plcom.c revision 1.55 1 /* $NetBSD: plcom.c,v 1.55 2018/10/12 23:57:00 jmcneill Exp $ */
2
3 /*-
4 * Copyright (c) 2001 ARM Ltd
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the company may not be used to endorse or promote
16 * products derived from this software without specific prior written
17 * permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
23 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * Copyright (c) 1998, 1999, 2012 The NetBSD Foundation, Inc.
32 * All rights reserved.
33 *
34 * This code is derived from software contributed to The NetBSD Foundation
35 * by Charles M. Hannum and Nick Hudson.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
47 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
48 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
49 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
50 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
51 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
52 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
53 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
54 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
55 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
56 * POSSIBILITY OF SUCH DAMAGE.
57 */
58
59 /*
60 * Copyright (c) 1991 The Regents of the University of California.
61 * All rights reserved.
62 *
63 * Redistribution and use in source and binary forms, with or without
64 * modification, are permitted provided that the following conditions
65 * are met:
66 * 1. Redistributions of source code must retain the above copyright
67 * notice, this list of conditions and the following disclaimer.
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in the
70 * documentation and/or other materials provided with the distribution.
71 * 3. Neither the name of the University nor the names of its contributors
72 * may be used to endorse or promote products derived from this software
73 * without specific prior written permission.
74 *
75 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
76 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
77 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
78 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
79 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
80 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
81 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
82 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
83 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
84 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
85 * SUCH DAMAGE.
86 *
87 * @(#)com.c 7.5 (Berkeley) 5/16/91
88 */
89
90 /*
91 * COM driver for the Prime Cell PL010 and PL011 UARTs. Both are is similar to
92 * the 16C550, but have a completely different programmer's model.
93 * Derived from the NS16550AF com driver.
94 */
95
96 #include <sys/cdefs.h>
97 __KERNEL_RCSID(0, "$NetBSD: plcom.c,v 1.55 2018/10/12 23:57:00 jmcneill Exp $");
98
99 #include "opt_plcom.h"
100 #include "opt_ddb.h"
101 #include "opt_kgdb.h"
102 #include "opt_lockdebug.h"
103 #include "opt_multiprocessor.h"
104
105 /*
106 * Override cnmagic(9) macro before including <sys/systm.h>.
107 * We need to know if cn_check_magic triggered debugger, so set a flag.
108 * Callers of cn_check_magic must declare int cn_trapped = 0;
109 * XXX: this is *ugly*!
110 */
111 #define cn_trap() \
112 do { \
113 console_debugger(); \
114 cn_trapped = 1; \
115 } while (/* CONSTCOND */ 0)
116
117 #include <sys/param.h>
118 #include <sys/systm.h>
119 #include <sys/ioctl.h>
120 #include <sys/select.h>
121 #include <sys/tty.h>
122 #include <sys/proc.h>
123 #include <sys/conf.h>
124 #include <sys/file.h>
125 #include <sys/uio.h>
126 #include <sys/kernel.h>
127 #include <sys/syslog.h>
128 #include <sys/types.h>
129 #include <sys/device.h>
130 #include <sys/malloc.h>
131 #include <sys/timepps.h>
132 #include <sys/vnode.h>
133 #include <sys/kauth.h>
134 #include <sys/intr.h>
135 #include <sys/bus.h>
136 #ifdef RND_COM
137 #include <sys/rndsource.h>
138 #endif
139
140 #include <evbarm/dev/plcomreg.h>
141 #include <evbarm/dev/plcomvar.h>
142
143 #include <dev/cons.h>
144
145 static void plcom_enable_debugport (struct plcom_softc *);
146
147 void plcom_config (struct plcom_softc *);
148 void plcom_shutdown (struct plcom_softc *);
149 int pl010comspeed (long, long);
150 int pl011comspeed (long, long);
151 static u_char cflag2lcr (tcflag_t);
152 int plcomparam (struct tty *, struct termios *);
153 void plcomstart (struct tty *);
154 int plcomhwiflow (struct tty *, int);
155
156 void plcom_loadchannelregs (struct plcom_softc *);
157 void plcom_hwiflow (struct plcom_softc *);
158 void plcom_break (struct plcom_softc *, int);
159 void plcom_modem (struct plcom_softc *, int);
160 void tiocm_to_plcom (struct plcom_softc *, u_long, int);
161 int plcom_to_tiocm (struct plcom_softc *);
162 void plcom_iflush (struct plcom_softc *);
163
164 int plcom_common_getc (dev_t, struct plcom_instance *);
165 void plcom_common_putc (dev_t, struct plcom_instance *, int);
166
167 int plcominit (struct plcom_instance *, int, int, tcflag_t);
168
169 dev_type_open(plcomopen);
170 dev_type_close(plcomclose);
171 dev_type_read(plcomread);
172 dev_type_write(plcomwrite);
173 dev_type_ioctl(plcomioctl);
174 dev_type_stop(plcomstop);
175 dev_type_tty(plcomtty);
176 dev_type_poll(plcompoll);
177
178 int plcomcngetc (dev_t);
179 void plcomcnputc (dev_t, int);
180 void plcomcnpollc (dev_t, int);
181
182 #define integrate static inline
183 void plcomsoft (void *);
184 integrate void plcom_rxsoft (struct plcom_softc *, struct tty *);
185 integrate void plcom_txsoft (struct plcom_softc *, struct tty *);
186 integrate void plcom_stsoft (struct plcom_softc *, struct tty *);
187 integrate void plcom_schedrx (struct plcom_softc *);
188 void plcomdiag (void *);
189
190 bool plcom_intstatus(struct plcom_instance *, u_int *);
191
192 extern struct cfdriver plcom_cd;
193
194 const struct cdevsw plcom_cdevsw = {
195 .d_open = plcomopen,
196 .d_close = plcomclose,
197 .d_read = plcomread,
198 .d_write = plcomwrite,
199 .d_ioctl = plcomioctl,
200 .d_stop = plcomstop,
201 .d_tty = plcomtty,
202 .d_poll = plcompoll,
203 .d_mmap = nommap,
204 .d_kqfilter = ttykqfilter,
205 .d_discard = nodiscard,
206 .d_flag = D_TTY
207 };
208
209 /*
210 * Make this an option variable one can patch.
211 * But be warned: this must be a power of 2!
212 */
213 u_int plcom_rbuf_size = PLCOM_RING_SIZE;
214
215 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
216 u_int plcom_rbuf_hiwat = (PLCOM_RING_SIZE * 1) / 4;
217 u_int plcom_rbuf_lowat = (PLCOM_RING_SIZE * 3) / 4;
218
219 static int plcomconsunit = -1;
220 static struct plcom_instance plcomcons_info;
221
222 static int plcomconsattached;
223 static int plcomconsrate;
224 static tcflag_t plcomconscflag;
225 static struct cnm_state plcom_cnm_state;
226
227 static int ppscap =
228 PPS_TSFMT_TSPEC |
229 PPS_CAPTUREASSERT |
230 PPS_CAPTURECLEAR |
231 #ifdef PPS_SYNC
232 PPS_HARDPPSONASSERT | PPS_HARDPPSONCLEAR |
233 #endif /* PPS_SYNC */
234 PPS_OFFSETASSERT | PPS_OFFSETCLEAR;
235
236 #ifdef KGDB
237 #include <sys/kgdb.h>
238
239 static struct plcom_instance plcomkgdb_info;
240 static int plcom_kgdb_attached;
241
242 int plcom_kgdb_getc (void *);
243 void plcom_kgdb_putc (void *, int);
244 #endif /* KGDB */
245
246 #define PLCOMDIALOUT_MASK TTDIALOUT_MASK
247
248 #define PLCOMUNIT(x) TTUNIT(x)
249 #define PLCOMDIALOUT(x) TTDIALOUT(x)
250
251 #define PLCOM_ISALIVE(sc) ((sc)->enabled != 0 && \
252 device_is_active((sc)->sc_dev))
253
254 #define BR BUS_SPACE_BARRIER_READ
255 #define BW BUS_SPACE_BARRIER_WRITE
256 #define PLCOM_BARRIER(pi, f) \
257 bus_space_barrier((pi)->pi_iot, (pi)->pi_ioh, 0, (pi)->pi_size, (f))
258
259 static uint8_t
260 pread1(struct plcom_instance *pi, bus_size_t reg)
261 {
262 if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS))
263 return bus_space_read_1(pi->pi_iot, pi->pi_ioh, reg);
264
265 return bus_space_read_4(pi->pi_iot, pi->pi_ioh, reg & -4) >>
266 (8 * (reg & 3));
267 }
268 int nhcr;
269 static void
270 pwrite1(struct plcom_instance *pi, bus_size_t o, uint8_t val)
271 {
272 if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS)) {
273 bus_space_write_1(pi->pi_iot, pi->pi_ioh, o, val);
274 } else {
275 const size_t shift = 8 * (o & 3);
276 o &= -4;
277 uint32_t tmp = bus_space_read_4(pi->pi_iot, pi->pi_ioh, o);
278 tmp = (val << shift) | (tmp & ~(0xff << shift));
279 bus_space_write_4(pi->pi_iot, pi->pi_ioh, o, tmp);
280 }
281 }
282
283 static void
284 pwritem1(struct plcom_instance *pi, bus_size_t o, const uint8_t *datap,
285 bus_size_t count)
286 {
287 if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS)) {
288 bus_space_write_multi_1(pi->pi_iot, pi->pi_ioh, o, datap, count);
289 } else {
290 KASSERT((o & 3) == 0);
291 while (count--) {
292 bus_space_write_4(pi->pi_iot, pi->pi_ioh, o, *datap++);
293 };
294 }
295 }
296
297 #define PREAD1(pi, reg) pread1(pi, reg)
298 #define PREAD4(pi, reg) \
299 (bus_space_read_4((pi)->pi_iot, (pi)->pi_ioh, (reg)))
300
301 #define PWRITE1(pi, reg, val) pwrite1(pi, reg, val)
302 #define PWRITEM1(pi, reg, d, c) pwritem1(pi, reg, d, c)
303 #define PWRITE4(pi, reg, val) \
304 (bus_space_write_4((pi)->pi_iot, (pi)->pi_ioh, (reg), (val)))
305
306 int
307 pl010comspeed(long speed, long frequency)
308 {
309 #define divrnd(n, q) (((n)*2/(q)+1)/2) /* divide and round off */
310
311 int x, err;
312
313 #if 0
314 if (speed == 0)
315 return 0;
316 #endif
317 if (speed <= 0)
318 return -1;
319 x = divrnd(frequency / 16, speed);
320 if (x <= 0)
321 return -1;
322 err = divrnd(((quad_t)frequency) * 1000 / 16, speed * x) - 1000;
323 if (err < 0)
324 err = -err;
325 if (err > PLCOM_TOLERANCE)
326 return -1;
327 return x;
328
329 #undef divrnd
330 }
331
332 int
333 pl011comspeed(long speed, long frequency)
334 {
335 int denom = 16 * speed;
336 int div = frequency / denom;
337 int rem = frequency % denom;
338
339 int ibrd = div << 6;
340 int fbrd = (((8 * rem) / speed) + 1) / 2;
341
342 /* Tolerance? */
343 return ibrd | fbrd;
344 }
345
346 #ifdef PLCOM_DEBUG
347 int plcom_debug = 0;
348
349 void plcomstatus (struct plcom_softc *, const char *);
350 void
351 plcomstatus(struct plcom_softc *sc, const char *str)
352 {
353 struct tty *tp = sc->sc_tty;
354
355 printf("%s: %s %sclocal %sdcd %sts_carr_on %sdtr %stx_stopped\n",
356 device_xname(sc->sc_dev), str,
357 ISSET(tp->t_cflag, CLOCAL) ? "+" : "-",
358 ISSET(sc->sc_msr, PL01X_MSR_DCD) ? "+" : "-",
359 ISSET(tp->t_state, TS_CARR_ON) ? "+" : "-",
360 ISSET(sc->sc_mcr, PL01X_MCR_DTR) ? "+" : "-",
361 sc->sc_tx_stopped ? "+" : "-");
362
363 printf("%s: %s %scrtscts %scts %sts_ttstop %srts %xrx_flags\n",
364 device_xname(sc->sc_dev), str,
365 ISSET(tp->t_cflag, CRTSCTS) ? "+" : "-",
366 ISSET(sc->sc_msr, PL01X_MSR_CTS) ? "+" : "-",
367 ISSET(tp->t_state, TS_TTSTOP) ? "+" : "-",
368 ISSET(sc->sc_mcr, PL01X_MCR_RTS) ? "+" : "-",
369 sc->sc_rx_flags);
370 }
371 #endif
372
373 #if 0
374 int
375 plcomprobe1(bus_space_tag_t iot, bus_space_handle_t ioh)
376 {
377 int data;
378
379 /* Disable the UART. */
380 bus_space_write_1(iot, ioh, plcom_cr, 0);
381 /* Make sure the FIFO is off. */
382 bus_space_write_1(iot, ioh, plcom_lcr, PL01X_LCR_8BITS);
383 /* Disable interrupts. */
384 bus_space_write_1(iot, ioh, plcom_iir, 0);
385
386 /* Make sure we swallow anything in the receiving register. */
387 data = bus_space_read_1(iot, ioh, plcom_dr);
388
389 if (bus_space_read_1(iot, ioh, plcom_lcr) != PL01X_LCR_8BITS)
390 return 0;
391
392 data = bus_space_read_1(iot, ioh, plcom_fr) & (PL01X_FR_RXFF | PL01X_FR_RXFE);
393
394 if (data != PL01X_FR_RXFE)
395 return 0;
396
397 return 1;
398 }
399 #endif
400
401 /*
402 * No locking in this routine; it is only called during attach,
403 * or with the port already locked.
404 */
405 static void
406 plcom_enable_debugport(struct plcom_softc *sc)
407 {
408 struct plcom_instance *pi = &sc->sc_pi;
409
410 sc->sc_cr = PL01X_CR_UARTEN;
411 SET(sc->sc_mcr, PL01X_MCR_DTR | PL01X_MCR_RTS);
412
413 /* Turn on line break interrupt, set carrier. */
414 switch (pi->pi_type) {
415 case PLCOM_TYPE_PL010:
416 SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE);
417 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
418 if (sc->sc_set_mcr) {
419 /* XXX device_unit() abuse */
420 sc->sc_set_mcr(sc->sc_set_mcr_arg,
421 device_unit(sc->sc_dev), sc->sc_mcr);
422 }
423 break;
424 case PLCOM_TYPE_PL011:
425 sc->sc_imsc = PL011_INT_RX | PL011_INT_RT;
426 SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
427 SET(sc->sc_cr, PL011_MCR(sc->sc_mcr));
428 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
429 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
430 break;
431 }
432
433 }
434
435 void
436 plcom_attach_subr(struct plcom_softc *sc)
437 {
438 struct plcom_instance *pi = &sc->sc_pi;
439 struct tty *tp;
440
441 aprint_naive("\n");
442
443 callout_init(&sc->sc_diag_callout, 0);
444 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_HIGH);
445
446 switch (pi->pi_type) {
447 case PLCOM_TYPE_PL010:
448 case PLCOM_TYPE_PL011:
449 break;
450 default:
451 aprint_error_dev(sc->sc_dev,
452 "Unknown plcom type: %d\n", pi->pi_type);
453 return;
454 }
455
456 /* Disable interrupts before configuring the device. */
457 sc->sc_cr = 0;
458 sc->sc_imsc = 0;
459
460 if (bus_space_is_equal(pi->pi_iot, plcomcons_info.pi_iot) &&
461 pi->pi_iobase == plcomcons_info.pi_iobase) {
462 plcomconsattached = 1;
463
464 /* Make sure the console is always "hardwired". */
465 delay(1000); /* wait for output to finish */
466 SET(sc->sc_hwflags, PLCOM_HW_CONSOLE);
467 SET(sc->sc_swflags, TIOCFLAG_SOFTCAR);
468 /*
469 * Must re-enable the console immediately, or we will
470 * hang when trying to print.
471 */
472 sc->sc_cr = PL01X_CR_UARTEN;
473 if (pi->pi_type == PLCOM_TYPE_PL011)
474 SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
475 }
476
477 switch (pi->pi_type) {
478 case PLCOM_TYPE_PL010:
479 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
480 break;
481
482 case PLCOM_TYPE_PL011:
483 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
484 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
485 break;
486 }
487
488 if (sc->sc_fifolen == 0) {
489 switch (pi->pi_type) {
490 case PLCOM_TYPE_PL010:
491 /*
492 * The PL010 has a 16-byte fifo, but the tx interrupt
493 * triggers when there is space for 8 more bytes.
494 */
495 sc->sc_fifolen = 8;
496 break;
497 case PLCOM_TYPE_PL011:
498 /* Some revisions have a 32 byte TX FIFO */
499 sc->sc_fifolen = 16;
500 break;
501 }
502 }
503 aprint_normal("\n");
504
505 if (ISSET(sc->sc_hwflags, PLCOM_HW_TXFIFO_DISABLE)) {
506 sc->sc_fifolen = 1;
507 aprint_normal_dev(sc->sc_dev, "txfifo disabled\n");
508 }
509
510 if (sc->sc_fifolen > 1)
511 SET(sc->sc_hwflags, PLCOM_HW_FIFO);
512
513 tp = tty_alloc();
514 tp->t_oproc = plcomstart;
515 tp->t_param = plcomparam;
516 tp->t_hwiflow = plcomhwiflow;
517
518 sc->sc_tty = tp;
519 sc->sc_rbuf = malloc(plcom_rbuf_size << 1, M_DEVBUF, M_NOWAIT);
520 sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
521 sc->sc_rbavail = plcom_rbuf_size;
522 if (sc->sc_rbuf == NULL) {
523 aprint_error_dev(sc->sc_dev,
524 "unable to allocate ring buffer\n");
525 return;
526 }
527 sc->sc_ebuf = sc->sc_rbuf + (plcom_rbuf_size << 1);
528
529 tty_attach(tp);
530
531 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
532 int maj;
533
534 /* locate the major number */
535 maj = cdevsw_lookup_major(&plcom_cdevsw);
536
537 tp->t_dev = cn_tab->cn_dev = makedev(maj, device_unit(sc->sc_dev));
538
539 aprint_normal_dev(sc->sc_dev, "console\n");
540 }
541
542 #ifdef KGDB
543 /*
544 * Allow kgdb to "take over" this port. If this is
545 * the kgdb device, it has exclusive use.
546 */
547 if (bus_space_is_equal(pi->pi_iot, plcomkgdb_info.pi_iot) &&
548 pi->pi_iobase == plcomkgdb_info.pi_iobase) {
549 if (!ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
550 plcom_kgdb_attached = 1;
551
552 SET(sc->sc_hwflags, PLCOM_HW_KGDB);
553 }
554 aprint_normal_dev(sc->sc_dev, "kgdb\n");
555 }
556 #endif
557
558 sc->sc_si = softint_establish(SOFTINT_SERIAL, plcomsoft, sc);
559
560 #ifdef RND_COM
561 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
562 RND_TYPE_TTY, RND_FLAG_DEFAULT);
563 #endif
564
565 /*
566 * if there are no enable/disable functions, assume the device
567 * is always enabled
568 */
569 if (!sc->enable)
570 sc->enabled = 1;
571
572 plcom_config(sc);
573
574 SET(sc->sc_hwflags, PLCOM_HW_DEV_OK);
575 }
576
577 void
578 plcom_config(struct plcom_softc *sc)
579 {
580 struct plcom_instance *pi = &sc->sc_pi;
581
582 /* Disable interrupts before configuring the device. */
583 sc->sc_cr = 0;
584 sc->sc_imsc = 0;
585 switch (pi->pi_type) {
586 case PLCOM_TYPE_PL010:
587 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
588 break;
589
590 case PLCOM_TYPE_PL011:
591 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
592 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
593 break;
594 }
595
596 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE|PLCOM_HW_KGDB))
597 plcom_enable_debugport(sc);
598 }
599
600 int
601 plcom_detach(device_t self, int flags)
602 {
603 struct plcom_softc *sc = device_private(self);
604 int maj, mn;
605
606 if (sc->sc_hwflags & (PLCOM_HW_CONSOLE|PLCOM_HW_KGDB))
607 return EBUSY;
608
609 if (sc->disable != NULL && sc->enabled != 0) {
610 (*sc->disable)(sc);
611 sc->enabled = 0;
612 }
613
614 /* locate the major number */
615 maj = cdevsw_lookup_major(&plcom_cdevsw);
616
617 /* Nuke the vnodes for any open instances. */
618 mn = device_unit(self);
619 vdevgone(maj, mn, mn, VCHR);
620
621 mn |= PLCOMDIALOUT_MASK;
622 vdevgone(maj, mn, mn, VCHR);
623
624 if (sc->sc_rbuf == NULL) {
625 /*
626 * Ring buffer allocation failed in the plcom_attach_subr,
627 * only the tty is allocated, and nothing else.
628 */
629 tty_free(sc->sc_tty);
630 return 0;
631 }
632
633 /* Free the receive buffer. */
634 free(sc->sc_rbuf, M_DEVBUF);
635
636 /* Detach and free the tty. */
637 tty_detach(sc->sc_tty);
638 tty_free(sc->sc_tty);
639
640 /* Unhook the soft interrupt handler. */
641 softint_disestablish(sc->sc_si);
642
643 #ifdef RND_COM
644 /* Unhook the entropy source. */
645 rnd_detach_source(&sc->rnd_source);
646 #endif
647 callout_destroy(&sc->sc_diag_callout);
648
649 /* Destroy the lock. */
650 mutex_destroy(&sc->sc_lock);
651
652 return 0;
653 }
654
655 int
656 plcom_activate(device_t self, enum devact act)
657 {
658 struct plcom_softc *sc = device_private(self);
659
660 switch (act) {
661 case DVACT_DEACTIVATE:
662 sc->enabled = 0;
663 return 0;
664 default:
665 return EOPNOTSUPP;
666 }
667 }
668
669 void
670 plcom_shutdown(struct plcom_softc *sc)
671 {
672 struct plcom_instance *pi = &sc->sc_pi;
673 struct tty *tp = sc->sc_tty;
674 mutex_spin_enter(&sc->sc_lock);
675
676 /* If we were asserting flow control, then deassert it. */
677 SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
678 plcom_hwiflow(sc);
679
680 /* Clear any break condition set with TIOCSBRK. */
681 plcom_break(sc, 0);
682
683 /* Turn off PPS capture on last close. */
684 mutex_spin_enter(&timecounter_lock);
685 sc->sc_ppsmask = 0;
686 sc->ppsparam.mode = 0;
687 mutex_spin_exit(&timecounter_lock);
688
689 /*
690 * Hang up if necessary. Wait a bit, so the other side has time to
691 * notice even if we immediately open the port again.
692 * Avoid tsleeping above splhigh().
693 */
694 if (ISSET(tp->t_cflag, HUPCL)) {
695 plcom_modem(sc, 0);
696 mutex_spin_exit(&sc->sc_lock);
697 /* XXX will only timeout */
698 (void) kpause(ttclos, false, hz, NULL);
699 mutex_spin_enter(&sc->sc_lock);
700 }
701
702 sc->sc_cr = 0;
703 sc->sc_imsc = 0;
704 /* Turn off interrupts. */
705 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
706 /* interrupt on break */
707
708 sc->sc_cr = PL01X_CR_UARTEN;
709 sc->sc_imsc = 0;
710 switch (pi->pi_type) {
711 case PLCOM_TYPE_PL010:
712 SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE);
713 break;
714 case PLCOM_TYPE_PL011:
715 SET(sc->sc_cr, PL011_CR_RXE);
716 SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX);
717 break;
718 }
719 }
720 switch (pi->pi_type) {
721 case PLCOM_TYPE_PL010:
722 SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE);
723 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
724 break;
725 case PLCOM_TYPE_PL011:
726 SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
727 SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX);
728 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
729 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
730 break;
731 }
732
733 mutex_spin_exit(&sc->sc_lock);
734 if (sc->disable) {
735 #ifdef DIAGNOSTIC
736 if (!sc->enabled)
737 panic("plcom_shutdown: not enabled?");
738 #endif
739 (*sc->disable)(sc);
740 sc->enabled = 0;
741 }
742 }
743
744 int
745 plcomopen(dev_t dev, int flag, int mode, struct lwp *l)
746 {
747 struct plcom_softc *sc;
748 struct plcom_instance *pi;
749 struct tty *tp;
750 int s;
751 int error;
752
753 sc = device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
754 if (sc == NULL || !ISSET(sc->sc_hwflags, PLCOM_HW_DEV_OK) ||
755 sc->sc_rbuf == NULL)
756 return ENXIO;
757
758 if (!device_is_active(sc->sc_dev))
759 return ENXIO;
760
761 pi = &sc->sc_pi;
762
763 #ifdef KGDB
764 /*
765 * If this is the kgdb port, no other use is permitted.
766 */
767 if (ISSET(sc->sc_hwflags, PLCOM_HW_KGDB))
768 return EBUSY;
769 #endif
770
771 tp = sc->sc_tty;
772
773 if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
774 return (EBUSY);
775
776 s = spltty();
777
778 /*
779 * Do the following iff this is a first open.
780 */
781 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
782 struct termios t;
783
784 tp->t_dev = dev;
785
786 if (sc->enable) {
787 if ((*sc->enable)(sc)) {
788 splx(s);
789 aprint_error_dev(sc->sc_dev,
790 "device enable failed\n");
791 return EIO;
792 }
793 mutex_spin_enter(&sc->sc_lock);
794 sc->enabled = 1;
795 plcom_config(sc);
796 } else {
797 mutex_spin_enter(&sc->sc_lock);
798 }
799
800 /* Turn on interrupts. */
801 /* IER_ERXRDY | IER_ERLS | IER_EMSC; */
802 /* Fetch the current modem control status, needed later. */
803 sc->sc_cr = PL01X_CR_UARTEN;
804 switch (pi->pi_type) {
805 case PLCOM_TYPE_PL010:
806 SET(sc->sc_cr,
807 PL010_CR_RIE | PL010_CR_RTIE | PL010_CR_MSIE);
808 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
809 sc->sc_msr = PREAD1(pi, PL01XCOM_FR);
810 break;
811 case PLCOM_TYPE_PL011:
812 SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
813 SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX |
814 PL011_INT_MSMASK);
815 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
816 sc->sc_msr = PREAD4(pi, PL01XCOM_FR);
817 break;
818 }
819
820 /* Clear PPS capture state on first open. */
821
822 mutex_spin_enter(&timecounter_lock);
823 sc->sc_ppsmask = 0;
824 sc->ppsparam.mode = 0;
825 mutex_spin_exit(&timecounter_lock);
826
827 mutex_spin_exit(&sc->sc_lock);
828
829 /*
830 * Initialize the termios status to the defaults. Add in the
831 * sticky bits from TIOCSFLAGS.
832 */
833 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
834 t.c_ospeed = plcomconsrate;
835 t.c_cflag = plcomconscflag;
836 } else {
837 t.c_ospeed = TTYDEF_SPEED;
838 t.c_cflag = TTYDEF_CFLAG;
839 }
840 t.c_ispeed = t.c_ospeed;
841
842 if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL))
843 SET(t.c_cflag, CLOCAL);
844 if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS))
845 SET(t.c_cflag, CRTSCTS);
846 if (ISSET(sc->sc_swflags, TIOCFLAG_MDMBUF))
847 SET(t.c_cflag, MDMBUF);
848 /* Make sure plcomparam() will do something. */
849 tp->t_ospeed = 0;
850 (void) plcomparam(tp, &t);
851 tp->t_iflag = TTYDEF_IFLAG;
852 tp->t_oflag = TTYDEF_OFLAG;
853 tp->t_lflag = TTYDEF_LFLAG;
854 ttychars(tp);
855 ttsetwater(tp);
856
857 mutex_spin_enter(&sc->sc_lock);
858
859 /*
860 * Turn on DTR. We must always do this, even if carrier is not
861 * present, because otherwise we'd have to use TIOCSDTR
862 * immediately after setting CLOCAL, which applications do not
863 * expect. We always assert DTR while the device is open
864 * unless explicitly requested to deassert it.
865 */
866 plcom_modem(sc, 1);
867
868 /* Clear the input ring, and unblock. */
869 sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
870 sc->sc_rbavail = plcom_rbuf_size;
871 plcom_iflush(sc);
872 CLR(sc->sc_rx_flags, RX_ANY_BLOCK);
873 plcom_hwiflow(sc);
874
875 #ifdef PLCOM_DEBUG
876 if (plcom_debug)
877 plcomstatus(sc, "plcomopen ");
878 #endif
879
880 mutex_spin_exit(&sc->sc_lock);
881 }
882
883 splx(s);
884
885 error = ttyopen(tp, PLCOMDIALOUT(dev), ISSET(flag, O_NONBLOCK));
886 if (error)
887 goto bad;
888
889 error = (*tp->t_linesw->l_open)(dev, tp);
890 if (error)
891 goto bad;
892
893 return 0;
894
895 bad:
896 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
897 /*
898 * We failed to open the device, and nobody else had it opened.
899 * Clean up the state as appropriate.
900 */
901 plcom_shutdown(sc);
902 }
903
904 return error;
905 }
906
907 int
908 plcomclose(dev_t dev, int flag, int mode, struct lwp *l)
909 {
910 struct plcom_softc *sc =
911 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
912 struct tty *tp = sc->sc_tty;
913
914 /* XXX This is for cons.c. */
915 if (!ISSET(tp->t_state, TS_ISOPEN))
916 return 0;
917
918 (*tp->t_linesw->l_close)(tp, flag);
919 ttyclose(tp);
920
921 if (PLCOM_ISALIVE(sc) == 0)
922 return 0;
923
924 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
925 /*
926 * Although we got a last close, the device may still be in
927 * use; e.g. if this was the dialout node, and there are still
928 * processes waiting for carrier on the non-dialout node.
929 */
930 plcom_shutdown(sc);
931 }
932
933 return 0;
934 }
935
936 int
937 plcomread(dev_t dev, struct uio *uio, int flag)
938 {
939 struct plcom_softc *sc =
940 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
941 struct tty *tp = sc->sc_tty;
942
943 if (PLCOM_ISALIVE(sc) == 0)
944 return EIO;
945
946 return (*tp->t_linesw->l_read)(tp, uio, flag);
947 }
948
949 int
950 plcomwrite(dev_t dev, struct uio *uio, int flag)
951 {
952 struct plcom_softc *sc =
953 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
954 struct tty *tp = sc->sc_tty;
955
956 if (PLCOM_ISALIVE(sc) == 0)
957 return EIO;
958
959 return (*tp->t_linesw->l_write)(tp, uio, flag);
960 }
961
962 int
963 plcompoll(dev_t dev, int events, struct lwp *l)
964 {
965 struct plcom_softc *sc =
966 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
967 struct tty *tp = sc->sc_tty;
968
969 if (PLCOM_ISALIVE(sc) == 0)
970 return EIO;
971
972 return (*tp->t_linesw->l_poll)(tp, events, l);
973 }
974
975 struct tty *
976 plcomtty(dev_t dev)
977 {
978 struct plcom_softc *sc =
979 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
980 struct tty *tp = sc->sc_tty;
981
982 return tp;
983 }
984
985 int
986 plcomioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
987 {
988 struct plcom_softc *sc =
989 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
990 struct tty *tp;
991 int error;
992
993 if (sc == NULL)
994 return ENXIO;
995 if (PLCOM_ISALIVE(sc) == 0)
996 return EIO;
997
998 tp = sc->sc_tty;
999
1000 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
1001 if (error != EPASSTHROUGH)
1002 return error;
1003
1004 error = ttioctl(tp, cmd, data, flag, l);
1005 if (error != EPASSTHROUGH)
1006 return error;
1007
1008 error = 0;
1009 switch (cmd) {
1010 case TIOCSFLAGS:
1011 error = kauth_authorize_device_tty(l->l_cred,
1012 KAUTH_DEVICE_TTY_PRIVSET, tp);
1013 break;
1014 default:
1015 /* nothing */
1016 break;
1017 }
1018 if (error) {
1019 return error;
1020 }
1021
1022 mutex_spin_enter(&sc->sc_lock);
1023 switch (cmd) {
1024 case TIOCSBRK:
1025 plcom_break(sc, 1);
1026 break;
1027
1028 case TIOCCBRK:
1029 plcom_break(sc, 0);
1030 break;
1031
1032 case TIOCSDTR:
1033 plcom_modem(sc, 1);
1034 break;
1035
1036 case TIOCCDTR:
1037 plcom_modem(sc, 0);
1038 break;
1039
1040 case TIOCGFLAGS:
1041 *(int *)data = sc->sc_swflags;
1042 break;
1043
1044 case TIOCSFLAGS:
1045 sc->sc_swflags = *(int *)data;
1046 break;
1047
1048 case TIOCMSET:
1049 case TIOCMBIS:
1050 case TIOCMBIC:
1051 tiocm_to_plcom(sc, cmd, *(int *)data);
1052 break;
1053
1054 case TIOCMGET:
1055 *(int *)data = plcom_to_tiocm(sc);
1056 break;
1057
1058 case PPS_IOC_CREATE:
1059 break;
1060
1061 case PPS_IOC_DESTROY:
1062 break;
1063
1064 case PPS_IOC_GETPARAMS: {
1065 pps_params_t *pp;
1066 pp = (pps_params_t *)data;
1067 mutex_spin_enter(&timecounter_lock);
1068 *pp = sc->ppsparam;
1069 mutex_spin_exit(&timecounter_lock);
1070 break;
1071 }
1072
1073 case PPS_IOC_SETPARAMS: {
1074 pps_params_t *pp;
1075 int mode;
1076 pp = (pps_params_t *)data;
1077 mutex_spin_enter(&timecounter_lock);
1078 if (pp->mode & ~ppscap) {
1079 error = EINVAL;
1080 mutex_spin_exit(&timecounter_lock);
1081 break;
1082 }
1083 sc->ppsparam = *pp;
1084 /*
1085 * Compute msr masks from user-specified timestamp state.
1086 */
1087 mode = sc->ppsparam.mode;
1088 #ifdef PPS_SYNC
1089 if (mode & PPS_HARDPPSONASSERT) {
1090 mode |= PPS_CAPTUREASSERT;
1091 /* XXX revoke any previous HARDPPS source */
1092 }
1093 if (mode & PPS_HARDPPSONCLEAR) {
1094 mode |= PPS_CAPTURECLEAR;
1095 /* XXX revoke any previous HARDPPS source */
1096 }
1097 #endif /* PPS_SYNC */
1098 switch (mode & PPS_CAPTUREBOTH) {
1099 case 0:
1100 sc->sc_ppsmask = 0;
1101 break;
1102
1103 case PPS_CAPTUREASSERT:
1104 sc->sc_ppsmask = PL01X_MSR_DCD;
1105 sc->sc_ppsassert = PL01X_MSR_DCD;
1106 sc->sc_ppsclear = -1;
1107 break;
1108
1109 case PPS_CAPTURECLEAR:
1110 sc->sc_ppsmask = PL01X_MSR_DCD;
1111 sc->sc_ppsassert = -1;
1112 sc->sc_ppsclear = 0;
1113 break;
1114
1115 case PPS_CAPTUREBOTH:
1116 sc->sc_ppsmask = PL01X_MSR_DCD;
1117 sc->sc_ppsassert = PL01X_MSR_DCD;
1118 sc->sc_ppsclear = 0;
1119 break;
1120
1121 default:
1122 error = EINVAL;
1123 break;
1124 }
1125 mutex_spin_exit(&timecounter_lock);
1126 break;
1127 }
1128
1129 case PPS_IOC_GETCAP:
1130 *(int*)data = ppscap;
1131 break;
1132
1133 case PPS_IOC_FETCH: {
1134 pps_info_t *pi;
1135 pi = (pps_info_t *)data;
1136 mutex_spin_enter(&timecounter_lock);
1137 *pi = sc->ppsinfo;
1138 mutex_spin_exit(&timecounter_lock);
1139 break;
1140 }
1141
1142 case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */
1143 /*
1144 * Some GPS clocks models use the falling rather than
1145 * rising edge as the on-the-second signal.
1146 * The old API has no way to specify PPS polarity.
1147 */
1148 mutex_spin_enter(&timecounter_lock);
1149 sc->sc_ppsmask = PL01X_MSR_DCD;
1150 #ifndef PPS_TRAILING_EDGE
1151 sc->sc_ppsassert = PL01X_MSR_DCD;
1152 sc->sc_ppsclear = -1;
1153 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
1154 &sc->ppsinfo.assert_timestamp);
1155 #else
1156 sc->sc_ppsassert = -1
1157 sc->sc_ppsclear = 0;
1158 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
1159 &sc->ppsinfo.clear_timestamp);
1160 #endif
1161 mutex_spin_exit(&timecounter_lock);
1162 break;
1163
1164 default:
1165 error = EPASSTHROUGH;
1166 break;
1167 }
1168
1169 mutex_spin_exit(&sc->sc_lock);
1170
1171 #ifdef PLCOM_DEBUG
1172 if (plcom_debug)
1173 plcomstatus(sc, "plcomioctl ");
1174 #endif
1175
1176 return error;
1177 }
1178
1179 integrate void
1180 plcom_schedrx(struct plcom_softc *sc)
1181 {
1182
1183 sc->sc_rx_ready = 1;
1184
1185 /* Wake up the poller. */
1186 softint_schedule(sc->sc_si);
1187 }
1188
1189 void
1190 plcom_break(struct plcom_softc *sc, int onoff)
1191 {
1192
1193 if (onoff)
1194 SET(sc->sc_lcr, PL01X_LCR_BRK);
1195 else
1196 CLR(sc->sc_lcr, PL01X_LCR_BRK);
1197
1198 if (!sc->sc_heldchange) {
1199 if (sc->sc_tx_busy) {
1200 sc->sc_heldtbc = sc->sc_tbc;
1201 sc->sc_tbc = 0;
1202 sc->sc_heldchange = 1;
1203 } else
1204 plcom_loadchannelregs(sc);
1205 }
1206 }
1207
1208 void
1209 plcom_modem(struct plcom_softc *sc, int onoff)
1210 {
1211
1212 if (sc->sc_mcr_dtr == 0)
1213 return;
1214
1215 if (onoff)
1216 SET(sc->sc_mcr, sc->sc_mcr_dtr);
1217 else
1218 CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1219
1220 if (!sc->sc_heldchange) {
1221 if (sc->sc_tx_busy) {
1222 sc->sc_heldtbc = sc->sc_tbc;
1223 sc->sc_tbc = 0;
1224 sc->sc_heldchange = 1;
1225 } else
1226 plcom_loadchannelregs(sc);
1227 }
1228 }
1229
1230 void
1231 tiocm_to_plcom(struct plcom_softc *sc, u_long how, int ttybits)
1232 {
1233 u_char plcombits;
1234
1235 plcombits = 0;
1236 if (ISSET(ttybits, TIOCM_DTR))
1237 SET(plcombits, PL01X_MCR_DTR);
1238 if (ISSET(ttybits, TIOCM_RTS))
1239 SET(plcombits, PL01X_MCR_RTS);
1240
1241 switch (how) {
1242 case TIOCMBIC:
1243 CLR(sc->sc_mcr, plcombits);
1244 break;
1245
1246 case TIOCMBIS:
1247 SET(sc->sc_mcr, plcombits);
1248 break;
1249
1250 case TIOCMSET:
1251 CLR(sc->sc_mcr, PL01X_MCR_DTR | PL01X_MCR_RTS);
1252 SET(sc->sc_mcr, plcombits);
1253 break;
1254 }
1255
1256 if (!sc->sc_heldchange) {
1257 if (sc->sc_tx_busy) {
1258 sc->sc_heldtbc = sc->sc_tbc;
1259 sc->sc_tbc = 0;
1260 sc->sc_heldchange = 1;
1261 } else
1262 plcom_loadchannelregs(sc);
1263 }
1264 }
1265
1266 int
1267 plcom_to_tiocm(struct plcom_softc *sc)
1268 {
1269 u_char plcombits;
1270 int ttybits = 0;
1271
1272 plcombits = sc->sc_mcr;
1273 if (ISSET(plcombits, PL01X_MCR_DTR))
1274 SET(ttybits, TIOCM_DTR);
1275 if (ISSET(plcombits, PL01X_MCR_RTS))
1276 SET(ttybits, TIOCM_RTS);
1277
1278 plcombits = sc->sc_msr;
1279 if (ISSET(plcombits, PL01X_MSR_DCD))
1280 SET(ttybits, TIOCM_CD);
1281 if (ISSET(plcombits, PL01X_MSR_CTS))
1282 SET(ttybits, TIOCM_CTS);
1283 if (ISSET(plcombits, PL01X_MSR_DSR))
1284 SET(ttybits, TIOCM_DSR);
1285 if (ISSET(plcombits, PL011_MSR_RI))
1286 SET(ttybits, TIOCM_RI);
1287
1288 if (sc->sc_cr != 0)
1289 SET(ttybits, TIOCM_LE);
1290
1291 return ttybits;
1292 }
1293
1294 static u_char
1295 cflag2lcr(tcflag_t cflag)
1296 {
1297 u_char lcr = 0;
1298
1299 switch (ISSET(cflag, CSIZE)) {
1300 case CS5:
1301 SET(lcr, PL01X_LCR_5BITS);
1302 break;
1303 case CS6:
1304 SET(lcr, PL01X_LCR_6BITS);
1305 break;
1306 case CS7:
1307 SET(lcr, PL01X_LCR_7BITS);
1308 break;
1309 case CS8:
1310 SET(lcr, PL01X_LCR_8BITS);
1311 break;
1312 }
1313 if (ISSET(cflag, PARENB)) {
1314 SET(lcr, PL01X_LCR_PEN);
1315 if (!ISSET(cflag, PARODD))
1316 SET(lcr, PL01X_LCR_EPS);
1317 }
1318 if (ISSET(cflag, CSTOPB))
1319 SET(lcr, PL01X_LCR_STP2);
1320
1321 return lcr;
1322 }
1323
1324 int
1325 plcomparam(struct tty *tp, struct termios *t)
1326 {
1327 struct plcom_softc *sc =
1328 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1329 struct plcom_instance *pi = &sc->sc_pi;
1330 int ospeed = -1;
1331 u_char lcr;
1332
1333 if (PLCOM_ISALIVE(sc) == 0)
1334 return EIO;
1335
1336 switch (pi->pi_type) {
1337 case PLCOM_TYPE_PL010:
1338 ospeed = pl010comspeed(t->c_ospeed, sc->sc_frequency);
1339 break;
1340 case PLCOM_TYPE_PL011:
1341 ospeed = pl011comspeed(t->c_ospeed, sc->sc_frequency);
1342 break;
1343 }
1344
1345 /* Check requested parameters. */
1346 if (ospeed < 0)
1347 return EINVAL;
1348 if (t->c_ispeed && t->c_ispeed != t->c_ospeed)
1349 return EINVAL;
1350
1351 /*
1352 * For the console, always force CLOCAL and !HUPCL, so that the port
1353 * is always active.
1354 */
1355 if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR) ||
1356 ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
1357 SET(t->c_cflag, CLOCAL);
1358 CLR(t->c_cflag, HUPCL);
1359 }
1360
1361 /*
1362 * If there were no changes, don't do anything. This avoids dropping
1363 * input and improves performance when all we did was frob things like
1364 * VMIN and VTIME.
1365 */
1366 if (tp->t_ospeed == t->c_ospeed &&
1367 tp->t_cflag == t->c_cflag)
1368 return 0;
1369
1370 lcr = ISSET(sc->sc_lcr, PL01X_LCR_BRK) | cflag2lcr(t->c_cflag);
1371
1372 mutex_spin_enter(&sc->sc_lock);
1373
1374 sc->sc_lcr = lcr;
1375
1376 /*
1377 * PL010 has a fixed-length FIFO trigger point.
1378 */
1379 if (ISSET(sc->sc_hwflags, PLCOM_HW_FIFO))
1380 sc->sc_fifo = 1;
1381 else
1382 sc->sc_fifo = 0;
1383
1384 if (sc->sc_fifo)
1385 SET(sc->sc_lcr, PL01X_LCR_FEN);
1386
1387 /*
1388 * If we're not in a mode that assumes a connection is present, then
1389 * ignore carrier changes.
1390 */
1391 if (ISSET(t->c_cflag, CLOCAL | MDMBUF))
1392 sc->sc_msr_dcd = 0;
1393 else
1394 sc->sc_msr_dcd = PL01X_MSR_DCD;
1395 /*
1396 * Set the flow control pins depending on the current flow control
1397 * mode.
1398 */
1399 if (ISSET(t->c_cflag, CRTSCTS)) {
1400 sc->sc_mcr_dtr = PL01X_MCR_DTR;
1401 sc->sc_mcr_rts = PL01X_MCR_RTS;
1402 sc->sc_msr_cts = PL01X_MSR_CTS;
1403 } else if (ISSET(t->c_cflag, MDMBUF)) {
1404 /*
1405 * For DTR/DCD flow control, make sure we don't toggle DTR for
1406 * carrier detection.
1407 */
1408 sc->sc_mcr_dtr = 0;
1409 sc->sc_mcr_rts = PL01X_MCR_DTR;
1410 sc->sc_msr_cts = PL01X_MSR_DCD;
1411 } else {
1412 /*
1413 * If no flow control, then always set RTS. This will make
1414 * the other side happy if it mistakenly thinks we're doing
1415 * RTS/CTS flow control.
1416 */
1417 sc->sc_mcr_dtr = PL01X_MCR_DTR | PL01X_MCR_RTS;
1418 sc->sc_mcr_rts = 0;
1419 sc->sc_msr_cts = 0;
1420 if (ISSET(sc->sc_mcr, PL01X_MCR_DTR))
1421 SET(sc->sc_mcr, PL01X_MCR_RTS);
1422 else
1423 CLR(sc->sc_mcr, PL01X_MCR_RTS);
1424 }
1425 sc->sc_msr_mask = sc->sc_msr_cts | sc->sc_msr_dcd;
1426
1427 #if 0
1428 if (ospeed == 0)
1429 CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1430 else
1431 SET(sc->sc_mcr, sc->sc_mcr_dtr);
1432 #endif
1433
1434 switch (pi->pi_type) {
1435 case PLCOM_TYPE_PL010:
1436 sc->sc_ratel = ospeed & 0xff;
1437 sc->sc_rateh = (ospeed >> 8) & 0xff;
1438 break;
1439 case PLCOM_TYPE_PL011:
1440 sc->sc_ratel = ospeed & ((1 << 6) - 1);
1441 sc->sc_rateh = ospeed >> 6;
1442 break;
1443 }
1444
1445 /* And copy to tty. */
1446 tp->t_ispeed = t->c_ospeed;
1447 tp->t_ospeed = t->c_ospeed;
1448 tp->t_cflag = t->c_cflag;
1449
1450 if (!sc->sc_heldchange) {
1451 if (sc->sc_tx_busy) {
1452 sc->sc_heldtbc = sc->sc_tbc;
1453 sc->sc_tbc = 0;
1454 sc->sc_heldchange = 1;
1455 } else
1456 plcom_loadchannelregs(sc);
1457 }
1458
1459 if (!ISSET(t->c_cflag, CHWFLOW)) {
1460 /* Disable the high water mark. */
1461 sc->sc_r_hiwat = 0;
1462 sc->sc_r_lowat = 0;
1463 if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1464 CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1465 plcom_schedrx(sc);
1466 }
1467 if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
1468 CLR(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
1469 plcom_hwiflow(sc);
1470 }
1471 } else {
1472 sc->sc_r_hiwat = plcom_rbuf_hiwat;
1473 sc->sc_r_lowat = plcom_rbuf_lowat;
1474 }
1475
1476 mutex_spin_exit(&sc->sc_lock);
1477
1478 /*
1479 * Update the tty layer's idea of the carrier bit, in case we changed
1480 * CLOCAL or MDMBUF. We don't hang up here; we only do that by
1481 * explicit request.
1482 */
1483 (void) (*tp->t_linesw->l_modem)(tp, ISSET(sc->sc_msr, PL01X_MSR_DCD));
1484
1485 #ifdef PLCOM_DEBUG
1486 if (plcom_debug)
1487 plcomstatus(sc, "plcomparam ");
1488 #endif
1489
1490 if (!ISSET(t->c_cflag, CHWFLOW)) {
1491 if (sc->sc_tx_stopped) {
1492 sc->sc_tx_stopped = 0;
1493 plcomstart(tp);
1494 }
1495 }
1496
1497 return 0;
1498 }
1499
1500 void
1501 plcom_iflush(struct plcom_softc *sc)
1502 {
1503 struct plcom_instance *pi = &sc->sc_pi;
1504 #ifdef DIAGNOSTIC
1505 int reg;
1506 #endif
1507 int timo;
1508
1509 #ifdef DIAGNOSTIC
1510 reg = 0xffff;
1511 #endif
1512 timo = 50000;
1513 /* flush any pending I/O */
1514 while (! ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE)
1515 && --timo)
1516 #ifdef DIAGNOSTIC
1517 reg =
1518 #else
1519 (void)
1520 #endif
1521 PREAD1(pi, PL01XCOM_DR);
1522 #ifdef DIAGNOSTIC
1523 if (!timo)
1524 aprint_error_dev(sc->sc_dev, ": %s timeout %02x\n", __func__,
1525 reg);
1526 #endif
1527 }
1528
1529 void
1530 plcom_loadchannelregs(struct plcom_softc *sc)
1531 {
1532 struct plcom_instance *pi = &sc->sc_pi;
1533
1534 /* XXXXX necessary? */
1535 plcom_iflush(sc);
1536
1537 switch (pi->pi_type) {
1538 case PLCOM_TYPE_PL010:
1539 PWRITE1(pi, PL010COM_CR, 0);
1540 if (sc->sc_frequency != 0) {
1541 PWRITE1(pi, PL010COM_DLBL, sc->sc_ratel);
1542 PWRITE1(pi, PL010COM_DLBH, sc->sc_rateh);
1543 }
1544 PWRITE1(pi, PL010COM_LCR, sc->sc_lcr);
1545
1546 /* XXX device_unit() abuse */
1547 if (sc->sc_set_mcr)
1548 sc->sc_set_mcr(sc->sc_set_mcr_arg,
1549 device_unit(sc->sc_dev),
1550 sc->sc_mcr_active = sc->sc_mcr);
1551
1552 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
1553 break;
1554
1555 case PLCOM_TYPE_PL011:
1556 PWRITE4(pi, PL011COM_CR, 0);
1557 if (sc->sc_frequency != 0) {
1558 PWRITE1(pi, PL011COM_FBRD, sc->sc_ratel);
1559 PWRITE4(pi, PL011COM_IBRD, sc->sc_rateh);
1560 }
1561 PWRITE1(pi, PL011COM_LCRH, sc->sc_lcr);
1562 sc->sc_mcr_active = sc->sc_mcr;
1563 CLR(sc->sc_cr, PL011_MCR(PL01X_MCR_RTS | PL01X_MCR_DTR));
1564 SET(sc->sc_cr, PL011_MCR(sc->sc_mcr_active));
1565 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
1566 break;
1567 }
1568 }
1569
1570 int
1571 plcomhwiflow(struct tty *tp, int block)
1572 {
1573 struct plcom_softc *sc =
1574 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1575
1576 if (PLCOM_ISALIVE(sc) == 0)
1577 return 0;
1578
1579 if (sc->sc_mcr_rts == 0)
1580 return 0;
1581
1582 mutex_spin_enter(&sc->sc_lock);
1583
1584 if (block) {
1585 if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1586 SET(sc->sc_rx_flags, RX_TTY_BLOCKED);
1587 plcom_hwiflow(sc);
1588 }
1589 } else {
1590 if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1591 CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1592 plcom_schedrx(sc);
1593 }
1594 if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1595 CLR(sc->sc_rx_flags, RX_TTY_BLOCKED);
1596 plcom_hwiflow(sc);
1597 }
1598 }
1599
1600 mutex_spin_exit(&sc->sc_lock);
1601 return 1;
1602 }
1603
1604 /*
1605 * (un)block input via hw flowcontrol
1606 */
1607 void
1608 plcom_hwiflow(struct plcom_softc *sc)
1609 {
1610 struct plcom_instance *pi = &sc->sc_pi;
1611
1612 if (sc->sc_mcr_rts == 0)
1613 return;
1614
1615 if (ISSET(sc->sc_rx_flags, RX_ANY_BLOCK)) {
1616 CLR(sc->sc_mcr, sc->sc_mcr_rts);
1617 CLR(sc->sc_mcr_active, sc->sc_mcr_rts);
1618 } else {
1619 SET(sc->sc_mcr, sc->sc_mcr_rts);
1620 SET(sc->sc_mcr_active, sc->sc_mcr_rts);
1621 }
1622 switch (pi->pi_type) {
1623 case PLCOM_TYPE_PL010:
1624 if (sc->sc_set_mcr)
1625 /* XXX device_unit() abuse */
1626 sc->sc_set_mcr(sc->sc_set_mcr_arg,
1627 device_unit(sc->sc_dev), sc->sc_mcr_active);
1628 break;
1629 case PLCOM_TYPE_PL011:
1630 CLR(sc->sc_cr, PL011_MCR(PL01X_MCR_RTS | PL01X_MCR_DTR));
1631 SET(sc->sc_cr, PL011_MCR(sc->sc_mcr_active));
1632 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
1633 break;
1634 }
1635 }
1636
1637
1638 void
1639 plcomstart(struct tty *tp)
1640 {
1641 struct plcom_softc *sc =
1642 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1643 struct plcom_instance *pi = &sc->sc_pi;
1644 int s;
1645
1646 if (PLCOM_ISALIVE(sc) == 0)
1647 return;
1648
1649 s = spltty();
1650 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
1651 goto out;
1652 if (sc->sc_tx_stopped)
1653 goto out;
1654
1655 if (!ttypull(tp))
1656 goto out;
1657
1658 /* Grab the first contiguous region of buffer space. */
1659 {
1660 u_char *tba;
1661 int tbc;
1662
1663 tba = tp->t_outq.c_cf;
1664 tbc = ndqb(&tp->t_outq, 0);
1665
1666 mutex_spin_enter(&sc->sc_lock);
1667
1668 sc->sc_tba = tba;
1669 sc->sc_tbc = tbc;
1670 }
1671
1672 SET(tp->t_state, TS_BUSY);
1673 sc->sc_tx_busy = 1;
1674
1675 /* Enable transmit completion interrupts if necessary. */
1676 switch (pi->pi_type) {
1677 case PLCOM_TYPE_PL010:
1678 if (!ISSET(sc->sc_cr, PL010_CR_TIE)) {
1679 SET(sc->sc_cr, PL010_CR_TIE);
1680 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
1681 }
1682 break;
1683 case PLCOM_TYPE_PL011:
1684 if (!ISSET(sc->sc_imsc, PL011_INT_TX)) {
1685 SET(sc->sc_imsc, PL011_INT_TX);
1686 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
1687 }
1688 break;
1689 }
1690
1691 /* Output the first chunk of the contiguous buffer. */
1692 {
1693 int n;
1694
1695 n = sc->sc_tbc;
1696 if (n > sc->sc_fifolen)
1697 n = sc->sc_fifolen;
1698 PWRITEM1(pi, PL01XCOM_DR, sc->sc_tba, n);
1699 sc->sc_tbc -= n;
1700 sc->sc_tba += n;
1701 }
1702 mutex_spin_exit(&sc->sc_lock);
1703 out:
1704 splx(s);
1705 return;
1706 }
1707
1708 /*
1709 * Stop output on a line.
1710 */
1711 void
1712 plcomstop(struct tty *tp, int flag)
1713 {
1714 struct plcom_softc *sc =
1715 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1716
1717 mutex_spin_enter(&sc->sc_lock);
1718 if (ISSET(tp->t_state, TS_BUSY)) {
1719 /* Stop transmitting at the next chunk. */
1720 sc->sc_tbc = 0;
1721 sc->sc_heldtbc = 0;
1722 if (!ISSET(tp->t_state, TS_TTSTOP))
1723 SET(tp->t_state, TS_FLUSH);
1724 }
1725 mutex_spin_exit(&sc->sc_lock);
1726 }
1727
1728 void
1729 plcomdiag(void *arg)
1730 {
1731 struct plcom_softc *sc = arg;
1732 int overflows, floods;
1733
1734 mutex_spin_enter(&sc->sc_lock);
1735 overflows = sc->sc_overflows;
1736 sc->sc_overflows = 0;
1737 floods = sc->sc_floods;
1738 sc->sc_floods = 0;
1739 sc->sc_errors = 0;
1740 mutex_spin_exit(&sc->sc_lock);
1741
1742 log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
1743 device_xname(sc->sc_dev),
1744 overflows, overflows == 1 ? "" : "s",
1745 floods, floods == 1 ? "" : "s");
1746 }
1747
1748 integrate void
1749 plcom_rxsoft(struct plcom_softc *sc, struct tty *tp)
1750 {
1751 int (*rint) (int, struct tty *) = tp->t_linesw->l_rint;
1752 struct plcom_instance *pi = &sc->sc_pi;
1753 u_char *get, *end;
1754 u_int cc, scc;
1755 u_char rsr;
1756 int code;
1757
1758 end = sc->sc_ebuf;
1759 get = sc->sc_rbget;
1760 scc = cc = plcom_rbuf_size - sc->sc_rbavail;
1761
1762 if (cc == plcom_rbuf_size) {
1763 sc->sc_floods++;
1764 if (sc->sc_errors++ == 0)
1765 callout_reset(&sc->sc_diag_callout, 60 * hz,
1766 plcomdiag, sc);
1767 }
1768
1769 while (cc) {
1770 code = get[0];
1771 rsr = get[1];
1772 if (ISSET(rsr, PL01X_RSR_ERROR)) {
1773 if (ISSET(rsr, PL01X_RSR_OE)) {
1774 sc->sc_overflows++;
1775 if (sc->sc_errors++ == 0)
1776 callout_reset(&sc->sc_diag_callout,
1777 60 * hz, plcomdiag, sc);
1778 }
1779 if (ISSET(rsr, PL01X_RSR_BE | PL01X_RSR_FE))
1780 SET(code, TTY_FE);
1781 if (ISSET(rsr, PL01X_RSR_PE))
1782 SET(code, TTY_PE);
1783 }
1784 if ((*rint)(code, tp) == -1) {
1785 /*
1786 * The line discipline's buffer is out of space.
1787 */
1788 if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1789 /*
1790 * We're either not using flow control, or the
1791 * line discipline didn't tell us to block for
1792 * some reason. Either way, we have no way to
1793 * know when there's more space available, so
1794 * just drop the rest of the data.
1795 */
1796 get += cc << 1;
1797 if (get >= end)
1798 get -= plcom_rbuf_size << 1;
1799 cc = 0;
1800 } else {
1801 /*
1802 * Don't schedule any more receive processing
1803 * until the line discipline tells us there's
1804 * space available (through plcomhwiflow()).
1805 * Leave the rest of the data in the input
1806 * buffer.
1807 */
1808 SET(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1809 }
1810 break;
1811 }
1812 get += 2;
1813 if (get >= end)
1814 get = sc->sc_rbuf;
1815 cc--;
1816 }
1817
1818 if (cc != scc) {
1819 sc->sc_rbget = get;
1820 mutex_spin_enter(&sc->sc_lock);
1821
1822 cc = sc->sc_rbavail += scc - cc;
1823 /* Buffers should be ok again, release possible block. */
1824 if (cc >= sc->sc_r_lowat) {
1825 if (ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1826 CLR(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
1827 switch (pi->pi_type) {
1828 case PLCOM_TYPE_PL010:
1829 SET(sc->sc_cr,
1830 PL010_CR_RIE | PL010_CR_RTIE);
1831 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
1832 break;
1833 case PLCOM_TYPE_PL011:
1834 SET(sc->sc_imsc,
1835 PL011_INT_RX | PL011_INT_RT);
1836 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
1837 break;
1838 }
1839 }
1840 if (ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED)) {
1841 CLR(sc->sc_rx_flags, RX_IBUF_BLOCKED);
1842 plcom_hwiflow(sc);
1843 }
1844 }
1845 mutex_spin_exit(&sc->sc_lock);
1846 }
1847 }
1848
1849 integrate void
1850 plcom_txsoft(struct plcom_softc *sc, struct tty *tp)
1851 {
1852
1853 CLR(tp->t_state, TS_BUSY);
1854 if (ISSET(tp->t_state, TS_FLUSH))
1855 CLR(tp->t_state, TS_FLUSH);
1856 else
1857 ndflush(&tp->t_outq, (int)(sc->sc_tba - tp->t_outq.c_cf));
1858 (*tp->t_linesw->l_start)(tp);
1859 }
1860
1861 integrate void
1862 plcom_stsoft(struct plcom_softc *sc, struct tty *tp)
1863 {
1864 u_char msr, delta;
1865
1866 mutex_spin_enter(&sc->sc_lock);
1867 msr = sc->sc_msr;
1868 delta = sc->sc_msr_delta;
1869 sc->sc_msr_delta = 0;
1870 mutex_spin_exit(&sc->sc_lock);
1871
1872 if (ISSET(delta, sc->sc_msr_dcd)) {
1873 /*
1874 * Inform the tty layer that carrier detect changed.
1875 */
1876 (void) (*tp->t_linesw->l_modem)(tp, ISSET(msr, PL01X_MSR_DCD));
1877 }
1878
1879 if (ISSET(delta, sc->sc_msr_cts)) {
1880 /* Block or unblock output according to flow control. */
1881 if (ISSET(msr, sc->sc_msr_cts)) {
1882 sc->sc_tx_stopped = 0;
1883 (*tp->t_linesw->l_start)(tp);
1884 } else {
1885 sc->sc_tx_stopped = 1;
1886 }
1887 }
1888
1889 #ifdef PLCOM_DEBUG
1890 if (plcom_debug)
1891 plcomstatus(sc, "plcom_stsoft");
1892 #endif
1893 }
1894
1895 void
1896 plcomsoft(void *arg)
1897 {
1898 struct plcom_softc *sc = arg;
1899 struct tty *tp;
1900
1901 if (PLCOM_ISALIVE(sc) == 0)
1902 return;
1903
1904 tp = sc->sc_tty;
1905
1906 if (sc->sc_rx_ready) {
1907 sc->sc_rx_ready = 0;
1908 plcom_rxsoft(sc, tp);
1909 }
1910
1911 if (sc->sc_st_check) {
1912 sc->sc_st_check = 0;
1913 plcom_stsoft(sc, tp);
1914 }
1915
1916 if (sc->sc_tx_done) {
1917 sc->sc_tx_done = 0;
1918 plcom_txsoft(sc, tp);
1919 }
1920 }
1921
1922 bool
1923 plcom_intstatus(struct plcom_instance *pi, u_int *istatus)
1924 {
1925 bool ret = false;
1926 u_int stat = 0;
1927
1928 switch (pi->pi_type) {
1929 case PLCOM_TYPE_PL010:
1930 stat = PREAD1(pi, PL010COM_IIR);
1931 ret = ISSET(stat, PL010_IIR_IMASK);
1932 break;
1933 case PLCOM_TYPE_PL011:
1934 stat = PREAD4(pi, PL011COM_MIS);
1935 ret = ISSET(stat, PL011_INT_ALLMASK);
1936 break;
1937 }
1938 *istatus = stat;
1939
1940 return ret;
1941 }
1942
1943 int
1944 plcomintr(void *arg)
1945 {
1946 struct plcom_softc *sc = arg;
1947 struct plcom_instance *pi = &sc->sc_pi;
1948 u_char *put, *end;
1949 u_int cc;
1950 u_int istatus = 0;
1951 u_char rsr;
1952 bool intr = false;
1953
1954 PLCOM_BARRIER(pi, BR | BW);
1955
1956 if (PLCOM_ISALIVE(sc) == 0)
1957 return 0;
1958
1959 mutex_spin_enter(&sc->sc_lock);
1960 intr = plcom_intstatus(pi, &istatus);
1961 if (!intr) {
1962 mutex_spin_exit(&sc->sc_lock);
1963 return 0;
1964 }
1965
1966 end = sc->sc_ebuf;
1967 put = sc->sc_rbput;
1968 cc = sc->sc_rbavail;
1969
1970 do {
1971 u_int msr = 0, delta, fr;
1972 bool rxintr = false, txintr = false, msintr;
1973
1974 /* don't need RI here*/
1975 fr = PREAD1(pi, PL01XCOM_FR);
1976
1977 if (!ISSET(fr, PL01X_FR_RXFE) &&
1978 !ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1979 while (cc > 0) {
1980 int cn_trapped = 0;
1981 put[0] = PREAD1(pi, PL01XCOM_DR);
1982 rsr = PREAD1(pi, PL01XCOM_RSR);
1983 /* Clear any error status. */
1984 if (ISSET(rsr, PL01X_RSR_ERROR))
1985 PWRITE1(pi, PL01XCOM_ECR, 0);
1986 if (ISSET(rsr, PL01X_RSR_BE)) {
1987 cn_trapped = 0;
1988 cn_check_magic(sc->sc_tty->t_dev,
1989 CNC_BREAK, plcom_cnm_state);
1990 if (cn_trapped)
1991 continue;
1992 #if defined(KGDB)
1993 if (ISSET(sc->sc_hwflags,
1994 PLCOM_HW_KGDB)) {
1995 kgdb_connect(1);
1996 continue;
1997 }
1998 #endif
1999 }
2000
2001 put[1] = rsr;
2002 cn_trapped = 0;
2003 cn_check_magic(sc->sc_tty->t_dev, put[0],
2004 plcom_cnm_state);
2005 if (cn_trapped) {
2006 fr = PREAD1(pi, PL01XCOM_FR);
2007 if (ISSET(fr, PL01X_FR_RXFE))
2008 break;
2009
2010 continue;
2011 }
2012 put += 2;
2013 if (put >= end)
2014 put = sc->sc_rbuf;
2015 cc--;
2016
2017 /* don't need RI here*/
2018 fr = PREAD1(pi, PL01XCOM_FR);
2019 if (ISSET(fr, PL01X_FR_RXFE))
2020 break;
2021 }
2022
2023 /*
2024 * Current string of incoming characters ended because
2025 * no more data was available or we ran out of space.
2026 * Schedule a receive event if any data was received.
2027 * If we're out of space, turn off receive interrupts.
2028 */
2029 sc->sc_rbput = put;
2030 sc->sc_rbavail = cc;
2031 if (!ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED))
2032 sc->sc_rx_ready = 1;
2033
2034 /*
2035 * See if we are in danger of overflowing a buffer. If
2036 * so, use hardware flow control to ease the pressure.
2037 */
2038 if (!ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED) &&
2039 cc < sc->sc_r_hiwat) {
2040 SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
2041 plcom_hwiflow(sc);
2042 }
2043
2044 /*
2045 * If we're out of space, disable receive interrupts
2046 * until the queue has drained a bit.
2047 */
2048 if (!cc) {
2049 SET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
2050 switch (pi->pi_type) {
2051 case PLCOM_TYPE_PL010:
2052 CLR(sc->sc_cr,
2053 PL010_CR_RIE | PL010_CR_RTIE);
2054 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
2055 break;
2056 case PLCOM_TYPE_PL011:
2057 CLR(sc->sc_imsc,
2058 PL011_INT_RT | PL011_INT_RX);
2059 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
2060 break;
2061 }
2062 }
2063 } else {
2064 switch (pi->pi_type) {
2065 case PLCOM_TYPE_PL010:
2066 rxintr = ISSET(istatus, PL010_IIR_RIS);
2067 if (rxintr) {
2068 PWRITE1(pi, PL010COM_CR, 0);
2069 delay(10);
2070 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
2071 continue;
2072 }
2073 break;
2074 case PLCOM_TYPE_PL011:
2075 rxintr = ISSET(istatus, PL011_INT_RX);
2076 if (rxintr) {
2077 PWRITE4(pi, PL011COM_CR, 0);
2078 delay(10);
2079 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
2080 continue;
2081 }
2082 break;
2083 }
2084 }
2085
2086 switch (pi->pi_type) {
2087 case PLCOM_TYPE_PL010:
2088 msr = PREAD1(pi, PL01XCOM_FR);
2089 break;
2090 case PLCOM_TYPE_PL011:
2091 msr = PREAD4(pi, PL01XCOM_FR);
2092 break;
2093 }
2094 delta = msr ^ sc->sc_msr;
2095 sc->sc_msr = msr;
2096
2097 /* Clear any pending modem status interrupt. */
2098 switch (pi->pi_type) {
2099 case PLCOM_TYPE_PL010:
2100 msintr = ISSET(istatus, PL010_IIR_MIS);
2101 if (msintr) {
2102 PWRITE1(pi, PL010COM_ICR, 0);
2103 }
2104 break;
2105 case PLCOM_TYPE_PL011:
2106 msintr = ISSET(istatus, PL011_INT_MSMASK);
2107 if (msintr) {
2108 PWRITE4(pi, PL011COM_ICR, PL011_INT_MSMASK);
2109 }
2110 break;
2111 }
2112 /*
2113 * Pulse-per-second (PSS) signals on edge of DCD?
2114 * Process these even if line discipline is ignoring DCD.
2115 */
2116 if (delta & sc->sc_ppsmask) {
2117 struct timeval tv;
2118 mutex_spin_enter(&timecounter_lock);
2119 if ((msr & sc->sc_ppsmask) == sc->sc_ppsassert) {
2120 /* XXX nanotime() */
2121 microtime(&tv);
2122 TIMEVAL_TO_TIMESPEC(&tv,
2123 &sc->ppsinfo.assert_timestamp);
2124 if (sc->ppsparam.mode & PPS_OFFSETASSERT) {
2125 timespecadd(&sc->ppsinfo.assert_timestamp,
2126 &sc->ppsparam.assert_offset,
2127 &sc->ppsinfo.assert_timestamp);
2128 }
2129
2130 #ifdef PPS_SYNC
2131 if (sc->ppsparam.mode & PPS_HARDPPSONASSERT)
2132 hardpps(&tv, tv.tv_usec);
2133 #endif
2134 sc->ppsinfo.assert_sequence++;
2135 sc->ppsinfo.current_mode = sc->ppsparam.mode;
2136
2137 } else if ((msr & sc->sc_ppsmask) == sc->sc_ppsclear) {
2138 /* XXX nanotime() */
2139 microtime(&tv);
2140 TIMEVAL_TO_TIMESPEC(&tv,
2141 &sc->ppsinfo.clear_timestamp);
2142 if (sc->ppsparam.mode & PPS_OFFSETCLEAR) {
2143 timespecadd(&sc->ppsinfo.clear_timestamp,
2144 &sc->ppsparam.clear_offset,
2145 &sc->ppsinfo.clear_timestamp);
2146 }
2147
2148 #ifdef PPS_SYNC
2149 if (sc->ppsparam.mode & PPS_HARDPPSONCLEAR)
2150 hardpps(&tv, tv.tv_usec);
2151 #endif
2152 sc->ppsinfo.clear_sequence++;
2153 sc->ppsinfo.current_mode = sc->ppsparam.mode;
2154 }
2155 mutex_spin_exit(&timecounter_lock);
2156 }
2157
2158 /*
2159 * Process normal status changes
2160 */
2161 if (ISSET(delta, sc->sc_msr_mask)) {
2162 SET(sc->sc_msr_delta, delta);
2163
2164 /*
2165 * Stop output immediately if we lose the output
2166 * flow control signal or carrier detect.
2167 */
2168 if (ISSET(~msr, sc->sc_msr_mask)) {
2169 sc->sc_tbc = 0;
2170 sc->sc_heldtbc = 0;
2171 #ifdef PLCOM_DEBUG
2172 if (plcom_debug)
2173 plcomstatus(sc, "plcomintr ");
2174 #endif
2175 }
2176
2177 sc->sc_st_check = 1;
2178 }
2179
2180 /*
2181 * Done handling any receive interrupts. See if data
2182 * can be transmitted as well. Schedule tx done
2183 * event if no data left and tty was marked busy.
2184 */
2185
2186 switch (pi->pi_type) {
2187 case PLCOM_TYPE_PL010:
2188 txintr = ISSET(istatus, PL010_IIR_TIS);
2189 break;
2190 case PLCOM_TYPE_PL011:
2191 txintr = ISSET(istatus, PL011_INT_TX);
2192 break;
2193 }
2194 if (txintr) {
2195 /*
2196 * If we've delayed a parameter change, do it
2197 * now, and restart * output.
2198 */
2199 // PWRITE4(pi, PL011COM_ICR, PL011_INT_TX);
2200 if (sc->sc_heldchange) {
2201 plcom_loadchannelregs(sc);
2202 sc->sc_heldchange = 0;
2203 sc->sc_tbc = sc->sc_heldtbc;
2204 sc->sc_heldtbc = 0;
2205 }
2206
2207 /*
2208 * Output the next chunk of the contiguous
2209 * buffer, if any.
2210 */
2211 if (sc->sc_tbc > 0) {
2212 int n;
2213
2214 n = sc->sc_tbc;
2215 if (n > sc->sc_fifolen)
2216 n = sc->sc_fifolen;
2217 PWRITEM1(pi, PL01XCOM_DR, sc->sc_tba, n);
2218 sc->sc_tbc -= n;
2219 sc->sc_tba += n;
2220 } else {
2221 /*
2222 * Disable transmit completion
2223 * interrupts if necessary.
2224 */
2225 switch (pi->pi_type) {
2226 case PLCOM_TYPE_PL010:
2227 if (ISSET(sc->sc_cr, PL010_CR_TIE)) {
2228 CLR(sc->sc_cr, PL010_CR_TIE);
2229 PWRITE1(pi, PL010COM_CR,
2230 sc->sc_cr);
2231 }
2232 break;
2233 case PLCOM_TYPE_PL011:
2234 if (ISSET(sc->sc_imsc, PL011_INT_TX)) {
2235 CLR(sc->sc_imsc, PL011_INT_TX);
2236 PWRITE4(pi, PL011COM_IMSC,
2237 sc->sc_imsc);
2238 }
2239 break;
2240 }
2241 if (sc->sc_tx_busy) {
2242 sc->sc_tx_busy = 0;
2243 sc->sc_tx_done = 1;
2244 }
2245 }
2246 }
2247
2248 } while (plcom_intstatus(pi, &istatus));
2249
2250 mutex_spin_exit(&sc->sc_lock);
2251
2252 /* Wake up the poller. */
2253 softint_schedule(sc->sc_si);
2254
2255 #ifdef RND_COM
2256 rnd_add_uint32(&sc->rnd_source, istatus | rsr);
2257 #endif
2258
2259 PLCOM_BARRIER(pi, BR | BW);
2260
2261 return 1;
2262 }
2263
2264 /*
2265 * The following functions are polled getc and putc routines, shared
2266 * by the console and kgdb glue.
2267 *
2268 * The read-ahead code is so that you can detect pending in-band
2269 * cn_magic in polled mode while doing output rather than having to
2270 * wait until the kernel decides it needs input.
2271 */
2272
2273 #define MAX_READAHEAD 20
2274 static int plcom_readahead[MAX_READAHEAD];
2275 static int plcom_readaheadcount = 0;
2276
2277 int
2278 plcom_common_getc(dev_t dev, struct plcom_instance *pi)
2279 {
2280 int s = splserial();
2281 u_char stat, c;
2282
2283 /* got a character from reading things earlier */
2284 if (plcom_readaheadcount > 0) {
2285 int i;
2286
2287 c = plcom_readahead[0];
2288 for (i = 1; i < plcom_readaheadcount; i++) {
2289 plcom_readahead[i-1] = plcom_readahead[i];
2290 }
2291 plcom_readaheadcount--;
2292 splx(s);
2293 return c;
2294 }
2295
2296 /* block until a character becomes available */
2297 while (ISSET(stat = PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE))
2298 ;
2299
2300 c = PREAD1(pi, PL01XCOM_DR);
2301 {
2302 int cn_trapped __unused = 0;
2303 #ifdef DDB
2304 extern int db_active;
2305 if (!db_active)
2306 #endif
2307 cn_check_magic(dev, c, plcom_cnm_state);
2308 }
2309 splx(s);
2310 return c;
2311 }
2312
2313 void
2314 plcom_common_putc(dev_t dev, struct plcom_instance *pi, int c)
2315 {
2316 int s = splserial();
2317 int timo;
2318
2319 int cin, stat;
2320 if (plcom_readaheadcount < MAX_READAHEAD
2321 && !ISSET(stat = PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE)) {
2322 int cn_trapped __unused = 0;
2323 cin = PREAD1(pi, PL01XCOM_DR);
2324 cn_check_magic(dev, cin, plcom_cnm_state);
2325 plcom_readahead[plcom_readaheadcount++] = cin;
2326 }
2327
2328 /* wait for any pending transmission to finish */
2329 timo = 150000;
2330 while (ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_TXFF) && --timo)
2331 continue;
2332
2333 PWRITE1(pi, PL01XCOM_DR, c);
2334 PLCOM_BARRIER(pi, BR | BW);
2335
2336 /* wait for this transmission to complete */
2337 timo = 1500000;
2338 while (!ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_TXFE) && --timo)
2339 continue;
2340
2341 splx(s);
2342 }
2343
2344 /*
2345 * Initialize UART for use as console or KGDB line.
2346 */
2347 int
2348 plcominit(struct plcom_instance *pi, int rate, int frequency, tcflag_t cflag)
2349 {
2350 u_char lcr;
2351
2352 switch (pi->pi_type) {
2353 case PLCOM_TYPE_PL010:
2354 if (pi->pi_size == 0)
2355 pi->pi_size = PL010COM_UART_SIZE;
2356 break;
2357 case PLCOM_TYPE_PL011:
2358 if (pi->pi_size == 0)
2359 pi->pi_size = PL011COM_UART_SIZE;
2360 break;
2361 default:
2362 panic("Unknown plcom type");
2363 }
2364
2365 if (bus_space_map(pi->pi_iot, pi->pi_iobase, pi->pi_size, 0,
2366 &pi->pi_ioh))
2367 return ENOMEM; /* ??? */
2368
2369 lcr = cflag2lcr(cflag) | PL01X_LCR_FEN;
2370 switch (pi->pi_type) {
2371 case PLCOM_TYPE_PL010:
2372 PWRITE1(pi, PL010COM_CR, 0);
2373
2374 if (rate && frequency) {
2375 rate = pl010comspeed(rate, frequency);
2376 PWRITE1(pi, PL010COM_DLBL, (rate & 0xff));
2377 PWRITE1(pi, PL010COM_DLBH, ((rate >> 8) & 0xff));
2378 }
2379 PWRITE1(pi, PL010COM_LCR, lcr);
2380 PWRITE1(pi, PL010COM_CR, PL01X_CR_UARTEN);
2381 break;
2382 case PLCOM_TYPE_PL011:
2383 PWRITE4(pi, PL011COM_CR, 0);
2384
2385 if (rate && frequency) {
2386 rate = pl011comspeed(rate, frequency);
2387 PWRITE1(pi, PL011COM_FBRD, rate & ((1 << 6) - 1));
2388 PWRITE4(pi, PL011COM_IBRD, rate >> 6);
2389 }
2390 PWRITE1(pi, PL011COM_LCRH, lcr);
2391 PWRITE4(pi, PL011COM_CR,
2392 PL01X_CR_UARTEN | PL011_CR_RXE | PL011_CR_TXE);
2393 break;
2394 }
2395
2396 #if 0
2397 /* Ought to do something like this, but we have no sc to
2398 dereference. */
2399 /* XXX device_unit() abuse */
2400 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(sc->sc_dev),
2401 PL01X_MCR_DTR | PL01X_MCR_RTS);
2402 #endif
2403
2404 return 0;
2405 }
2406
2407 /*
2408 * Following are all routines needed for PLCOM to act as console
2409 */
2410 struct consdev plcomcons = {
2411 NULL, NULL, plcomcngetc, plcomcnputc, plcomcnpollc, NULL,
2412 NULL, NULL, NODEV, CN_NORMAL
2413 };
2414
2415 int
2416 plcomcnattach(struct plcom_instance *pi, int rate, int frequency,
2417 tcflag_t cflag, int unit)
2418 {
2419 int res;
2420
2421 plcomcons_info = *pi;
2422
2423 res = plcominit(&plcomcons_info, rate, frequency, cflag);
2424 if (res)
2425 return res;
2426
2427 cn_tab = &plcomcons;
2428 cn_init_magic(&plcom_cnm_state);
2429 cn_set_magic("\047\001"); /* default magic is BREAK */
2430
2431 plcomconsunit = unit;
2432 plcomconsrate = rate;
2433 plcomconscflag = cflag;
2434
2435 return 0;
2436 }
2437
2438 void
2439 plcomcndetach(void)
2440 {
2441
2442 bus_space_unmap(plcomcons_info.pi_iot, plcomcons_info.pi_ioh,
2443 plcomcons_info.pi_size);
2444 plcomcons_info.pi_iot = NULL;
2445
2446 cn_tab = NULL;
2447 }
2448
2449 int
2450 plcomcngetc(dev_t dev)
2451 {
2452 return plcom_common_getc(dev, &plcomcons_info);
2453 }
2454
2455 /*
2456 * Console kernel output character routine.
2457 */
2458 void
2459 plcomcnputc(dev_t dev, int c)
2460 {
2461 plcom_common_putc(dev, &plcomcons_info, c);
2462 }
2463
2464 void
2465 plcomcnpollc(dev_t dev, int on)
2466 {
2467
2468 plcom_readaheadcount = 0;
2469 }
2470
2471 #ifdef KGDB
2472 int
2473 plcom_kgdb_attach(struct plcom_instance *pi, int rate, int frequency,
2474 tcflag_t cflag, int unit)
2475 {
2476 int res;
2477
2478 if (pi->pi_iot == plcomcons_info.pi_iot &&
2479 pi->pi_iobase == plcomcons_info.pi_iobase)
2480 return EBUSY; /* cannot share with console */
2481
2482 res = plcominit(pi, rate, frequency, cflag);
2483 if (res)
2484 return res;
2485
2486 kgdb_attach(plcom_kgdb_getc, plcom_kgdb_putc, NULL);
2487 kgdb_dev = 123; /* unneeded, only to satisfy some tests */
2488
2489 plcomkgdb_info.pi_iot = pi->pi_iot;
2490 plcomkgdb_info.pi_ioh = pi->pi_ioh;
2491 plcomkgdb_info.pi_iobase = pi->pi_iobase;
2492
2493 return 0;
2494 }
2495
2496 /* ARGSUSED */
2497 int
2498 plcom_kgdb_getc(void *arg)
2499 {
2500 return plcom_common_getc(NODEV, &plcomkgdb_info);
2501 }
2502
2503 /* ARGSUSED */
2504 void
2505 plcom_kgdb_putc(void *arg, int c)
2506 {
2507 plcom_common_putc(NODEV, &plcomkgdb_info, c);
2508 }
2509 #endif /* KGDB */
2510
2511 /* helper function to identify the plcom ports used by
2512 console or KGDB (and not yet autoconf attached) */
2513 int
2514 plcom_is_console(bus_space_tag_t iot, bus_addr_t iobase,
2515 bus_space_handle_t *ioh)
2516 {
2517 bus_space_handle_t help;
2518
2519 if (!plcomconsattached &&
2520 bus_space_is_equal(iot, plcomcons_info.pi_iot) &&
2521 iobase == plcomcons_info.pi_iobase)
2522 help = plcomcons_info.pi_ioh;
2523 #ifdef KGDB
2524 else if (!plcom_kgdb_attached &&
2525 bus_space_is_equal(iot, plcomkgdb_info.pi_iot) &&
2526 iobase == plcomkgdb_info.pi_iobase)
2527 help = plcomkgdb_info.pi_ioh;
2528 #endif
2529 else
2530 return 0;
2531
2532 if (ioh)
2533 *ioh = help;
2534 return 1;
2535 }
2536