Home | History | Annotate | Line # | Download | only in dev
plcom.c revision 1.50
      1 /*	$NetBSD: plcom.c,v 1.50 2014/08/10 16:44:34 tls Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 ARM Ltd
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the company may not be used to endorse or promote
     16  *    products derived from this software without specific prior written
     17  *    permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     20  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     21  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     22  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     23  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  * Copyright (c) 1998, 1999, 2012 The NetBSD Foundation, Inc.
     32  * All rights reserved.
     33  *
     34  * This code is derived from software contributed to The NetBSD Foundation
     35  * by Charles M. Hannum and Nick Hudson.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  *
     46  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     47  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     48  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     49  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     50  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     51  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     52  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     53  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     54  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     55  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     56  * POSSIBILITY OF SUCH DAMAGE.
     57  */
     58 
     59 /*
     60  * Copyright (c) 1991 The Regents of the University of California.
     61  * All rights reserved.
     62  *
     63  * Redistribution and use in source and binary forms, with or without
     64  * modification, are permitted provided that the following conditions
     65  * are met:
     66  * 1. Redistributions of source code must retain the above copyright
     67  *    notice, this list of conditions and the following disclaimer.
     68  * 2. Redistributions in binary form must reproduce the above copyright
     69  *    notice, this list of conditions and the following disclaimer in the
     70  *    documentation and/or other materials provided with the distribution.
     71  * 3. Neither the name of the University nor the names of its contributors
     72  *    may be used to endorse or promote products derived from this software
     73  *    without specific prior written permission.
     74  *
     75  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     76  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     77  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     78  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     79  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     80  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     81  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     82  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     83  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     84  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     85  * SUCH DAMAGE.
     86  *
     87  *	@(#)com.c	7.5 (Berkeley) 5/16/91
     88  */
     89 
     90 /*
     91  * COM driver for the Prime Cell PL010 and PL011 UARTs. Both are is similar to
     92  * the 16C550, but have a completely different programmer's model.
     93  * Derived from the NS16550AF com driver.
     94  */
     95 
     96 #include <sys/cdefs.h>
     97 __KERNEL_RCSID(0, "$NetBSD: plcom.c,v 1.50 2014/08/10 16:44:34 tls Exp $");
     98 
     99 #include "opt_plcom.h"
    100 #include "opt_ddb.h"
    101 #include "opt_kgdb.h"
    102 #include "opt_lockdebug.h"
    103 #include "opt_multiprocessor.h"
    104 
    105 #include "rnd.h"
    106 
    107 /*
    108  * Override cnmagic(9) macro before including <sys/systm.h>.
    109  * We need to know if cn_check_magic triggered debugger, so set a flag.
    110  * Callers of cn_check_magic must declare int cn_trapped = 0;
    111  * XXX: this is *ugly*!
    112  */
    113 #define cn_trap()				\
    114 	do {					\
    115 		console_debugger();		\
    116 		cn_trapped = 1;			\
    117 	} while (/* CONSTCOND */ 0)
    118 
    119 #include <sys/param.h>
    120 #include <sys/systm.h>
    121 #include <sys/ioctl.h>
    122 #include <sys/select.h>
    123 #include <sys/tty.h>
    124 #include <sys/proc.h>
    125 #include <sys/conf.h>
    126 #include <sys/file.h>
    127 #include <sys/uio.h>
    128 #include <sys/kernel.h>
    129 #include <sys/syslog.h>
    130 #include <sys/types.h>
    131 #include <sys/device.h>
    132 #include <sys/malloc.h>
    133 #include <sys/timepps.h>
    134 #include <sys/vnode.h>
    135 #include <sys/kauth.h>
    136 #include <sys/intr.h>
    137 #include <sys/bus.h>
    138 #ifdef RND_COM
    139 #include <sys/rnd.h>
    140 #endif
    141 
    142 #include <evbarm/dev/plcomreg.h>
    143 #include <evbarm/dev/plcomvar.h>
    144 
    145 #include <dev/cons.h>
    146 
    147 static void plcom_enable_debugport (struct plcom_softc *);
    148 
    149 void	plcom_config	(struct plcom_softc *);
    150 void	plcom_shutdown	(struct plcom_softc *);
    151 int	pl010comspeed	(long, long);
    152 int	pl011comspeed	(long, long);
    153 static	u_char	cflag2lcr (tcflag_t);
    154 int	plcomparam	(struct tty *, struct termios *);
    155 void	plcomstart	(struct tty *);
    156 int	plcomhwiflow	(struct tty *, int);
    157 
    158 void	plcom_loadchannelregs (struct plcom_softc *);
    159 void	plcom_hwiflow	(struct plcom_softc *);
    160 void	plcom_break	(struct plcom_softc *, int);
    161 void	plcom_modem	(struct plcom_softc *, int);
    162 void	tiocm_to_plcom	(struct plcom_softc *, u_long, int);
    163 int	plcom_to_tiocm	(struct plcom_softc *);
    164 void	plcom_iflush	(struct plcom_softc *);
    165 
    166 int	plcom_common_getc (dev_t, struct plcom_instance *);
    167 void	plcom_common_putc (dev_t, struct plcom_instance *, int);
    168 
    169 int	plcominit	(struct plcom_instance *, int, int, tcflag_t);
    170 
    171 dev_type_open(plcomopen);
    172 dev_type_close(plcomclose);
    173 dev_type_read(plcomread);
    174 dev_type_write(plcomwrite);
    175 dev_type_ioctl(plcomioctl);
    176 dev_type_stop(plcomstop);
    177 dev_type_tty(plcomtty);
    178 dev_type_poll(plcompoll);
    179 
    180 int	plcomcngetc	(dev_t);
    181 void	plcomcnputc	(dev_t, int);
    182 void	plcomcnpollc	(dev_t, int);
    183 
    184 #define	integrate	static inline
    185 void 	plcomsoft	(void *);
    186 integrate void plcom_rxsoft	(struct plcom_softc *, struct tty *);
    187 integrate void plcom_txsoft	(struct plcom_softc *, struct tty *);
    188 integrate void plcom_stsoft	(struct plcom_softc *, struct tty *);
    189 integrate void plcom_schedrx	(struct plcom_softc *);
    190 void	plcomdiag		(void *);
    191 
    192 bool	plcom_intstatus(struct plcom_instance *, u_int *);
    193 
    194 extern struct cfdriver plcom_cd;
    195 
    196 const struct cdevsw plcom_cdevsw = {
    197 	.d_open = plcomopen,
    198 	.d_close = plcomclose,
    199 	.d_read = plcomread,
    200 	.d_write = plcomwrite,
    201 	.d_ioctl = plcomioctl,
    202 	.d_stop = plcomstop,
    203 	.d_tty = plcomtty,
    204 	.d_poll = plcompoll,
    205 	.d_mmap = nommap,
    206 	.d_kqfilter = ttykqfilter,
    207 	.d_discard = nodiscard,
    208 	.d_flag = D_TTY
    209 };
    210 
    211 /*
    212  * Make this an option variable one can patch.
    213  * But be warned:  this must be a power of 2!
    214  */
    215 u_int plcom_rbuf_size = PLCOM_RING_SIZE;
    216 
    217 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
    218 u_int plcom_rbuf_hiwat = (PLCOM_RING_SIZE * 1) / 4;
    219 u_int plcom_rbuf_lowat = (PLCOM_RING_SIZE * 3) / 4;
    220 
    221 static int	plcomconsunit = -1;
    222 static struct plcom_instance plcomcons_info;
    223 
    224 static int plcomconsattached;
    225 static int plcomconsrate;
    226 static tcflag_t plcomconscflag;
    227 static struct cnm_state plcom_cnm_state;
    228 
    229 static int ppscap =
    230 	PPS_TSFMT_TSPEC |
    231 	PPS_CAPTUREASSERT |
    232 	PPS_CAPTURECLEAR |
    233 #ifdef  PPS_SYNC
    234 	PPS_HARDPPSONASSERT | PPS_HARDPPSONCLEAR |
    235 #endif	/* PPS_SYNC */
    236 	PPS_OFFSETASSERT | PPS_OFFSETCLEAR;
    237 
    238 #ifdef KGDB
    239 #include <sys/kgdb.h>
    240 
    241 static struct plcom_instance plcomkgdb_info;
    242 static int plcom_kgdb_attached;
    243 
    244 int	plcom_kgdb_getc (void *);
    245 void	plcom_kgdb_putc (void *, int);
    246 #endif /* KGDB */
    247 
    248 #define	PLCOMUNIT_MASK		0x7ffff
    249 #define	PLCOMDIALOUT_MASK	0x80000
    250 
    251 #define	PLCOMUNIT(x)	(minor(x) & PLCOMUNIT_MASK)
    252 #define	PLCOMDIALOUT(x)	(minor(x) & PLCOMDIALOUT_MASK)
    253 
    254 #define	PLCOM_ISALIVE(sc)	((sc)->enabled != 0 && \
    255 				 device_is_active((sc)->sc_dev))
    256 
    257 #define	BR	BUS_SPACE_BARRIER_READ
    258 #define	BW	BUS_SPACE_BARRIER_WRITE
    259 #define PLCOM_BARRIER(pi, f)	\
    260     bus_space_barrier((pi)->pi_iot, (pi)->pi_ioh, 0, (pi)->pi_size, (f))
    261 
    262 static uint8_t
    263 pread1(struct plcom_instance *pi, bus_size_t reg)
    264 {
    265 	if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS))
    266 		return bus_space_read_1(pi->pi_iot, pi->pi_ioh, reg);
    267 
    268 	return bus_space_read_4(pi->pi_iot, pi->pi_ioh, reg & -4) >>
    269 	    (8 * (reg & 3));
    270 }
    271 int nhcr;
    272 static void
    273 pwrite1(struct plcom_instance *pi, bus_size_t o, uint8_t val)
    274 {
    275 	if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS)) {
    276 		bus_space_write_1(pi->pi_iot, pi->pi_ioh, o, val);
    277 	} else {
    278 		const size_t shift = 8 * (o & 3);
    279 		o &= -4;
    280 		uint32_t tmp = bus_space_read_4(pi->pi_iot, pi->pi_ioh, o);
    281 		tmp = (val << shift) | (tmp & ~(0xff << shift));
    282 		bus_space_write_4(pi->pi_iot, pi->pi_ioh, o, tmp);
    283 	}
    284 }
    285 
    286 static void
    287 pwritem1(struct plcom_instance *pi, bus_size_t o, const uint8_t *datap,
    288     bus_size_t count)
    289 {
    290 	if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS)) {
    291 		bus_space_write_multi_1(pi->pi_iot, pi->pi_ioh, o, datap, count);
    292 	} else {
    293 		KASSERT((o & 3) == 0);
    294 		while (count--) {
    295 			bus_space_write_4(pi->pi_iot, pi->pi_ioh, o, *datap++);
    296 		};
    297 	}
    298 }
    299 
    300 #define	PREAD1(pi, reg)		pread1(pi, reg)
    301 #define	PREAD4(pi, reg)		\
    302 	(bus_space_read_4((pi)->pi_iot, (pi)->pi_ioh, (reg)))
    303 
    304 #define	PWRITE1(pi, reg, val)	pwrite1(pi, reg, val)
    305 #define	PWRITEM1(pi, reg, d, c)	pwritem1(pi, reg, d, c)
    306 #define	PWRITE4(pi, reg, val)	\
    307 	(bus_space_write_4((pi)->pi_iot, (pi)->pi_ioh, (reg), (val)))
    308 
    309 int
    310 pl010comspeed(long speed, long frequency)
    311 {
    312 #define	divrnd(n, q)	(((n)*2/(q)+1)/2)	/* divide and round off */
    313 
    314 	int x, err;
    315 
    316 #if 0
    317 	if (speed == 0)
    318 		return 0;
    319 #endif
    320 	if (speed <= 0)
    321 		return -1;
    322 	x = divrnd(frequency / 16, speed);
    323 	if (x <= 0)
    324 		return -1;
    325 	err = divrnd(((quad_t)frequency) * 1000 / 16, speed * x) - 1000;
    326 	if (err < 0)
    327 		err = -err;
    328 	if (err > PLCOM_TOLERANCE)
    329 		return -1;
    330 	return x;
    331 
    332 #undef	divrnd
    333 }
    334 
    335 int
    336 pl011comspeed(long speed, long frequency)
    337 {
    338 	int denom = 16 * speed;
    339 	int div = frequency / denom;
    340 	int rem = frequency % denom;
    341 
    342 	int ibrd = div << 6;
    343 	int fbrd = (((8 * rem) / speed) + 1) / 2;
    344 
    345 	/* Tolerance? */
    346 	return ibrd | fbrd;
    347 }
    348 
    349 #ifdef PLCOM_DEBUG
    350 int	plcom_debug = 0;
    351 
    352 void plcomstatus (struct plcom_softc *, const char *);
    353 void
    354 plcomstatus(struct plcom_softc *sc, const char *str)
    355 {
    356 	struct tty *tp = sc->sc_tty;
    357 
    358 	printf("%s: %s %sclocal  %sdcd %sts_carr_on %sdtr %stx_stopped\n",
    359 	    device_xname(sc->sc_dev), str,
    360 	    ISSET(tp->t_cflag, CLOCAL) ? "+" : "-",
    361 	    ISSET(sc->sc_msr, PL01X_MSR_DCD) ? "+" : "-",
    362 	    ISSET(tp->t_state, TS_CARR_ON) ? "+" : "-",
    363 	    ISSET(sc->sc_mcr, PL01X_MCR_DTR) ? "+" : "-",
    364 	    sc->sc_tx_stopped ? "+" : "-");
    365 
    366 	printf("%s: %s %scrtscts %scts %sts_ttstop  %srts %xrx_flags\n",
    367 	    device_xname(sc->sc_dev), str,
    368 	    ISSET(tp->t_cflag, CRTSCTS) ? "+" : "-",
    369 	    ISSET(sc->sc_msr, PL01X_MSR_CTS) ? "+" : "-",
    370 	    ISSET(tp->t_state, TS_TTSTOP) ? "+" : "-",
    371 	    ISSET(sc->sc_mcr, PL01X_MCR_RTS) ? "+" : "-",
    372 	    sc->sc_rx_flags);
    373 }
    374 #endif
    375 
    376 #if 0
    377 int
    378 plcomprobe1(bus_space_tag_t iot, bus_space_handle_t ioh)
    379 {
    380 	int data;
    381 
    382 	/* Disable the UART.  */
    383 	bus_space_write_1(iot, ioh, plcom_cr, 0);
    384 	/* Make sure the FIFO is off.  */
    385 	bus_space_write_1(iot, ioh, plcom_lcr, PL01X_LCR_8BITS);
    386 	/* Disable interrupts.  */
    387 	bus_space_write_1(iot, ioh, plcom_iir, 0);
    388 
    389 	/* Make sure we swallow anything in the receiving register.  */
    390 	data = bus_space_read_1(iot, ioh, plcom_dr);
    391 
    392 	if (bus_space_read_1(iot, ioh, plcom_lcr) != PL01X_LCR_8BITS)
    393 		return 0;
    394 
    395 	data = bus_space_read_1(iot, ioh, plcom_fr) & (PL01X_FR_RXFF | PL01X_FR_RXFE);
    396 
    397 	if (data != PL01X_FR_RXFE)
    398 		return 0;
    399 
    400 	return 1;
    401 }
    402 #endif
    403 
    404 /*
    405  * No locking in this routine; it is only called during attach,
    406  * or with the port already locked.
    407  */
    408 static void
    409 plcom_enable_debugport(struct plcom_softc *sc)
    410 {
    411 	struct plcom_instance *pi = &sc->sc_pi;
    412 
    413 	sc->sc_cr = PL01X_CR_UARTEN;
    414 	SET(sc->sc_mcr, PL01X_MCR_DTR | PL01X_MCR_RTS);
    415 
    416 	/* Turn on line break interrupt, set carrier. */
    417 	switch (pi->pi_type) {
    418 	case PLCOM_TYPE_PL010:
    419 		SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE);
    420 		PWRITE1(pi, PL010COM_CR, sc->sc_cr);
    421 		if (sc->sc_set_mcr) {
    422 			/* XXX device_unit() abuse */
    423 			sc->sc_set_mcr(sc->sc_set_mcr_arg,
    424 			    device_unit(sc->sc_dev), sc->sc_mcr);
    425 		}
    426 		break;
    427 	case PLCOM_TYPE_PL011:
    428 		sc->sc_imsc = PL011_INT_RX | PL011_INT_RT;
    429 		SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
    430 		SET(sc->sc_cr, PL011_MCR(sc->sc_mcr));
    431 		PWRITE4(pi, PL011COM_CR, sc->sc_cr);
    432 		PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
    433 		break;
    434 	}
    435 
    436 }
    437 
    438 void
    439 plcom_attach_subr(struct plcom_softc *sc)
    440 {
    441 	struct plcom_instance *pi = &sc->sc_pi;
    442 	struct tty *tp;
    443 
    444 	aprint_naive("\n");
    445 
    446 	callout_init(&sc->sc_diag_callout, 0);
    447 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_HIGH);
    448 
    449 	switch (pi->pi_type) {
    450 	case PLCOM_TYPE_PL010:
    451 	case PLCOM_TYPE_PL011:
    452 		break;
    453 	default:
    454 		aprint_error_dev(sc->sc_dev,
    455 		    "Unknown plcom type: %d\n", pi->pi_type);
    456 		return;
    457 	}
    458 
    459 	/* Disable interrupts before configuring the device. */
    460 	sc->sc_cr = 0;
    461 	sc->sc_imsc = 0;
    462 
    463 	if (bus_space_is_equal(pi->pi_iot, plcomcons_info.pi_iot) &&
    464 	    pi->pi_iobase == plcomcons_info.pi_iobase) {
    465 		plcomconsattached = 1;
    466 
    467 		/* Make sure the console is always "hardwired". */
    468 		delay(1000);			/* wait for output to finish */
    469 		SET(sc->sc_hwflags, PLCOM_HW_CONSOLE);
    470 		SET(sc->sc_swflags, TIOCFLAG_SOFTCAR);
    471 		/*
    472 		 * Must re-enable the console immediately, or we will
    473 		 * hang when trying to print.
    474 		 */
    475 		sc->sc_cr = PL01X_CR_UARTEN;
    476 		if (pi->pi_type == PLCOM_TYPE_PL011)
    477 			SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
    478 	}
    479 
    480 	switch (pi->pi_type) {
    481 	case PLCOM_TYPE_PL010:
    482 		PWRITE1(pi, PL010COM_CR, sc->sc_cr);
    483 		break;
    484 
    485 	case PLCOM_TYPE_PL011:
    486 		PWRITE4(pi, PL011COM_CR, sc->sc_cr);
    487 		PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
    488 		break;
    489 	}
    490 
    491 	if (sc->sc_fifolen == 0) {
    492 		switch (pi->pi_type) {
    493 		case PLCOM_TYPE_PL010:
    494 			/*
    495 			 * The PL010 has a 16-byte fifo, but the tx interrupt
    496 			 * triggers when there is space for 8 more bytes.
    497 			*/
    498 			sc->sc_fifolen = 8;
    499 			break;
    500 		case PLCOM_TYPE_PL011:
    501 			/* Some revisions have a 32 byte TX FIFO */
    502 			sc->sc_fifolen = 16;
    503 			break;
    504 		}
    505 	}
    506 	aprint_normal("\n");
    507 
    508 	if (ISSET(sc->sc_hwflags, PLCOM_HW_TXFIFO_DISABLE)) {
    509 		sc->sc_fifolen = 1;
    510 		aprint_normal_dev(sc->sc_dev, "txfifo disabled\n");
    511 	}
    512 
    513 	if (sc->sc_fifolen > 1)
    514 		SET(sc->sc_hwflags, PLCOM_HW_FIFO);
    515 
    516 	tp = tty_alloc();
    517 	tp->t_oproc = plcomstart;
    518 	tp->t_param = plcomparam;
    519 	tp->t_hwiflow = plcomhwiflow;
    520 
    521 	sc->sc_tty = tp;
    522 	sc->sc_rbuf = malloc(plcom_rbuf_size << 1, M_DEVBUF, M_NOWAIT);
    523 	sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
    524 	sc->sc_rbavail = plcom_rbuf_size;
    525 	if (sc->sc_rbuf == NULL) {
    526 		aprint_error_dev(sc->sc_dev,
    527 		    "unable to allocate ring buffer\n");
    528 		return;
    529 	}
    530 	sc->sc_ebuf = sc->sc_rbuf + (plcom_rbuf_size << 1);
    531 
    532 	tty_attach(tp);
    533 
    534 	if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
    535 		int maj;
    536 
    537 		/* locate the major number */
    538 		maj = cdevsw_lookup_major(&plcom_cdevsw);
    539 
    540 		tp->t_dev = cn_tab->cn_dev = makedev(maj, device_unit(sc->sc_dev));
    541 
    542 		aprint_normal_dev(sc->sc_dev, "console\n");
    543 	}
    544 
    545 #ifdef KGDB
    546 	/*
    547 	 * Allow kgdb to "take over" this port.  If this is
    548 	 * the kgdb device, it has exclusive use.
    549 	 */
    550 	if (bus_space_is_equal(pi->pi_iot, plcomkgdb_info.pi_iot) &&
    551 	    pi->pi_iobase == plcomkgdb_info.pi_iobase) {
    552 		if (!ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
    553 			plcom_kgdb_attached = 1;
    554 
    555 			SET(sc->sc_hwflags, PLCOM_HW_KGDB);
    556 		}
    557 		aprint_normal_dev(sc->sc_dev, "kgdb\n");
    558 	}
    559 #endif
    560 
    561 	sc->sc_si = softint_establish(SOFTINT_SERIAL, plcomsoft, sc);
    562 
    563 #ifdef RND_COM
    564 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    565 	    RND_TYPE_TTY, RND_FLAG_DEFAULT);
    566 #endif
    567 
    568 	/*
    569 	 * if there are no enable/disable functions, assume the device
    570 	 * is always enabled
    571 	 */
    572 	if (!sc->enable)
    573 		sc->enabled = 1;
    574 
    575 	plcom_config(sc);
    576 
    577 	SET(sc->sc_hwflags, PLCOM_HW_DEV_OK);
    578 }
    579 
    580 void
    581 plcom_config(struct plcom_softc *sc)
    582 {
    583 	struct plcom_instance *pi = &sc->sc_pi;
    584 
    585 	/* Disable interrupts before configuring the device. */
    586 	sc->sc_cr = 0;
    587 	sc->sc_imsc = 0;
    588 	switch (pi->pi_type) {
    589 	case PLCOM_TYPE_PL010:
    590 		PWRITE1(pi, PL010COM_CR, sc->sc_cr);
    591 		break;
    592 
    593 	case PLCOM_TYPE_PL011:
    594 		PWRITE4(pi, PL011COM_CR, sc->sc_cr);
    595 		PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
    596 		break;
    597 	}
    598 
    599 	if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE|PLCOM_HW_KGDB))
    600 		plcom_enable_debugport(sc);
    601 }
    602 
    603 int
    604 plcom_detach(device_t self, int flags)
    605 {
    606 	struct plcom_softc *sc = device_private(self);
    607 	int maj, mn;
    608 
    609 	if (sc->sc_hwflags & (PLCOM_HW_CONSOLE|PLCOM_HW_KGDB))
    610 		return EBUSY;
    611 
    612 	if (sc->disable != NULL && sc->enabled != 0) {
    613 		(*sc->disable)(sc);
    614 		sc->enabled = 0;
    615 	}
    616 
    617 	/* locate the major number */
    618 	maj = cdevsw_lookup_major(&plcom_cdevsw);
    619 
    620 	/* Nuke the vnodes for any open instances. */
    621 	mn = device_unit(self);
    622 	vdevgone(maj, mn, mn, VCHR);
    623 
    624 	mn |= PLCOMDIALOUT_MASK;
    625 	vdevgone(maj, mn, mn, VCHR);
    626 
    627 	if (sc->sc_rbuf == NULL) {
    628 		/*
    629 		 * Ring buffer allocation failed in the plcom_attach_subr,
    630 		 * only the tty is allocated, and nothing else.
    631 		 */
    632 		tty_free(sc->sc_tty);
    633 		return 0;
    634 	}
    635 
    636 	/* Free the receive buffer. */
    637 	free(sc->sc_rbuf, M_DEVBUF);
    638 
    639 	/* Detach and free the tty. */
    640 	tty_detach(sc->sc_tty);
    641 	tty_free(sc->sc_tty);
    642 
    643 	/* Unhook the soft interrupt handler. */
    644 	softint_disestablish(sc->sc_si);
    645 
    646 #ifdef RND_COM
    647 	/* Unhook the entropy source. */
    648 	rnd_detach_source(&sc->rnd_source);
    649 #endif
    650 	callout_destroy(&sc->sc_diag_callout);
    651 
    652 	/* Destroy the lock. */
    653 	mutex_destroy(&sc->sc_lock);
    654 
    655 	return 0;
    656 }
    657 
    658 int
    659 plcom_activate(device_t self, enum devact act)
    660 {
    661 	struct plcom_softc *sc = device_private(self);
    662 
    663 	switch (act) {
    664 	case DVACT_DEACTIVATE:
    665 		sc->enabled = 0;
    666 		return 0;
    667 	default:
    668 		return EOPNOTSUPP;
    669 	}
    670 }
    671 
    672 void
    673 plcom_shutdown(struct plcom_softc *sc)
    674 {
    675 	struct plcom_instance *pi = &sc->sc_pi;
    676 	struct tty *tp = sc->sc_tty;
    677 	mutex_spin_enter(&sc->sc_lock);
    678 
    679 	/* If we were asserting flow control, then deassert it. */
    680 	SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
    681 	plcom_hwiflow(sc);
    682 
    683 	/* Clear any break condition set with TIOCSBRK. */
    684 	plcom_break(sc, 0);
    685 
    686 	/* Turn off PPS capture on last close. */
    687 	mutex_spin_enter(&timecounter_lock);
    688 	sc->sc_ppsmask = 0;
    689 	sc->ppsparam.mode = 0;
    690 	mutex_spin_exit(&timecounter_lock);
    691 
    692 	/*
    693 	 * Hang up if necessary.  Wait a bit, so the other side has time to
    694 	 * notice even if we immediately open the port again.
    695 	 * Avoid tsleeping above splhigh().
    696 	 */
    697 	if (ISSET(tp->t_cflag, HUPCL)) {
    698 		plcom_modem(sc, 0);
    699 		mutex_spin_exit(&sc->sc_lock);
    700 		/* XXX will only timeout */
    701 		(void) kpause(ttclos, false, hz, NULL);
    702 		mutex_spin_enter(&sc->sc_lock);
    703 	}
    704 
    705 	sc->sc_cr = 0;
    706 	sc->sc_imsc = 0;
    707 	/* Turn off interrupts. */
    708 	if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
    709 		/* interrupt on break */
    710 
    711 		sc->sc_cr = PL01X_CR_UARTEN;
    712 		sc->sc_imsc = 0;
    713 		switch (pi->pi_type) {
    714 		case PLCOM_TYPE_PL010:
    715 			SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE);
    716 			break;
    717 		case PLCOM_TYPE_PL011:
    718 			SET(sc->sc_cr, PL011_CR_RXE);
    719 			SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX);
    720 			break;
    721 		}
    722 	}
    723 	switch (pi->pi_type) {
    724 	case PLCOM_TYPE_PL010:
    725 		SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE);
    726 		PWRITE1(pi, PL010COM_CR, sc->sc_cr);
    727 		break;
    728 	case PLCOM_TYPE_PL011:
    729 		SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
    730 		SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX);
    731 		PWRITE4(pi, PL011COM_CR, sc->sc_cr);
    732 		PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
    733 		break;
    734 	}
    735 
    736 	mutex_spin_exit(&sc->sc_lock);
    737 	if (sc->disable) {
    738 #ifdef DIAGNOSTIC
    739 		if (!sc->enabled)
    740 			panic("plcom_shutdown: not enabled?");
    741 #endif
    742 		(*sc->disable)(sc);
    743 		sc->enabled = 0;
    744 	}
    745 }
    746 
    747 int
    748 plcomopen(dev_t dev, int flag, int mode, struct lwp *l)
    749 {
    750 	struct plcom_softc *sc;
    751 	struct plcom_instance *pi;
    752 	struct tty *tp;
    753 	int s;
    754 	int error;
    755 
    756 	sc = device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
    757 	if (sc == NULL || !ISSET(sc->sc_hwflags, PLCOM_HW_DEV_OK) ||
    758 		sc->sc_rbuf == NULL)
    759 		return ENXIO;
    760 
    761 	if (!device_is_active(sc->sc_dev))
    762 		return ENXIO;
    763 
    764 	pi = &sc->sc_pi;
    765 
    766 #ifdef KGDB
    767 	/*
    768 	 * If this is the kgdb port, no other use is permitted.
    769 	 */
    770 	if (ISSET(sc->sc_hwflags, PLCOM_HW_KGDB))
    771 		return EBUSY;
    772 #endif
    773 
    774 	tp = sc->sc_tty;
    775 
    776 	if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
    777 		return (EBUSY);
    778 
    779 	s = spltty();
    780 
    781 	/*
    782 	 * Do the following iff this is a first open.
    783 	 */
    784 	if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
    785 		struct termios t;
    786 
    787 		tp->t_dev = dev;
    788 
    789 		if (sc->enable) {
    790 			if ((*sc->enable)(sc)) {
    791 				splx(s);
    792 				aprint_error_dev(sc->sc_dev,
    793 				    "device enable failed\n");
    794 				return EIO;
    795 			}
    796 			mutex_spin_enter(&sc->sc_lock);
    797 			sc->enabled = 1;
    798 			plcom_config(sc);
    799 		} else {
    800 			mutex_spin_enter(&sc->sc_lock);
    801 		}
    802 
    803 		/* Turn on interrupts. */
    804 		/* IER_ERXRDY | IER_ERLS | IER_EMSC;  */
    805 		/* Fetch the current modem control status, needed later. */
    806 		sc->sc_cr = PL01X_CR_UARTEN;
    807 		switch (pi->pi_type) {
    808 		case PLCOM_TYPE_PL010:
    809 			SET(sc->sc_cr,
    810 			    PL010_CR_RIE | PL010_CR_RTIE | PL010_CR_MSIE);
    811 			PWRITE1(pi, PL010COM_CR, sc->sc_cr);
    812 			sc->sc_msr = PREAD1(pi, PL01XCOM_FR);
    813 			break;
    814 		case PLCOM_TYPE_PL011:
    815 			SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
    816 			SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX |
    817 			    PL011_INT_MSMASK);
    818 			PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
    819 			sc->sc_msr = PREAD4(pi, PL01XCOM_FR);
    820 			break;
    821 		}
    822 
    823 		/* Clear PPS capture state on first open. */
    824 
    825 		mutex_spin_enter(&timecounter_lock);
    826 		sc->sc_ppsmask = 0;
    827 		sc->ppsparam.mode = 0;
    828 		mutex_spin_exit(&timecounter_lock);
    829 
    830 		mutex_spin_exit(&sc->sc_lock);
    831 
    832 		/*
    833 		 * Initialize the termios status to the defaults.  Add in the
    834 		 * sticky bits from TIOCSFLAGS.
    835 		 */
    836 		if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
    837 			t.c_ospeed = plcomconsrate;
    838 			t.c_cflag = plcomconscflag;
    839 		} else {
    840 			t.c_ospeed = TTYDEF_SPEED;
    841 			t.c_cflag = TTYDEF_CFLAG;
    842 		}
    843 		t.c_ispeed = t.c_ospeed;
    844 
    845 		if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL))
    846 			SET(t.c_cflag, CLOCAL);
    847 		if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS))
    848 			SET(t.c_cflag, CRTSCTS);
    849 		if (ISSET(sc->sc_swflags, TIOCFLAG_MDMBUF))
    850 			SET(t.c_cflag, MDMBUF);
    851 		/* Make sure plcomparam() will do something. */
    852 		tp->t_ospeed = 0;
    853 		(void) plcomparam(tp, &t);
    854 		tp->t_iflag = TTYDEF_IFLAG;
    855 		tp->t_oflag = TTYDEF_OFLAG;
    856 		tp->t_lflag = TTYDEF_LFLAG;
    857 		ttychars(tp);
    858 		ttsetwater(tp);
    859 
    860 		mutex_spin_enter(&sc->sc_lock);
    861 
    862 		/*
    863 		 * Turn on DTR.  We must always do this, even if carrier is not
    864 		 * present, because otherwise we'd have to use TIOCSDTR
    865 		 * immediately after setting CLOCAL, which applications do not
    866 		 * expect.  We always assert DTR while the device is open
    867 		 * unless explicitly requested to deassert it.
    868 		 */
    869 		plcom_modem(sc, 1);
    870 
    871 		/* Clear the input ring, and unblock. */
    872 		sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
    873 		sc->sc_rbavail = plcom_rbuf_size;
    874 		plcom_iflush(sc);
    875 		CLR(sc->sc_rx_flags, RX_ANY_BLOCK);
    876 		plcom_hwiflow(sc);
    877 
    878 #ifdef PLCOM_DEBUG
    879 		if (plcom_debug)
    880 			plcomstatus(sc, "plcomopen  ");
    881 #endif
    882 
    883 		mutex_spin_exit(&sc->sc_lock);
    884 	}
    885 
    886 	splx(s);
    887 
    888 	error = ttyopen(tp, PLCOMDIALOUT(dev), ISSET(flag, O_NONBLOCK));
    889 	if (error)
    890 		goto bad;
    891 
    892 	error = (*tp->t_linesw->l_open)(dev, tp);
    893 	if (error)
    894 		goto bad;
    895 
    896 	return 0;
    897 
    898 bad:
    899 	if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
    900 		/*
    901 		 * We failed to open the device, and nobody else had it opened.
    902 		 * Clean up the state as appropriate.
    903 		 */
    904 		plcom_shutdown(sc);
    905 	}
    906 
    907 	return error;
    908 }
    909 
    910 int
    911 plcomclose(dev_t dev, int flag, int mode, struct lwp *l)
    912 {
    913 	struct plcom_softc *sc =
    914 		device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
    915 	struct tty *tp = sc->sc_tty;
    916 
    917 	/* XXX This is for cons.c. */
    918 	if (!ISSET(tp->t_state, TS_ISOPEN))
    919 		return 0;
    920 
    921 	(*tp->t_linesw->l_close)(tp, flag);
    922 	ttyclose(tp);
    923 
    924 	if (PLCOM_ISALIVE(sc) == 0)
    925 		return 0;
    926 
    927 	if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
    928 		/*
    929 		 * Although we got a last close, the device may still be in
    930 		 * use; e.g. if this was the dialout node, and there are still
    931 		 * processes waiting for carrier on the non-dialout node.
    932 		 */
    933 		plcom_shutdown(sc);
    934 	}
    935 
    936 	return 0;
    937 }
    938 
    939 int
    940 plcomread(dev_t dev, struct uio *uio, int flag)
    941 {
    942 	struct plcom_softc *sc =
    943 		device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
    944 	struct tty *tp = sc->sc_tty;
    945 
    946 	if (PLCOM_ISALIVE(sc) == 0)
    947 		return EIO;
    948 
    949 	return (*tp->t_linesw->l_read)(tp, uio, flag);
    950 }
    951 
    952 int
    953 plcomwrite(dev_t dev, struct uio *uio, int flag)
    954 {
    955 	struct plcom_softc *sc =
    956 		device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
    957 	struct tty *tp = sc->sc_tty;
    958 
    959 	if (PLCOM_ISALIVE(sc) == 0)
    960 		return EIO;
    961 
    962 	return (*tp->t_linesw->l_write)(tp, uio, flag);
    963 }
    964 
    965 int
    966 plcompoll(dev_t dev, int events, struct lwp *l)
    967 {
    968 	struct plcom_softc *sc =
    969 		device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
    970 	struct tty *tp = sc->sc_tty;
    971 
    972 	if (PLCOM_ISALIVE(sc) == 0)
    973 		return EIO;
    974 
    975 	return (*tp->t_linesw->l_poll)(tp, events, l);
    976 }
    977 
    978 struct tty *
    979 plcomtty(dev_t dev)
    980 {
    981 	struct plcom_softc *sc =
    982 		device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
    983 	struct tty *tp = sc->sc_tty;
    984 
    985 	return tp;
    986 }
    987 
    988 int
    989 plcomioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
    990 {
    991 	struct plcom_softc *sc =
    992 		device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
    993 	struct tty *tp;
    994 	int error;
    995 
    996 	if (sc == NULL)
    997 		return ENXIO;
    998 	if (PLCOM_ISALIVE(sc) == 0)
    999 		return EIO;
   1000 
   1001 	tp = sc->sc_tty;
   1002 
   1003 	error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
   1004 	if (error != EPASSTHROUGH)
   1005 		return error;
   1006 
   1007 	error = ttioctl(tp, cmd, data, flag, l);
   1008 	if (error != EPASSTHROUGH)
   1009 		return error;
   1010 
   1011 	error = 0;
   1012 	switch (cmd) {
   1013 	case TIOCSFLAGS:
   1014 		error = kauth_authorize_device_tty(l->l_cred,
   1015 		    KAUTH_DEVICE_TTY_PRIVSET, tp);
   1016 		break;
   1017 	default:
   1018 		/* nothing */
   1019 		break;
   1020 	}
   1021 	if (error) {
   1022 		return error;
   1023 	}
   1024 
   1025 	mutex_spin_enter(&sc->sc_lock);
   1026 	switch (cmd) {
   1027 	case TIOCSBRK:
   1028 		plcom_break(sc, 1);
   1029 		break;
   1030 
   1031 	case TIOCCBRK:
   1032 		plcom_break(sc, 0);
   1033 		break;
   1034 
   1035 	case TIOCSDTR:
   1036 		plcom_modem(sc, 1);
   1037 		break;
   1038 
   1039 	case TIOCCDTR:
   1040 		plcom_modem(sc, 0);
   1041 		break;
   1042 
   1043 	case TIOCGFLAGS:
   1044 		*(int *)data = sc->sc_swflags;
   1045 		break;
   1046 
   1047 	case TIOCSFLAGS:
   1048 		sc->sc_swflags = *(int *)data;
   1049 		break;
   1050 
   1051 	case TIOCMSET:
   1052 	case TIOCMBIS:
   1053 	case TIOCMBIC:
   1054 		tiocm_to_plcom(sc, cmd, *(int *)data);
   1055 		break;
   1056 
   1057 	case TIOCMGET:
   1058 		*(int *)data = plcom_to_tiocm(sc);
   1059 		break;
   1060 
   1061 	case PPS_IOC_CREATE:
   1062 		break;
   1063 
   1064 	case PPS_IOC_DESTROY:
   1065 		break;
   1066 
   1067 	case PPS_IOC_GETPARAMS: {
   1068 		pps_params_t *pp;
   1069 		pp = (pps_params_t *)data;
   1070 		mutex_spin_enter(&timecounter_lock);
   1071 		*pp = sc->ppsparam;
   1072 		mutex_spin_exit(&timecounter_lock);
   1073 		break;
   1074 	}
   1075 
   1076 	case PPS_IOC_SETPARAMS: {
   1077 	  	pps_params_t *pp;
   1078 		int mode;
   1079 		pp = (pps_params_t *)data;
   1080 		mutex_spin_enter(&timecounter_lock);
   1081 		if (pp->mode & ~ppscap) {
   1082 			error = EINVAL;
   1083 			mutex_spin_exit(&timecounter_lock);
   1084 			break;
   1085 		}
   1086 		sc->ppsparam = *pp;
   1087 	 	/*
   1088 		 * Compute msr masks from user-specified timestamp state.
   1089 		 */
   1090 		mode = sc->ppsparam.mode;
   1091 #ifdef	PPS_SYNC
   1092 		if (mode & PPS_HARDPPSONASSERT) {
   1093 			mode |= PPS_CAPTUREASSERT;
   1094 			/* XXX revoke any previous HARDPPS source */
   1095 		}
   1096 		if (mode & PPS_HARDPPSONCLEAR) {
   1097 			mode |= PPS_CAPTURECLEAR;
   1098 			/* XXX revoke any previous HARDPPS source */
   1099 		}
   1100 #endif	/* PPS_SYNC */
   1101 		switch (mode & PPS_CAPTUREBOTH) {
   1102 		case 0:
   1103 			sc->sc_ppsmask = 0;
   1104 			break;
   1105 
   1106 		case PPS_CAPTUREASSERT:
   1107 			sc->sc_ppsmask = PL01X_MSR_DCD;
   1108 			sc->sc_ppsassert = PL01X_MSR_DCD;
   1109 			sc->sc_ppsclear = -1;
   1110 			break;
   1111 
   1112 		case PPS_CAPTURECLEAR:
   1113 			sc->sc_ppsmask = PL01X_MSR_DCD;
   1114 			sc->sc_ppsassert = -1;
   1115 			sc->sc_ppsclear = 0;
   1116 			break;
   1117 
   1118 		case PPS_CAPTUREBOTH:
   1119 			sc->sc_ppsmask = PL01X_MSR_DCD;
   1120 			sc->sc_ppsassert = PL01X_MSR_DCD;
   1121 			sc->sc_ppsclear = 0;
   1122 			break;
   1123 
   1124 		default:
   1125 			error = EINVAL;
   1126 			break;
   1127 		}
   1128 		mutex_spin_exit(&timecounter_lock);
   1129 		break;
   1130 	}
   1131 
   1132 	case PPS_IOC_GETCAP:
   1133 		*(int*)data = ppscap;
   1134 		break;
   1135 
   1136 	case PPS_IOC_FETCH: {
   1137 		pps_info_t *pi;
   1138 		pi = (pps_info_t *)data;
   1139 		mutex_spin_enter(&timecounter_lock);
   1140 		*pi = sc->ppsinfo;
   1141 		mutex_spin_exit(&timecounter_lock);
   1142 		break;
   1143 	}
   1144 
   1145 	case TIOCDCDTIMESTAMP:	/* XXX old, overloaded  API used by xntpd v3 */
   1146 		/*
   1147 		 * Some GPS clocks models use the falling rather than
   1148 		 * rising edge as the on-the-second signal.
   1149 		 * The old API has no way to specify PPS polarity.
   1150 		 */
   1151 		mutex_spin_enter(&timecounter_lock);
   1152 		sc->sc_ppsmask = PL01X_MSR_DCD;
   1153 #ifndef PPS_TRAILING_EDGE
   1154 		sc->sc_ppsassert = PL01X_MSR_DCD;
   1155 		sc->sc_ppsclear = -1;
   1156 		TIMESPEC_TO_TIMEVAL((struct timeval *)data,
   1157 		    &sc->ppsinfo.assert_timestamp);
   1158 #else
   1159 		sc->sc_ppsassert = -1
   1160 		sc->sc_ppsclear = 0;
   1161 		TIMESPEC_TO_TIMEVAL((struct timeval *)data,
   1162 		    &sc->ppsinfo.clear_timestamp);
   1163 #endif
   1164 		mutex_spin_exit(&timecounter_lock);
   1165 		break;
   1166 
   1167 	default:
   1168 		error = EPASSTHROUGH;
   1169 		break;
   1170 	}
   1171 
   1172 	mutex_spin_exit(&sc->sc_lock);
   1173 
   1174 #ifdef PLCOM_DEBUG
   1175 	if (plcom_debug)
   1176 		plcomstatus(sc, "plcomioctl ");
   1177 #endif
   1178 
   1179 	return error;
   1180 }
   1181 
   1182 integrate void
   1183 plcom_schedrx(struct plcom_softc *sc)
   1184 {
   1185 
   1186 	sc->sc_rx_ready = 1;
   1187 
   1188 	/* Wake up the poller. */
   1189 	softint_schedule(sc->sc_si);
   1190 }
   1191 
   1192 void
   1193 plcom_break(struct plcom_softc *sc, int onoff)
   1194 {
   1195 
   1196 	if (onoff)
   1197 		SET(sc->sc_lcr, PL01X_LCR_BRK);
   1198 	else
   1199 		CLR(sc->sc_lcr, PL01X_LCR_BRK);
   1200 
   1201 	if (!sc->sc_heldchange) {
   1202 		if (sc->sc_tx_busy) {
   1203 			sc->sc_heldtbc = sc->sc_tbc;
   1204 			sc->sc_tbc = 0;
   1205 			sc->sc_heldchange = 1;
   1206 		} else
   1207 			plcom_loadchannelregs(sc);
   1208 	}
   1209 }
   1210 
   1211 void
   1212 plcom_modem(struct plcom_softc *sc, int onoff)
   1213 {
   1214 
   1215 	if (sc->sc_mcr_dtr == 0)
   1216 		return;
   1217 
   1218 	if (onoff)
   1219 		SET(sc->sc_mcr, sc->sc_mcr_dtr);
   1220 	else
   1221 		CLR(sc->sc_mcr, sc->sc_mcr_dtr);
   1222 
   1223 	if (!sc->sc_heldchange) {
   1224 		if (sc->sc_tx_busy) {
   1225 			sc->sc_heldtbc = sc->sc_tbc;
   1226 			sc->sc_tbc = 0;
   1227 			sc->sc_heldchange = 1;
   1228 		} else
   1229 			plcom_loadchannelregs(sc);
   1230 	}
   1231 }
   1232 
   1233 void
   1234 tiocm_to_plcom(struct plcom_softc *sc, u_long how, int ttybits)
   1235 {
   1236 	u_char plcombits;
   1237 
   1238 	plcombits = 0;
   1239 	if (ISSET(ttybits, TIOCM_DTR))
   1240 		SET(plcombits, PL01X_MCR_DTR);
   1241 	if (ISSET(ttybits, TIOCM_RTS))
   1242 		SET(plcombits, PL01X_MCR_RTS);
   1243 
   1244 	switch (how) {
   1245 	case TIOCMBIC:
   1246 		CLR(sc->sc_mcr, plcombits);
   1247 		break;
   1248 
   1249 	case TIOCMBIS:
   1250 		SET(sc->sc_mcr, plcombits);
   1251 		break;
   1252 
   1253 	case TIOCMSET:
   1254 		CLR(sc->sc_mcr, PL01X_MCR_DTR | PL01X_MCR_RTS);
   1255 		SET(sc->sc_mcr, plcombits);
   1256 		break;
   1257 	}
   1258 
   1259 	if (!sc->sc_heldchange) {
   1260 		if (sc->sc_tx_busy) {
   1261 			sc->sc_heldtbc = sc->sc_tbc;
   1262 			sc->sc_tbc = 0;
   1263 			sc->sc_heldchange = 1;
   1264 		} else
   1265 			plcom_loadchannelregs(sc);
   1266 	}
   1267 }
   1268 
   1269 int
   1270 plcom_to_tiocm(struct plcom_softc *sc)
   1271 {
   1272 	u_char plcombits;
   1273 	int ttybits = 0;
   1274 
   1275 	plcombits = sc->sc_mcr;
   1276 	if (ISSET(plcombits, PL01X_MCR_DTR))
   1277 		SET(ttybits, TIOCM_DTR);
   1278 	if (ISSET(plcombits, PL01X_MCR_RTS))
   1279 		SET(ttybits, TIOCM_RTS);
   1280 
   1281 	plcombits = sc->sc_msr;
   1282 	if (ISSET(plcombits, PL01X_MSR_DCD))
   1283 		SET(ttybits, TIOCM_CD);
   1284 	if (ISSET(plcombits, PL01X_MSR_CTS))
   1285 		SET(ttybits, TIOCM_CTS);
   1286 	if (ISSET(plcombits, PL01X_MSR_DSR))
   1287 		SET(ttybits, TIOCM_DSR);
   1288 	if (ISSET(plcombits, PL011_MSR_RI))
   1289 		SET(ttybits, TIOCM_RI);
   1290 
   1291 	if (sc->sc_cr != 0)
   1292 		SET(ttybits, TIOCM_LE);
   1293 
   1294 	return ttybits;
   1295 }
   1296 
   1297 static u_char
   1298 cflag2lcr(tcflag_t cflag)
   1299 {
   1300 	u_char lcr = 0;
   1301 
   1302 	switch (ISSET(cflag, CSIZE)) {
   1303 	case CS5:
   1304 		SET(lcr, PL01X_LCR_5BITS);
   1305 		break;
   1306 	case CS6:
   1307 		SET(lcr, PL01X_LCR_6BITS);
   1308 		break;
   1309 	case CS7:
   1310 		SET(lcr, PL01X_LCR_7BITS);
   1311 		break;
   1312 	case CS8:
   1313 		SET(lcr, PL01X_LCR_8BITS);
   1314 		break;
   1315 	}
   1316 	if (ISSET(cflag, PARENB)) {
   1317 		SET(lcr, PL01X_LCR_PEN);
   1318 		if (!ISSET(cflag, PARODD))
   1319 			SET(lcr, PL01X_LCR_EPS);
   1320 	}
   1321 	if (ISSET(cflag, CSTOPB))
   1322 		SET(lcr, PL01X_LCR_STP2);
   1323 
   1324 	return lcr;
   1325 }
   1326 
   1327 int
   1328 plcomparam(struct tty *tp, struct termios *t)
   1329 {
   1330 	struct plcom_softc *sc =
   1331 		device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
   1332 	struct plcom_instance *pi = &sc->sc_pi;
   1333 	int ospeed = -1;
   1334 	u_char lcr;
   1335 
   1336 	if (PLCOM_ISALIVE(sc) == 0)
   1337 		return EIO;
   1338 
   1339 	switch (pi->pi_type) {
   1340 	case PLCOM_TYPE_PL010:
   1341 		ospeed = pl010comspeed(t->c_ospeed, sc->sc_frequency);
   1342 		break;
   1343 	case PLCOM_TYPE_PL011:
   1344 		ospeed = pl011comspeed(t->c_ospeed, sc->sc_frequency);
   1345 		break;
   1346 	}
   1347 
   1348 	/* Check requested parameters. */
   1349 	if (ospeed < 0)
   1350 		return EINVAL;
   1351 	if (t->c_ispeed && t->c_ispeed != t->c_ospeed)
   1352 		return EINVAL;
   1353 
   1354 	/*
   1355 	 * For the console, always force CLOCAL and !HUPCL, so that the port
   1356 	 * is always active.
   1357 	 */
   1358 	if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR) ||
   1359 	    ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
   1360 		SET(t->c_cflag, CLOCAL);
   1361 		CLR(t->c_cflag, HUPCL);
   1362 	}
   1363 
   1364 	/*
   1365 	 * If there were no changes, don't do anything.  This avoids dropping
   1366 	 * input and improves performance when all we did was frob things like
   1367 	 * VMIN and VTIME.
   1368 	 */
   1369 	if (tp->t_ospeed == t->c_ospeed &&
   1370 	    tp->t_cflag == t->c_cflag)
   1371 		return 0;
   1372 
   1373 	lcr = ISSET(sc->sc_lcr, PL01X_LCR_BRK) | cflag2lcr(t->c_cflag);
   1374 
   1375 	mutex_spin_enter(&sc->sc_lock);
   1376 
   1377 	sc->sc_lcr = lcr;
   1378 
   1379 	/*
   1380 	 * PL010 has a fixed-length FIFO trigger point.
   1381 	 */
   1382 	if (ISSET(sc->sc_hwflags, PLCOM_HW_FIFO))
   1383 		sc->sc_fifo = 1;
   1384 	else
   1385 		sc->sc_fifo = 0;
   1386 
   1387 	if (sc->sc_fifo)
   1388 		SET(sc->sc_lcr, PL01X_LCR_FEN);
   1389 
   1390 	/*
   1391 	 * If we're not in a mode that assumes a connection is present, then
   1392 	 * ignore carrier changes.
   1393 	 */
   1394 	if (ISSET(t->c_cflag, CLOCAL | MDMBUF))
   1395 		sc->sc_msr_dcd = 0;
   1396 	else
   1397 		sc->sc_msr_dcd = PL01X_MSR_DCD;
   1398 	/*
   1399 	 * Set the flow control pins depending on the current flow control
   1400 	 * mode.
   1401 	 */
   1402 	if (ISSET(t->c_cflag, CRTSCTS)) {
   1403 		sc->sc_mcr_dtr = PL01X_MCR_DTR;
   1404 		sc->sc_mcr_rts = PL01X_MCR_RTS;
   1405 		sc->sc_msr_cts = PL01X_MSR_CTS;
   1406 	} else if (ISSET(t->c_cflag, MDMBUF)) {
   1407 		/*
   1408 		 * For DTR/DCD flow control, make sure we don't toggle DTR for
   1409 		 * carrier detection.
   1410 		 */
   1411 		sc->sc_mcr_dtr = 0;
   1412 		sc->sc_mcr_rts = PL01X_MCR_DTR;
   1413 		sc->sc_msr_cts = PL01X_MSR_DCD;
   1414 	} else {
   1415 		/*
   1416 		 * If no flow control, then always set RTS.  This will make
   1417 		 * the other side happy if it mistakenly thinks we're doing
   1418 		 * RTS/CTS flow control.
   1419 		 */
   1420 		sc->sc_mcr_dtr = PL01X_MCR_DTR | PL01X_MCR_RTS;
   1421 		sc->sc_mcr_rts = 0;
   1422 		sc->sc_msr_cts = 0;
   1423 		if (ISSET(sc->sc_mcr, PL01X_MCR_DTR))
   1424 			SET(sc->sc_mcr, PL01X_MCR_RTS);
   1425 		else
   1426 			CLR(sc->sc_mcr, PL01X_MCR_RTS);
   1427 	}
   1428 	sc->sc_msr_mask = sc->sc_msr_cts | sc->sc_msr_dcd;
   1429 
   1430 #if 0
   1431 	if (ospeed == 0)
   1432 		CLR(sc->sc_mcr, sc->sc_mcr_dtr);
   1433 	else
   1434 		SET(sc->sc_mcr, sc->sc_mcr_dtr);
   1435 #endif
   1436 
   1437 	switch (pi->pi_type) {
   1438 	case PLCOM_TYPE_PL010:
   1439 		sc->sc_ratel = ospeed & 0xff;
   1440 		sc->sc_rateh = (ospeed >> 8) & 0xff;
   1441 		break;
   1442 	case PLCOM_TYPE_PL011:
   1443 		sc->sc_ratel = ospeed & ((1 << 6) - 1);
   1444 		sc->sc_rateh = ospeed >> 6;
   1445 		break;
   1446 	}
   1447 
   1448 	/* And copy to tty. */
   1449 	tp->t_ispeed = t->c_ospeed;
   1450 	tp->t_ospeed = t->c_ospeed;
   1451 	tp->t_cflag = t->c_cflag;
   1452 
   1453 	if (!sc->sc_heldchange) {
   1454 		if (sc->sc_tx_busy) {
   1455 			sc->sc_heldtbc = sc->sc_tbc;
   1456 			sc->sc_tbc = 0;
   1457 			sc->sc_heldchange = 1;
   1458 		} else
   1459 			plcom_loadchannelregs(sc);
   1460 	}
   1461 
   1462 	if (!ISSET(t->c_cflag, CHWFLOW)) {
   1463 		/* Disable the high water mark. */
   1464 		sc->sc_r_hiwat = 0;
   1465 		sc->sc_r_lowat = 0;
   1466 		if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
   1467 			CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
   1468 			plcom_schedrx(sc);
   1469 		}
   1470 		if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
   1471 			CLR(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
   1472 			plcom_hwiflow(sc);
   1473 		}
   1474 	} else {
   1475 		sc->sc_r_hiwat = plcom_rbuf_hiwat;
   1476 		sc->sc_r_lowat = plcom_rbuf_lowat;
   1477 	}
   1478 
   1479 	mutex_spin_exit(&sc->sc_lock);
   1480 
   1481 	/*
   1482 	 * Update the tty layer's idea of the carrier bit, in case we changed
   1483 	 * CLOCAL or MDMBUF.  We don't hang up here; we only do that by
   1484 	 * explicit request.
   1485 	 */
   1486 	(void) (*tp->t_linesw->l_modem)(tp, ISSET(sc->sc_msr, PL01X_MSR_DCD));
   1487 
   1488 #ifdef PLCOM_DEBUG
   1489 	if (plcom_debug)
   1490 		plcomstatus(sc, "plcomparam ");
   1491 #endif
   1492 
   1493 	if (!ISSET(t->c_cflag, CHWFLOW)) {
   1494 		if (sc->sc_tx_stopped) {
   1495 			sc->sc_tx_stopped = 0;
   1496 			plcomstart(tp);
   1497 		}
   1498 	}
   1499 
   1500 	return 0;
   1501 }
   1502 
   1503 void
   1504 plcom_iflush(struct plcom_softc *sc)
   1505 {
   1506 	struct plcom_instance *pi = &sc->sc_pi;
   1507 #ifdef DIAGNOSTIC
   1508 	int reg;
   1509 #endif
   1510 	int timo;
   1511 
   1512 #ifdef DIAGNOSTIC
   1513 	reg = 0xffff;
   1514 #endif
   1515 	timo = 50000;
   1516 	/* flush any pending I/O */
   1517 	while (! ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE)
   1518 	    && --timo)
   1519 #ifdef DIAGNOSTIC
   1520 		reg =
   1521 #else
   1522 		    (void)
   1523 #endif
   1524 		    PREAD1(pi, PL01XCOM_DR);
   1525 #ifdef DIAGNOSTIC
   1526 	if (!timo)
   1527 		aprint_error_dev(sc->sc_dev, ": %s timeout %02x\n", __func__,
   1528 		    reg);
   1529 #endif
   1530 }
   1531 
   1532 void
   1533 plcom_loadchannelregs(struct plcom_softc *sc)
   1534 {
   1535 	struct plcom_instance *pi = &sc->sc_pi;
   1536 
   1537 	/* XXXXX necessary? */
   1538 	plcom_iflush(sc);
   1539 
   1540 	switch (pi->pi_type) {
   1541 	case PLCOM_TYPE_PL010:
   1542 		PWRITE1(pi, PL010COM_CR, 0);
   1543 		PWRITE1(pi, PL010COM_DLBL, sc->sc_ratel);
   1544 		PWRITE1(pi, PL010COM_DLBH, sc->sc_rateh);
   1545 		PWRITE1(pi, PL010COM_LCR, sc->sc_lcr);
   1546 
   1547 		/* XXX device_unit() abuse */
   1548 		if (sc->sc_set_mcr)
   1549 			sc->sc_set_mcr(sc->sc_set_mcr_arg,
   1550 			    device_unit(sc->sc_dev),
   1551 			    sc->sc_mcr_active = sc->sc_mcr);
   1552 
   1553 		PWRITE1(pi, PL010COM_CR, sc->sc_cr);
   1554 		break;
   1555 
   1556 	case PLCOM_TYPE_PL011:
   1557 		PWRITE4(pi, PL011COM_CR, 0);
   1558 		PWRITE1(pi, PL011COM_FBRD, sc->sc_ratel);
   1559 		PWRITE4(pi, PL011COM_IBRD, sc->sc_rateh);
   1560 		PWRITE1(pi, PL011COM_LCRH, sc->sc_lcr);
   1561 		sc->sc_mcr_active = sc->sc_mcr;
   1562 		CLR(sc->sc_cr, PL011_MCR(PL01X_MCR_RTS | PL01X_MCR_DTR));
   1563 		SET(sc->sc_cr, PL011_MCR(sc->sc_mcr_active));
   1564 		PWRITE4(pi, PL011COM_CR, sc->sc_cr);
   1565 		break;
   1566 	}
   1567 }
   1568 
   1569 int
   1570 plcomhwiflow(struct tty *tp, int block)
   1571 {
   1572 	struct plcom_softc *sc =
   1573 		device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
   1574 
   1575 	if (PLCOM_ISALIVE(sc) == 0)
   1576 		return 0;
   1577 
   1578 	if (sc->sc_mcr_rts == 0)
   1579 		return 0;
   1580 
   1581 	mutex_spin_enter(&sc->sc_lock);
   1582 
   1583 	if (block) {
   1584 		if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
   1585 			SET(sc->sc_rx_flags, RX_TTY_BLOCKED);
   1586 			plcom_hwiflow(sc);
   1587 		}
   1588 	} else {
   1589 		if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
   1590 			CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
   1591 			plcom_schedrx(sc);
   1592 		}
   1593 		if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
   1594 			CLR(sc->sc_rx_flags, RX_TTY_BLOCKED);
   1595 			plcom_hwiflow(sc);
   1596 		}
   1597 	}
   1598 
   1599 	mutex_spin_exit(&sc->sc_lock);
   1600 	return 1;
   1601 }
   1602 
   1603 /*
   1604  * (un)block input via hw flowcontrol
   1605  */
   1606 void
   1607 plcom_hwiflow(struct plcom_softc *sc)
   1608 {
   1609 	struct plcom_instance *pi = &sc->sc_pi;
   1610 
   1611 	if (sc->sc_mcr_rts == 0)
   1612 		return;
   1613 
   1614 	if (ISSET(sc->sc_rx_flags, RX_ANY_BLOCK)) {
   1615 		CLR(sc->sc_mcr, sc->sc_mcr_rts);
   1616 		CLR(sc->sc_mcr_active, sc->sc_mcr_rts);
   1617 	} else {
   1618 		SET(sc->sc_mcr, sc->sc_mcr_rts);
   1619 		SET(sc->sc_mcr_active, sc->sc_mcr_rts);
   1620 	}
   1621 	switch (pi->pi_type) {
   1622 	case PLCOM_TYPE_PL010:
   1623 		if (sc->sc_set_mcr)
   1624 			/* XXX device_unit() abuse */
   1625 			sc->sc_set_mcr(sc->sc_set_mcr_arg,
   1626 			     device_unit(sc->sc_dev), sc->sc_mcr_active);
   1627 		break;
   1628 	case PLCOM_TYPE_PL011:
   1629 		CLR(sc->sc_cr, PL011_MCR(PL01X_MCR_RTS | PL01X_MCR_DTR));
   1630 		SET(sc->sc_cr, PL011_MCR(sc->sc_mcr_active));
   1631 		PWRITE4(pi, PL011COM_CR, sc->sc_cr);
   1632 		break;
   1633 	}
   1634 }
   1635 
   1636 
   1637 void
   1638 plcomstart(struct tty *tp)
   1639 {
   1640 	struct plcom_softc *sc =
   1641 		device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
   1642 	struct plcom_instance *pi = &sc->sc_pi;
   1643 	int s;
   1644 
   1645 	if (PLCOM_ISALIVE(sc) == 0)
   1646 		return;
   1647 
   1648 	s = spltty();
   1649 	if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
   1650 		goto out;
   1651 	if (sc->sc_tx_stopped)
   1652 		goto out;
   1653 
   1654 	if (!ttypull(tp))
   1655 		goto out;
   1656 
   1657 	/* Grab the first contiguous region of buffer space. */
   1658 	{
   1659 		u_char *tba;
   1660 		int tbc;
   1661 
   1662 		tba = tp->t_outq.c_cf;
   1663 		tbc = ndqb(&tp->t_outq, 0);
   1664 
   1665 		mutex_spin_enter(&sc->sc_lock);
   1666 
   1667 		sc->sc_tba = tba;
   1668 		sc->sc_tbc = tbc;
   1669 	}
   1670 
   1671 	SET(tp->t_state, TS_BUSY);
   1672 	sc->sc_tx_busy = 1;
   1673 
   1674 	/* Enable transmit completion interrupts if necessary. */
   1675 	switch (pi->pi_type) {
   1676 	case PLCOM_TYPE_PL010:
   1677 		if (!ISSET(sc->sc_cr, PL010_CR_TIE)) {
   1678 			SET(sc->sc_cr, PL010_CR_TIE);
   1679 			PWRITE1(pi, PL010COM_CR, sc->sc_cr);
   1680 		}
   1681 		break;
   1682 	case PLCOM_TYPE_PL011:
   1683 		if (!ISSET(sc->sc_imsc, PL011_INT_TX)) {
   1684 			SET(sc->sc_imsc, PL011_INT_TX);
   1685 			PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
   1686 		}
   1687 		break;
   1688 	}
   1689 
   1690 	/* Output the first chunk of the contiguous buffer. */
   1691 	{
   1692 		int n;
   1693 
   1694 		n = sc->sc_tbc;
   1695 		if (n > sc->sc_fifolen)
   1696 			n = sc->sc_fifolen;
   1697 		PWRITEM1(pi, PL01XCOM_DR, sc->sc_tba, n);
   1698 		sc->sc_tbc -= n;
   1699 		sc->sc_tba += n;
   1700 	}
   1701 	mutex_spin_exit(&sc->sc_lock);
   1702 out:
   1703 	splx(s);
   1704 	return;
   1705 }
   1706 
   1707 /*
   1708  * Stop output on a line.
   1709  */
   1710 void
   1711 plcomstop(struct tty *tp, int flag)
   1712 {
   1713 	struct plcom_softc *sc =
   1714 		device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
   1715 
   1716 	mutex_spin_enter(&sc->sc_lock);
   1717 	if (ISSET(tp->t_state, TS_BUSY)) {
   1718 		/* Stop transmitting at the next chunk. */
   1719 		sc->sc_tbc = 0;
   1720 		sc->sc_heldtbc = 0;
   1721 		if (!ISSET(tp->t_state, TS_TTSTOP))
   1722 			SET(tp->t_state, TS_FLUSH);
   1723 	}
   1724 	mutex_spin_exit(&sc->sc_lock);
   1725 }
   1726 
   1727 void
   1728 plcomdiag(void *arg)
   1729 {
   1730 	struct plcom_softc *sc = arg;
   1731 	int overflows, floods;
   1732 
   1733 	mutex_spin_enter(&sc->sc_lock);
   1734 	overflows = sc->sc_overflows;
   1735 	sc->sc_overflows = 0;
   1736 	floods = sc->sc_floods;
   1737 	sc->sc_floods = 0;
   1738 	sc->sc_errors = 0;
   1739 	mutex_spin_exit(&sc->sc_lock);
   1740 
   1741 	log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
   1742 	    device_xname(sc->sc_dev),
   1743 	    overflows, overflows == 1 ? "" : "s",
   1744 	    floods, floods == 1 ? "" : "s");
   1745 }
   1746 
   1747 integrate void
   1748 plcom_rxsoft(struct plcom_softc *sc, struct tty *tp)
   1749 {
   1750 	int (*rint) (int, struct tty *) = tp->t_linesw->l_rint;
   1751 	struct plcom_instance *pi = &sc->sc_pi;
   1752 	u_char *get, *end;
   1753 	u_int cc, scc;
   1754 	u_char rsr;
   1755 	int code;
   1756 
   1757 	end = sc->sc_ebuf;
   1758 	get = sc->sc_rbget;
   1759 	scc = cc = plcom_rbuf_size - sc->sc_rbavail;
   1760 
   1761 	if (cc == plcom_rbuf_size) {
   1762 		sc->sc_floods++;
   1763 		if (sc->sc_errors++ == 0)
   1764 			callout_reset(&sc->sc_diag_callout, 60 * hz,
   1765 			    plcomdiag, sc);
   1766 	}
   1767 
   1768 	while (cc) {
   1769 		code = get[0];
   1770 		rsr = get[1];
   1771 		if (ISSET(rsr, PL01X_RSR_ERROR)) {
   1772 			if (ISSET(rsr, PL01X_RSR_OE)) {
   1773 				sc->sc_overflows++;
   1774 				if (sc->sc_errors++ == 0)
   1775 					callout_reset(&sc->sc_diag_callout,
   1776 					    60 * hz, plcomdiag, sc);
   1777 			}
   1778 			if (ISSET(rsr, PL01X_RSR_BE | PL01X_RSR_FE))
   1779 				SET(code, TTY_FE);
   1780 			if (ISSET(rsr, PL01X_RSR_PE))
   1781 				SET(code, TTY_PE);
   1782 		}
   1783 		if ((*rint)(code, tp) == -1) {
   1784 			/*
   1785 			 * The line discipline's buffer is out of space.
   1786 			 */
   1787 			if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
   1788 				/*
   1789 				 * We're either not using flow control, or the
   1790 				 * line discipline didn't tell us to block for
   1791 				 * some reason.  Either way, we have no way to
   1792 				 * know when there's more space available, so
   1793 				 * just drop the rest of the data.
   1794 				 */
   1795 				get += cc << 1;
   1796 				if (get >= end)
   1797 					get -= plcom_rbuf_size << 1;
   1798 				cc = 0;
   1799 			} else {
   1800 				/*
   1801 				 * Don't schedule any more receive processing
   1802 				 * until the line discipline tells us there's
   1803 				 * space available (through plcomhwiflow()).
   1804 				 * Leave the rest of the data in the input
   1805 				 * buffer.
   1806 				 */
   1807 				SET(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
   1808 			}
   1809 			break;
   1810 		}
   1811 		get += 2;
   1812 		if (get >= end)
   1813 			get = sc->sc_rbuf;
   1814 		cc--;
   1815 	}
   1816 
   1817 	if (cc != scc) {
   1818 		sc->sc_rbget = get;
   1819 		mutex_spin_enter(&sc->sc_lock);
   1820 
   1821 		cc = sc->sc_rbavail += scc - cc;
   1822 		/* Buffers should be ok again, release possible block. */
   1823 		if (cc >= sc->sc_r_lowat) {
   1824 			if (ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
   1825 				CLR(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
   1826 				switch (pi->pi_type) {
   1827 				case PLCOM_TYPE_PL010:
   1828 					SET(sc->sc_cr,
   1829 					    PL010_CR_RIE | PL010_CR_RTIE);
   1830 					PWRITE1(pi, PL010COM_CR, sc->sc_cr);
   1831 					break;
   1832 				case PLCOM_TYPE_PL011:
   1833 					SET(sc->sc_imsc,
   1834 					    PL011_INT_RX | PL011_INT_RT);
   1835 					PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
   1836 					break;
   1837 				}
   1838 			}
   1839 			if (ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED)) {
   1840 				CLR(sc->sc_rx_flags, RX_IBUF_BLOCKED);
   1841 				plcom_hwiflow(sc);
   1842 			}
   1843 		}
   1844 		mutex_spin_exit(&sc->sc_lock);
   1845 	}
   1846 }
   1847 
   1848 integrate void
   1849 plcom_txsoft(struct plcom_softc *sc, struct tty *tp)
   1850 {
   1851 
   1852 	CLR(tp->t_state, TS_BUSY);
   1853 	if (ISSET(tp->t_state, TS_FLUSH))
   1854 		CLR(tp->t_state, TS_FLUSH);
   1855 	else
   1856 		ndflush(&tp->t_outq, (int)(sc->sc_tba - tp->t_outq.c_cf));
   1857 	(*tp->t_linesw->l_start)(tp);
   1858 }
   1859 
   1860 integrate void
   1861 plcom_stsoft(struct plcom_softc *sc, struct tty *tp)
   1862 {
   1863 	u_char msr, delta;
   1864 
   1865 	mutex_spin_enter(&sc->sc_lock);
   1866 	msr = sc->sc_msr;
   1867 	delta = sc->sc_msr_delta;
   1868 	sc->sc_msr_delta = 0;
   1869 	mutex_spin_exit(&sc->sc_lock);
   1870 
   1871 	if (ISSET(delta, sc->sc_msr_dcd)) {
   1872 		/*
   1873 		 * Inform the tty layer that carrier detect changed.
   1874 		 */
   1875 		(void) (*tp->t_linesw->l_modem)(tp, ISSET(msr, PL01X_MSR_DCD));
   1876 	}
   1877 
   1878 	if (ISSET(delta, sc->sc_msr_cts)) {
   1879 		/* Block or unblock output according to flow control. */
   1880 		if (ISSET(msr, sc->sc_msr_cts)) {
   1881 			sc->sc_tx_stopped = 0;
   1882 			(*tp->t_linesw->l_start)(tp);
   1883 		} else {
   1884 			sc->sc_tx_stopped = 1;
   1885 		}
   1886 	}
   1887 
   1888 #ifdef PLCOM_DEBUG
   1889 	if (plcom_debug)
   1890 		plcomstatus(sc, "plcom_stsoft");
   1891 #endif
   1892 }
   1893 
   1894 void
   1895 plcomsoft(void *arg)
   1896 {
   1897 	struct plcom_softc *sc = arg;
   1898 	struct tty *tp;
   1899 
   1900 	if (PLCOM_ISALIVE(sc) == 0)
   1901 		return;
   1902 
   1903 	tp = sc->sc_tty;
   1904 
   1905 	if (sc->sc_rx_ready) {
   1906 		sc->sc_rx_ready = 0;
   1907 		plcom_rxsoft(sc, tp);
   1908 	}
   1909 
   1910 	if (sc->sc_st_check) {
   1911 		sc->sc_st_check = 0;
   1912 		plcom_stsoft(sc, tp);
   1913 	}
   1914 
   1915 	if (sc->sc_tx_done) {
   1916 		sc->sc_tx_done = 0;
   1917 		plcom_txsoft(sc, tp);
   1918 	}
   1919 }
   1920 
   1921 bool
   1922 plcom_intstatus(struct plcom_instance *pi, u_int *istatus)
   1923 {
   1924 	bool ret = false;
   1925 	u_int stat = 0;
   1926 
   1927 	switch (pi->pi_type) {
   1928 	case PLCOM_TYPE_PL010:
   1929 		stat = PREAD1(pi, PL010COM_IIR);
   1930 		ret = ISSET(stat, PL010_IIR_IMASK);
   1931 		break;
   1932 	case PLCOM_TYPE_PL011:
   1933 		stat = PREAD4(pi, PL011COM_MIS);
   1934 		ret = ISSET(stat, PL011_INT_ALLMASK);
   1935 		break;
   1936 	}
   1937 	*istatus = stat;
   1938 
   1939 	return ret;
   1940 }
   1941 
   1942 int
   1943 plcomintr(void *arg)
   1944 {
   1945 	struct plcom_softc *sc = arg;
   1946 	struct plcom_instance *pi = &sc->sc_pi;
   1947 	u_char *put, *end;
   1948 	u_int cc;
   1949 	u_int istatus = 0;
   1950 	u_char rsr;
   1951 	bool intr = false;
   1952 
   1953 	PLCOM_BARRIER(pi, BR | BW);
   1954 
   1955 	if (PLCOM_ISALIVE(sc) == 0)
   1956 		return 0;
   1957 
   1958 	mutex_spin_enter(&sc->sc_lock);
   1959 	intr = plcom_intstatus(pi, &istatus);
   1960 	if (!intr) {
   1961 		mutex_spin_exit(&sc->sc_lock);
   1962 		return 0;
   1963 	}
   1964 
   1965 	end = sc->sc_ebuf;
   1966 	put = sc->sc_rbput;
   1967 	cc = sc->sc_rbavail;
   1968 
   1969 	do {
   1970 		u_int msr = 0, delta, fr;
   1971 		bool rxintr = false, txintr = false, msintr;
   1972 
   1973 		/* don't need RI here*/
   1974 		fr = PREAD1(pi, PL01XCOM_FR);
   1975 
   1976 		if (!ISSET(fr, PL01X_FR_RXFE) &&
   1977 		    !ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
   1978 			while (cc > 0) {
   1979 				int cn_trapped = 0;
   1980 				put[0] = PREAD1(pi, PL01XCOM_DR);
   1981 				rsr = PREAD1(pi, PL01XCOM_RSR);
   1982 				/* Clear any error status.  */
   1983 				if (ISSET(rsr, PL01X_RSR_ERROR))
   1984 					PWRITE1(pi, PL01XCOM_ECR, 0);
   1985 				if (ISSET(rsr, PL01X_RSR_BE)) {
   1986 					cn_trapped = 0;
   1987 					cn_check_magic(sc->sc_tty->t_dev,
   1988 					    CNC_BREAK, plcom_cnm_state);
   1989 					if (cn_trapped)
   1990 						continue;
   1991 #if defined(KGDB)
   1992 					if (ISSET(sc->sc_hwflags,
   1993 					    PLCOM_HW_KGDB)) {
   1994 						kgdb_connect(1);
   1995 						continue;
   1996 					}
   1997 #endif
   1998 				}
   1999 
   2000 				put[1] = rsr;
   2001 				cn_trapped = 0;
   2002 				cn_check_magic(sc->sc_tty->t_dev, put[0],
   2003 				    plcom_cnm_state);
   2004 				if (cn_trapped) {
   2005 					fr = PREAD1(pi, PL01XCOM_FR);
   2006 					if (ISSET(fr, PL01X_FR_RXFE))
   2007 						break;
   2008 
   2009 					continue;
   2010 				}
   2011 				put += 2;
   2012 				if (put >= end)
   2013 					put = sc->sc_rbuf;
   2014 				cc--;
   2015 
   2016 				/* don't need RI here*/
   2017 				fr = PREAD1(pi, PL01XCOM_FR);
   2018 				if (ISSET(fr, PL01X_FR_RXFE))
   2019 					break;
   2020 			}
   2021 
   2022 			/*
   2023 			 * Current string of incoming characters ended because
   2024 			 * no more data was available or we ran out of space.
   2025 			 * Schedule a receive event if any data was received.
   2026 			 * If we're out of space, turn off receive interrupts.
   2027 			 */
   2028 			sc->sc_rbput = put;
   2029 			sc->sc_rbavail = cc;
   2030 			if (!ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED))
   2031 				sc->sc_rx_ready = 1;
   2032 
   2033 			/*
   2034 			 * See if we are in danger of overflowing a buffer. If
   2035 			 * so, use hardware flow control to ease the pressure.
   2036 			 */
   2037 			if (!ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED) &&
   2038 			    cc < sc->sc_r_hiwat) {
   2039 				SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
   2040 				plcom_hwiflow(sc);
   2041 			}
   2042 
   2043 			/*
   2044 			 * If we're out of space, disable receive interrupts
   2045 			 * until the queue has drained a bit.
   2046 			 */
   2047 			if (!cc) {
   2048 				SET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
   2049 				switch (pi->pi_type) {
   2050 				case PLCOM_TYPE_PL010:
   2051 					CLR(sc->sc_cr,
   2052 					    PL010_CR_RIE | PL010_CR_RTIE);
   2053 					PWRITE1(pi, PL010COM_CR, sc->sc_cr);
   2054 					break;
   2055 				case PLCOM_TYPE_PL011:
   2056 					CLR(sc->sc_imsc,
   2057 					    PL011_INT_RT | PL011_INT_RX);
   2058 					PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
   2059 					break;
   2060 				}
   2061 			}
   2062 		} else {
   2063 			switch (pi->pi_type) {
   2064 			case PLCOM_TYPE_PL010:
   2065 				rxintr = ISSET(istatus, PL010_IIR_RIS);
   2066 				if (rxintr) {
   2067 					PWRITE1(pi, PL010COM_CR, 0);
   2068 					delay(10);
   2069 					PWRITE1(pi, PL010COM_CR, sc->sc_cr);
   2070 					continue;
   2071 				}
   2072 				break;
   2073 			case PLCOM_TYPE_PL011:
   2074 				rxintr = ISSET(istatus, PL011_INT_RX);
   2075 				if (rxintr) {
   2076 					PWRITE4(pi, PL011COM_CR, 0);
   2077 					delay(10);
   2078 					PWRITE4(pi, PL011COM_CR, sc->sc_cr);
   2079 					continue;
   2080 				}
   2081 				break;
   2082 			}
   2083 		}
   2084 
   2085 		switch (pi->pi_type) {
   2086 		case PLCOM_TYPE_PL010:
   2087 			msr = PREAD1(pi, PL01XCOM_FR);
   2088 			break;
   2089 		case PLCOM_TYPE_PL011:
   2090 			msr = PREAD4(pi, PL01XCOM_FR);
   2091 			break;
   2092 		}
   2093 		delta = msr ^ sc->sc_msr;
   2094 		sc->sc_msr = msr;
   2095 
   2096 		/* Clear any pending modem status interrupt.  */
   2097 		switch (pi->pi_type) {
   2098 		case PLCOM_TYPE_PL010:
   2099 			msintr = ISSET(istatus, PL010_IIR_MIS);
   2100 			if (msintr) {
   2101 				PWRITE1(pi, PL010COM_ICR, 0);
   2102 			}
   2103 			break;
   2104 		case PLCOM_TYPE_PL011:
   2105 			msintr = ISSET(istatus, PL011_INT_MSMASK);
   2106 			if (msintr) {
   2107 				PWRITE4(pi, PL011COM_ICR, PL011_INT_MSMASK);
   2108 			}
   2109 			break;
   2110 		}
   2111 		/*
   2112 		 * Pulse-per-second (PSS) signals on edge of DCD?
   2113 		 * Process these even if line discipline is ignoring DCD.
   2114 		 */
   2115 		if (delta & sc->sc_ppsmask) {
   2116 			struct timeval tv;
   2117 			mutex_spin_enter(&timecounter_lock);
   2118 		    	if ((msr & sc->sc_ppsmask) == sc->sc_ppsassert) {
   2119 				/* XXX nanotime() */
   2120 				microtime(&tv);
   2121 				TIMEVAL_TO_TIMESPEC(&tv,
   2122 				    &sc->ppsinfo.assert_timestamp);
   2123 				if (sc->ppsparam.mode & PPS_OFFSETASSERT) {
   2124 					timespecadd(&sc->ppsinfo.assert_timestamp,
   2125 					    &sc->ppsparam.assert_offset,
   2126 						    &sc->ppsinfo.assert_timestamp);
   2127 				}
   2128 
   2129 #ifdef PPS_SYNC
   2130 				if (sc->ppsparam.mode & PPS_HARDPPSONASSERT)
   2131 					hardpps(&tv, tv.tv_usec);
   2132 #endif
   2133 				sc->ppsinfo.assert_sequence++;
   2134 				sc->ppsinfo.current_mode = sc->ppsparam.mode;
   2135 
   2136 			} else if ((msr & sc->sc_ppsmask) == sc->sc_ppsclear) {
   2137 				/* XXX nanotime() */
   2138 				microtime(&tv);
   2139 				TIMEVAL_TO_TIMESPEC(&tv,
   2140 				    &sc->ppsinfo.clear_timestamp);
   2141 				if (sc->ppsparam.mode & PPS_OFFSETCLEAR) {
   2142 					timespecadd(&sc->ppsinfo.clear_timestamp,
   2143 					    &sc->ppsparam.clear_offset,
   2144 					    &sc->ppsinfo.clear_timestamp);
   2145 				}
   2146 
   2147 #ifdef PPS_SYNC
   2148 				if (sc->ppsparam.mode & PPS_HARDPPSONCLEAR)
   2149 					hardpps(&tv, tv.tv_usec);
   2150 #endif
   2151 				sc->ppsinfo.clear_sequence++;
   2152 				sc->ppsinfo.current_mode = sc->ppsparam.mode;
   2153 			}
   2154 			mutex_spin_exit(&timecounter_lock);
   2155 		}
   2156 
   2157 		/*
   2158 		 * Process normal status changes
   2159 		 */
   2160 		if (ISSET(delta, sc->sc_msr_mask)) {
   2161 			SET(sc->sc_msr_delta, delta);
   2162 
   2163 			/*
   2164 			 * Stop output immediately if we lose the output
   2165 			 * flow control signal or carrier detect.
   2166 			 */
   2167 			if (ISSET(~msr, sc->sc_msr_mask)) {
   2168 				sc->sc_tbc = 0;
   2169 				sc->sc_heldtbc = 0;
   2170 #ifdef PLCOM_DEBUG
   2171 				if (plcom_debug)
   2172 					plcomstatus(sc, "plcomintr  ");
   2173 #endif
   2174 			}
   2175 
   2176 			sc->sc_st_check = 1;
   2177 		}
   2178 
   2179 		/*
   2180 		 * Done handling any receive interrupts. See if data
   2181 		 * can be transmitted as well. Schedule tx done
   2182 		 * event if no data left and tty was marked busy.
   2183 		 */
   2184 
   2185 		switch (pi->pi_type) {
   2186 		case PLCOM_TYPE_PL010:
   2187 			txintr = ISSET(istatus, PL010_IIR_TIS);
   2188 			break;
   2189 		case PLCOM_TYPE_PL011:
   2190 			txintr = ISSET(istatus, PL011_INT_TX);
   2191 			break;
   2192 		}
   2193 		if (txintr) {
   2194 			/*
   2195 			 * If we've delayed a parameter change, do it
   2196 			 * now, and restart * output.
   2197 			 */
   2198 // PWRITE4(pi, PL011COM_ICR, PL011_INT_TX);
   2199 			if (sc->sc_heldchange) {
   2200 				plcom_loadchannelregs(sc);
   2201 				sc->sc_heldchange = 0;
   2202 				sc->sc_tbc = sc->sc_heldtbc;
   2203 				sc->sc_heldtbc = 0;
   2204 			}
   2205 
   2206 			/*
   2207 			 * Output the next chunk of the contiguous
   2208 			 * buffer, if any.
   2209 			 */
   2210 			if (sc->sc_tbc > 0) {
   2211 				int n;
   2212 
   2213 				n = sc->sc_tbc;
   2214 				if (n > sc->sc_fifolen)
   2215 					n = sc->sc_fifolen;
   2216 				PWRITEM1(pi, PL01XCOM_DR, sc->sc_tba, n);
   2217 				sc->sc_tbc -= n;
   2218 				sc->sc_tba += n;
   2219 			} else {
   2220 				/*
   2221 				 * Disable transmit completion
   2222 				 * interrupts if necessary.
   2223 				 */
   2224 				switch (pi->pi_type) {
   2225 				case PLCOM_TYPE_PL010:
   2226 					if (ISSET(sc->sc_cr, PL010_CR_TIE)) {
   2227 						CLR(sc->sc_cr, PL010_CR_TIE);
   2228 						PWRITE1(pi, PL010COM_CR,
   2229 						    sc->sc_cr);
   2230 					}
   2231 					break;
   2232 				case PLCOM_TYPE_PL011:
   2233 					if (ISSET(sc->sc_imsc, PL011_INT_TX)) {
   2234 						CLR(sc->sc_imsc, PL011_INT_TX);
   2235 						PWRITE4(pi, PL011COM_IMSC,
   2236 						    sc->sc_imsc);
   2237 					}
   2238 					break;
   2239 				}
   2240 				if (sc->sc_tx_busy) {
   2241 					sc->sc_tx_busy = 0;
   2242 					sc->sc_tx_done = 1;
   2243 				}
   2244 			}
   2245 		}
   2246 
   2247 	} while (plcom_intstatus(pi, &istatus));
   2248 
   2249 	mutex_spin_exit(&sc->sc_lock);
   2250 
   2251 	/* Wake up the poller. */
   2252 	softint_schedule(sc->sc_si);
   2253 
   2254 #ifdef RND_COM
   2255 	rnd_add_uint32(&sc->rnd_source, istatus | rsr);
   2256 #endif
   2257 
   2258 	PLCOM_BARRIER(pi, BR | BW);
   2259 
   2260 	return 1;
   2261 }
   2262 
   2263 /*
   2264  * The following functions are polled getc and putc routines, shared
   2265  * by the console and kgdb glue.
   2266  *
   2267  * The read-ahead code is so that you can detect pending in-band
   2268  * cn_magic in polled mode while doing output rather than having to
   2269  * wait until the kernel decides it needs input.
   2270  */
   2271 
   2272 #define MAX_READAHEAD	20
   2273 static int plcom_readahead[MAX_READAHEAD];
   2274 static int plcom_readaheadcount = 0;
   2275 
   2276 int
   2277 plcom_common_getc(dev_t dev, struct plcom_instance *pi)
   2278 {
   2279 	int s = splserial();
   2280 	u_char stat, c;
   2281 
   2282 	/* got a character from reading things earlier */
   2283 	if (plcom_readaheadcount > 0) {
   2284 		int i;
   2285 
   2286 		c = plcom_readahead[0];
   2287 		for (i = 1; i < plcom_readaheadcount; i++) {
   2288 			plcom_readahead[i-1] = plcom_readahead[i];
   2289 		}
   2290 		plcom_readaheadcount--;
   2291 		splx(s);
   2292 		return c;
   2293 	}
   2294 
   2295 	/* block until a character becomes available */
   2296 	while (ISSET(stat = PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE))
   2297 		;
   2298 
   2299 	c = PREAD1(pi, PL01XCOM_DR);
   2300 	{
   2301 		int cn_trapped __unused = 0;
   2302 #ifdef DDB
   2303 		extern int db_active;
   2304 		if (!db_active)
   2305 #endif
   2306 			cn_check_magic(dev, c, plcom_cnm_state);
   2307 	}
   2308 	splx(s);
   2309 	return c;
   2310 }
   2311 
   2312 void
   2313 plcom_common_putc(dev_t dev, struct plcom_instance *pi, int c)
   2314 {
   2315 	int s = splserial();
   2316 	int timo;
   2317 
   2318 	int cin, stat;
   2319 	if (plcom_readaheadcount < MAX_READAHEAD
   2320 	     && !ISSET(stat = PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE)) {
   2321 		int cn_trapped __unused = 0;
   2322 		cin = PREAD1(pi, PL01XCOM_DR);
   2323 		cn_check_magic(dev, cin, plcom_cnm_state);
   2324 		plcom_readahead[plcom_readaheadcount++] = cin;
   2325 	}
   2326 
   2327 	/* wait for any pending transmission to finish */
   2328 	timo = 150000;
   2329 	while (!ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_TXFE) && --timo)
   2330 		continue;
   2331 
   2332 	PWRITE1(pi, PL01XCOM_DR, c);
   2333 	PLCOM_BARRIER(pi, BR | BW);
   2334 
   2335 	/* wait for this transmission to complete */
   2336 	timo = 1500000;
   2337 	while (!ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_TXFE) && --timo)
   2338 		continue;
   2339 
   2340 	splx(s);
   2341 }
   2342 
   2343 /*
   2344  * Initialize UART for use as console or KGDB line.
   2345  */
   2346 int
   2347 plcominit(struct plcom_instance *pi, int rate, int frequency, tcflag_t cflag)
   2348 {
   2349 	u_char lcr;
   2350 
   2351 	switch (pi->pi_type) {
   2352 	case PLCOM_TYPE_PL010:
   2353 		if (pi->pi_size == 0)
   2354 			pi->pi_size = PL010COM_UART_SIZE;
   2355 		break;
   2356 	case PLCOM_TYPE_PL011:
   2357 		if (pi->pi_size == 0)
   2358 			pi->pi_size = PL011COM_UART_SIZE;
   2359 		break;
   2360 	default:
   2361 		panic("Unknown plcom type");
   2362 	}
   2363 
   2364 	if (bus_space_map(pi->pi_iot, pi->pi_iobase, pi->pi_size, 0,
   2365 	    &pi->pi_ioh))
   2366 		return ENOMEM; /* ??? */
   2367 
   2368 	lcr = cflag2lcr(cflag) | PL01X_LCR_FEN;
   2369 	switch (pi->pi_type) {
   2370 	case PLCOM_TYPE_PL010:
   2371 		PWRITE1(pi, PL010COM_CR, 0);
   2372 
   2373 		rate = pl010comspeed(rate, frequency);
   2374 		PWRITE1(pi, PL010COM_DLBL, (rate & 0xff));
   2375 		PWRITE1(pi, PL010COM_DLBH, ((rate >> 8) & 0xff));
   2376 		PWRITE1(pi, PL010COM_LCR, lcr);
   2377 		PWRITE1(pi, PL010COM_CR, PL01X_CR_UARTEN);
   2378 		break;
   2379 	case PLCOM_TYPE_PL011:
   2380 		PWRITE4(pi, PL011COM_CR, 0);
   2381 
   2382 		rate = pl011comspeed(rate, frequency);
   2383 		PWRITE1(pi, PL011COM_FBRD, rate & ((1 << 6) - 1));
   2384 		PWRITE4(pi, PL011COM_IBRD, rate >> 6);
   2385 		PWRITE1(pi, PL011COM_LCRH, lcr);
   2386 		PWRITE4(pi, PL011COM_CR,
   2387 		    PL01X_CR_UARTEN | PL011_CR_RXE | PL011_CR_TXE);
   2388 		break;
   2389 	}
   2390 
   2391 #if 0
   2392 	/* Ought to do something like this, but we have no sc to
   2393 	   dereference. */
   2394 	/* XXX device_unit() abuse */
   2395 	sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(sc->sc_dev),
   2396 	    PL01X_MCR_DTR | PL01X_MCR_RTS);
   2397 #endif
   2398 
   2399 	return 0;
   2400 }
   2401 
   2402 /*
   2403  * Following are all routines needed for PLCOM to act as console
   2404  */
   2405 struct consdev plcomcons = {
   2406 	NULL, NULL, plcomcngetc, plcomcnputc, plcomcnpollc, NULL,
   2407 	NULL, NULL, NODEV, CN_NORMAL
   2408 };
   2409 
   2410 int
   2411 plcomcnattach(struct plcom_instance *pi, int rate, int frequency,
   2412     tcflag_t cflag, int unit)
   2413 {
   2414 	int res;
   2415 
   2416 	plcomcons_info = *pi;
   2417 
   2418 	res = plcominit(&plcomcons_info, rate, frequency, cflag);
   2419 	if (res)
   2420 		return res;
   2421 
   2422 	cn_tab = &plcomcons;
   2423 	cn_init_magic(&plcom_cnm_state);
   2424 	cn_set_magic("\047\001"); /* default magic is BREAK */
   2425 
   2426 	plcomconsunit = unit;
   2427 	plcomconsrate = rate;
   2428 	plcomconscflag = cflag;
   2429 
   2430 	return 0;
   2431 }
   2432 
   2433 void
   2434 plcomcndetach(void)
   2435 {
   2436 
   2437 	bus_space_unmap(plcomcons_info.pi_iot, plcomcons_info.pi_ioh,
   2438 	    plcomcons_info.pi_size);
   2439 	plcomcons_info.pi_iot = NULL;
   2440 
   2441 	cn_tab = NULL;
   2442 }
   2443 
   2444 int
   2445 plcomcngetc(dev_t dev)
   2446 {
   2447 	return plcom_common_getc(dev, &plcomcons_info);
   2448 }
   2449 
   2450 /*
   2451  * Console kernel output character routine.
   2452  */
   2453 void
   2454 plcomcnputc(dev_t dev, int c)
   2455 {
   2456 	plcom_common_putc(dev, &plcomcons_info, c);
   2457 }
   2458 
   2459 void
   2460 plcomcnpollc(dev_t dev, int on)
   2461 {
   2462 
   2463 	plcom_readaheadcount = 0;
   2464 }
   2465 
   2466 #ifdef KGDB
   2467 int
   2468 plcom_kgdb_attach(struct plcom_instance *pi, int rate, int frequency,
   2469     tcflag_t cflag, int unit)
   2470 {
   2471 	int res;
   2472 
   2473 	if (pi->pi_iot == plcomcons_info.pi_iot &&
   2474 	    pi->pi_iobase == plcomcons_info.pi_iobase)
   2475 		return EBUSY; /* cannot share with console */
   2476 
   2477 	res = plcominit(pi, rate, frequency, cflag);
   2478 	if (res)
   2479 		return res;
   2480 
   2481 	kgdb_attach(plcom_kgdb_getc, plcom_kgdb_putc, NULL);
   2482 	kgdb_dev = 123; /* unneeded, only to satisfy some tests */
   2483 
   2484 	plcomkgdb_info.pi_iot = pi->pi_iot;
   2485 	plcomkgdb_info.pi_ioh = pi->pi_ioh;
   2486 	plcomkgdb_info.pi_iobase = pi->pi_iobase;
   2487 
   2488 	return 0;
   2489 }
   2490 
   2491 /* ARGSUSED */
   2492 int
   2493 plcom_kgdb_getc(void *arg)
   2494 {
   2495 	return plcom_common_getc(NODEV, &plcomkgdb_info);
   2496 }
   2497 
   2498 /* ARGSUSED */
   2499 void
   2500 plcom_kgdb_putc(void *arg, int c)
   2501 {
   2502 	plcom_common_putc(NODEV, &plcomkgdb_info, c);
   2503 }
   2504 #endif /* KGDB */
   2505 
   2506 /* helper function to identify the plcom ports used by
   2507  console or KGDB (and not yet autoconf attached) */
   2508 int
   2509 plcom_is_console(bus_space_tag_t iot, bus_addr_t iobase,
   2510     bus_space_handle_t *ioh)
   2511 {
   2512 	bus_space_handle_t help;
   2513 
   2514 	if (!plcomconsattached &&
   2515 	    bus_space_is_equal(iot, plcomcons_info.pi_iot) &&
   2516 	    iobase == plcomcons_info.pi_iobase)
   2517 		help = plcomcons_info.pi_ioh;
   2518 #ifdef KGDB
   2519 	else if (!plcom_kgdb_attached &&
   2520 	    bus_space_is_equal(iot, plcomkgdb_info.pi_iot) &&
   2521 	    iobase == plcomkgdb_info.pi_iobase)
   2522 		help = plcomkgdb_info.pi_ioh;
   2523 #endif
   2524 	else
   2525 		return 0;
   2526 
   2527 	if (ioh)
   2528 		*ioh = help;
   2529 	return 1;
   2530 }
   2531