx interrupt
496 * triggers when there is space for 8 more bytes.
497 */
498 sc->sc_fifolen = 8;
499 break;
500 case PLCOM_TYPE_PL011:
501 /* Some revisions have a 32 byte TX FIFO */
502 sc->sc_fifolen = 16;
503 break;
504 }
505 }
506 aprint_normal("\n");
507
508 if (ISSET(sc->sc_hwflags, PLCOM_HW_TXFIFO_DISABLE)) {
509 sc->sc_fifolen = 1;
510 aprint_normal_dev(sc->sc_dev, "txfifo disabled\n");
511 }
512
513 if (sc->sc_fifolen > 1)
514 SET(sc->sc_hwflags, PLCOM_HW_FIFO);
515
516 tp = tty_alloc();
517 tp->t_oproc = plcomstart;
518 tp->t_param = plcomparam;
519 tp->t_hwiflow = plcomhwiflow;
520
521 sc->sc_tty = tp;
522 sc->sc_rbuf = malloc(plcom_rbuf_size << 1, M_DEVBUF, M_NOWAIT);
523 sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
524 sc->sc_rbavail = plcom_rbuf_size;
525 if (sc->sc_rbuf == NULL) {
526 aprint_error_dev(sc->sc_dev,
527 "unable to allocate ring buffer\n");
528 return;
529 }
530 sc->sc_ebuf = sc->sc_rbuf + (plcom_rbuf_size << 1);
531
532 tty_attach(tp);
533
534 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
535 int maj;
536
537 /* locate the major number */
538 maj = cdevsw_lookup_major(&plcom_cdevsw);
539
540 tp->t_dev = cn_tab->cn_dev = makedev(maj, device_unit(sc->sc_dev));
541
542 aprint_normal_dev(sc->sc_dev, "console\n");
543 }
544
545 #ifdef KGDB
546 /*
547 * Allow kgdb to "take over" this port. If this is
548 * the kgdb device, it has exclusive use.
549 */
550 if (bus_space_is_equal(pi->pi_iot, plcomkgdb_info.pi_iot) &&
551 pi->pi_iobase == plcomkgdb_info.pi_iobase) {
552 if (!ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
553 plcom_kgdb_attached = 1;
554
555 SET(sc->sc_hwflags, PLCOM_HW_KGDB);
556 }
557 aprint_normal_dev(sc->sc_dev, "kgdb\n");
558 }
559 #endif
560
561 sc->sc_si = softint_establish(SOFTINT_SERIAL, plcomsoft, sc);
562
563 #ifdef RND_COM
564 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
565 RND_TYPE_TTY, RND_FLAG_DEFAULT);
566 #endif
567
568 /*
569 * if there are no enable/disable functions, assume the device
570 * is always enabled
571 */
572 if (!sc->enable)
573 sc->enabled = 1;
574
575 plcom_config(sc);
576
577 SET(sc->sc_hwflags, PLCOM_HW_DEV_OK);
578 }
579
580 void
581 plcom_config(struct plcom_softc *sc)
582 {
583 struct plcom_instance *pi = &sc->sc_pi;
584
585 /* Disable interrupts before configuring the device. */
586 sc->sc_cr = 0;
587 sc->sc_imsc = 0;
588 switch (pi->pi_type) {
589 case PLCOM_TYPE_PL010:
590 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
591 break;
592
593 case PLCOM_TYPE_PL011:
594 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
595 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
596 break;
597 }
598
599 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE|PLCOM_HW_KGDB))
600 plcom_enable_debugport(sc);
601 }
602
603 int
604 plcom_detach(device_t self, int flags)
605 {
606 struct plcom_softc *sc = device_private(self);
607 int maj, mn;
608
609 if (sc->sc_hwflags & (PLCOM_HW_CONSOLE|PLCOM_HW_KGDB))
610 return EBUSY;
611
612 if (sc->disable != NULL && sc->enabled != 0) {
613 (*sc->disable)(sc);
614 sc->enabled = 0;
615 }
616
617 /* locate the major number */
618 maj = cdevsw_lookup_major(&plcom_cdevsw);
619
620 /* Nuke the vnodes for any open instances. */
621 mn = device_unit(self);
622 vdevgone(maj, mn, mn, VCHR);
623
624 mn |= PLCOMDIALOUT_MASK;
625 vdevgone(maj, mn, mn, VCHR);
626
627 if (sc->sc_rbuf == NULL) {
628 /*
629 * Ring buffer allocation failed in the plcom_attach_subr,
630 * only the tty is allocated, and nothing else.
631 */
632 tty_free(sc->sc_tty);
633 return 0;
634 }
635
636 /* Free the receive buffer. */
637 free(sc->sc_rbuf, M_DEVBUF);
638
639 /* Detach and free the tty. */
640 tty_detach(sc->sc_tty);
641 tty_free(sc->sc_tty);
642
643 /* Unhook the soft interrupt handler. */
644 softint_disestablish(sc->sc_si);
645
646 #ifdef RND_COM
647 /* Unhook the entropy source. */
648 rnd_detach_source(&sc->rnd_source);
649 #endif
650 callout_destroy(&sc->sc_diag_callout);
651
652 /* Destroy the lock. */
653 mutex_destroy(&sc->sc_lock);
654
655 return 0;
656 }
657
658 int
659 plcom_activate(device_t self, enum devact act)
660 {
661 struct plcom_softc *sc = device_private(self);
662
663 switch (act) {
664 case DVACT_DEACTIVATE:
665 sc->enabled = 0;
666 return 0;
667 default:
668 return EOPNOTSUPP;
669 }
670 }
671
672 void
673 plcom_shutdown(struct plcom_softc *sc)
674 {
675 struct plcom_instance *pi = &sc->sc_pi;
676 struct tty *tp = sc->sc_tty;
677 mutex_spin_enter(&sc->sc_lock);
678
679 /* If we were asserting flow control, then deassert it. */
680 SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
681 plcom_hwiflow(sc);
682
683 /* Clear any break condition set with TIOCSBRK. */
684 plcom_break(sc, 0);
685
686 /* Turn off PPS capture on last close. */
687 mutex_spin_enter(&timecounter_lock);
688 sc->sc_ppsmask = 0;
689 sc->ppsparam.mode = 0;
690 mutex_spin_exit(&timecounter_lock);
691
692 /*
693 * Hang up if necessary. Wait a bit, so the other side has time to
694 * notice even if we immediately open the port again.
695 * Avoid tsleeping above splhigh().
696 */
697 if (ISSET(tp->t_cflag, HUPCL)) {
698 plcom_modem(sc, 0);
699 mutex_spin_exit(&sc->sc_lock);
700 /* XXX will only timeout */
701 (void) kpause(ttclos, false, hz, NULL);
702 mutex_spin_enter(&sc->sc_lock);
703 }
704
705 sc->sc_cr = 0;
706 sc->sc_imsc = 0;
707 /* Turn off interrupts. */
708 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
709 /* interrupt on break */
710
711 sc->sc_cr = PL01X_CR_UARTEN;
712 sc->sc_imsc = 0;
713 switch (pi->pi_type) {
714 case PLCOM_TYPE_PL010:
715 SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE);
716 break;
717 case PLCOM_TYPE_PL011:
718 SET(sc->sc_cr, PL011_CR_RXE);
719 SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX);
720 break;
721 }
722 }
723 switch (pi->pi_type) {
724 case PLCOM_TYPE_PL010:
725 SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE);
726 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
727 break;
728 case PLCOM_TYPE_PL011:
729 SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
730 SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX);
731 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
732 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
733 break;
734 }
735
736 mutex_spin_exit(&sc->sc_lock);
737 if (sc->disable) {
738 #ifdef DIAGNOSTIC
739 if (!sc->enabled)
740 panic("plcom_shutdown: not enabled?");
741 #endif
742 (*sc->disable)(sc);
743 sc->enabled = 0;
744 }
745 }
746
747 int
748 plcomopen(dev_t dev, int flag, int mode, struct lwp *l)
749 {
750 struct plcom_softc *sc;
751 struct plcom_instance *pi;
752 struct tty *tp;
753 int s;
754 int error;
755
756 sc = device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
757 if (sc == NULL || !ISSET(sc->sc_hwflags, PLCOM_HW_DEV_OK) ||
758 sc->sc_rbuf == NULL)
759 return ENXIO;
760
761 if (!device_is_active(sc->sc_dev))
762 return ENXIO;
763
764 pi = &sc->sc_pi;
765
766 #ifdef KGDB
767 /*
768 * If this is the kgdb port, no other use is permitted.
769 */
770 if (ISSET(sc->sc_hwflags, PLCOM_HW_KGDB))
771 return EBUSY;
772 #endif
773
774 tp = sc->sc_tty;
775
776 if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
777 return (EBUSY);
778
779 s = spltty();
780
781 /*
782 * Do the following iff this is a first open.
783 */
784 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
785 struct termios t;
786
787 tp->t_dev = dev;
788
789 if (sc->enable) {
790 if ((*sc->enable)(sc)) {
791 splx(s);
792 aprint_error_dev(sc->sc_dev,
793 "device enable failed\n");
794 return EIO;
795 }
796 mutex_spin_enter(&sc->sc_lock);
797 sc->enabled = 1;
798 plcom_config(sc);
799 } else {
800 mutex_spin_enter(&sc->sc_lock);
801 }
802
803 /* Turn on interrupts. */
804 /* IER_ERXRDY | IER_ERLS | IER_EMSC; */
805 /* Fetch the current modem control status, needed later. */
806 sc->sc_cr = PL01X_CR_UARTEN;
807 switch (pi->pi_type) {
808 case PLCOM_TYPE_PL010:
809 SET(sc->sc_cr,
810 PL010_CR_RIE | PL010_CR_RTIE | PL010_CR_MSIE);
811 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
812 sc->sc_msr = PREAD1(pi, PL01XCOM_FR);
813 break;
814 case PLCOM_TYPE_PL011:
815 SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
816 SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX |
817 PL011_INT_MSMASK);
818 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
819 sc->sc_msr = PREAD4(pi, PL01XCOM_FR);
820 break;
821 }
822
823 /* Clear PPS capture state on first open. */
824
825 mutex_spin_enter(&timecounter_lock);
826 sc->sc_ppsmask = 0;
827 sc->ppsparam.mode = 0;
828 mutex_spin_exit(&timecounter_lock);
829
830 mutex_spin_exit(&sc->sc_lock);
831
832 /*
833 * Initialize the termios status to the defaults. Add in the
834 * sticky bits from TIOCSFLAGS.
835 */
836 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
837 t.c_ospeed = plcomconsrate;
838 t.c_cflag = plcomconscflag;
839 } else {
840 t.c_ospeed = TTYDEF_SPEED;
841 t.c_cflag = TTYDEF_CFLAG;
842 }
843 t.c_ispeed = t.c_ospeed;
844
845 if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL))
846 SET(t.c_cflag, CLOCAL);
847 if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS))
848 SET(t.c_cflag, CRTSCTS);
849 if (ISSET(sc->sc_swflags, TIOCFLAG_MDMBUF))
850 SET(t.c_cflag, MDMBUF);
851 /* Make sure plcomparam() will do something. */
852 tp->t_ospeed = 0;
853 (void) plcomparam(tp, &t);
854 tp->t_iflag = TTYDEF_IFLAG;
855 tp->t_oflag = TTYDEF_OFLAG;
856 tp->t_lflag = TTYDEF_LFLAG;
857 ttychars(tp);
858 ttsetwater(tp);
859
860 mutex_spin_enter(&sc->sc_lock);
861
862 /*
863 * Turn on DTR. We must always do this, even if carrier is not
864 * present, because otherwise we'd have to use TIOCSDTR
865 * immediately after setting CLOCAL, which applications do not
866 * expect. We always assert DTR while the device is open
867 * unless explicitly requested to deassert it.
868 */
869 plcom_modem(sc, 1);
870
871 /* Clear the input ring, and unblock. */
872 sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
873 sc->sc_rbavail = plcom_rbuf_size;
874 plcom_iflush(sc);
875 CLR(sc->sc_rx_flags, RX_ANY_BLOCK);
876 plcom_hwiflow(sc);
877
878 #ifdef PLCOM_DEBUG
879 if (plcom_debug)
880 plcomstatus(sc, "plcomopen ");
881 #endif
882
883 mutex_spin_exit(&sc->sc_lock);
884 }
885
886 splx(s);
887
888 error = ttyopen(tp, PLCOMDIALOUT(dev), ISSET(flag, O_NONBLOCK));
889 if (error)
890 goto bad;
891
892 error = (*tp->t_linesw->l_open)(dev, tp);
893 if (error)
894 goto bad;
895
896 return 0;
897
898 bad:
899 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
900 /*
901 * We failed to open the device, and nobody else had it opened.
902 * Clean up the state as appropriate.
903 */
904 plcom_shutdown(sc);
905 }
906
907 return error;
908 }
909
910 int
911 plcomclose(dev_t dev, int flag, int mode, struct lwp *l)
912 {
913 struct plcom_softc *sc =
914 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
915 struct tty *tp = sc->sc_tty;
916
917 /* XXX This is for cons.c. */
918 if (!ISSET(tp->t_state, TS_ISOPEN))
919 return 0;
920
921 (*tp->t_linesw->l_close)(tp, flag);
922 ttyclose(tp);
923
924 if (PLCOM_ISALIVE(sc) == 0)
925 return 0;
926
927 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
928 /*
929 * Although we got a last close, the device may still be in
930 * use; e.g. if this was the dialout node, and there are still
931 * processes waiting for carrier on the non-dialout node.
932 */
933 plcom_shutdown(sc);
934 }
935
936 return 0;
937 }
938
939 int
940 plcomread(dev_t dev, struct uio *uio, int flag)
941 {
942 struct plcom_softc *sc =
943 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
944 struct tty *tp = sc->sc_tty;
945
946 if (PLCOM_ISALIVE(sc) == 0)
947 return EIO;
948
949 return (*tp->t_linesw->l_read)(tp, uio, flag);
950 }
951
952 int
953 plcomwrite(dev_t dev, struct uio *uio, int flag)
954 {
955 struct plcom_softc *sc =
956 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
957 struct tty *tp = sc->sc_tty;
958
959 if (PLCOM_ISALIVE(sc) == 0)
960 return EIO;
961
962 return (*tp->t_linesw->l_write)(tp, uio, flag);
963 }
964
965 int
966 plcompoll(dev_t dev, int events, struct lwp *l)
967 {
968 struct plcom_softc *sc =
969 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
970 struct tty *tp = sc->sc_tty;
971
972 if (PLCOM_ISALIVE(sc) == 0)
973 return EIO;
974
975 return (*tp->t_linesw->l_poll)(tp, events, l);
976 }
977
978 struct tty *
979 plcomtty(dev_t dev)
980 {
981 struct plcom_softc *sc =
982 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
983 struct tty *tp = sc->sc_tty;
984
985 return tp;
986 }
987
988 int
989 plcomioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
990 {
991 struct plcom_softc *sc =
992 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
993 struct tty *tp;
994 int error;
995
996 if (sc == NULL)
997 return ENXIO;
998 if (PLCOM_ISALIVE(sc) == 0)
999 return EIO;
1000
1001 tp = sc->sc_tty;
1002
1003 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
1004 if (error != EPASSTHROUGH)
1005 return error;
1006
1007 error = ttioctl(tp, cmd, data, flag, l);
1008 if (error != EPASSTHROUGH)
1009 return error;
1010
1011 error = 0;
1012 switch (cmd) {
1013 case TIOCSFLAGS:
1014 error = kauth_authorize_device_tty(l->l_cred,
1015 KAUTH_DEVICE_TTY_PRIVSET, tp);
1016 break;
1017 default:
1018 /* nothing */
1019 break;
1020 }
1021 if (error) {
1022 return error;
1023 }
1024
1025 mutex_spin_enter(&sc->sc_lock);
1026 switch (cmd) {
1027 case TIOCSBRK:
1028 plcom_break(sc, 1);
1029 break;
1030
1031 case TIOCCBRK:
1032 plcom_break(sc, 0);
1033 break;
1034
1035 case TIOCSDTR:
1036 plcom_modem(sc, 1);
1037 break;
1038
1039 case TIOCCDTR:
1040 plcom_modem(sc, 0);
1041 break;
1042
1043 case TIOCGFLAGS:
1044 *(int *)data = sc->sc_swflags;
1045 break;
1046
1047 case TIOCSFLAGS:
1048 sc->sc_swflags = *(int *)data;
1049 break;
1050
1051 case TIOCMSET:
1052 case TIOCMBIS:
1053 case TIOCMBIC:
1054 tiocm_to_plcom(sc, cmd, *(int *)data);
1055 break;
1056
1057 case TIOCMGET:
1058 *(int *)data = plcom_to_tiocm(sc);
1059 break;
1060
1061 case PPS_IOC_CREATE:
1062 break;
1063
1064 case PPS_IOC_DESTROY:
1065 break;
1066
1067 case PPS_IOC_GETPARAMS: {
1068 pps_params_t *pp;
1069 pp = (pps_params_t *)data;
1070 mutex_spin_enter(&timecounter_lock);
1071 *pp = sc->ppsparam;
1072 mutex_spin_exit(&timecounter_lock);
1073 break;
1074 }
1075
1076 case PPS_IOC_SETPARAMS: {
1077 pps_params_t *pp;
1078 int mode;
1079 pp = (pps_params_t *)data;
1080 mutex_spin_enter(&timecounter_lock);
1081 if (pp->mode & ~ppscap) {
1082 error = EINVAL;
1083 mutex_spin_exit(&timecounter_lock);
1084 break;
1085 }
1086 sc->ppsparam = *pp;
1087 /*
1088 * Compute msr masks from user-specified timestamp state.
1089 */
1090 mode = sc->ppsparam.mode;
1091 #ifdef PPS_SYNC
1092 if (mode & PPS_HARDPPSONASSERT) {
1093 mode |= PPS_CAPTUREASSERT;
1094 /* XXX revoke any previous HARDPPS source */
1095 }
1096 if (mode & PPS_HARDPPSONCLEAR) {
1097 mode |= PPS_CAPTURECLEAR;
1098 /* XXX revoke any previous HARDPPS source */
1099 }
1100 #endif /* PPS_SYNC */
1101 switch (mode & PPS_CAPTUREBOTH) {
1102 case 0:
1103 sc->sc_ppsmask = 0;
1104 break;
1105
1106 case PPS_CAPTUREASSERT:
1107 sc->sc_ppsmask = PL01X_MSR_DCD;
1108 sc->sc_ppsassert = PL01X_MSR_DCD;
1109 sc->sc_ppsclear = -1;
1110 break;
1111
1112 case PPS_CAPTURECLEAR:
1113 sc->sc_ppsmask = PL01X_MSR_DCD;
1114 sc->sc_ppsassert = -1;
1115 sc->sc_ppsclear = 0;
1116 break;
1117
1118 case PPS_CAPTUREBOTH:
1119 sc->sc_ppsmask = PL01X_MSR_DCD;
1120 sc->sc_ppsassert = PL01X_MSR_DCD;
1121 sc->sc_ppsclear = 0;
1122 break;
1123
1124 default:
1125 error = EINVAL;
1126 break;
1127 }
1128 mutex_spin_exit(&timecounter_lock);
1129 break;
1130 }
1131
1132 case PPS_IOC_GETCAP:
1133 *(int*)data = ppscap;
1134 break;
1135
1136 case PPS_IOC_FETCH: {
1137 pps_info_t *pi;
1138 pi = (pps_info_t *)data;
1139 mutex_spin_enter(&timecounter_lock);
1140 *pi = sc->ppsinfo;
1141 mutex_spin_exit(&timecounter_lock);
1142 break;
1143 }
1144
1145 case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */
1146 /*
1147 * Some GPS clocks models use the falling rather than
1148 * rising edge as the on-the-second signal.
1149 * The old API has no way to specify PPS polarity.
1150 */
1151 mutex_spin_enter(&timecounter_lock);
1152 sc->sc_ppsmask = PL01X_MSR_DCD;
1153 #ifndef PPS_TRAILING_EDGE
1154 sc->sc_ppsassert = PL01X_MSR_DCD;
1155 sc->sc_ppsclear = -1;
1156 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
1157 &sc->ppsinfo.assert_timestamp);
1158 #else
1159 sc->sc_ppsassert = -1
1160 sc->sc_ppsclear = 0;
1161 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
1162 &sc->ppsinfo.clear_timestamp);
1163 #endif
1164 mutex_spin_exit(&timecounter_lock);
1165 break;
1166
1167 default:
1168 error = EPASSTHROUGH;
1169 break;
1170 }
1171
1172 mutex_spin_exit(&sc->sc_lock);
1173
1174 #ifdef PLCOM_DEBUG
1175 if (plcom_debug)
1176 plcomstatus(sc, "plcomioctl ");
1177 #endif
1178
1179 return error;
1180 }
1181
1182 integrate void
1183 plcom_schedrx(struct plcom_softc *sc)
1184 {
1185
1186 sc->sc_rx_ready = 1;
1187
1188 /* Wake up the poller. */
1189 softint_schedule(sc->sc_si);
1190 }
1191
1192 void
1193 plcom_break(struct plcom_softc *sc, int onoff)
1194 {
1195
1196 if (onoff)
1197 SET(sc->sc_lcr, PL01X_LCR_BRK);
1198 else
1199 CLR(sc->sc_lcr, PL01X_LCR_BRK);
1200
1201 if (!sc->sc_heldchange) {
1202 if (sc->sc_tx_busy) {
1203 sc->sc_heldtbc = sc->sc_tbc;
1204 sc->sc_tbc = 0;
1205 sc->sc_heldchange = 1;
1206 } else
1207 plcom_loadchannelregs(sc);
1208 }
1209 }
1210
1211 void
1212 plcom_modem(struct plcom_softc *sc, int onoff)
1213 {
1214
1215 if (sc->sc_mcr_dtr == 0)
1216 return;
1217
1218 if (onoff)
1219 SET(sc->sc_mcr, sc->sc_mcr_dtr);
1220 else
1221 CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1222
1223 if (!sc->sc_heldchange) {
1224 if (sc->sc_tx_busy) {
1225 sc->sc_heldtbc = sc->sc_tbc;
1226 sc->sc_tbc = 0;
1227 sc->sc_heldchange = 1;
1228 } else
1229 plcom_loadchannelregs(sc);
1230 }
1231 }
1232
1233 void
1234 tiocm_to_plcom(struct plcom_softc *sc, u_long how, int ttybits)
1235 {
1236 u_char plcombits;
1237
1238 plcombits = 0;
1239 if (ISSET(ttybits, TIOCM_DTR))
1240 SET(plcombits, PL01X_MCR_DTR);
1241 if (ISSET(ttybits, TIOCM_RTS))
1242 SET(plcombits, PL01X_MCR_RTS);
1243
1244 switch (how) {
1245 case TIOCMBIC:
1246 CLR(sc->sc_mcr, plcombits);
1247 break;
1248
1249 case TIOCMBIS:
1250 SET(sc->sc_mcr, plcombits);
1251 break;
1252
1253 case TIOCMSET:
1254 CLR(sc->sc_mcr, PL01X_MCR_DTR | PL01X_MCR_RTS);
1255 SET(sc->sc_mcr, plcombits);
1256 break;
1257 }
1258
1259 if (!sc->sc_heldchange) {
1260 if (sc->sc_tx_busy) {
1261 sc->sc_heldtbc = sc->sc_tbc;
1262 sc->sc_tbc = 0;
1263 sc->sc_heldchange = 1;
1264 } else
1265 plcom_loadchannelregs(sc);
1266 }
1267 }
1268
1269 int
1270 plcom_to_tiocm(struct plcom_softc *sc)
1271 {
1272 u_char plcombits;
1273 int ttybits = 0;
1274
1275 plcombits = sc->sc_mcr;
1276 if (ISSET(plcombits, PL01X_MCR_DTR))
1277 SET(ttybits, TIOCM_DTR);
1278 if (ISSET(plcombits, PL01X_MCR_RTS))
1279 SET(ttybits, TIOCM_RTS);
1280
1281 plcombits = sc->sc_msr;
1282 if (ISSET(plcombits, PL01X_MSR_DCD))
1283 SET(ttybits, TIOCM_CD);
1284 if (ISSET(plcombits, PL01X_MSR_CTS))
1285 SET(ttybits, TIOCM_CTS);
1286 if (ISSET(plcombits, PL01X_MSR_DSR))
1287 SET(ttybits, TIOCM_DSR);
1288 if (ISSET(plcombits, PL011_MSR_RI))
1289 SET(ttybits, TIOCM_RI);
1290
1291 if (sc->sc_cr != 0)
1292 SET(ttybits, TIOCM_LE);
1293
1294 return ttybits;
1295 }
1296
1297 static u_char
1298 cflag2lcr(tcflag_t cflag)
1299 {
1300 u_char lcr = 0;
1301
1302 switch (ISSET(cflag, CSIZE)) {
1303 case CS5:
1304 SET(lcr, PL01X_LCR_5BITS);
1305 break;
1306 case CS6:
1307 SET(lcr, PL01X_LCR_6BITS);
1308 break;
1309 case CS7:
1310 SET(lcr, PL01X_LCR_7BITS);
1311 break;
1312 case CS8:
1313 SET(lcr, PL01X_LCR_8BITS);
1314 break;
1315 }
1316 if (ISSET(cflag, PARENB)) {
1317 SET(lcr, PL01X_LCR_PEN);
1318 if (!ISSET(cflag, PARODD))
1319 SET(lcr, PL01X_LCR_EPS);
1320 }
1321 if (ISSET(cflag, CSTOPB))
1322 SET(lcr, PL01X_LCR_STP2);
1323
1324 return lcr;
1325 }
1326
1327 int
1328 plcomparam(struct tty *tp, struct termios *t)
1329 {
1330 struct plcom_softc *sc =
1331 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1332 struct plcom_instance *pi = &sc->sc_pi;
1333 int ospeed = -1;
1334 u_char lcr;
1335
1336 if (PLCOM_ISALIVE(sc) == 0)
1337 return EIO;
1338
1339 switch (pi->pi_type) {
1340 case PLCOM_TYPE_PL010:
1341 ospeed = pl010comspeed(t->c_ospeed, sc->sc_frequency);
1342 break;
1343 case PLCOM_TYPE_PL011:
1344 ospeed = pl011comspeed(t->c_ospeed, sc->sc_frequency);
1345 break;
1346 }
1347
1348 /* Check requested parameters. */
1349 if (ospeed < 0)
1350 return EINVAL;
1351 if (t->c_ispeed && t->c_ispeed != t->c_ospeed)
1352 return EINVAL;
1353
1354 /*
1355 * For the console, always force CLOCAL and !HUPCL, so that the port
1356 * is always active.
1357 */
1358 if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR) ||
1359 ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
1360 SET(t->c_cflag, CLOCAL);
1361 CLR(t->c_cflag, HUPCL);
1362 }
1363
1364 /*
1365 * If there were no changes, don't do anything. This avoids dropping
1366 * input and improves performance when all we did was frob things like
1367 * VMIN and VTIME.
1368 */
1369 if (tp->t_ospeed == t->c_ospeed &&
1370 tp->t_cflag == t->c_cflag)
1371 return 0;
1372
1373 lcr = ISSET(sc->sc_lcr, PL01X_LCR_BRK) | cflag2lcr(t->c_cflag);
1374
1375 mutex_spin_enter(&sc->sc_lock);
1376
1377 sc->sc_lcr = lcr;
1378
1379 /*
1380 * PL010 has a fixed-length FIFO trigger point.
1381 */
1382 if (ISSET(sc->sc_hwflags, PLCOM_HW_FIFO))
1383 sc->sc_fifo = 1;
1384 else
1385 sc->sc_fifo = 0;
1386
1387 if (sc->sc_fifo)
1388 SET(sc->sc_lcr, PL01X_LCR_FEN);
1389
1390 /*
1391 * If we're not in a mode that assumes a connection is present, then
1392 * ignore carrier changes.
1393 */
1394 if (ISSET(t->c_cflag, CLOCAL | MDMBUF))
1395 sc->sc_msr_dcd = 0;
1396 else
1397 sc->sc_msr_dcd = PL01X_MSR_DCD;
1398 /*
1399 * Set the flow control pins depending on the current flow control
1400 * mode.
1401 */
1402 if (ISSET(t->c_cflag, CRTSCTS)) {
1403 sc->sc_mcr_dtr = PL01X_MCR_DTR;
1404 sc->sc_mcr_rts = PL01X_MCR_RTS;
1405 sc->sc_msr_cts = PL01X_MSR_CTS;
1406 } else if (ISSET(t->c_cflag, MDMBUF)) {
1407 /*
1408 * For DTR/DCD flow control, make sure we don't toggle DTR for
1409 * carrier detection.
1410 */
1411 sc->sc_mcr_dtr = 0;
1412 sc->sc_mcr_rts = PL01X_MCR_DTR;
1413 sc->sc_msr_cts = PL01X_MSR_DCD;
1414 } else {
1415 /*
1416 * If no flow control, then always set RTS. This will make
1417 * the other side happy if it mistakenly thinks we're doing
1418 * RTS/CTS flow control.
1419 */
1420 sc->sc_mcr_dtr = PL01X_MCR_DTR | PL01X_MCR_RTS;
1421 sc->sc_mcr_rts = 0;
1422 sc->sc_msr_cts = 0;
1423 if (ISSET(sc->sc_mcr, PL01X_MCR_DTR))
1424 SET(sc->sc_mcr, PL01X_MCR_RTS);
1425 else
1426 CLR(sc->sc_mcr, PL01X_MCR_RTS);
1427 }
1428 sc->sc_msr_mask = sc->sc_msr_cts | sc->sc_msr_dcd;
1429
1430 #if 0
1431 if (ospeed == 0)
1432 CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1433 else
1434 SET(sc->sc_mcr, sc->sc_mcr_dtr);
1435 #endif
1436
1437 switch (pi->pi_type) {
1438 case PLCOM_TYPE_PL010:
1439 sc->sc_ratel = ospeed & 0xff;
1440 sc->sc_rateh = (ospeed >> 8) & 0xff;
1441 break;
1442 case PLCOM_TYPE_PL011:
1443 sc->sc_ratel = ospeed & ((1 << 6) - 1);
1444 sc->sc_rateh = ospeed >> 6;
1445 break;
1446 }
1447
1448 /* And copy to tty. */
1449 tp->t_ispeed = t->c_ospeed;
1450 tp->t_ospeed = t->c_ospeed;
1451 tp->t_cflag = t->c_cflag;
1452
1453 if (!sc->sc_heldchange) {
1454 if (sc->sc_tx_busy) {
1455 sc->sc_heldtbc = sc->sc_tbc;
1456 sc->sc_tbc = 0;
1457 sc->sc_heldchange = 1;
1458 } else
1459 plcom_loadchannelregs(sc);
1460 }
1461
1462 if (!ISSET(t->c_cflag, CHWFLOW)) {
1463 /* Disable the high water mark. */
1464 sc->sc_r_hiwat = 0;
1465 sc->sc_r_lowat = 0;
1466 if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1467 CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1468 plcom_schedrx(sc);
1469 }
1470 if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
1471 CLR(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
1472 plcom_hwiflow(sc);
1473 }
1474 } else {
1475 sc->sc_r_hiwat = plcom_rbuf_hiwat;
1476 sc->sc_r_lowat = plcom_rbuf_lowat;
1477 }
1478
1479 mutex_spin_exit(&sc->sc_lock);
1480
1481 /*
1482 * Update the tty layer's idea of the carrier bit, in case we changed
1483 * CLOCAL or MDMBUF. We don't hang up here; we only do that by
1484 * explicit request.
1485 */
1486 (void) (*tp->t_linesw->l_modem)(tp, ISSET(sc->sc_msr, PL01X_MSR_DCD));
1487
1488 #ifdef PLCOM_DEBUG
1489 if (plcom_debug)
1490 plcomstatus(sc, "plcomparam ");
1491 #endif
1492
1493 if (!ISSET(t->c_cflag, CHWFLOW)) {
1494 if (sc->sc_tx_stopped) {
1495 sc->sc_tx_stopped = 0;
1496 plcomstart(tp);
1497 }
1498 }
1499
1500 return 0;
1501 }
1502
1503 void
1504 plcom_iflush(struct plcom_softc *sc)
1505 {
1506 struct plcom_instance *pi = &sc->sc_pi;
1507 #ifdef DIAGNOSTIC
1508 int reg;
1509 #endif
1510 int timo;
1511
1512 #ifdef DIAGNOSTIC
1513 reg = 0xffff;
1514 #endif
1515 timo = 50000;
1516 /* flush any pending I/O */
1517 while (! ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE)
1518 && --timo)
1519 #ifdef DIAGNOSTIC
1520 reg =
1521 #else
1522 (void)
1523 #endif
1524 PREAD1(pi, PL01XCOM_DR);
1525 #ifdef DIAGNOSTIC
1526 if (!timo)
1527 aprint_error_dev(sc->sc_dev, ": %s timeout %02x\n", __func__,
1528 reg);
1529 #endif
1530 }
1531
1532 void
1533 plcom_loadchannelregs(struct plcom_softc *sc)
1534 {
1535 struct plcom_instance *pi = &sc->sc_pi;
1536
1537 /* XXXXX necessary? */
1538 plcom_iflush(sc);
1539
1540 switch (pi->pi_type) {
1541 case PLCOM_TYPE_PL010:
1542 PWRITE1(pi, PL010COM_CR, 0);
1543 PWRITE1(pi, PL010COM_DLBL, sc->sc_ratel);
1544 PWRITE1(pi, PL010COM_DLBH, sc->sc_rateh);
1545 PWRITE1(pi, PL010COM_LCR, sc->sc_lcr);
1546
1547 /* XXX device_unit() abuse */
1548 if (sc->sc_set_mcr)
1549 sc->sc_set_mcr(sc->sc_set_mcr_arg,
1550 device_unit(sc->sc_dev),
1551 sc->sc_mcr_active = sc->sc_mcr);
1552
1553 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
1554 break;
1555
1556 case PLCOM_TYPE_PL011:
1557 PWRITE4(pi, PL011COM_CR, 0);
1558 PWRITE1(pi, PL011COM_FBRD, sc->sc_ratel);
1559 PWRITE4(pi, PL011COM_IBRD, sc->sc_rateh);
1560 PWRITE1(pi, PL011COM_LCRH, sc->sc_lcr);
1561 sc->sc_mcr_active = sc->sc_mcr;
1562 CLR(sc->sc_cr, PL011_MCR(PL01X_MCR_RTS | PL01X_MCR_DTR));
1563 SET(sc->sc_cr, PL011_MCR(sc->sc_mcr_active));
1564 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
1565 break;
1566 }
1567 }
1568
1569 int
1570 plcomhwiflow(struct tty *tp, int block)
1571 {
1572 struct plcom_softc *sc =
1573 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1574
1575 if (PLCOM_ISALIVE(sc) == 0)
1576 return 0;
1577
1578 if (sc->sc_mcr_rts == 0)
1579 return 0;
1580
1581 mutex_spin_enter(&sc->sc_lock);
1582
1583 if (block) {
1584 if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1585 SET(sc->sc_rx_flags, RX_TTY_BLOCKED);
1586 plcom_hwiflow(sc);
1587 }
1588 } else {
1589 if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1590 CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1591 plcom_schedrx(sc);
1592 }
1593 if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1594 CLR(sc->sc_rx_flags, RX_TTY_BLOCKED);
1595 plcom_hwiflow(sc);
1596 }
1597 }
1598
1599 mutex_spin_exit(&sc->sc_lock);
1600 return 1;
1601 }
1602
1603 /*
1604 * (un)block input via hw flowcontrol
1605 */
1606 void
1607 plcom_hwiflow(struct plcom_softc *sc)
1608 {
1609 struct plcom_instance *pi = &sc->sc_pi;
1610
1611 if (sc->sc_mcr_rts == 0)
1612 return;
1613
1614 if (ISSET(sc->sc_rx_flags, RX_ANY_BLOCK)) {
1615 CLR(sc->sc_mcr, sc->sc_mcr_rts);
1616 CLR(sc->sc_mcr_active, sc->sc_mcr_rts);
1617 } else {
1618 SET(sc->sc_mcr, sc->sc_mcr_rts);
1619 SET(sc->sc_mcr_active, sc->sc_mcr_rts);
1620 }
1621 switch (pi->pi_type) {
1622 case PLCOM_TYPE_PL010:
1623 if (sc->sc_set_mcr)
1624 /* XXX device_unit() abuse */
1625 sc->sc_set_mcr(sc->sc_set_mcr_arg,
1626 device_unit(sc->sc_dev), sc->sc_mcr_active);
1627 break;
1628 case PLCOM_TYPE_PL011:
1629 CLR(sc->sc_cr, PL011_MCR(PL01X_MCR_RTS | PL01X_MCR_DTR));
1630 SET(sc->sc_cr, PL011_MCR(sc->sc_mcr_active));
1631 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
1632 break;
1633 }
1634 }
1635
1636
1637 void
1638 plcomstart(struct tty *tp)
1639 {
1640 struct plcom_softc *sc =
1641 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1642 struct plcom_instance *pi = &sc->sc_pi;
1643 int s;
1644
1645 if (PLCOM_ISALIVE(sc) == 0)
1646 return;
1647
1648 s = spltty();
1649 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
1650 goto out;
1651 if (sc->sc_tx_stopped)
1652 goto out;
1653
1654 if (!ttypull(tp))
1655 goto out;
1656
1657 /* Grab the first contiguous region of buffer space. */
1658 {
1659 u_char *tba;
1660 int tbc;
1661
1662 tba = tp->t_outq.c_cf;
1663 tbc = ndqb(&tp->t_outq, 0);
1664
1665 mutex_spin_enter(&sc->sc_lock);
1666
1667 sc->sc_tba = tba;
1668 sc->sc_tbc = tbc;
1669 }
1670
1671 SET(tp->t_state, TS_BUSY);
1672 sc->sc_tx_busy = 1;
1673
1674 /* Enable transmit completion interrupts if necessary. */
1675 switch (pi->pi_type) {
1676 case PLCOM_TYPE_PL010:
1677 if (!ISSET(sc->sc_cr, PL010_CR_TIE)) {
1678 SET(sc->sc_cr, PL010_CR_TIE);
1679 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
1680 }
1681 break;
1682 case PLCOM_TYPE_PL011:
1683 if (!ISSET(sc->sc_imsc, PL011_INT_TX)) {
1684 SET(sc->sc_imsc, PL011_INT_TX);
1685 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
1686 }
1687 break;
1688 }
1689
1690 /* Output the first chunk of the contiguous buffer. */
1691 {
1692 int n;
1693
1694 n = sc->sc_tbc;
1695 if (n > sc->sc_fifolen)
1696 n = sc->sc_fifolen;
1697 PWRITEM1(pi, PL01XCOM_DR, sc->sc_tba, n);
1698 sc->sc_tbc -= n;
1699 sc->sc_tba += n;
1700 }
1701 mutex_spin_exit(&sc->sc_lock);
1702 out:
1703 splx(s);
1704 return;
1705 }
1706
1707 /*
1708 * Stop output on a line.
1709 */
1710 void
1711 plcomstop(struct tty *tp, int flag)
1712 {
1713 struct plcom_softc *sc =
1714 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1715
1716 mutex_spin_enter(&sc->sc_lock);
1717 if (ISSET(tp->t_state, TS_BUSY)) {
1718 /* Stop transmitting at the next chunk. */
1719 sc->sc_tbc = 0;
1720 sc->sc_heldtbc = 0;
1721 if (!ISSET(tp->t_state, TS_TTSTOP))
1722 SET(tp->t_state, TS_FLUSH);
1723 }
1724 mutex_spin_exit(&sc->sc_lock);
1725 }
1726
1727 void
1728 plcomdiag(void *arg)
1729 {
1730 struct plcom_softc *sc = arg;
1731 int overflows, floods;
1732
1733 mutex_spin_enter(&sc->sc_lock);
1734 overflows = sc->sc_overflows;
1735 sc->sc_overflows = 0;
1736 floods = sc->sc_floods;
1737 sc->sc_floods = 0;
1738 sc->sc_errors = 0;
1739 mutex_spin_exit(&sc->sc_lock);
1740
1741 log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
1742 device_xname(sc->sc_dev),
1743 overflows, overflows == 1 ? "" : "s",
1744 floods, floods == 1 ? "" : "s");
1745 }
1746
1747 integrate void
1748 plcom_rxsoft(struct plcom_softc *sc, struct tty *tp)
1749 {
1750 int (*rint) (int, struct tty *) = tp->t_linesw->l_rint;
1751 struct plcom_instance *pi = &sc->sc_pi;
1752 u_char *get, *end;
1753 u_int cc, scc;
1754 u_char rsr;
1755 int code;
1756
1757 end = sc->sc_ebuf;
1758 get = sc->sc_rbget;
1759 scc = cc = plcom_rbuf_size - sc->sc_rbavail;
1760
1761 if (cc == plcom_rbuf_size) {
1762 sc->sc_floods++;
1763 if (sc->sc_errors++ == 0)
1764 callout_reset(&sc->sc_diag_callout, 60 * hz,
1765 plcomdiag, sc);
1766 }
1767
1768 while (cc) {
1769 code = get[0];
1770 rsr = get[1];
1771 if (ISSET(rsr, PL01X_RSR_ERROR)) {
1772 if (ISSET(rsr, PL01X_RSR_OE)) {
1773 sc->sc_overflows++;
1774 if (sc->sc_errors++ == 0)
1775 callout_reset(&sc->sc_diag_callout,
1776 60 * hz, plcomdiag, sc);
1777 }
1778 if (ISSET(rsr, PL01X_RSR_BE | PL01X_RSR_FE))
1779 SET(code, TTY_FE);
1780 if (ISSET(rsr, PL01X_RSR_PE))
1781 SET(code, TTY_PE);
1782 }
1783 if ((*rint)(code, tp) == -1) {
1784 /*
1785 * The line discipline's buffer is out of space.
1786 */
1787 if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1788 /*
1789 * We're either not using flow control, or the
1790 * line discipline didn't tell us to block for
1791 * some reason. Either way, we have no way to
1792 * know when there's more space available, so
1793 * just drop the rest of the data.
1794 */
1795 get += cc << 1;
1796 if (get >= end)
1797 get -= plcom_rbuf_size << 1;
1798 cc = 0;
1799 } else {
1800 /*
1801 * Don't schedule any more receive processing
1802 * until the line discipline tells us there's
1803 * space available (through plcomhwiflow()).
1804 * Leave the rest of the data in the input
1805 * buffer.
1806 */
1807 SET(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1808 }
1809 break;
1810 }
1811 get += 2;
1812 if (get >= end)
1813 get = sc->sc_rbuf;
1814 cc--;
1815 }
1816
1817 if (cc != scc) {
1818 sc->sc_rbget = get;
1819 mutex_spin_enter(&sc->sc_lock);
1820
1821 cc = sc->sc_rbavail += scc - cc;
1822 /* Buffers should be ok again, release possible block. */
1823 if (cc >= sc->sc_r_lowat) {
1824 if (ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1825 CLR(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
1826 switch (pi->pi_type) {
1827 case PLCOM_TYPE_PL010:
1828 SET(sc->sc_cr,
1829 PL010_CR_RIE | PL010_CR_RTIE);
1830 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
1831 break;
1832 case PLCOM_TYPE_PL011:
1833 SET(sc->sc_imsc,
1834 PL011_INT_RX | PL011_INT_RT);
1835 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
1836 break;
1837 }
1838 }
1839 if (ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED)) {
1840 CLR(sc->sc_rx_flags, RX_IBUF_BLOCKED);
1841 plcom_hwiflow(sc);
1842 }
1843 }
1844 mutex_spin_exit(&sc->sc_lock);
1845 }
1846 }
1847
1848 integrate void
1849 plcom_txsoft(struct plcom_softc *sc, struct tty *tp)
1850 {
1851
1852 CLR(tp->t_state, TS_BUSY);
1853 if (ISSET(tp->t_state, TS_FLUSH))
1854 CLR(tp->t_state, TS_FLUSH);
1855 else
1856 ndflush(&tp->t_outq, (int)(sc->sc_tba - tp->t_outq.c_cf));
1857 (*tp->t_linesw->l_start)(tp);
1858 }
1859
1860 integrate void
1861 plcom_stsoft(struct plcom_softc *sc, struct tty *tp)
1862 {
1863 u_char msr, delta;
1864
1865 mutex_spin_enter(&sc->sc_lock);
1866 msr = sc->sc_msr;
1867 delta = sc->sc_msr_delta;
1868 sc->sc_msr_delta = 0;
1869 mutex_spin_exit(&sc->sc_lock);
1870
1871 if (ISSET(delta, sc->sc_msr_dcd)) {
1872 /*
1873 * Inform the tty layer that carrier detect changed.
1874 */
1875 (void) (*tp->t_linesw->l_modem)(tp, ISSET(msr, PL01X_MSR_DCD));
1876 }
1877
1878 if (ISSET(delta, sc->sc_msr_cts)) {
1879 /* Block or unblock output according to flow control. */
1880 if (ISSET(msr, sc->sc_msr_cts)) {
1881 sc->sc_tx_stopped = 0;
1882 (*tp->t_linesw->l_start)(tp);
1883 } else {
1884 sc->sc_tx_stopped = 1;
1885 }
1886 }
1887
1888 #ifdef PLCOM_DEBUG
1889 if (plcom_debug)
1890 plcomstatus(sc, "plcom_stsoft");
1891 #endif
1892 }
1893
1894 void
1895 plcomsoft(void *arg)
1896 {
1897 struct plcom_softc *sc = arg;
1898 struct tty *tp;
1899
1900 if (PLCOM_ISALIVE(sc) == 0)
1901 return;
1902
1903 tp = sc->sc_tty;
1904
1905 if (sc->sc_rx_ready) {
1906 sc->sc_rx_ready = 0;
1907 plcom_rxsoft(sc, tp);
1908 }
1909
1910 if (sc->sc_st_check) {
1911 sc->sc_st_check = 0;
1912 plcom_stsoft(sc, tp);
1913 }
1914
1915 if (sc->sc_tx_done) {
1916 sc->sc_tx_done = 0;
1917 plcom_txsoft(sc, tp);
1918 }
1919 }
1920
1921 bool
1922 plcom_intstatus(struct plcom_instance *pi, u_int *istatus)
1923 {
1924 bool ret = false;
1925 u_int stat = 0;
1926
1927 switch (pi->pi_type) {
1928 case PLCOM_TYPE_PL010:
1929 stat = PREAD1(pi, PL010COM_IIR);
1930 ret = ISSET(stat, PL010_IIR_IMASK);
1931 break;
1932 case PLCOM_TYPE_PL011:
1933 stat = PREAD4(pi, PL011COM_MIS);
1934 ret = ISSET(stat, PL011_INT_ALLMASK);
1935 break;
1936 }
1937 *istatus = stat;
1938
1939 return ret;
1940 }
1941
1942 int
1943 plcomintr(void *arg)
1944 {
1945 struct plcom_softc *sc = arg;
1946 struct plcom_instance *pi = &sc->sc_pi;
1947 u_char *put, *end;
1948 u_int cc;
1949 u_int istatus = 0;
1950 u_char rsr;
1951 bool intr = false;
1952
1953 PLCOM_BARRIER(pi, BR | BW);
1954
1955 if (PLCOM_ISALIVE(sc) == 0)
1956 return 0;
1957
1958 mutex_spin_enter(&sc->sc_lock);
1959 intr = plcom_intstatus(pi, &istatus);
1960 if (!intr) {
1961 mutex_spin_exit(&sc->sc_lock);
1962 return 0;
1963 }
1964
1965 end = sc->sc_ebuf;
1966 put = sc->sc_rbput;
1967 cc = sc->sc_rbavail;
1968
1969 do {
1970 u_int msr = 0, delta, fr;
1971 bool rxintr = false, txintr = false, msintr;
1972
1973 /* don't need RI here*/
1974 fr = PREAD1(pi, PL01XCOM_FR);
1975
1976 if (!ISSET(fr, PL01X_FR_RXFE) &&
1977 !ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1978 while (cc > 0) {
1979 int cn_trapped = 0;
1980 put[0] = PREAD1(pi, PL01XCOM_DR);
1981 rsr = PREAD1(pi, PL01XCOM_RSR);
1982 /* Clear any error status. */
1983 if (ISSET(rsr, PL01X_RSR_ERROR))
1984 PWRITE1(pi, PL01XCOM_ECR, 0);
1985 if (ISSET(rsr, PL01X_RSR_BE)) {
1986 cn_trapped = 0;
1987 cn_check_magic(sc->sc_tty->t_dev,
1988 CNC_BREAK, plcom_cnm_state);
1989 if (cn_trapped)
1990 continue;
1991 #if defined(KGDB)
1992 if (ISSET(sc->sc_hwflags,
1993 PLCOM_HW_KGDB)) {
1994 kgdb_connect(1);
1995 continue;
1996 }
1997 #endif
1998 }
1999
2000 put[1] = rsr;
2001 cn_trapped = 0;
2002 cn_check_magic(sc->sc_tty->t_dev, put[0],
2003 plcom_cnm_state);
2004 if (cn_trapped) {
2005 fr = PREAD1(pi, PL01XCOM_FR);
2006 if (ISSET(fr, PL01X_FR_RXFE))
2007 break;
2008
2009 continue;
2010 }
2011 put += 2;
2012 if (put >= end)
2013 put = sc->sc_rbuf;
2014 cc--;
2015
2016 /* don't need RI here*/
2017 fr = PREAD1(pi, PL01XCOM_FR);
2018 if (ISSET(fr, PL01X_FR_RXFE))
2019 break;
2020 }
2021
2022 /*
2023 * Current string of incoming characters ended because
2024 * no more data was available or we ran out of space.
2025 * Schedule a receive event if any data was received.
2026 * If we're out of space, turn off receive interrupts.
2027 */
2028 sc->sc_rbput = put;
2029 sc->sc_rbavail = cc;
2030 if (!ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED))
2031 sc->sc_rx_ready = 1;
2032
2033 /*
2034 * See if we are in danger of overflowing a buffer. If
2035 * so, use hardware flow control to ease the pressure.
2036 */
2037 if (!ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED) &&
2038 cc < sc->sc_r_hiwat) {
2039 SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
2040 plcom_hwiflow(sc);
2041 }
2042
2043 /*
2044 * If we're out of space, disable receive interrupts
2045 * until the queue has drained a bit.
2046 */
2047 if (!cc) {
2048 SET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
2049 switch (pi->pi_type) {
2050 case PLCOM_TYPE_PL010:
2051 CLR(sc->sc_cr,
2052 PL010_CR_RIE | PL010_CR_RTIE);
2053 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
2054 break;
2055 case PLCOM_TYPE_PL011:
2056 CLR(sc->sc_imsc,
2057 PL011_INT_RT | PL011_INT_RX);
2058 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
2059 break;
2060 }
2061 }
2062 } else {
2063 switch (pi->pi_type) {
2064 case PLCOM_TYPE_PL010:
2065 rxintr = ISSET(istatus, PL010_IIR_RIS);
2066 if (rxintr) {
2067 PWRITE1(pi, PL010COM_CR, 0);
2068 delay(10);
2069 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
2070 continue;
2071 }
2072 break;
2073 case PLCOM_TYPE_PL011:
2074 rxintr = ISSET(istatus, PL011_INT_RX);
2075 if (rxintr) {
2076 PWRITE4(pi, PL011COM_CR, 0);
2077 delay(10);
2078 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
2079 continue;
2080 }
2081 break;
2082 }
2083 }
2084
2085 switch (pi->pi_type) {
2086 case PLCOM_TYPE_PL010:
2087 msr = PREAD1(pi, PL01XCOM_FR);
2088 break;
2089 case PLCOM_TYPE_PL011:
2090 msr = PREAD4(pi, PL01XCOM_FR);
2091 break;
2092 }
2093 delta = msr ^ sc->sc_msr;
2094 sc->sc_msr = msr;
2095
2096 /* Clear any pending modem status interrupt. */
2097 switch (pi->pi_type) {
2098 case PLCOM_TYPE_PL010:
2099 msintr = ISSET(istatus, PL010_IIR_MIS);
2100 if (msintr) {
2101 PWRITE1(pi, PL010COM_ICR, 0);
2102 }
2103 break;
2104 case PLCOM_TYPE_PL011:
2105 msintr = ISSET(istatus, PL011_INT_MSMASK);
2106 if (msintr) {
2107 PWRITE4(pi, PL011COM_ICR, PL011_INT_MSMASK);
2108 }
2109 break;
2110 }
2111 /*
2112 * Pulse-per-second (PSS) signals on edge of DCD?
2113 * Process these even if line discipline is ignoring DCD.
2114 */
2115 if (delta & sc->sc_ppsmask) {
2116 struct timeval tv;
2117 mutex_spin_enter(&timecounter_lock);
2118 if ((msr & sc->sc_ppsmask) == sc->sc_ppsassert) {
2119 /* XXX nanotime() */
2120 microtime(&tv);
2121 TIMEVAL_TO_TIMESPEC(&tv,
2122 &sc->ppsinfo.assert_timestamp);
2123 if (sc->ppsparam.mode & PPS_OFFSETASSERT) {
2124 timespecadd(&sc->ppsinfo.assert_timestamp,
2125 &sc->ppsparam.assert_offset,
2126 &sc->ppsinfo.assert_timestamp);
2127 }
2128
2129 #ifdef PPS_SYNC
2130 if (sc->ppsparam.mode & PPS_HARDPPSONASSERT)
2131 hardpps(&tv, tv.tv_usec);
2132 #endif
2133 sc->ppsinfo.assert_sequence++;
2134 sc->ppsinfo.current_mode = sc->ppsparam.mode;
2135
2136 } else if ((msr & sc->sc_ppsmask) == sc->sc_ppsclear) {
2137 /* XXX nanotime() */
2138 microtime(&tv);
2139 TIMEVAL_TO_TIMESPEC(&tv,
2140 &sc->ppsinfo.clear_timestamp);
2141 if (sc->ppsparam.mode & PPS_OFFSETCLEAR) {
2142 timespecadd(&sc->ppsinfo.clear_timestamp,
2143 &sc->ppsparam.clear_offset,
2144 &sc->ppsinfo.clear_timestamp);
2145 }
2146
2147 #ifdef PPS_SYNC
2148 if (sc->ppsparam.mode & PPS_HARDPPSONCLEAR)
2149 hardpps(&tv, tv.tv_usec);
2150 #endif
2151 sc->ppsinfo.clear_sequence++;
2152 sc->ppsinfo.current_mode = sc->ppsparam.mode;
2153 }
2154 mutex_spin_exit(&timecounter_lock);
2155 }
2156
2157 /*
2158 * Process normal status changes
2159 */
2160 if (ISSET(delta, sc->sc_msr_mask)) {
2161 SET(sc->sc_msr_delta, delta);
2162
2163 /*
2164 * Stop output immediately if we lose the output
2165 * flow control signal or carrier detect.
2166 */
2167 if (ISSET(~msr, sc->sc_msr_mask)) {
2168 sc->sc_tbc = 0;
2169 sc->sc_heldtbc = 0;
2170 #ifdef PLCOM_DEBUG
2171 if (plcom_debug)
2172 plcomstatus(sc, "plcomintr ");
2173 #endif
2174 }
2175
2176 sc->sc_st_check = 1;
2177 }
2178
2179 /*
2180 * Done handling any receive interrupts. See if data
2181 * can be transmitted as well. Schedule tx done
2182 * event if no data left and tty was marked busy.
2183 */
2184
2185 switch (pi->pi_type) {
2186 case PLCOM_TYPE_PL010:
2187 txintr = ISSET(istatus, PL010_IIR_TIS);
2188 break;
2189 case PLCOM_TYPE_PL011:
2190 txintr = ISSET(istatus, PL011_INT_TX);
2191 break;
2192 }
2193 if (txintr) {
2194 /*
2195 * If we've delayed a parameter change, do it
2196 * now, and restart * output.
2197 */
2198 // PWRITE4(pi, PL011COM_ICR, PL011_INT_TX);
2199 if (sc->sc_heldchange) {
2200 plcom_loadchannelregs(sc);
2201 sc->sc_heldchange = 0;
2202 sc->sc_tbc = sc->sc_heldtbc;
2203 sc->sc_heldtbc = 0;
2204 }
2205
2206 /*
2207 * Output the next chunk of the contiguous
2208 * buffer, if any.
2209 */
2210 if (sc->sc_tbc > 0) {
2211 int n;
2212
2213 n = sc->sc_tbc;
2214 if (n > sc->sc_fifolen)
2215 n = sc->sc_fifolen;
2216 PWRITEM1(pi, PL01XCOM_DR, sc->sc_tba, n);
2217 sc->sc_tbc -= n;
2218 sc->sc_tba += n;
2219 } else {
2220 /*
2221 * Disable transmit completion
2222 * interrupts if necessary.
2223 */
2224 switch (pi->pi_type) {
2225 case PLCOM_TYPE_PL010:
2226 if (ISSET(sc->sc_cr, PL010_CR_TIE)) {
2227 CLR(sc->sc_cr, PL010_CR_TIE);
2228 PWRITE1(pi, PL010COM_CR,
2229 sc->sc_cr);
2230 }
2231 break;
2232 case PLCOM_TYPE_PL011:
2233 if (ISSET(sc->sc_imsc, PL011_INT_TX)) {
2234 CLR(sc->sc_imsc, PL011_INT_TX);
2235 PWRITE4(pi, PL011COM_IMSC,
2236 sc->sc_imsc);
2237 }
2238 break;
2239 }
2240 if (sc->sc_tx_busy) {
2241 sc->sc_tx_busy = 0;
2242 sc->sc_tx_done = 1;
2243 }
2244 }
2245 }
2246
2247 } while (plcom_intstatus(pi, &istatus));
2248
2249 mutex_spin_exit(&sc->sc_lock);
2250
2251 /* Wake up the poller. */
2252 softint_schedule(sc->sc_si);
2253
2254 #ifdef RND_COM
2255 rnd_add_uint32(&sc->rnd_source, istatus | rsr);
2256 #endif
2257
2258 PLCOM_BARRIER(pi, BR | BW);
2259
2260 return 1;
2261 }
2262
2263 /*
2264 * The following functions are polled getc and putc routines, shared
2265 * by the console and kgdb glue.
2266 *
2267 * The read-ahead code is so that you can detect pending in-band
2268 * cn_magic in polled mode while doing output rather than having to
2269 * wait until the kernel decides it needs input.
2270 */
2271
2272 #define MAX_READAHEAD 20
2273 static int plcom_readahead[MAX_READAHEAD];
2274 static int plcom_readaheadcount = 0;
2275
2276 int
2277 plcom_common_getc(dev_t dev, struct plcom_instance *pi)
2278 {
2279 int s = splserial();
2280 u_char stat, c;
2281
2282 /* got a character from reading things earlier */
2283 if (plcom_readaheadcount > 0) {
2284 int i;
2285
2286 c = plcom_readahead[0];
2287 for (i = 1; i < plcom_readaheadcount; i++) {
2288 plcom_readahead[i-1] = plcom_readahead[i];
2289 }
2290 plcom_readaheadcount--;
2291 splx(s);
2292 return c;
2293 }
2294
2295 /* block until a character becomes available */
2296 while (ISSET(stat = PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE))
2297 ;
2298
2299 c = PREAD1(pi, PL01XCOM_DR);
2300 {
2301 int cn_trapped __unused = 0;
2302 #ifdef DDB
2303 extern int db_active;
2304 if (!db_active)
2305 #endif
2306 cn_check_magic(dev, c, plcom_cnm_state);
2307 }
2308 splx(s);
2309 return c;
2310 }
2311
2312 void
2313 plcom_common_putc(dev_t dev, struct plcom_instance *pi, int c)
2314 {
2315 int s = splserial();
2316 int timo;
2317
2318 int cin, stat;
2319 if (plcom_readaheadcount < MAX_READAHEAD
2320 && !ISSET(stat = PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE)) {
2321 int cn_trapped __unused = 0;
2322 cin = PREAD1(pi, PL01XCOM_DR);
2323 cn_check_magic(dev, cin, plcom_cnm_state);
2324 plcom_readahead[plcom_readaheadcount++] = cin;
2325 }
2326
2327 /* wait for any pending transmission to finish */
2328 timo = 150000;
2329 while (!ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_TXFE) && --timo)
2330 continue;
2331
2332 PWRITE1(pi, PL01XCOM_DR, c);
2333 PLCOM_BARRIER(pi, BR | BW);
2334
2335 /* wait for this transmission to complete */
2336 timo = 1500000;
2337 while (!ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_TXFE) && --timo)
2338 continue;
2339
2340 splx(s);
2341 }
2342
2343 /*
2344 * Initialize UART for use as console or KGDB line.
2345 */
2346 int
2347 plcominit(struct plcom_instance *pi, int rate, int frequency, tcflag_t cflag)
2348 {
2349 u_char lcr;
2350
2351 switch (pi->pi_type) {
2352 case PLCOM_TYPE_PL010:
2353 if (pi->pi_size == 0)
2354 pi->pi_size = PL010COM_UART_SIZE;
2355 break;
2356 case PLCOM_TYPE_PL011:
2357 if (pi->pi_size == 0)
2358 pi->pi_size = PL011COM_UART_SIZE;
2359 break;
2360 default:
2361 panic("Unknown plcom type");
2362 }
2363
2364 if (bus_space_map(pi->pi_iot, pi->pi_iobase, pi->pi_size, 0,
2365 &pi->pi_ioh))
2366 return ENOMEM; /* ??? */
2367
2368 lcr = cflag2lcr(cflag) | PL01X_LCR_FEN;
2369 switch (pi->pi_type) {
2370 case PLCOM_TYPE_PL010:
2371 PWRITE1(pi, PL010COM_CR, 0);
2372
2373 rate = pl010comspeed(rate, frequency);
2374 PWRITE1(pi, PL010COM_DLBL, (rate & 0xff));
2375 PWRITE1(pi, PL010COM_DLBH, ((rate >> 8) & 0xff));
2376 PWRITE1(pi, PL010COM_LCR, lcr);
2377 PWRITE1(pi, PL010COM_CR, PL01X_CR_UARTEN);
2378 break;
2379 case PLCOM_TYPE_PL011:
2380 PWRITE4(pi, PL011COM_CR, 0);
2381
2382 rate = pl011comspeed(rate, frequency);
2383 PWRITE1(pi, PL011COM_FBRD, rate & ((1 << 6) - 1));
2384 PWRITE4(pi, PL011COM_IBRD, rate >> 6);
2385 PWRITE1(pi, PL011COM_LCRH, lcr);
2386 PWRITE4(pi, PL011COM_CR,
2387 PL01X_CR_UARTEN | PL011_CR_RXE | PL011_CR_TXE);
2388 break;
2389 }
2390
2391 #if 0
2392 /* Ought to do something like this, but we have no sc to
2393 dereference. */
2394 /* XXX device_unit() abuse */
2395 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(sc->sc_dev),
2396 PL01X_MCR_DTR | PL01X_MCR_RTS);
2397 #endif
2398
2399 return 0;
2400 }
2401
2402 /*
2403 * Following are all routines needed for PLCOM to act as console
2404 */
2405 struct consdev plcomcons = {
2406 NULL, NULL, plcomcngetc, plcomcnputc, plcomcnpollc, NULL,
2407 NULL, NULL, NODEV, CN_NORMAL
2408 };
2409
2410 int
2411 plcomcnattach(struct plcom_instance *pi, int rate, int frequency,
2412 tcflag_t cflag, int unit)
2413 {
2414 int res;
2415
2416 plcomcons_info = *pi;
2417
2418 res = plcominit(&plcomcons_info, rate, frequency, cflag);
2419 if (res)
2420 return res;
2421
2422 cn_tab = &plcomcons;
2423 cn_init_magic(&plcom_cnm_state);
2424 cn_set_magic("\047\001"); /* default magic is BREAK */
2425
2426 plcomconsunit = unit;
2427 plcomconsrate = rate;
2428 plcomconscflag = cflag;
2429
2430 return 0;
2431 }
2432
2433 void
2434 plcomcndetach(void)
2435 {
2436
2437 bus_space_unmap(plcomcons_info.pi_iot, plcomcons_info.pi_ioh,
2438 plcomcons_info.pi_size);
2439 plcomcons_info.pi_iot = NULL;
2440
2441 cn_tab = NULL;
2442 }
2443
2444 int
2445 plcomcngetc(dev_t dev)
2446 {
2447 return plcom_common_getc(dev, &plcomcons_info);
2448 }
2449
2450 /*
2451 * Console kernel output character routine.
2452 */
2453 void
2454 plcomcnputc(dev_t dev, int c)
2455 {
2456 plcom_common_putc(dev, &plcomcons_info, c);
2457 }
2458
2459 void
2460 plcomcnpollc(dev_t dev, int on)
2461 {
2462
2463 plcom_readaheadcount = 0;
2464 }
2465
2466 #ifdef KGDB
2467 int
2468 plcom_kgdb_attach(struct plcom_instance *pi, int rate, int frequency,
2469 tcflag_t cflag, int unit)
2470 {
2471 int res;
2472
2473 if (pi->pi_iot == plcomcons_info.pi_iot &&
2474 pi->pi_iobase == plcomcons_info.pi_iobase)
2475 return EBUSY; /* cannot share with console */
2476
2477 res = plcominit(pi, rate, frequency, cflag);
2478 if (res)
2479 return res;
2480
2481 kgdb_attach(plcom_kgdb_getc, plcom_kgdb_putc, NULL);
2482 kgdb_dev = 123; /* unneeded, only to satisfy some tests */
2483
2484 plcomkgdb_info.pi_iot = pi->pi_iot;
2485 plcomkgdb_info.pi_ioh = pi->pi_ioh;
2486 plcomkgdb_info.pi_iobase = pi->pi_iobase;
2487
2488 return 0;
2489 }
2490
2491 /* ARGSUSED */
2492 int
2493 plcom_kgdb_getc(void *arg)
2494 {
2495 return plcom_common_getc(NODEV, &plcomkgdb_info);
2496 }
2497
2498 /* ARGSUSED */
2499 void
2500 plcom_kgdb_putc(void *arg, int c)
2501 {
2502 plcom_common_putc(NODEV, &plcomkgdb_info, c);
2503 }
2504 #endif /* KGDB */
2505
2506 /* helper function to identify the plcom ports used by
2507 console or KGDB (and not yet autoconf attached) */
2508 int
2509 plcom_is_console(bus_space_tag_t iot, bus_addr_t iobase,
2510 bus_space_handle_t *ioh)
2511 {
2512 bus_space_handle_t help;
2513
2514 if (!plcomconsattached &&
2515 bus_space_is_equal(iot, plcomcons_info.pi_iot) &&
2516 iobase == plcomcons_info.pi_iobase)
2517 help = plcomcons_info.pi_ioh;
2518 #ifdef KGDB
2519 else if (!plcom_kgdb_attached &&
2520 bus_space_is_equal(iot, plcomkgdb_info.pi_iot) &&
2521 iobase == plcomkgdb_info.pi_iobase)
2522 help = plcomkgdb_info.pi_ioh;
2523 #endif
2524 else
2525 return 0;
2526
2527 if (ioh)
2528 *ioh = help;
2529 return 1;
2530 }
2531