plcom.c revision 1.58 1 /* $NetBSD: plcom.c,v 1.58 2019/07/23 12:13:47 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 2001 ARM Ltd
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the company may not be used to endorse or promote
16 * products derived from this software without specific prior written
17 * permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
23 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * Copyright (c) 1998, 1999, 2012 The NetBSD Foundation, Inc.
32 * All rights reserved.
33 *
34 * This code is derived from software contributed to The NetBSD Foundation
35 * by Charles M. Hannum and Nick Hudson.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
47 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
48 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
49 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
50 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
51 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
52 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
53 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
54 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
55 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
56 * POSSIBILITY OF SUCH DAMAGE.
57 */
58
59 /*
60 * Copyright (c) 1991 The Regents of the University of California.
61 * All rights reserved.
62 *
63 * Redistribution and use in source and binary forms, with or without
64 * modification, are permitted provided that the following conditions
65 * are met:
66 * 1. Redistributions of source code must retain the above copyright
67 * notice, this list of conditions and the following disclaimer.
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in the
70 * documentation and/or other materials provided with the distribution.
71 * 3. Neither the name of the University nor the names of its contributors
72 * may be used to endorse or promote products derived from this software
73 * without specific prior written permission.
74 *
75 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
76 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
77 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
78 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
79 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
80 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
81 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
82 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
83 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
84 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
85 * SUCH DAMAGE.
86 *
87 * @(#)com.c 7.5 (Berkeley) 5/16/91
88 */
89
90 /*
91 * COM driver for the Prime Cell PL010 and PL011 UARTs. Both are is similar to
92 * the 16C550, but have a completely different programmer's model.
93 * Derived from the NS16550AF com driver.
94 */
95
96 #include <sys/cdefs.h>
97 __KERNEL_RCSID(0, "$NetBSD: plcom.c,v 1.58 2019/07/23 12:13:47 skrll Exp $");
98
99 #include "opt_plcom.h"
100 #include "opt_ddb.h"
101 #include "opt_kgdb.h"
102 #include "opt_lockdebug.h"
103 #include "opt_multiprocessor.h"
104
105 /*
106 * Override cnmagic(9) macro before including <sys/systm.h>.
107 * We need to know if cn_check_magic triggered debugger, so set a flag.
108 * Callers of cn_check_magic must declare int cn_trapped = 0;
109 * XXX: this is *ugly*!
110 */
111 #define cn_trap() \
112 do { \
113 console_debugger(); \
114 cn_trapped = 1; \
115 } while (/* CONSTCOND */ 0)
116
117 #include <sys/param.h>
118 #include <sys/systm.h>
119 #include <sys/ioctl.h>
120 #include <sys/select.h>
121 #include <sys/tty.h>
122 #include <sys/proc.h>
123 #include <sys/conf.h>
124 #include <sys/file.h>
125 #include <sys/uio.h>
126 #include <sys/kernel.h>
127 #include <sys/syslog.h>
128 #include <sys/types.h>
129 #include <sys/device.h>
130 #include <sys/malloc.h>
131 #include <sys/timepps.h>
132 #include <sys/vnode.h>
133 #include <sys/kauth.h>
134 #include <sys/intr.h>
135 #include <sys/bus.h>
136 #ifdef RND_COM
137 #include <sys/rndsource.h>
138 #endif
139
140 #include <evbarm/dev/plcomreg.h>
141 #include <evbarm/dev/plcomvar.h>
142
143 #include <dev/cons.h>
144
145 static void plcom_enable_debugport (struct plcom_softc *);
146
147 void plcom_config (struct plcom_softc *);
148 void plcom_shutdown (struct plcom_softc *);
149 int pl010comspeed (long, long);
150 int pl011comspeed (long, long);
151 static u_char cflag2lcr (tcflag_t);
152 int plcomparam (struct tty *, struct termios *);
153 void plcomstart (struct tty *);
154 int plcomhwiflow (struct tty *, int);
155
156 void plcom_loadchannelregs (struct plcom_softc *);
157 void plcom_hwiflow (struct plcom_softc *);
158 void plcom_break (struct plcom_softc *, int);
159 void plcom_modem (struct plcom_softc *, int);
160 void tiocm_to_plcom (struct plcom_softc *, u_long, int);
161 int plcom_to_tiocm (struct plcom_softc *);
162 void plcom_iflush (struct plcom_softc *);
163
164 int plcom_common_getc (dev_t, struct plcom_instance *);
165 void plcom_common_putc (dev_t, struct plcom_instance *, int);
166
167 int plcominit (struct plcom_instance *, int, int, tcflag_t);
168
169 dev_type_open(plcomopen);
170 dev_type_close(plcomclose);
171 dev_type_read(plcomread);
172 dev_type_write(plcomwrite);
173 dev_type_ioctl(plcomioctl);
174 dev_type_stop(plcomstop);
175 dev_type_tty(plcomtty);
176 dev_type_poll(plcompoll);
177
178 int plcomcngetc (dev_t);
179 void plcomcnputc (dev_t, int);
180 void plcomcnpollc (dev_t, int);
181
182 #define integrate static inline
183 void plcomsoft (void *);
184 integrate void plcom_rxsoft (struct plcom_softc *, struct tty *);
185 integrate void plcom_txsoft (struct plcom_softc *, struct tty *);
186 integrate void plcom_stsoft (struct plcom_softc *, struct tty *);
187 integrate void plcom_schedrx (struct plcom_softc *);
188 void plcomdiag (void *);
189
190 bool plcom_intstatus(struct plcom_instance *, u_int *);
191
192 extern struct cfdriver plcom_cd;
193
194 const struct cdevsw plcom_cdevsw = {
195 .d_open = plcomopen,
196 .d_close = plcomclose,
197 .d_read = plcomread,
198 .d_write = plcomwrite,
199 .d_ioctl = plcomioctl,
200 .d_stop = plcomstop,
201 .d_tty = plcomtty,
202 .d_poll = plcompoll,
203 .d_mmap = nommap,
204 .d_kqfilter = ttykqfilter,
205 .d_discard = nodiscard,
206 .d_flag = D_TTY
207 };
208
209 /*
210 * Make this an option variable one can patch.
211 * But be warned: this must be a power of 2!
212 */
213 u_int plcom_rbuf_size = PLCOM_RING_SIZE;
214
215 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
216 u_int plcom_rbuf_hiwat = (PLCOM_RING_SIZE * 1) / 4;
217 u_int plcom_rbuf_lowat = (PLCOM_RING_SIZE * 3) / 4;
218
219 static int plcomconsunit = -1;
220 static struct plcom_instance plcomcons_info;
221
222 static int plcomconsattached;
223 static int plcomconsrate;
224 static tcflag_t plcomconscflag;
225 static struct cnm_state plcom_cnm_state;
226
227 static int ppscap =
228 PPS_TSFMT_TSPEC |
229 PPS_CAPTUREASSERT |
230 PPS_CAPTURECLEAR |
231 #ifdef PPS_SYNC
232 PPS_HARDPPSONASSERT | PPS_HARDPPSONCLEAR |
233 #endif /* PPS_SYNC */
234 PPS_OFFSETASSERT | PPS_OFFSETCLEAR;
235
236 #ifdef KGDB
237 #include <sys/kgdb.h>
238
239 static struct plcom_instance plcomkgdb_info;
240 static int plcom_kgdb_attached;
241
242 int plcom_kgdb_getc (void *);
243 void plcom_kgdb_putc (void *, int);
244 #endif /* KGDB */
245
246 #define PLCOMDIALOUT_MASK TTDIALOUT_MASK
247
248 #define PLCOMUNIT(x) TTUNIT(x)
249 #define PLCOMDIALOUT(x) TTDIALOUT(x)
250
251 #define PLCOM_ISALIVE(sc) ((sc)->enabled != 0 && \
252 device_is_active((sc)->sc_dev))
253
254 #define BR BUS_SPACE_BARRIER_READ
255 #define BW BUS_SPACE_BARRIER_WRITE
256 #define PLCOM_BARRIER(pi, f) \
257 bus_space_barrier((pi)->pi_iot, (pi)->pi_ioh, 0, (pi)->pi_size, (f))
258
259 static uint8_t
260 pread1(struct plcom_instance *pi, bus_size_t reg)
261 {
262 if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS))
263 return bus_space_read_1(pi->pi_iot, pi->pi_ioh, reg);
264
265 return bus_space_read_4(pi->pi_iot, pi->pi_ioh, reg & -4) >>
266 (8 * (reg & 3));
267 }
268 int nhcr;
269 static void
270 pwrite1(struct plcom_instance *pi, bus_size_t o, uint8_t val)
271 {
272 if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS)) {
273 bus_space_write_1(pi->pi_iot, pi->pi_ioh, o, val);
274 } else {
275 const size_t shift = 8 * (o & 3);
276 o &= -4;
277 uint32_t tmp = bus_space_read_4(pi->pi_iot, pi->pi_ioh, o);
278 tmp = (val << shift) | (tmp & ~(0xff << shift));
279 bus_space_write_4(pi->pi_iot, pi->pi_ioh, o, tmp);
280 }
281 }
282
283 static void
284 pwritem1(struct plcom_instance *pi, bus_size_t o, const uint8_t *datap,
285 bus_size_t count)
286 {
287 if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS)) {
288 bus_space_write_multi_1(pi->pi_iot, pi->pi_ioh, o, datap, count);
289 } else {
290 KASSERT((o & 3) == 0);
291 while (count--) {
292 bus_space_write_4(pi->pi_iot, pi->pi_ioh, o, *datap++);
293 };
294 }
295 }
296
297 #define PREAD1(pi, reg) pread1(pi, reg)
298 #define PREAD4(pi, reg) \
299 (bus_space_read_4((pi)->pi_iot, (pi)->pi_ioh, (reg)))
300
301 #define PWRITE1(pi, reg, val) pwrite1(pi, reg, val)
302 #define PWRITEM1(pi, reg, d, c) pwritem1(pi, reg, d, c)
303 #define PWRITE4(pi, reg, val) \
304 (bus_space_write_4((pi)->pi_iot, (pi)->pi_ioh, (reg), (val)))
305
306 int
307 pl010comspeed(long speed, long frequency)
308 {
309 #define divrnd(n, q) (((n)*2/(q)+1)/2) /* divide and round off */
310
311 int x, err;
312
313 #if 0
314 if (speed == 0)
315 return 0;
316 #endif
317 if (speed <= 0)
318 return -1;
319 x = divrnd(frequency / 16, speed);
320 if (x <= 0)
321 return -1;
322 err = divrnd(((quad_t)frequency) * 1000 / 16, speed * x) - 1000;
323 if (err < 0)
324 err = -err;
325 if (err > PLCOM_TOLERANCE)
326 return -1;
327 return x;
328
329 #undef divrnd
330 }
331
332 int
333 pl011comspeed(long speed, long frequency)
334 {
335 int denom = 16 * speed;
336 int div = frequency / denom;
337 int rem = frequency % denom;
338
339 int ibrd = div << 6;
340 int fbrd = (((8 * rem) / speed) + 1) / 2;
341
342 /* Tolerance? */
343 return ibrd | fbrd;
344 }
345
346 #ifdef PLCOM_DEBUG
347 int plcom_debug = 0;
348
349 void plcomstatus (struct plcom_softc *, const char *);
350 void
351 plcomstatus(struct plcom_softc *sc, const char *str)
352 {
353 struct tty *tp = sc->sc_tty;
354
355 printf("%s: %s %sclocal %sdcd %sts_carr_on %sdtr %stx_stopped\n",
356 device_xname(sc->sc_dev), str,
357 ISSET(tp->t_cflag, CLOCAL) ? "+" : "-",
358 ISSET(sc->sc_msr, PL01X_MSR_DCD) ? "+" : "-",
359 ISSET(tp->t_state, TS_CARR_ON) ? "+" : "-",
360 ISSET(sc->sc_mcr, PL01X_MCR_DTR) ? "+" : "-",
361 sc->sc_tx_stopped ? "+" : "-");
362
363 printf("%s: %s %scrtscts %scts %sts_ttstop %srts %xrx_flags\n",
364 device_xname(sc->sc_dev), str,
365 ISSET(tp->t_cflag, CRTSCTS) ? "+" : "-",
366 ISSET(sc->sc_msr, PL01X_MSR_CTS) ? "+" : "-",
367 ISSET(tp->t_state, TS_TTSTOP) ? "+" : "-",
368 ISSET(sc->sc_mcr, PL01X_MCR_RTS) ? "+" : "-",
369 sc->sc_rx_flags);
370 }
371 #endif
372
373 #if 0
374 int
375 plcomprobe1(bus_space_tag_t iot, bus_space_handle_t ioh)
376 {
377 int data;
378
379 /* Disable the UART. */
380 bus_space_write_1(iot, ioh, plcom_cr, 0);
381 /* Make sure the FIFO is off. */
382 bus_space_write_1(iot, ioh, plcom_lcr, PL01X_LCR_8BITS);
383 /* Disable interrupts. */
384 bus_space_write_1(iot, ioh, plcom_iir, 0);
385
386 /* Make sure we swallow anything in the receiving register. */
387 data = bus_space_read_1(iot, ioh, plcom_dr);
388
389 if (bus_space_read_1(iot, ioh, plcom_lcr) != PL01X_LCR_8BITS)
390 return 0;
391
392 data = bus_space_read_1(iot, ioh, plcom_fr) & (PL01X_FR_RXFF | PL01X_FR_RXFE);
393
394 if (data != PL01X_FR_RXFE)
395 return 0;
396
397 return 1;
398 }
399 #endif
400
401 /*
402 * No locking in this routine; it is only called during attach,
403 * or with the port already locked.
404 */
405 static void
406 plcom_enable_debugport(struct plcom_softc *sc)
407 {
408 struct plcom_instance *pi = &sc->sc_pi;
409
410 sc->sc_cr = PL01X_CR_UARTEN;
411 SET(sc->sc_mcr, PL01X_MCR_DTR | PL01X_MCR_RTS);
412
413 /* Turn on line break interrupt, set carrier. */
414 switch (pi->pi_type) {
415 case PLCOM_TYPE_PL010:
416 SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE);
417 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
418 if (sc->sc_set_mcr) {
419 /* XXX device_unit() abuse */
420 sc->sc_set_mcr(sc->sc_set_mcr_arg,
421 device_unit(sc->sc_dev), sc->sc_mcr);
422 }
423 break;
424 case PLCOM_TYPE_PL011:
425 sc->sc_imsc = PL011_INT_RX | PL011_INT_RT;
426 SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
427 SET(sc->sc_cr, PL011_MCR(sc->sc_mcr));
428 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
429 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
430 break;
431 }
432
433 }
434
435 void
436 plcom_attach_subr(struct plcom_softc *sc)
437 {
438 struct plcom_instance *pi = &sc->sc_pi;
439 struct tty *tp;
440
441 callout_init(&sc->sc_diag_callout, 0);
442 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_HIGH);
443
444 switch (pi->pi_type) {
445 case PLCOM_TYPE_PL010:
446 case PLCOM_TYPE_PL011:
447 break;
448 default:
449 aprint_error_dev(sc->sc_dev,
450 "Unknown plcom type: %d\n", pi->pi_type);
451 return;
452 }
453
454 /* Disable interrupts before configuring the device. */
455 sc->sc_cr = 0;
456 sc->sc_imsc = 0;
457
458 if (bus_space_is_equal(pi->pi_iot, plcomcons_info.pi_iot) &&
459 pi->pi_iobase == plcomcons_info.pi_iobase) {
460 plcomconsattached = 1;
461
462 /* Make sure the console is always "hardwired". */
463 delay(1000); /* wait for output to finish */
464 SET(sc->sc_hwflags, PLCOM_HW_CONSOLE);
465 SET(sc->sc_swflags, TIOCFLAG_SOFTCAR);
466 /*
467 * Must re-enable the console immediately, or we will
468 * hang when trying to print.
469 */
470 sc->sc_cr = PL01X_CR_UARTEN;
471 if (pi->pi_type == PLCOM_TYPE_PL011)
472 SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
473 }
474
475 switch (pi->pi_type) {
476 case PLCOM_TYPE_PL010:
477 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
478 break;
479
480 case PLCOM_TYPE_PL011:
481 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
482 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
483 break;
484 }
485
486 if (sc->sc_fifolen == 0) {
487 switch (pi->pi_type) {
488 case PLCOM_TYPE_PL010:
489 /*
490 * The PL010 has a 16-byte fifo, but the tx interrupt
491 * triggers when there is space for 8 more bytes.
492 */
493 sc->sc_fifolen = 8;
494 break;
495 case PLCOM_TYPE_PL011:
496 /* Some revisions have a 32 byte TX FIFO */
497 sc->sc_fifolen = 16;
498 break;
499 }
500 }
501
502 if (ISSET(sc->sc_hwflags, PLCOM_HW_TXFIFO_DISABLE)) {
503 sc->sc_fifolen = 1;
504 aprint_normal_dev(sc->sc_dev, "txfifo disabled\n");
505 }
506
507 if (sc->sc_fifolen > 1)
508 SET(sc->sc_hwflags, PLCOM_HW_FIFO);
509
510 tp = tty_alloc();
511 tp->t_oproc = plcomstart;
512 tp->t_param = plcomparam;
513 tp->t_hwiflow = plcomhwiflow;
514
515 sc->sc_tty = tp;
516 sc->sc_rbuf = malloc(plcom_rbuf_size << 1, M_DEVBUF, M_NOWAIT);
517 sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
518 sc->sc_rbavail = plcom_rbuf_size;
519 if (sc->sc_rbuf == NULL) {
520 aprint_error_dev(sc->sc_dev,
521 "unable to allocate ring buffer\n");
522 return;
523 }
524 sc->sc_ebuf = sc->sc_rbuf + (plcom_rbuf_size << 1);
525
526 tty_attach(tp);
527
528 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
529 int maj;
530
531 /* locate the major number */
532 maj = cdevsw_lookup_major(&plcom_cdevsw);
533
534 tp->t_dev = cn_tab->cn_dev = makedev(maj, device_unit(sc->sc_dev));
535
536 aprint_normal_dev(sc->sc_dev, "console\n");
537 }
538
539 #ifdef KGDB
540 /*
541 * Allow kgdb to "take over" this port. If this is
542 * the kgdb device, it has exclusive use.
543 */
544 if (bus_space_is_equal(pi->pi_iot, plcomkgdb_info.pi_iot) &&
545 pi->pi_iobase == plcomkgdb_info.pi_iobase) {
546 if (!ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
547 plcom_kgdb_attached = 1;
548
549 SET(sc->sc_hwflags, PLCOM_HW_KGDB);
550 }
551 aprint_normal_dev(sc->sc_dev, "kgdb\n");
552 }
553 #endif
554
555 sc->sc_si = softint_establish(SOFTINT_SERIAL, plcomsoft, sc);
556
557 #ifdef RND_COM
558 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
559 RND_TYPE_TTY, RND_FLAG_DEFAULT);
560 #endif
561
562 /*
563 * if there are no enable/disable functions, assume the device
564 * is always enabled
565 */
566 if (!sc->enable)
567 sc->enabled = 1;
568
569 plcom_config(sc);
570
571 SET(sc->sc_hwflags, PLCOM_HW_DEV_OK);
572 }
573
574 void
575 plcom_config(struct plcom_softc *sc)
576 {
577 struct plcom_instance *pi = &sc->sc_pi;
578
579 /* Disable interrupts before configuring the device. */
580 sc->sc_cr = 0;
581 sc->sc_imsc = 0;
582 switch (pi->pi_type) {
583 case PLCOM_TYPE_PL010:
584 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
585 break;
586
587 case PLCOM_TYPE_PL011:
588 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
589 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
590 break;
591 }
592
593 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE|PLCOM_HW_KGDB))
594 plcom_enable_debugport(sc);
595 }
596
597 int
598 plcom_detach(device_t self, int flags)
599 {
600 struct plcom_softc *sc = device_private(self);
601 int maj, mn;
602
603 if (sc->sc_hwflags & (PLCOM_HW_CONSOLE|PLCOM_HW_KGDB))
604 return EBUSY;
605
606 if (sc->disable != NULL && sc->enabled != 0) {
607 (*sc->disable)(sc);
608 sc->enabled = 0;
609 }
610
611 /* locate the major number */
612 maj = cdevsw_lookup_major(&plcom_cdevsw);
613
614 /* Nuke the vnodes for any open instances. */
615 mn = device_unit(self);
616 vdevgone(maj, mn, mn, VCHR);
617
618 mn |= PLCOMDIALOUT_MASK;
619 vdevgone(maj, mn, mn, VCHR);
620
621 if (sc->sc_rbuf == NULL) {
622 /*
623 * Ring buffer allocation failed in the plcom_attach_subr,
624 * only the tty is allocated, and nothing else.
625 */
626 tty_free(sc->sc_tty);
627 return 0;
628 }
629
630 /* Free the receive buffer. */
631 free(sc->sc_rbuf, M_DEVBUF);
632
633 /* Detach and free the tty. */
634 tty_detach(sc->sc_tty);
635 tty_free(sc->sc_tty);
636
637 /* Unhook the soft interrupt handler. */
638 softint_disestablish(sc->sc_si);
639
640 #ifdef RND_COM
641 /* Unhook the entropy source. */
642 rnd_detach_source(&sc->rnd_source);
643 #endif
644 callout_destroy(&sc->sc_diag_callout);
645
646 /* Destroy the lock. */
647 mutex_destroy(&sc->sc_lock);
648
649 return 0;
650 }
651
652 int
653 plcom_activate(device_t self, enum devact act)
654 {
655 struct plcom_softc *sc = device_private(self);
656
657 switch (act) {
658 case DVACT_DEACTIVATE:
659 sc->enabled = 0;
660 return 0;
661 default:
662 return EOPNOTSUPP;
663 }
664 }
665
666 void
667 plcom_shutdown(struct plcom_softc *sc)
668 {
669 struct plcom_instance *pi = &sc->sc_pi;
670 struct tty *tp = sc->sc_tty;
671 mutex_spin_enter(&sc->sc_lock);
672
673 /* If we were asserting flow control, then deassert it. */
674 SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
675 plcom_hwiflow(sc);
676
677 /* Clear any break condition set with TIOCSBRK. */
678 plcom_break(sc, 0);
679
680 /* Turn off PPS capture on last close. */
681 mutex_spin_enter(&timecounter_lock);
682 sc->sc_ppsmask = 0;
683 sc->ppsparam.mode = 0;
684 mutex_spin_exit(&timecounter_lock);
685
686 /*
687 * Hang up if necessary. Wait a bit, so the other side has time to
688 * notice even if we immediately open the port again.
689 * Avoid tsleeping above splhigh().
690 */
691 if (ISSET(tp->t_cflag, HUPCL)) {
692 plcom_modem(sc, 0);
693 mutex_spin_exit(&sc->sc_lock);
694 /* XXX will only timeout */
695 (void) kpause(ttclos, false, hz, NULL);
696 mutex_spin_enter(&sc->sc_lock);
697 }
698
699 sc->sc_cr = 0;
700 sc->sc_imsc = 0;
701 /* Turn off interrupts. */
702 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
703 /* interrupt on break */
704
705 sc->sc_cr = PL01X_CR_UARTEN;
706 sc->sc_imsc = 0;
707 switch (pi->pi_type) {
708 case PLCOM_TYPE_PL010:
709 SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE);
710 break;
711 case PLCOM_TYPE_PL011:
712 SET(sc->sc_cr, PL011_CR_RXE);
713 SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX);
714 break;
715 }
716 }
717 switch (pi->pi_type) {
718 case PLCOM_TYPE_PL010:
719 SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE);
720 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
721 break;
722 case PLCOM_TYPE_PL011:
723 SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
724 SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX);
725 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
726 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
727 break;
728 }
729
730 mutex_spin_exit(&sc->sc_lock);
731 if (sc->disable) {
732 #ifdef DIAGNOSTIC
733 if (!sc->enabled)
734 panic("plcom_shutdown: not enabled?");
735 #endif
736 (*sc->disable)(sc);
737 sc->enabled = 0;
738 }
739 }
740
741 int
742 plcomopen(dev_t dev, int flag, int mode, struct lwp *l)
743 {
744 struct plcom_softc *sc;
745 struct plcom_instance *pi;
746 struct tty *tp;
747 int s;
748 int error;
749
750 sc = device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
751 if (sc == NULL || !ISSET(sc->sc_hwflags, PLCOM_HW_DEV_OK) ||
752 sc->sc_rbuf == NULL)
753 return ENXIO;
754
755 if (!device_is_active(sc->sc_dev))
756 return ENXIO;
757
758 pi = &sc->sc_pi;
759
760 #ifdef KGDB
761 /*
762 * If this is the kgdb port, no other use is permitted.
763 */
764 if (ISSET(sc->sc_hwflags, PLCOM_HW_KGDB))
765 return EBUSY;
766 #endif
767
768 tp = sc->sc_tty;
769
770 if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
771 return (EBUSY);
772
773 s = spltty();
774
775 /*
776 * Do the following iff this is a first open.
777 */
778 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
779 struct termios t;
780
781 tp->t_dev = dev;
782
783 if (sc->enable) {
784 if ((*sc->enable)(sc)) {
785 splx(s);
786 aprint_error_dev(sc->sc_dev,
787 "device enable failed\n");
788 return EIO;
789 }
790 mutex_spin_enter(&sc->sc_lock);
791 sc->enabled = 1;
792 plcom_config(sc);
793 } else {
794 mutex_spin_enter(&sc->sc_lock);
795 }
796
797 /* Turn on interrupts. */
798 /* IER_ERXRDY | IER_ERLS | IER_EMSC; */
799 /* Fetch the current modem control status, needed later. */
800 sc->sc_cr = PL01X_CR_UARTEN;
801 switch (pi->pi_type) {
802 case PLCOM_TYPE_PL010:
803 SET(sc->sc_cr,
804 PL010_CR_RIE | PL010_CR_RTIE | PL010_CR_MSIE);
805 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
806 sc->sc_msr = PREAD1(pi, PL01XCOM_FR);
807 break;
808 case PLCOM_TYPE_PL011:
809 SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
810 SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX |
811 PL011_INT_MSMASK);
812 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
813 sc->sc_msr = PREAD4(pi, PL01XCOM_FR);
814 break;
815 }
816
817 /* Clear PPS capture state on first open. */
818
819 mutex_spin_enter(&timecounter_lock);
820 sc->sc_ppsmask = 0;
821 sc->ppsparam.mode = 0;
822 mutex_spin_exit(&timecounter_lock);
823
824 mutex_spin_exit(&sc->sc_lock);
825
826 /*
827 * Initialize the termios status to the defaults. Add in the
828 * sticky bits from TIOCSFLAGS.
829 */
830 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
831 t.c_ospeed = plcomconsrate;
832 t.c_cflag = plcomconscflag;
833 } else {
834 t.c_ospeed = TTYDEF_SPEED;
835 t.c_cflag = TTYDEF_CFLAG;
836 }
837 t.c_ispeed = t.c_ospeed;
838
839 if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL))
840 SET(t.c_cflag, CLOCAL);
841 if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS))
842 SET(t.c_cflag, CRTSCTS);
843 if (ISSET(sc->sc_swflags, TIOCFLAG_MDMBUF))
844 SET(t.c_cflag, MDMBUF);
845 /* Make sure plcomparam() will do something. */
846 tp->t_ospeed = 0;
847 (void) plcomparam(tp, &t);
848 tp->t_iflag = TTYDEF_IFLAG;
849 tp->t_oflag = TTYDEF_OFLAG;
850 tp->t_lflag = TTYDEF_LFLAG;
851 ttychars(tp);
852 ttsetwater(tp);
853
854 mutex_spin_enter(&sc->sc_lock);
855
856 /*
857 * Turn on DTR. We must always do this, even if carrier is not
858 * present, because otherwise we'd have to use TIOCSDTR
859 * immediately after setting CLOCAL, which applications do not
860 * expect. We always assert DTR while the device is open
861 * unless explicitly requested to deassert it.
862 */
863 plcom_modem(sc, 1);
864
865 /* Clear the input ring, and unblock. */
866 sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
867 sc->sc_rbavail = plcom_rbuf_size;
868 plcom_iflush(sc);
869 CLR(sc->sc_rx_flags, RX_ANY_BLOCK);
870 plcom_hwiflow(sc);
871
872 #ifdef PLCOM_DEBUG
873 if (plcom_debug)
874 plcomstatus(sc, "plcomopen ");
875 #endif
876
877 mutex_spin_exit(&sc->sc_lock);
878 }
879
880 splx(s);
881
882 error = ttyopen(tp, PLCOMDIALOUT(dev), ISSET(flag, O_NONBLOCK));
883 if (error)
884 goto bad;
885
886 error = (*tp->t_linesw->l_open)(dev, tp);
887 if (error)
888 goto bad;
889
890 return 0;
891
892 bad:
893 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
894 /*
895 * We failed to open the device, and nobody else had it opened.
896 * Clean up the state as appropriate.
897 */
898 plcom_shutdown(sc);
899 }
900
901 return error;
902 }
903
904 int
905 plcomclose(dev_t dev, int flag, int mode, struct lwp *l)
906 {
907 struct plcom_softc *sc =
908 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
909 struct tty *tp = sc->sc_tty;
910
911 /* XXX This is for cons.c. */
912 if (!ISSET(tp->t_state, TS_ISOPEN))
913 return 0;
914
915 (*tp->t_linesw->l_close)(tp, flag);
916 ttyclose(tp);
917
918 if (PLCOM_ISALIVE(sc) == 0)
919 return 0;
920
921 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
922 /*
923 * Although we got a last close, the device may still be in
924 * use; e.g. if this was the dialout node, and there are still
925 * processes waiting for carrier on the non-dialout node.
926 */
927 plcom_shutdown(sc);
928 }
929
930 return 0;
931 }
932
933 int
934 plcomread(dev_t dev, struct uio *uio, int flag)
935 {
936 struct plcom_softc *sc =
937 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
938 struct tty *tp = sc->sc_tty;
939
940 if (PLCOM_ISALIVE(sc) == 0)
941 return EIO;
942
943 return (*tp->t_linesw->l_read)(tp, uio, flag);
944 }
945
946 int
947 plcomwrite(dev_t dev, struct uio *uio, int flag)
948 {
949 struct plcom_softc *sc =
950 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
951 struct tty *tp = sc->sc_tty;
952
953 if (PLCOM_ISALIVE(sc) == 0)
954 return EIO;
955
956 return (*tp->t_linesw->l_write)(tp, uio, flag);
957 }
958
959 int
960 plcompoll(dev_t dev, int events, struct lwp *l)
961 {
962 struct plcom_softc *sc =
963 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
964 struct tty *tp = sc->sc_tty;
965
966 if (PLCOM_ISALIVE(sc) == 0)
967 return EIO;
968
969 return (*tp->t_linesw->l_poll)(tp, events, l);
970 }
971
972 struct tty *
973 plcomtty(dev_t dev)
974 {
975 struct plcom_softc *sc =
976 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
977 struct tty *tp = sc->sc_tty;
978
979 return tp;
980 }
981
982 int
983 plcomioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
984 {
985 struct plcom_softc *sc =
986 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
987 struct tty *tp;
988 int error;
989
990 if (sc == NULL)
991 return ENXIO;
992 if (PLCOM_ISALIVE(sc) == 0)
993 return EIO;
994
995 tp = sc->sc_tty;
996
997 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
998 if (error != EPASSTHROUGH)
999 return error;
1000
1001 error = ttioctl(tp, cmd, data, flag, l);
1002 if (error != EPASSTHROUGH)
1003 return error;
1004
1005 error = 0;
1006 switch (cmd) {
1007 case TIOCSFLAGS:
1008 error = kauth_authorize_device_tty(l->l_cred,
1009 KAUTH_DEVICE_TTY_PRIVSET, tp);
1010 break;
1011 default:
1012 /* nothing */
1013 break;
1014 }
1015 if (error) {
1016 return error;
1017 }
1018
1019 mutex_spin_enter(&sc->sc_lock);
1020 switch (cmd) {
1021 case TIOCSBRK:
1022 plcom_break(sc, 1);
1023 break;
1024
1025 case TIOCCBRK:
1026 plcom_break(sc, 0);
1027 break;
1028
1029 case TIOCSDTR:
1030 plcom_modem(sc, 1);
1031 break;
1032
1033 case TIOCCDTR:
1034 plcom_modem(sc, 0);
1035 break;
1036
1037 case TIOCGFLAGS:
1038 *(int *)data = sc->sc_swflags;
1039 break;
1040
1041 case TIOCSFLAGS:
1042 sc->sc_swflags = *(int *)data;
1043 break;
1044
1045 case TIOCMSET:
1046 case TIOCMBIS:
1047 case TIOCMBIC:
1048 tiocm_to_plcom(sc, cmd, *(int *)data);
1049 break;
1050
1051 case TIOCMGET:
1052 *(int *)data = plcom_to_tiocm(sc);
1053 break;
1054
1055 case PPS_IOC_CREATE:
1056 break;
1057
1058 case PPS_IOC_DESTROY:
1059 break;
1060
1061 case PPS_IOC_GETPARAMS: {
1062 pps_params_t *pp;
1063 pp = (pps_params_t *)data;
1064 mutex_spin_enter(&timecounter_lock);
1065 *pp = sc->ppsparam;
1066 mutex_spin_exit(&timecounter_lock);
1067 break;
1068 }
1069
1070 case PPS_IOC_SETPARAMS: {
1071 pps_params_t *pp;
1072 int mode;
1073 pp = (pps_params_t *)data;
1074 mutex_spin_enter(&timecounter_lock);
1075 if (pp->mode & ~ppscap) {
1076 error = EINVAL;
1077 mutex_spin_exit(&timecounter_lock);
1078 break;
1079 }
1080 sc->ppsparam = *pp;
1081 /*
1082 * Compute msr masks from user-specified timestamp state.
1083 */
1084 mode = sc->ppsparam.mode;
1085 #ifdef PPS_SYNC
1086 if (mode & PPS_HARDPPSONASSERT) {
1087 mode |= PPS_CAPTUREASSERT;
1088 /* XXX revoke any previous HARDPPS source */
1089 }
1090 if (mode & PPS_HARDPPSONCLEAR) {
1091 mode |= PPS_CAPTURECLEAR;
1092 /* XXX revoke any previous HARDPPS source */
1093 }
1094 #endif /* PPS_SYNC */
1095 switch (mode & PPS_CAPTUREBOTH) {
1096 case 0:
1097 sc->sc_ppsmask = 0;
1098 break;
1099
1100 case PPS_CAPTUREASSERT:
1101 sc->sc_ppsmask = PL01X_MSR_DCD;
1102 sc->sc_ppsassert = PL01X_MSR_DCD;
1103 sc->sc_ppsclear = -1;
1104 break;
1105
1106 case PPS_CAPTURECLEAR:
1107 sc->sc_ppsmask = PL01X_MSR_DCD;
1108 sc->sc_ppsassert = -1;
1109 sc->sc_ppsclear = 0;
1110 break;
1111
1112 case PPS_CAPTUREBOTH:
1113 sc->sc_ppsmask = PL01X_MSR_DCD;
1114 sc->sc_ppsassert = PL01X_MSR_DCD;
1115 sc->sc_ppsclear = 0;
1116 break;
1117
1118 default:
1119 error = EINVAL;
1120 break;
1121 }
1122 mutex_spin_exit(&timecounter_lock);
1123 break;
1124 }
1125
1126 case PPS_IOC_GETCAP:
1127 *(int*)data = ppscap;
1128 break;
1129
1130 case PPS_IOC_FETCH: {
1131 pps_info_t *pi;
1132 pi = (pps_info_t *)data;
1133 mutex_spin_enter(&timecounter_lock);
1134 *pi = sc->ppsinfo;
1135 mutex_spin_exit(&timecounter_lock);
1136 break;
1137 }
1138
1139 case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */
1140 /*
1141 * Some GPS clocks models use the falling rather than
1142 * rising edge as the on-the-second signal.
1143 * The old API has no way to specify PPS polarity.
1144 */
1145 mutex_spin_enter(&timecounter_lock);
1146 sc->sc_ppsmask = PL01X_MSR_DCD;
1147 #ifndef PPS_TRAILING_EDGE
1148 sc->sc_ppsassert = PL01X_MSR_DCD;
1149 sc->sc_ppsclear = -1;
1150 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
1151 &sc->ppsinfo.assert_timestamp);
1152 #else
1153 sc->sc_ppsassert = -1
1154 sc->sc_ppsclear = 0;
1155 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
1156 &sc->ppsinfo.clear_timestamp);
1157 #endif
1158 mutex_spin_exit(&timecounter_lock);
1159 break;
1160
1161 default:
1162 error = EPASSTHROUGH;
1163 break;
1164 }
1165
1166 mutex_spin_exit(&sc->sc_lock);
1167
1168 #ifdef PLCOM_DEBUG
1169 if (plcom_debug)
1170 plcomstatus(sc, "plcomioctl ");
1171 #endif
1172
1173 return error;
1174 }
1175
1176 integrate void
1177 plcom_schedrx(struct plcom_softc *sc)
1178 {
1179
1180 sc->sc_rx_ready = 1;
1181
1182 /* Wake up the poller. */
1183 softint_schedule(sc->sc_si);
1184 }
1185
1186 void
1187 plcom_break(struct plcom_softc *sc, int onoff)
1188 {
1189
1190 if (onoff)
1191 SET(sc->sc_lcr, PL01X_LCR_BRK);
1192 else
1193 CLR(sc->sc_lcr, PL01X_LCR_BRK);
1194
1195 if (!sc->sc_heldchange) {
1196 if (sc->sc_tx_busy) {
1197 sc->sc_heldtbc = sc->sc_tbc;
1198 sc->sc_tbc = 0;
1199 sc->sc_heldchange = 1;
1200 } else
1201 plcom_loadchannelregs(sc);
1202 }
1203 }
1204
1205 void
1206 plcom_modem(struct plcom_softc *sc, int onoff)
1207 {
1208
1209 if (sc->sc_mcr_dtr == 0)
1210 return;
1211
1212 if (onoff)
1213 SET(sc->sc_mcr, sc->sc_mcr_dtr);
1214 else
1215 CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1216
1217 if (!sc->sc_heldchange) {
1218 if (sc->sc_tx_busy) {
1219 sc->sc_heldtbc = sc->sc_tbc;
1220 sc->sc_tbc = 0;
1221 sc->sc_heldchange = 1;
1222 } else
1223 plcom_loadchannelregs(sc);
1224 }
1225 }
1226
1227 void
1228 tiocm_to_plcom(struct plcom_softc *sc, u_long how, int ttybits)
1229 {
1230 u_char plcombits;
1231
1232 plcombits = 0;
1233 if (ISSET(ttybits, TIOCM_DTR))
1234 SET(plcombits, PL01X_MCR_DTR);
1235 if (ISSET(ttybits, TIOCM_RTS))
1236 SET(plcombits, PL01X_MCR_RTS);
1237
1238 switch (how) {
1239 case TIOCMBIC:
1240 CLR(sc->sc_mcr, plcombits);
1241 break;
1242
1243 case TIOCMBIS:
1244 SET(sc->sc_mcr, plcombits);
1245 break;
1246
1247 case TIOCMSET:
1248 CLR(sc->sc_mcr, PL01X_MCR_DTR | PL01X_MCR_RTS);
1249 SET(sc->sc_mcr, plcombits);
1250 break;
1251 }
1252
1253 if (!sc->sc_heldchange) {
1254 if (sc->sc_tx_busy) {
1255 sc->sc_heldtbc = sc->sc_tbc;
1256 sc->sc_tbc = 0;
1257 sc->sc_heldchange = 1;
1258 } else
1259 plcom_loadchannelregs(sc);
1260 }
1261 }
1262
1263 int
1264 plcom_to_tiocm(struct plcom_softc *sc)
1265 {
1266 u_char plcombits;
1267 int ttybits = 0;
1268
1269 plcombits = sc->sc_mcr;
1270 if (ISSET(plcombits, PL01X_MCR_DTR))
1271 SET(ttybits, TIOCM_DTR);
1272 if (ISSET(plcombits, PL01X_MCR_RTS))
1273 SET(ttybits, TIOCM_RTS);
1274
1275 plcombits = sc->sc_msr;
1276 if (ISSET(plcombits, PL01X_MSR_DCD))
1277 SET(ttybits, TIOCM_CD);
1278 if (ISSET(plcombits, PL01X_MSR_CTS))
1279 SET(ttybits, TIOCM_CTS);
1280 if (ISSET(plcombits, PL01X_MSR_DSR))
1281 SET(ttybits, TIOCM_DSR);
1282 if (ISSET(plcombits, PL011_MSR_RI))
1283 SET(ttybits, TIOCM_RI);
1284
1285 if (sc->sc_cr != 0)
1286 SET(ttybits, TIOCM_LE);
1287
1288 return ttybits;
1289 }
1290
1291 static u_char
1292 cflag2lcr(tcflag_t cflag)
1293 {
1294 u_char lcr = 0;
1295
1296 switch (ISSET(cflag, CSIZE)) {
1297 case CS5:
1298 SET(lcr, PL01X_LCR_5BITS);
1299 break;
1300 case CS6:
1301 SET(lcr, PL01X_LCR_6BITS);
1302 break;
1303 case CS7:
1304 SET(lcr, PL01X_LCR_7BITS);
1305 break;
1306 case CS8:
1307 SET(lcr, PL01X_LCR_8BITS);
1308 break;
1309 }
1310 if (ISSET(cflag, PARENB)) {
1311 SET(lcr, PL01X_LCR_PEN);
1312 if (!ISSET(cflag, PARODD))
1313 SET(lcr, PL01X_LCR_EPS);
1314 }
1315 if (ISSET(cflag, CSTOPB))
1316 SET(lcr, PL01X_LCR_STP2);
1317
1318 return lcr;
1319 }
1320
1321 int
1322 plcomparam(struct tty *tp, struct termios *t)
1323 {
1324 struct plcom_softc *sc =
1325 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1326 struct plcom_instance *pi = &sc->sc_pi;
1327 int ospeed = -1;
1328 u_char lcr;
1329
1330 if (PLCOM_ISALIVE(sc) == 0)
1331 return EIO;
1332
1333 switch (pi->pi_type) {
1334 case PLCOM_TYPE_PL010:
1335 ospeed = pl010comspeed(t->c_ospeed, sc->sc_frequency);
1336 break;
1337 case PLCOM_TYPE_PL011:
1338 ospeed = pl011comspeed(t->c_ospeed, sc->sc_frequency);
1339 break;
1340 }
1341
1342 /* Check requested parameters. */
1343 if (ospeed < 0)
1344 return EINVAL;
1345 if (t->c_ispeed && t->c_ispeed != t->c_ospeed)
1346 return EINVAL;
1347
1348 /*
1349 * For the console, always force CLOCAL and !HUPCL, so that the port
1350 * is always active.
1351 */
1352 if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR) ||
1353 ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
1354 SET(t->c_cflag, CLOCAL);
1355 CLR(t->c_cflag, HUPCL);
1356 }
1357
1358 /*
1359 * If there were no changes, don't do anything. This avoids dropping
1360 * input and improves performance when all we did was frob things like
1361 * VMIN and VTIME.
1362 */
1363 if (tp->t_ospeed == t->c_ospeed &&
1364 tp->t_cflag == t->c_cflag)
1365 return 0;
1366
1367 lcr = ISSET(sc->sc_lcr, PL01X_LCR_BRK) | cflag2lcr(t->c_cflag);
1368
1369 mutex_spin_enter(&sc->sc_lock);
1370
1371 sc->sc_lcr = lcr;
1372
1373 /*
1374 * PL010 has a fixed-length FIFO trigger point.
1375 */
1376 if (ISSET(sc->sc_hwflags, PLCOM_HW_FIFO))
1377 sc->sc_fifo = 1;
1378 else
1379 sc->sc_fifo = 0;
1380
1381 if (sc->sc_fifo)
1382 SET(sc->sc_lcr, PL01X_LCR_FEN);
1383
1384 /*
1385 * If we're not in a mode that assumes a connection is present, then
1386 * ignore carrier changes.
1387 */
1388 if (ISSET(t->c_cflag, CLOCAL | MDMBUF))
1389 sc->sc_msr_dcd = 0;
1390 else
1391 sc->sc_msr_dcd = PL01X_MSR_DCD;
1392 /*
1393 * Set the flow control pins depending on the current flow control
1394 * mode.
1395 */
1396 if (ISSET(t->c_cflag, CRTSCTS)) {
1397 sc->sc_mcr_dtr = PL01X_MCR_DTR;
1398 sc->sc_mcr_rts = PL01X_MCR_RTS;
1399 sc->sc_msr_cts = PL01X_MSR_CTS;
1400 } else if (ISSET(t->c_cflag, MDMBUF)) {
1401 /*
1402 * For DTR/DCD flow control, make sure we don't toggle DTR for
1403 * carrier detection.
1404 */
1405 sc->sc_mcr_dtr = 0;
1406 sc->sc_mcr_rts = PL01X_MCR_DTR;
1407 sc->sc_msr_cts = PL01X_MSR_DCD;
1408 } else {
1409 /*
1410 * If no flow control, then always set RTS. This will make
1411 * the other side happy if it mistakenly thinks we're doing
1412 * RTS/CTS flow control.
1413 */
1414 sc->sc_mcr_dtr = PL01X_MCR_DTR | PL01X_MCR_RTS;
1415 sc->sc_mcr_rts = 0;
1416 sc->sc_msr_cts = 0;
1417 if (ISSET(sc->sc_mcr, PL01X_MCR_DTR))
1418 SET(sc->sc_mcr, PL01X_MCR_RTS);
1419 else
1420 CLR(sc->sc_mcr, PL01X_MCR_RTS);
1421 }
1422 sc->sc_msr_mask = sc->sc_msr_cts | sc->sc_msr_dcd;
1423
1424 #if 0
1425 if (ospeed == 0)
1426 CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1427 else
1428 SET(sc->sc_mcr, sc->sc_mcr_dtr);
1429 #endif
1430
1431 switch (pi->pi_type) {
1432 case PLCOM_TYPE_PL010:
1433 sc->sc_ratel = ospeed & 0xff;
1434 sc->sc_rateh = (ospeed >> 8) & 0xff;
1435 break;
1436 case PLCOM_TYPE_PL011:
1437 sc->sc_ratel = ospeed & ((1 << 6) - 1);
1438 sc->sc_rateh = ospeed >> 6;
1439 break;
1440 }
1441
1442 /* And copy to tty. */
1443 tp->t_ispeed = t->c_ospeed;
1444 tp->t_ospeed = t->c_ospeed;
1445 tp->t_cflag = t->c_cflag;
1446
1447 if (!sc->sc_heldchange) {
1448 if (sc->sc_tx_busy) {
1449 sc->sc_heldtbc = sc->sc_tbc;
1450 sc->sc_tbc = 0;
1451 sc->sc_heldchange = 1;
1452 } else
1453 plcom_loadchannelregs(sc);
1454 }
1455
1456 if (!ISSET(t->c_cflag, CHWFLOW)) {
1457 /* Disable the high water mark. */
1458 sc->sc_r_hiwat = 0;
1459 sc->sc_r_lowat = 0;
1460 if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1461 CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1462 plcom_schedrx(sc);
1463 }
1464 if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
1465 CLR(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
1466 plcom_hwiflow(sc);
1467 }
1468 } else {
1469 sc->sc_r_hiwat = plcom_rbuf_hiwat;
1470 sc->sc_r_lowat = plcom_rbuf_lowat;
1471 }
1472
1473 mutex_spin_exit(&sc->sc_lock);
1474
1475 /*
1476 * Update the tty layer's idea of the carrier bit, in case we changed
1477 * CLOCAL or MDMBUF. We don't hang up here; we only do that by
1478 * explicit request.
1479 */
1480 (void) (*tp->t_linesw->l_modem)(tp, ISSET(sc->sc_msr, PL01X_MSR_DCD));
1481
1482 #ifdef PLCOM_DEBUG
1483 if (plcom_debug)
1484 plcomstatus(sc, "plcomparam ");
1485 #endif
1486
1487 if (!ISSET(t->c_cflag, CHWFLOW)) {
1488 if (sc->sc_tx_stopped) {
1489 sc->sc_tx_stopped = 0;
1490 plcomstart(tp);
1491 }
1492 }
1493
1494 return 0;
1495 }
1496
1497 void
1498 plcom_iflush(struct plcom_softc *sc)
1499 {
1500 struct plcom_instance *pi = &sc->sc_pi;
1501 #ifdef DIAGNOSTIC
1502 int reg;
1503 #endif
1504 int timo;
1505
1506 #ifdef DIAGNOSTIC
1507 reg = 0xffff;
1508 #endif
1509 timo = 50000;
1510 /* flush any pending I/O */
1511 while (! ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE)
1512 && --timo)
1513 #ifdef DIAGNOSTIC
1514 reg =
1515 #else
1516 (void)
1517 #endif
1518 PREAD1(pi, PL01XCOM_DR);
1519 #ifdef DIAGNOSTIC
1520 if (!timo)
1521 aprint_error_dev(sc->sc_dev, ": %s timeout %02x\n", __func__,
1522 reg);
1523 #endif
1524 }
1525
1526 void
1527 plcom_loadchannelregs(struct plcom_softc *sc)
1528 {
1529 struct plcom_instance *pi = &sc->sc_pi;
1530
1531 /* XXXXX necessary? */
1532 plcom_iflush(sc);
1533
1534 switch (pi->pi_type) {
1535 case PLCOM_TYPE_PL010:
1536 PWRITE1(pi, PL010COM_CR, 0);
1537 if (sc->sc_frequency != 0) {
1538 PWRITE1(pi, PL010COM_DLBL, sc->sc_ratel);
1539 PWRITE1(pi, PL010COM_DLBH, sc->sc_rateh);
1540 }
1541 PWRITE1(pi, PL010COM_LCR, sc->sc_lcr);
1542
1543 /* XXX device_unit() abuse */
1544 if (sc->sc_set_mcr)
1545 sc->sc_set_mcr(sc->sc_set_mcr_arg,
1546 device_unit(sc->sc_dev),
1547 sc->sc_mcr_active = sc->sc_mcr);
1548
1549 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
1550 break;
1551
1552 case PLCOM_TYPE_PL011:
1553 PWRITE4(pi, PL011COM_CR, 0);
1554 if (sc->sc_frequency != 0) {
1555 PWRITE1(pi, PL011COM_FBRD, sc->sc_ratel);
1556 PWRITE4(pi, PL011COM_IBRD, sc->sc_rateh);
1557 }
1558 PWRITE1(pi, PL011COM_LCRH, sc->sc_lcr);
1559 sc->sc_mcr_active = sc->sc_mcr;
1560 CLR(sc->sc_cr, PL011_MCR(PL01X_MCR_RTS | PL01X_MCR_DTR));
1561 SET(sc->sc_cr, PL011_MCR(sc->sc_mcr_active));
1562 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
1563 break;
1564 }
1565 }
1566
1567 int
1568 plcomhwiflow(struct tty *tp, int block)
1569 {
1570 struct plcom_softc *sc =
1571 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1572
1573 if (PLCOM_ISALIVE(sc) == 0)
1574 return 0;
1575
1576 if (sc->sc_mcr_rts == 0)
1577 return 0;
1578
1579 mutex_spin_enter(&sc->sc_lock);
1580
1581 if (block) {
1582 if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1583 SET(sc->sc_rx_flags, RX_TTY_BLOCKED);
1584 plcom_hwiflow(sc);
1585 }
1586 } else {
1587 if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1588 CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1589 plcom_schedrx(sc);
1590 }
1591 if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1592 CLR(sc->sc_rx_flags, RX_TTY_BLOCKED);
1593 plcom_hwiflow(sc);
1594 }
1595 }
1596
1597 mutex_spin_exit(&sc->sc_lock);
1598 return 1;
1599 }
1600
1601 /*
1602 * (un)block input via hw flowcontrol
1603 */
1604 void
1605 plcom_hwiflow(struct plcom_softc *sc)
1606 {
1607 struct plcom_instance *pi = &sc->sc_pi;
1608
1609 if (sc->sc_mcr_rts == 0)
1610 return;
1611
1612 if (ISSET(sc->sc_rx_flags, RX_ANY_BLOCK)) {
1613 CLR(sc->sc_mcr, sc->sc_mcr_rts);
1614 CLR(sc->sc_mcr_active, sc->sc_mcr_rts);
1615 } else {
1616 SET(sc->sc_mcr, sc->sc_mcr_rts);
1617 SET(sc->sc_mcr_active, sc->sc_mcr_rts);
1618 }
1619 switch (pi->pi_type) {
1620 case PLCOM_TYPE_PL010:
1621 if (sc->sc_set_mcr)
1622 /* XXX device_unit() abuse */
1623 sc->sc_set_mcr(sc->sc_set_mcr_arg,
1624 device_unit(sc->sc_dev), sc->sc_mcr_active);
1625 break;
1626 case PLCOM_TYPE_PL011:
1627 CLR(sc->sc_cr, PL011_MCR(PL01X_MCR_RTS | PL01X_MCR_DTR));
1628 SET(sc->sc_cr, PL011_MCR(sc->sc_mcr_active));
1629 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
1630 break;
1631 }
1632 }
1633
1634
1635 void
1636 plcomstart(struct tty *tp)
1637 {
1638 struct plcom_softc *sc =
1639 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1640 struct plcom_instance *pi = &sc->sc_pi;
1641 int s;
1642
1643 if (PLCOM_ISALIVE(sc) == 0)
1644 return;
1645
1646 s = spltty();
1647 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
1648 goto out;
1649 if (sc->sc_tx_stopped)
1650 goto out;
1651
1652 if (!ttypull(tp))
1653 goto out;
1654
1655 /* Grab the first contiguous region of buffer space. */
1656 {
1657 u_char *tba;
1658 int tbc;
1659
1660 tba = tp->t_outq.c_cf;
1661 tbc = ndqb(&tp->t_outq, 0);
1662
1663 mutex_spin_enter(&sc->sc_lock);
1664
1665 sc->sc_tba = tba;
1666 sc->sc_tbc = tbc;
1667 }
1668
1669 SET(tp->t_state, TS_BUSY);
1670 sc->sc_tx_busy = 1;
1671
1672 /* Enable transmit completion interrupts if necessary. */
1673 switch (pi->pi_type) {
1674 case PLCOM_TYPE_PL010:
1675 if (!ISSET(sc->sc_cr, PL010_CR_TIE)) {
1676 SET(sc->sc_cr, PL010_CR_TIE);
1677 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
1678 }
1679 break;
1680 case PLCOM_TYPE_PL011:
1681 if (!ISSET(sc->sc_imsc, PL011_INT_TX)) {
1682 SET(sc->sc_imsc, PL011_INT_TX);
1683 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
1684 }
1685 break;
1686 }
1687
1688 /* Output the first chunk of the contiguous buffer. */
1689 {
1690 int n;
1691
1692 n = sc->sc_tbc;
1693 if (n > sc->sc_fifolen)
1694 n = sc->sc_fifolen;
1695 PWRITEM1(pi, PL01XCOM_DR, sc->sc_tba, n);
1696 sc->sc_tbc -= n;
1697 sc->sc_tba += n;
1698 }
1699 mutex_spin_exit(&sc->sc_lock);
1700 out:
1701 splx(s);
1702 return;
1703 }
1704
1705 /*
1706 * Stop output on a line.
1707 */
1708 void
1709 plcomstop(struct tty *tp, int flag)
1710 {
1711 struct plcom_softc *sc =
1712 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1713
1714 mutex_spin_enter(&sc->sc_lock);
1715 if (ISSET(tp->t_state, TS_BUSY)) {
1716 /* Stop transmitting at the next chunk. */
1717 sc->sc_tbc = 0;
1718 sc->sc_heldtbc = 0;
1719 if (!ISSET(tp->t_state, TS_TTSTOP))
1720 SET(tp->t_state, TS_FLUSH);
1721 }
1722 mutex_spin_exit(&sc->sc_lock);
1723 }
1724
1725 void
1726 plcomdiag(void *arg)
1727 {
1728 struct plcom_softc *sc = arg;
1729 int overflows, floods;
1730
1731 mutex_spin_enter(&sc->sc_lock);
1732 overflows = sc->sc_overflows;
1733 sc->sc_overflows = 0;
1734 floods = sc->sc_floods;
1735 sc->sc_floods = 0;
1736 sc->sc_errors = 0;
1737 mutex_spin_exit(&sc->sc_lock);
1738
1739 log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
1740 device_xname(sc->sc_dev),
1741 overflows, overflows == 1 ? "" : "s",
1742 floods, floods == 1 ? "" : "s");
1743 }
1744
1745 integrate void
1746 plcom_rxsoft(struct plcom_softc *sc, struct tty *tp)
1747 {
1748 int (*rint) (int, struct tty *) = tp->t_linesw->l_rint;
1749 struct plcom_instance *pi = &sc->sc_pi;
1750 u_char *get, *end;
1751 u_int cc, scc;
1752 u_char rsr;
1753 int code;
1754
1755 end = sc->sc_ebuf;
1756 get = sc->sc_rbget;
1757 scc = cc = plcom_rbuf_size - sc->sc_rbavail;
1758
1759 if (cc == plcom_rbuf_size) {
1760 sc->sc_floods++;
1761 if (sc->sc_errors++ == 0)
1762 callout_reset(&sc->sc_diag_callout, 60 * hz,
1763 plcomdiag, sc);
1764 }
1765
1766 while (cc) {
1767 code = get[0];
1768 rsr = get[1];
1769 if (ISSET(rsr, PL01X_RSR_ERROR)) {
1770 if (ISSET(rsr, PL01X_RSR_OE)) {
1771 sc->sc_overflows++;
1772 if (sc->sc_errors++ == 0)
1773 callout_reset(&sc->sc_diag_callout,
1774 60 * hz, plcomdiag, sc);
1775 }
1776 if (ISSET(rsr, PL01X_RSR_BE | PL01X_RSR_FE))
1777 SET(code, TTY_FE);
1778 if (ISSET(rsr, PL01X_RSR_PE))
1779 SET(code, TTY_PE);
1780 }
1781 if ((*rint)(code, tp) == -1) {
1782 /*
1783 * The line discipline's buffer is out of space.
1784 */
1785 if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1786 /*
1787 * We're either not using flow control, or the
1788 * line discipline didn't tell us to block for
1789 * some reason. Either way, we have no way to
1790 * know when there's more space available, so
1791 * just drop the rest of the data.
1792 */
1793 get += cc << 1;
1794 if (get >= end)
1795 get -= plcom_rbuf_size << 1;
1796 cc = 0;
1797 } else {
1798 /*
1799 * Don't schedule any more receive processing
1800 * until the line discipline tells us there's
1801 * space available (through plcomhwiflow()).
1802 * Leave the rest of the data in the input
1803 * buffer.
1804 */
1805 SET(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1806 }
1807 break;
1808 }
1809 get += 2;
1810 if (get >= end)
1811 get = sc->sc_rbuf;
1812 cc--;
1813 }
1814
1815 if (cc != scc) {
1816 sc->sc_rbget = get;
1817 mutex_spin_enter(&sc->sc_lock);
1818
1819 cc = sc->sc_rbavail += scc - cc;
1820 /* Buffers should be ok again, release possible block. */
1821 if (cc >= sc->sc_r_lowat) {
1822 if (ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1823 CLR(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
1824 switch (pi->pi_type) {
1825 case PLCOM_TYPE_PL010:
1826 SET(sc->sc_cr,
1827 PL010_CR_RIE | PL010_CR_RTIE);
1828 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
1829 break;
1830 case PLCOM_TYPE_PL011:
1831 SET(sc->sc_imsc,
1832 PL011_INT_RX | PL011_INT_RT);
1833 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
1834 break;
1835 }
1836 }
1837 if (ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED)) {
1838 CLR(sc->sc_rx_flags, RX_IBUF_BLOCKED);
1839 plcom_hwiflow(sc);
1840 }
1841 }
1842 mutex_spin_exit(&sc->sc_lock);
1843 }
1844 }
1845
1846 integrate void
1847 plcom_txsoft(struct plcom_softc *sc, struct tty *tp)
1848 {
1849
1850 CLR(tp->t_state, TS_BUSY);
1851 if (ISSET(tp->t_state, TS_FLUSH))
1852 CLR(tp->t_state, TS_FLUSH);
1853 else
1854 ndflush(&tp->t_outq, (int)(sc->sc_tba - tp->t_outq.c_cf));
1855 (*tp->t_linesw->l_start)(tp);
1856 }
1857
1858 integrate void
1859 plcom_stsoft(struct plcom_softc *sc, struct tty *tp)
1860 {
1861 u_char msr, delta;
1862
1863 mutex_spin_enter(&sc->sc_lock);
1864 msr = sc->sc_msr;
1865 delta = sc->sc_msr_delta;
1866 sc->sc_msr_delta = 0;
1867 mutex_spin_exit(&sc->sc_lock);
1868
1869 if (ISSET(delta, sc->sc_msr_dcd)) {
1870 /*
1871 * Inform the tty layer that carrier detect changed.
1872 */
1873 (void) (*tp->t_linesw->l_modem)(tp, ISSET(msr, PL01X_MSR_DCD));
1874 }
1875
1876 if (ISSET(delta, sc->sc_msr_cts)) {
1877 /* Block or unblock output according to flow control. */
1878 if (ISSET(msr, sc->sc_msr_cts)) {
1879 sc->sc_tx_stopped = 0;
1880 (*tp->t_linesw->l_start)(tp);
1881 } else {
1882 sc->sc_tx_stopped = 1;
1883 }
1884 }
1885
1886 #ifdef PLCOM_DEBUG
1887 if (plcom_debug)
1888 plcomstatus(sc, "plcom_stsoft");
1889 #endif
1890 }
1891
1892 void
1893 plcomsoft(void *arg)
1894 {
1895 struct plcom_softc *sc = arg;
1896 struct tty *tp;
1897
1898 if (PLCOM_ISALIVE(sc) == 0)
1899 return;
1900
1901 tp = sc->sc_tty;
1902
1903 if (sc->sc_rx_ready) {
1904 sc->sc_rx_ready = 0;
1905 plcom_rxsoft(sc, tp);
1906 }
1907
1908 if (sc->sc_st_check) {
1909 sc->sc_st_check = 0;
1910 plcom_stsoft(sc, tp);
1911 }
1912
1913 if (sc->sc_tx_done) {
1914 sc->sc_tx_done = 0;
1915 plcom_txsoft(sc, tp);
1916 }
1917 }
1918
1919 bool
1920 plcom_intstatus(struct plcom_instance *pi, u_int *istatus)
1921 {
1922 bool ret = false;
1923 u_int stat = 0;
1924
1925 switch (pi->pi_type) {
1926 case PLCOM_TYPE_PL010:
1927 stat = PREAD1(pi, PL010COM_IIR);
1928 ret = ISSET(stat, PL010_IIR_IMASK);
1929 break;
1930 case PLCOM_TYPE_PL011:
1931 stat = PREAD4(pi, PL011COM_MIS);
1932 ret = ISSET(stat, PL011_INT_ALLMASK);
1933 break;
1934 }
1935 *istatus = stat;
1936
1937 return ret;
1938 }
1939
1940 int
1941 plcomintr(void *arg)
1942 {
1943 struct plcom_softc *sc = arg;
1944 struct plcom_instance *pi = &sc->sc_pi;
1945 u_char *put, *end;
1946 u_int cc;
1947 u_int istatus = 0;
1948 u_char rsr;
1949 bool intr = false;
1950
1951 PLCOM_BARRIER(pi, BR | BW);
1952
1953 if (PLCOM_ISALIVE(sc) == 0)
1954 return 0;
1955
1956 mutex_spin_enter(&sc->sc_lock);
1957 intr = plcom_intstatus(pi, &istatus);
1958 if (!intr) {
1959 mutex_spin_exit(&sc->sc_lock);
1960 return 0;
1961 }
1962
1963 end = sc->sc_ebuf;
1964 put = sc->sc_rbput;
1965 cc = sc->sc_rbavail;
1966
1967 do {
1968 u_int msr = 0, delta, fr;
1969 bool rxintr = false, txintr = false, msintr;
1970
1971 /* don't need RI here*/
1972 fr = PREAD1(pi, PL01XCOM_FR);
1973
1974 if (!ISSET(fr, PL01X_FR_RXFE) &&
1975 !ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1976 while (cc > 0) {
1977 int cn_trapped = 0;
1978 put[0] = PREAD1(pi, PL01XCOM_DR);
1979 rsr = PREAD1(pi, PL01XCOM_RSR);
1980 /* Clear any error status. */
1981 if (ISSET(rsr, PL01X_RSR_ERROR))
1982 PWRITE1(pi, PL01XCOM_ECR, 0);
1983 if (ISSET(rsr, PL01X_RSR_BE)) {
1984 cn_trapped = 0;
1985 cn_check_magic(sc->sc_tty->t_dev,
1986 CNC_BREAK, plcom_cnm_state);
1987 if (cn_trapped)
1988 continue;
1989 #if defined(KGDB)
1990 if (ISSET(sc->sc_hwflags,
1991 PLCOM_HW_KGDB)) {
1992 kgdb_connect(1);
1993 continue;
1994 }
1995 #endif
1996 }
1997
1998 put[1] = rsr;
1999 cn_trapped = 0;
2000 cn_check_magic(sc->sc_tty->t_dev, put[0],
2001 plcom_cnm_state);
2002 if (cn_trapped) {
2003 fr = PREAD1(pi, PL01XCOM_FR);
2004 if (ISSET(fr, PL01X_FR_RXFE))
2005 break;
2006
2007 continue;
2008 }
2009 put += 2;
2010 if (put >= end)
2011 put = sc->sc_rbuf;
2012 cc--;
2013
2014 /* don't need RI here*/
2015 fr = PREAD1(pi, PL01XCOM_FR);
2016 if (ISSET(fr, PL01X_FR_RXFE))
2017 break;
2018 }
2019
2020 /*
2021 * Current string of incoming characters ended because
2022 * no more data was available or we ran out of space.
2023 * Schedule a receive event if any data was received.
2024 * If we're out of space, turn off receive interrupts.
2025 */
2026 sc->sc_rbput = put;
2027 sc->sc_rbavail = cc;
2028 if (!ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED))
2029 sc->sc_rx_ready = 1;
2030
2031 /*
2032 * See if we are in danger of overflowing a buffer. If
2033 * so, use hardware flow control to ease the pressure.
2034 */
2035 if (!ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED) &&
2036 cc < sc->sc_r_hiwat) {
2037 SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
2038 plcom_hwiflow(sc);
2039 }
2040
2041 /*
2042 * If we're out of space, disable receive interrupts
2043 * until the queue has drained a bit.
2044 */
2045 if (!cc) {
2046 SET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
2047 switch (pi->pi_type) {
2048 case PLCOM_TYPE_PL010:
2049 CLR(sc->sc_cr,
2050 PL010_CR_RIE | PL010_CR_RTIE);
2051 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
2052 break;
2053 case PLCOM_TYPE_PL011:
2054 CLR(sc->sc_imsc,
2055 PL011_INT_RT | PL011_INT_RX);
2056 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
2057 break;
2058 }
2059 }
2060 } else {
2061 switch (pi->pi_type) {
2062 case PLCOM_TYPE_PL010:
2063 rxintr = ISSET(istatus, PL010_IIR_RIS);
2064 if (rxintr) {
2065 PWRITE1(pi, PL010COM_CR, 0);
2066 delay(10);
2067 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
2068 continue;
2069 }
2070 break;
2071 case PLCOM_TYPE_PL011:
2072 rxintr = ISSET(istatus, PL011_INT_RX);
2073 if (rxintr) {
2074 PWRITE4(pi, PL011COM_CR, 0);
2075 delay(10);
2076 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
2077 continue;
2078 }
2079 break;
2080 }
2081 }
2082
2083 switch (pi->pi_type) {
2084 case PLCOM_TYPE_PL010:
2085 msr = PREAD1(pi, PL01XCOM_FR);
2086 break;
2087 case PLCOM_TYPE_PL011:
2088 msr = PREAD4(pi, PL01XCOM_FR);
2089 break;
2090 }
2091 delta = msr ^ sc->sc_msr;
2092 sc->sc_msr = msr;
2093
2094 /* Clear any pending modem status interrupt. */
2095 switch (pi->pi_type) {
2096 case PLCOM_TYPE_PL010:
2097 msintr = ISSET(istatus, PL010_IIR_MIS);
2098 if (msintr) {
2099 PWRITE1(pi, PL010COM_ICR, 0);
2100 }
2101 break;
2102 case PLCOM_TYPE_PL011:
2103 msintr = ISSET(istatus, PL011_INT_MSMASK);
2104 if (msintr) {
2105 PWRITE4(pi, PL011COM_ICR, PL011_INT_MSMASK);
2106 }
2107 break;
2108 }
2109 /*
2110 * Pulse-per-second (PSS) signals on edge of DCD?
2111 * Process these even if line discipline is ignoring DCD.
2112 */
2113 if (delta & sc->sc_ppsmask) {
2114 struct timeval tv;
2115 mutex_spin_enter(&timecounter_lock);
2116 if ((msr & sc->sc_ppsmask) == sc->sc_ppsassert) {
2117 /* XXX nanotime() */
2118 microtime(&tv);
2119 TIMEVAL_TO_TIMESPEC(&tv,
2120 &sc->ppsinfo.assert_timestamp);
2121 if (sc->ppsparam.mode & PPS_OFFSETASSERT) {
2122 timespecadd(&sc->ppsinfo.assert_timestamp,
2123 &sc->ppsparam.assert_offset,
2124 &sc->ppsinfo.assert_timestamp);
2125 }
2126
2127 #ifdef PPS_SYNC
2128 if (sc->ppsparam.mode & PPS_HARDPPSONASSERT)
2129 hardpps(&tv, tv.tv_usec);
2130 #endif
2131 sc->ppsinfo.assert_sequence++;
2132 sc->ppsinfo.current_mode = sc->ppsparam.mode;
2133
2134 } else if ((msr & sc->sc_ppsmask) == sc->sc_ppsclear) {
2135 /* XXX nanotime() */
2136 microtime(&tv);
2137 TIMEVAL_TO_TIMESPEC(&tv,
2138 &sc->ppsinfo.clear_timestamp);
2139 if (sc->ppsparam.mode & PPS_OFFSETCLEAR) {
2140 timespecadd(&sc->ppsinfo.clear_timestamp,
2141 &sc->ppsparam.clear_offset,
2142 &sc->ppsinfo.clear_timestamp);
2143 }
2144
2145 #ifdef PPS_SYNC
2146 if (sc->ppsparam.mode & PPS_HARDPPSONCLEAR)
2147 hardpps(&tv, tv.tv_usec);
2148 #endif
2149 sc->ppsinfo.clear_sequence++;
2150 sc->ppsinfo.current_mode = sc->ppsparam.mode;
2151 }
2152 mutex_spin_exit(&timecounter_lock);
2153 }
2154
2155 /*
2156 * Process normal status changes
2157 */
2158 if (ISSET(delta, sc->sc_msr_mask)) {
2159 SET(sc->sc_msr_delta, delta);
2160
2161 /*
2162 * Stop output immediately if we lose the output
2163 * flow control signal or carrier detect.
2164 */
2165 if (ISSET(~msr, sc->sc_msr_mask)) {
2166 sc->sc_tbc = 0;
2167 sc->sc_heldtbc = 0;
2168 #ifdef PLCOM_DEBUG
2169 if (plcom_debug)
2170 plcomstatus(sc, "plcomintr ");
2171 #endif
2172 }
2173
2174 sc->sc_st_check = 1;
2175 }
2176
2177 /*
2178 * Done handling any receive interrupts. See if data
2179 * can be transmitted as well. Schedule tx done
2180 * event if no data left and tty was marked busy.
2181 */
2182
2183 switch (pi->pi_type) {
2184 case PLCOM_TYPE_PL010:
2185 txintr = ISSET(istatus, PL010_IIR_TIS);
2186 break;
2187 case PLCOM_TYPE_PL011:
2188 txintr = ISSET(istatus, PL011_INT_TX);
2189 break;
2190 }
2191 if (txintr) {
2192 /*
2193 * If we've delayed a parameter change, do it
2194 * now, and restart * output.
2195 */
2196 // PWRITE4(pi, PL011COM_ICR, PL011_INT_TX);
2197 if (sc->sc_heldchange) {
2198 plcom_loadchannelregs(sc);
2199 sc->sc_heldchange = 0;
2200 sc->sc_tbc = sc->sc_heldtbc;
2201 sc->sc_heldtbc = 0;
2202 }
2203
2204 /*
2205 * Output the next chunk of the contiguous
2206 * buffer, if any.
2207 */
2208 if (sc->sc_tbc > 0) {
2209 int n;
2210
2211 n = sc->sc_tbc;
2212 if (n > sc->sc_fifolen)
2213 n = sc->sc_fifolen;
2214 PWRITEM1(pi, PL01XCOM_DR, sc->sc_tba, n);
2215 sc->sc_tbc -= n;
2216 sc->sc_tba += n;
2217 } else {
2218 /*
2219 * Disable transmit completion
2220 * interrupts if necessary.
2221 */
2222 switch (pi->pi_type) {
2223 case PLCOM_TYPE_PL010:
2224 if (ISSET(sc->sc_cr, PL010_CR_TIE)) {
2225 CLR(sc->sc_cr, PL010_CR_TIE);
2226 PWRITE1(pi, PL010COM_CR,
2227 sc->sc_cr);
2228 }
2229 break;
2230 case PLCOM_TYPE_PL011:
2231 if (ISSET(sc->sc_imsc, PL011_INT_TX)) {
2232 CLR(sc->sc_imsc, PL011_INT_TX);
2233 PWRITE4(pi, PL011COM_IMSC,
2234 sc->sc_imsc);
2235 }
2236 break;
2237 }
2238 if (sc->sc_tx_busy) {
2239 sc->sc_tx_busy = 0;
2240 sc->sc_tx_done = 1;
2241 }
2242 }
2243 }
2244
2245 } while (plcom_intstatus(pi, &istatus));
2246
2247 mutex_spin_exit(&sc->sc_lock);
2248
2249 /* Wake up the poller. */
2250 softint_schedule(sc->sc_si);
2251
2252 #ifdef RND_COM
2253 rnd_add_uint32(&sc->rnd_source, istatus | rsr);
2254 #endif
2255
2256 PLCOM_BARRIER(pi, BR | BW);
2257
2258 return 1;
2259 }
2260
2261 /*
2262 * The following functions are polled getc and putc routines, shared
2263 * by the console and kgdb glue.
2264 *
2265 * The read-ahead code is so that you can detect pending in-band
2266 * cn_magic in polled mode while doing output rather than having to
2267 * wait until the kernel decides it needs input.
2268 */
2269
2270 #define MAX_READAHEAD 20
2271 static int plcom_readahead[MAX_READAHEAD];
2272 static int plcom_readaheadcount = 0;
2273
2274 int
2275 plcom_common_getc(dev_t dev, struct plcom_instance *pi)
2276 {
2277 int s = splserial();
2278 u_char c;
2279
2280 /* got a character from reading things earlier */
2281 if (plcom_readaheadcount > 0) {
2282 int i;
2283
2284 c = plcom_readahead[0];
2285 for (i = 1; i < plcom_readaheadcount; i++) {
2286 plcom_readahead[i-1] = plcom_readahead[i];
2287 }
2288 plcom_readaheadcount--;
2289 splx(s);
2290 return c;
2291 }
2292
2293 if (ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE)) {
2294 splx(s);
2295 return -1;
2296 }
2297
2298 c = PREAD1(pi, PL01XCOM_DR);
2299 {
2300 int cn_trapped __unused = 0;
2301 #ifdef DDB
2302 extern int db_active;
2303 if (!db_active)
2304 #endif
2305 cn_check_magic(dev, c, plcom_cnm_state);
2306 }
2307 splx(s);
2308 return c;
2309 }
2310
2311 void
2312 plcom_common_putc(dev_t dev, struct plcom_instance *pi, int c)
2313 {
2314 int s = splserial();
2315 int timo;
2316
2317 int cin, stat;
2318 if (plcom_readaheadcount < MAX_READAHEAD
2319 && !ISSET(stat = PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE)) {
2320 int cn_trapped __unused = 0;
2321 cin = PREAD1(pi, PL01XCOM_DR);
2322 cn_check_magic(dev, cin, plcom_cnm_state);
2323 plcom_readahead[plcom_readaheadcount++] = cin;
2324 }
2325
2326 /* wait for any pending transmission to finish */
2327 timo = 150000;
2328 while (ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_TXFF) && --timo)
2329 continue;
2330
2331 PWRITE1(pi, PL01XCOM_DR, c);
2332 PLCOM_BARRIER(pi, BR | BW);
2333
2334 /* wait for this transmission to complete */
2335 timo = 1500000;
2336 while (!ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_TXFE) && --timo)
2337 continue;
2338
2339 splx(s);
2340 }
2341
2342 /*
2343 * Initialize UART for use as console or KGDB line.
2344 */
2345 int
2346 plcominit(struct plcom_instance *pi, int rate, int frequency, tcflag_t cflag)
2347 {
2348 u_char lcr;
2349
2350 switch (pi->pi_type) {
2351 case PLCOM_TYPE_PL010:
2352 if (pi->pi_size == 0)
2353 pi->pi_size = PL010COM_UART_SIZE;
2354 break;
2355 case PLCOM_TYPE_PL011:
2356 if (pi->pi_size == 0)
2357 pi->pi_size = PL011COM_UART_SIZE;
2358 break;
2359 default:
2360 panic("Unknown plcom type");
2361 }
2362
2363 if (bus_space_map(pi->pi_iot, pi->pi_iobase, pi->pi_size, 0,
2364 &pi->pi_ioh))
2365 return ENOMEM; /* ??? */
2366
2367 lcr = cflag2lcr(cflag) | PL01X_LCR_FEN;
2368 switch (pi->pi_type) {
2369 case PLCOM_TYPE_PL010:
2370 PWRITE1(pi, PL010COM_CR, 0);
2371
2372 if (rate && frequency) {
2373 rate = pl010comspeed(rate, frequency);
2374 PWRITE1(pi, PL010COM_DLBL, (rate & 0xff));
2375 PWRITE1(pi, PL010COM_DLBH, ((rate >> 8) & 0xff));
2376 }
2377 PWRITE1(pi, PL010COM_LCR, lcr);
2378 PWRITE1(pi, PL010COM_CR, PL01X_CR_UARTEN);
2379 break;
2380 case PLCOM_TYPE_PL011:
2381 PWRITE4(pi, PL011COM_CR, 0);
2382
2383 if (rate && frequency) {
2384 rate = pl011comspeed(rate, frequency);
2385 PWRITE1(pi, PL011COM_FBRD, rate & ((1 << 6) - 1));
2386 PWRITE4(pi, PL011COM_IBRD, rate >> 6);
2387 }
2388 PWRITE1(pi, PL011COM_LCRH, lcr);
2389 PWRITE4(pi, PL011COM_CR,
2390 PL01X_CR_UARTEN | PL011_CR_RXE | PL011_CR_TXE);
2391 break;
2392 }
2393
2394 #if 0
2395 /* Ought to do something like this, but we have no sc to
2396 dereference. */
2397 /* XXX device_unit() abuse */
2398 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(sc->sc_dev),
2399 PL01X_MCR_DTR | PL01X_MCR_RTS);
2400 #endif
2401
2402 return 0;
2403 }
2404
2405 /*
2406 * Following are all routines needed for PLCOM to act as console
2407 */
2408 struct consdev plcomcons = {
2409 NULL, NULL, plcomcngetc, plcomcnputc, plcomcnpollc, NULL,
2410 NULL, NULL, NODEV, CN_NORMAL
2411 };
2412
2413 int
2414 plcomcnattach(struct plcom_instance *pi, int rate, int frequency,
2415 tcflag_t cflag, int unit)
2416 {
2417 int res;
2418
2419 plcomcons_info = *pi;
2420
2421 res = plcominit(&plcomcons_info, rate, frequency, cflag);
2422 if (res)
2423 return res;
2424
2425 cn_tab = &plcomcons;
2426 cn_init_magic(&plcom_cnm_state);
2427 cn_set_magic("\047\001"); /* default magic is BREAK */
2428
2429 plcomconsunit = unit;
2430 plcomconsrate = rate;
2431 plcomconscflag = cflag;
2432
2433 return 0;
2434 }
2435
2436 void
2437 plcomcndetach(void)
2438 {
2439
2440 bus_space_unmap(plcomcons_info.pi_iot, plcomcons_info.pi_ioh,
2441 plcomcons_info.pi_size);
2442 plcomcons_info.pi_iot = NULL;
2443
2444 cn_tab = NULL;
2445 }
2446
2447 int
2448 plcomcngetc(dev_t dev)
2449 {
2450 return plcom_common_getc(dev, &plcomcons_info);
2451 }
2452
2453 /*
2454 * Console kernel output character routine.
2455 */
2456 void
2457 plcomcnputc(dev_t dev, int c)
2458 {
2459 plcom_common_putc(dev, &plcomcons_info, c);
2460 }
2461
2462 void
2463 plcomcnpollc(dev_t dev, int on)
2464 {
2465
2466 plcom_readaheadcount = 0;
2467 }
2468
2469 #ifdef KGDB
2470 int
2471 plcom_kgdb_attach(struct plcom_instance *pi, int rate, int frequency,
2472 tcflag_t cflag, int unit)
2473 {
2474 int res;
2475
2476 if (pi->pi_iot == plcomcons_info.pi_iot &&
2477 pi->pi_iobase == plcomcons_info.pi_iobase)
2478 return EBUSY; /* cannot share with console */
2479
2480 res = plcominit(pi, rate, frequency, cflag);
2481 if (res)
2482 return res;
2483
2484 kgdb_attach(plcom_kgdb_getc, plcom_kgdb_putc, NULL);
2485 kgdb_dev = 123; /* unneeded, only to satisfy some tests */
2486
2487 plcomkgdb_info.pi_iot = pi->pi_iot;
2488 plcomkgdb_info.pi_ioh = pi->pi_ioh;
2489 plcomkgdb_info.pi_iobase = pi->pi_iobase;
2490
2491 return 0;
2492 }
2493
2494 /* ARGSUSED */
2495 int
2496 plcom_kgdb_getc(void *arg)
2497 {
2498 return plcom_common_getc(NODEV, &plcomkgdb_info);
2499 }
2500
2501 /* ARGSUSED */
2502 void
2503 plcom_kgdb_putc(void *arg, int c)
2504 {
2505 plcom_common_putc(NODEV, &plcomkgdb_info, c);
2506 }
2507 #endif /* KGDB */
2508
2509 /* helper function to identify the plcom ports used by
2510 console or KGDB (and not yet autoconf attached) */
2511 int
2512 plcom_is_console(bus_space_tag_t iot, bus_addr_t iobase,
2513 bus_space_handle_t *ioh)
2514 {
2515 bus_space_handle_t help;
2516
2517 if (!plcomconsattached &&
2518 bus_space_is_equal(iot, plcomcons_info.pi_iot) &&
2519 iobase == plcomcons_info.pi_iobase)
2520 help = plcomcons_info.pi_ioh;
2521 #ifdef KGDB
2522 else if (!plcom_kgdb_attached &&
2523 bus_space_is_equal(iot, plcomkgdb_info.pi_iot) &&
2524 iobase == plcomkgdb_info.pi_iobase)
2525 help = plcomkgdb_info.pi_ioh;
2526 #endif
2527 else
2528 return 0;
2529
2530 if (ioh)
2531 *ioh = help;
2532 return 1;
2533 }
2534