plcom.c revision 1.59 1 /* $NetBSD: plcom.c,v 1.59 2019/07/23 15:56:14 jmcneill Exp $ */
2
3 /*-
4 * Copyright (c) 2001 ARM Ltd
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the company may not be used to endorse or promote
16 * products derived from this software without specific prior written
17 * permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
23 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * Copyright (c) 1998, 1999, 2012 The NetBSD Foundation, Inc.
32 * All rights reserved.
33 *
34 * This code is derived from software contributed to The NetBSD Foundation
35 * by Charles M. Hannum and Nick Hudson.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
47 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
48 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
49 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
50 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
51 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
52 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
53 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
54 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
55 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
56 * POSSIBILITY OF SUCH DAMAGE.
57 */
58
59 /*
60 * Copyright (c) 1991 The Regents of the University of California.
61 * All rights reserved.
62 *
63 * Redistribution and use in source and binary forms, with or without
64 * modification, are permitted provided that the following conditions
65 * are met:
66 * 1. Redistributions of source code must retain the above copyright
67 * notice, this list of conditions and the following disclaimer.
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in the
70 * documentation and/or other materials provided with the distribution.
71 * 3. Neither the name of the University nor the names of its contributors
72 * may be used to endorse or promote products derived from this software
73 * without specific prior written permission.
74 *
75 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
76 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
77 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
78 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
79 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
80 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
81 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
82 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
83 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
84 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
85 * SUCH DAMAGE.
86 *
87 * @(#)com.c 7.5 (Berkeley) 5/16/91
88 */
89
90 /*
91 * COM driver for the Prime Cell PL010 and PL011 UARTs. Both are is similar to
92 * the 16C550, but have a completely different programmer's model.
93 * Derived from the NS16550AF com driver.
94 */
95
96 #include <sys/cdefs.h>
97 __KERNEL_RCSID(0, "$NetBSD: plcom.c,v 1.59 2019/07/23 15:56:14 jmcneill Exp $");
98
99 #include "opt_plcom.h"
100 #include "opt_ddb.h"
101 #include "opt_kgdb.h"
102 #include "opt_lockdebug.h"
103 #include "opt_multiprocessor.h"
104
105 /*
106 * Override cnmagic(9) macro before including <sys/systm.h>.
107 * We need to know if cn_check_magic triggered debugger, so set a flag.
108 * Callers of cn_check_magic must declare int cn_trapped = 0;
109 * XXX: this is *ugly*!
110 */
111 #define cn_trap() \
112 do { \
113 console_debugger(); \
114 cn_trapped = 1; \
115 } while (/* CONSTCOND */ 0)
116
117 #include <sys/param.h>
118 #include <sys/systm.h>
119 #include <sys/ioctl.h>
120 #include <sys/select.h>
121 #include <sys/tty.h>
122 #include <sys/proc.h>
123 #include <sys/conf.h>
124 #include <sys/file.h>
125 #include <sys/uio.h>
126 #include <sys/kernel.h>
127 #include <sys/syslog.h>
128 #include <sys/types.h>
129 #include <sys/device.h>
130 #include <sys/malloc.h>
131 #include <sys/timepps.h>
132 #include <sys/vnode.h>
133 #include <sys/kauth.h>
134 #include <sys/intr.h>
135 #include <sys/bus.h>
136 #ifdef RND_COM
137 #include <sys/rndsource.h>
138 #endif
139
140 #include <evbarm/dev/plcomreg.h>
141 #include <evbarm/dev/plcomvar.h>
142
143 #include <dev/cons.h>
144
145 static void plcom_enable_debugport (struct plcom_softc *);
146
147 void plcom_config (struct plcom_softc *);
148 void plcom_shutdown (struct plcom_softc *);
149 int pl010comspeed (long, long);
150 int pl011comspeed (long, long);
151 static u_char cflag2lcr (tcflag_t);
152 int plcomparam (struct tty *, struct termios *);
153 void plcomstart (struct tty *);
154 int plcomhwiflow (struct tty *, int);
155
156 void plcom_loadchannelregs (struct plcom_softc *);
157 void plcom_hwiflow (struct plcom_softc *);
158 void plcom_break (struct plcom_softc *, int);
159 void plcom_modem (struct plcom_softc *, int);
160 void tiocm_to_plcom (struct plcom_softc *, u_long, int);
161 int plcom_to_tiocm (struct plcom_softc *);
162 void plcom_iflush (struct plcom_softc *);
163
164 int plcom_common_getc (dev_t, struct plcom_instance *);
165 void plcom_common_putc (dev_t, struct plcom_instance *, int);
166
167 int plcominit (struct plcom_instance *, int, int, tcflag_t);
168
169 dev_type_open(plcomopen);
170 dev_type_close(plcomclose);
171 dev_type_read(plcomread);
172 dev_type_write(plcomwrite);
173 dev_type_ioctl(plcomioctl);
174 dev_type_stop(plcomstop);
175 dev_type_tty(plcomtty);
176 dev_type_poll(plcompoll);
177
178 int plcomcngetc (dev_t);
179 void plcomcnputc (dev_t, int);
180 void plcomcnpollc (dev_t, int);
181 void plcomcnhalt (dev_t);
182
183 #define integrate static inline
184 void plcomsoft (void *);
185 integrate void plcom_rxsoft (struct plcom_softc *, struct tty *);
186 integrate void plcom_txsoft (struct plcom_softc *, struct tty *);
187 integrate void plcom_stsoft (struct plcom_softc *, struct tty *);
188 integrate void plcom_schedrx (struct plcom_softc *);
189 void plcomdiag (void *);
190
191 bool plcom_intstatus(struct plcom_instance *, u_int *);
192
193 extern struct cfdriver plcom_cd;
194
195 const struct cdevsw plcom_cdevsw = {
196 .d_open = plcomopen,
197 .d_close = plcomclose,
198 .d_read = plcomread,
199 .d_write = plcomwrite,
200 .d_ioctl = plcomioctl,
201 .d_stop = plcomstop,
202 .d_tty = plcomtty,
203 .d_poll = plcompoll,
204 .d_mmap = nommap,
205 .d_kqfilter = ttykqfilter,
206 .d_discard = nodiscard,
207 .d_flag = D_TTY
208 };
209
210 /*
211 * Make this an option variable one can patch.
212 * But be warned: this must be a power of 2!
213 */
214 u_int plcom_rbuf_size = PLCOM_RING_SIZE;
215
216 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
217 u_int plcom_rbuf_hiwat = (PLCOM_RING_SIZE * 1) / 4;
218 u_int plcom_rbuf_lowat = (PLCOM_RING_SIZE * 3) / 4;
219
220 static int plcomconsunit = -1;
221 static struct plcom_instance plcomcons_info;
222
223 static int plcomconsattached;
224 static int plcomconsrate;
225 static tcflag_t plcomconscflag;
226 static struct cnm_state plcom_cnm_state;
227
228 static int ppscap =
229 PPS_TSFMT_TSPEC |
230 PPS_CAPTUREASSERT |
231 PPS_CAPTURECLEAR |
232 #ifdef PPS_SYNC
233 PPS_HARDPPSONASSERT | PPS_HARDPPSONCLEAR |
234 #endif /* PPS_SYNC */
235 PPS_OFFSETASSERT | PPS_OFFSETCLEAR;
236
237 #ifdef KGDB
238 #include <sys/kgdb.h>
239
240 static struct plcom_instance plcomkgdb_info;
241 static int plcom_kgdb_attached;
242
243 int plcom_kgdb_getc (void *);
244 void plcom_kgdb_putc (void *, int);
245 #endif /* KGDB */
246
247 #define PLCOMDIALOUT_MASK TTDIALOUT_MASK
248
249 #define PLCOMUNIT(x) TTUNIT(x)
250 #define PLCOMDIALOUT(x) TTDIALOUT(x)
251
252 #define PLCOM_ISALIVE(sc) ((sc)->enabled != 0 && \
253 device_is_active((sc)->sc_dev))
254
255 #define BR BUS_SPACE_BARRIER_READ
256 #define BW BUS_SPACE_BARRIER_WRITE
257 #define PLCOM_BARRIER(pi, f) \
258 bus_space_barrier((pi)->pi_iot, (pi)->pi_ioh, 0, (pi)->pi_size, (f))
259
260 static uint8_t
261 pread1(struct plcom_instance *pi, bus_size_t reg)
262 {
263 if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS))
264 return bus_space_read_1(pi->pi_iot, pi->pi_ioh, reg);
265
266 return bus_space_read_4(pi->pi_iot, pi->pi_ioh, reg & -4) >>
267 (8 * (reg & 3));
268 }
269 int nhcr;
270 static void
271 pwrite1(struct plcom_instance *pi, bus_size_t o, uint8_t val)
272 {
273 if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS)) {
274 bus_space_write_1(pi->pi_iot, pi->pi_ioh, o, val);
275 } else {
276 const size_t shift = 8 * (o & 3);
277 o &= -4;
278 uint32_t tmp = bus_space_read_4(pi->pi_iot, pi->pi_ioh, o);
279 tmp = (val << shift) | (tmp & ~(0xff << shift));
280 bus_space_write_4(pi->pi_iot, pi->pi_ioh, o, tmp);
281 }
282 }
283
284 static void
285 pwritem1(struct plcom_instance *pi, bus_size_t o, const uint8_t *datap,
286 bus_size_t count)
287 {
288 if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS)) {
289 bus_space_write_multi_1(pi->pi_iot, pi->pi_ioh, o, datap, count);
290 } else {
291 KASSERT((o & 3) == 0);
292 while (count--) {
293 bus_space_write_4(pi->pi_iot, pi->pi_ioh, o, *datap++);
294 };
295 }
296 }
297
298 #define PREAD1(pi, reg) pread1(pi, reg)
299 #define PREAD4(pi, reg) \
300 (bus_space_read_4((pi)->pi_iot, (pi)->pi_ioh, (reg)))
301
302 #define PWRITE1(pi, reg, val) pwrite1(pi, reg, val)
303 #define PWRITEM1(pi, reg, d, c) pwritem1(pi, reg, d, c)
304 #define PWRITE4(pi, reg, val) \
305 (bus_space_write_4((pi)->pi_iot, (pi)->pi_ioh, (reg), (val)))
306
307 int
308 pl010comspeed(long speed, long frequency)
309 {
310 #define divrnd(n, q) (((n)*2/(q)+1)/2) /* divide and round off */
311
312 int x, err;
313
314 #if 0
315 if (speed == 0)
316 return 0;
317 #endif
318 if (speed <= 0)
319 return -1;
320 x = divrnd(frequency / 16, speed);
321 if (x <= 0)
322 return -1;
323 err = divrnd(((quad_t)frequency) * 1000 / 16, speed * x) - 1000;
324 if (err < 0)
325 err = -err;
326 if (err > PLCOM_TOLERANCE)
327 return -1;
328 return x;
329
330 #undef divrnd
331 }
332
333 int
334 pl011comspeed(long speed, long frequency)
335 {
336 int denom = 16 * speed;
337 int div = frequency / denom;
338 int rem = frequency % denom;
339
340 int ibrd = div << 6;
341 int fbrd = (((8 * rem) / speed) + 1) / 2;
342
343 /* Tolerance? */
344 return ibrd | fbrd;
345 }
346
347 #ifdef PLCOM_DEBUG
348 int plcom_debug = 0;
349
350 void plcomstatus (struct plcom_softc *, const char *);
351 void
352 plcomstatus(struct plcom_softc *sc, const char *str)
353 {
354 struct tty *tp = sc->sc_tty;
355
356 printf("%s: %s %sclocal %sdcd %sts_carr_on %sdtr %stx_stopped\n",
357 device_xname(sc->sc_dev), str,
358 ISSET(tp->t_cflag, CLOCAL) ? "+" : "-",
359 ISSET(sc->sc_msr, PL01X_MSR_DCD) ? "+" : "-",
360 ISSET(tp->t_state, TS_CARR_ON) ? "+" : "-",
361 ISSET(sc->sc_mcr, PL01X_MCR_DTR) ? "+" : "-",
362 sc->sc_tx_stopped ? "+" : "-");
363
364 printf("%s: %s %scrtscts %scts %sts_ttstop %srts %xrx_flags\n",
365 device_xname(sc->sc_dev), str,
366 ISSET(tp->t_cflag, CRTSCTS) ? "+" : "-",
367 ISSET(sc->sc_msr, PL01X_MSR_CTS) ? "+" : "-",
368 ISSET(tp->t_state, TS_TTSTOP) ? "+" : "-",
369 ISSET(sc->sc_mcr, PL01X_MCR_RTS) ? "+" : "-",
370 sc->sc_rx_flags);
371 }
372 #endif
373
374 #if 0
375 int
376 plcomprobe1(bus_space_tag_t iot, bus_space_handle_t ioh)
377 {
378 int data;
379
380 /* Disable the UART. */
381 bus_space_write_1(iot, ioh, plcom_cr, 0);
382 /* Make sure the FIFO is off. */
383 bus_space_write_1(iot, ioh, plcom_lcr, PL01X_LCR_8BITS);
384 /* Disable interrupts. */
385 bus_space_write_1(iot, ioh, plcom_iir, 0);
386
387 /* Make sure we swallow anything in the receiving register. */
388 data = bus_space_read_1(iot, ioh, plcom_dr);
389
390 if (bus_space_read_1(iot, ioh, plcom_lcr) != PL01X_LCR_8BITS)
391 return 0;
392
393 data = bus_space_read_1(iot, ioh, plcom_fr) & (PL01X_FR_RXFF | PL01X_FR_RXFE);
394
395 if (data != PL01X_FR_RXFE)
396 return 0;
397
398 return 1;
399 }
400 #endif
401
402 /*
403 * No locking in this routine; it is only called during attach,
404 * or with the port already locked.
405 */
406 static void
407 plcom_enable_debugport(struct plcom_softc *sc)
408 {
409 struct plcom_instance *pi = &sc->sc_pi;
410
411 sc->sc_cr = PL01X_CR_UARTEN;
412 SET(sc->sc_mcr, PL01X_MCR_DTR | PL01X_MCR_RTS);
413
414 /* Turn on line break interrupt, set carrier. */
415 switch (pi->pi_type) {
416 case PLCOM_TYPE_PL010:
417 SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE);
418 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
419 if (sc->sc_set_mcr) {
420 /* XXX device_unit() abuse */
421 sc->sc_set_mcr(sc->sc_set_mcr_arg,
422 device_unit(sc->sc_dev), sc->sc_mcr);
423 }
424 break;
425 case PLCOM_TYPE_PL011:
426 sc->sc_imsc = PL011_INT_RX | PL011_INT_RT;
427 SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
428 SET(sc->sc_cr, PL011_MCR(sc->sc_mcr));
429 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
430 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
431 break;
432 }
433
434 }
435
436 void
437 plcom_attach_subr(struct plcom_softc *sc)
438 {
439 struct plcom_instance *pi = &sc->sc_pi;
440 struct tty *tp;
441
442 callout_init(&sc->sc_diag_callout, 0);
443 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_HIGH);
444
445 switch (pi->pi_type) {
446 case PLCOM_TYPE_PL010:
447 case PLCOM_TYPE_PL011:
448 break;
449 default:
450 aprint_error_dev(sc->sc_dev,
451 "Unknown plcom type: %d\n", pi->pi_type);
452 return;
453 }
454
455 /* Disable interrupts before configuring the device. */
456 sc->sc_cr = 0;
457 sc->sc_imsc = 0;
458
459 if (bus_space_is_equal(pi->pi_iot, plcomcons_info.pi_iot) &&
460 pi->pi_iobase == plcomcons_info.pi_iobase) {
461 plcomconsattached = 1;
462
463 /* Make sure the console is always "hardwired". */
464 delay(1000); /* wait for output to finish */
465 SET(sc->sc_hwflags, PLCOM_HW_CONSOLE);
466 SET(sc->sc_swflags, TIOCFLAG_SOFTCAR);
467 /*
468 * Must re-enable the console immediately, or we will
469 * hang when trying to print.
470 */
471 sc->sc_cr = PL01X_CR_UARTEN;
472 if (pi->pi_type == PLCOM_TYPE_PL011)
473 SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
474 }
475
476 switch (pi->pi_type) {
477 case PLCOM_TYPE_PL010:
478 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
479 break;
480
481 case PLCOM_TYPE_PL011:
482 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
483 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
484 break;
485 }
486
487 if (sc->sc_fifolen == 0) {
488 switch (pi->pi_type) {
489 case PLCOM_TYPE_PL010:
490 /*
491 * The PL010 has a 16-byte fifo, but the tx interrupt
492 * triggers when there is space for 8 more bytes.
493 */
494 sc->sc_fifolen = 8;
495 break;
496 case PLCOM_TYPE_PL011:
497 /* Some revisions have a 32 byte TX FIFO */
498 sc->sc_fifolen = 16;
499 break;
500 }
501 }
502
503 if (ISSET(sc->sc_hwflags, PLCOM_HW_TXFIFO_DISABLE)) {
504 sc->sc_fifolen = 1;
505 aprint_normal_dev(sc->sc_dev, "txfifo disabled\n");
506 }
507
508 if (sc->sc_fifolen > 1)
509 SET(sc->sc_hwflags, PLCOM_HW_FIFO);
510
511 tp = tty_alloc();
512 tp->t_oproc = plcomstart;
513 tp->t_param = plcomparam;
514 tp->t_hwiflow = plcomhwiflow;
515
516 sc->sc_tty = tp;
517 sc->sc_rbuf = malloc(plcom_rbuf_size << 1, M_DEVBUF, M_NOWAIT);
518 sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
519 sc->sc_rbavail = plcom_rbuf_size;
520 if (sc->sc_rbuf == NULL) {
521 aprint_error_dev(sc->sc_dev,
522 "unable to allocate ring buffer\n");
523 return;
524 }
525 sc->sc_ebuf = sc->sc_rbuf + (plcom_rbuf_size << 1);
526
527 tty_attach(tp);
528
529 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
530 int maj;
531
532 /* locate the major number */
533 maj = cdevsw_lookup_major(&plcom_cdevsw);
534
535 tp->t_dev = cn_tab->cn_dev = makedev(maj, device_unit(sc->sc_dev));
536
537 aprint_normal_dev(sc->sc_dev, "console\n");
538 }
539
540 #ifdef KGDB
541 /*
542 * Allow kgdb to "take over" this port. If this is
543 * the kgdb device, it has exclusive use.
544 */
545 if (bus_space_is_equal(pi->pi_iot, plcomkgdb_info.pi_iot) &&
546 pi->pi_iobase == plcomkgdb_info.pi_iobase) {
547 if (!ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
548 plcom_kgdb_attached = 1;
549
550 SET(sc->sc_hwflags, PLCOM_HW_KGDB);
551 }
552 aprint_normal_dev(sc->sc_dev, "kgdb\n");
553 }
554 #endif
555
556 sc->sc_si = softint_establish(SOFTINT_SERIAL, plcomsoft, sc);
557
558 #ifdef RND_COM
559 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
560 RND_TYPE_TTY, RND_FLAG_DEFAULT);
561 #endif
562
563 /*
564 * if there are no enable/disable functions, assume the device
565 * is always enabled
566 */
567 if (!sc->enable)
568 sc->enabled = 1;
569
570 plcom_config(sc);
571
572 SET(sc->sc_hwflags, PLCOM_HW_DEV_OK);
573 }
574
575 void
576 plcom_config(struct plcom_softc *sc)
577 {
578 struct plcom_instance *pi = &sc->sc_pi;
579
580 /* Disable interrupts before configuring the device. */
581 sc->sc_cr = 0;
582 sc->sc_imsc = 0;
583 switch (pi->pi_type) {
584 case PLCOM_TYPE_PL010:
585 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
586 break;
587
588 case PLCOM_TYPE_PL011:
589 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
590 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
591 break;
592 }
593
594 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE|PLCOM_HW_KGDB))
595 plcom_enable_debugport(sc);
596 }
597
598 int
599 plcom_detach(device_t self, int flags)
600 {
601 struct plcom_softc *sc = device_private(self);
602 int maj, mn;
603
604 if (sc->sc_hwflags & (PLCOM_HW_CONSOLE|PLCOM_HW_KGDB))
605 return EBUSY;
606
607 if (sc->disable != NULL && sc->enabled != 0) {
608 (*sc->disable)(sc);
609 sc->enabled = 0;
610 }
611
612 /* locate the major number */
613 maj = cdevsw_lookup_major(&plcom_cdevsw);
614
615 /* Nuke the vnodes for any open instances. */
616 mn = device_unit(self);
617 vdevgone(maj, mn, mn, VCHR);
618
619 mn |= PLCOMDIALOUT_MASK;
620 vdevgone(maj, mn, mn, VCHR);
621
622 if (sc->sc_rbuf == NULL) {
623 /*
624 * Ring buffer allocation failed in the plcom_attach_subr,
625 * only the tty is allocated, and nothing else.
626 */
627 tty_free(sc->sc_tty);
628 return 0;
629 }
630
631 /* Free the receive buffer. */
632 free(sc->sc_rbuf, M_DEVBUF);
633
634 /* Detach and free the tty. */
635 tty_detach(sc->sc_tty);
636 tty_free(sc->sc_tty);
637
638 /* Unhook the soft interrupt handler. */
639 softint_disestablish(sc->sc_si);
640
641 #ifdef RND_COM
642 /* Unhook the entropy source. */
643 rnd_detach_source(&sc->rnd_source);
644 #endif
645 callout_destroy(&sc->sc_diag_callout);
646
647 /* Destroy the lock. */
648 mutex_destroy(&sc->sc_lock);
649
650 return 0;
651 }
652
653 int
654 plcom_activate(device_t self, enum devact act)
655 {
656 struct plcom_softc *sc = device_private(self);
657
658 switch (act) {
659 case DVACT_DEACTIVATE:
660 sc->enabled = 0;
661 return 0;
662 default:
663 return EOPNOTSUPP;
664 }
665 }
666
667 void
668 plcom_shutdown(struct plcom_softc *sc)
669 {
670 struct plcom_instance *pi = &sc->sc_pi;
671 struct tty *tp = sc->sc_tty;
672 mutex_spin_enter(&sc->sc_lock);
673
674 /* If we were asserting flow control, then deassert it. */
675 SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
676 plcom_hwiflow(sc);
677
678 /* Clear any break condition set with TIOCSBRK. */
679 plcom_break(sc, 0);
680
681 /* Turn off PPS capture on last close. */
682 mutex_spin_enter(&timecounter_lock);
683 sc->sc_ppsmask = 0;
684 sc->ppsparam.mode = 0;
685 mutex_spin_exit(&timecounter_lock);
686
687 /*
688 * Hang up if necessary. Wait a bit, so the other side has time to
689 * notice even if we immediately open the port again.
690 * Avoid tsleeping above splhigh().
691 */
692 if (ISSET(tp->t_cflag, HUPCL)) {
693 plcom_modem(sc, 0);
694 mutex_spin_exit(&sc->sc_lock);
695 /* XXX will only timeout */
696 (void) kpause(ttclos, false, hz, NULL);
697 mutex_spin_enter(&sc->sc_lock);
698 }
699
700 sc->sc_cr = 0;
701 sc->sc_imsc = 0;
702 /* Turn off interrupts. */
703 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
704 /* interrupt on break */
705
706 sc->sc_cr = PL01X_CR_UARTEN;
707 sc->sc_imsc = 0;
708 switch (pi->pi_type) {
709 case PLCOM_TYPE_PL010:
710 SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE);
711 break;
712 case PLCOM_TYPE_PL011:
713 SET(sc->sc_cr, PL011_CR_RXE);
714 SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX);
715 break;
716 }
717 }
718 switch (pi->pi_type) {
719 case PLCOM_TYPE_PL010:
720 SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE);
721 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
722 break;
723 case PLCOM_TYPE_PL011:
724 SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
725 SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX);
726 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
727 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
728 break;
729 }
730
731 mutex_spin_exit(&sc->sc_lock);
732 if (sc->disable) {
733 #ifdef DIAGNOSTIC
734 if (!sc->enabled)
735 panic("plcom_shutdown: not enabled?");
736 #endif
737 (*sc->disable)(sc);
738 sc->enabled = 0;
739 }
740 }
741
742 int
743 plcomopen(dev_t dev, int flag, int mode, struct lwp *l)
744 {
745 struct plcom_softc *sc;
746 struct plcom_instance *pi;
747 struct tty *tp;
748 int s;
749 int error;
750
751 sc = device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
752 if (sc == NULL || !ISSET(sc->sc_hwflags, PLCOM_HW_DEV_OK) ||
753 sc->sc_rbuf == NULL)
754 return ENXIO;
755
756 if (!device_is_active(sc->sc_dev))
757 return ENXIO;
758
759 pi = &sc->sc_pi;
760
761 #ifdef KGDB
762 /*
763 * If this is the kgdb port, no other use is permitted.
764 */
765 if (ISSET(sc->sc_hwflags, PLCOM_HW_KGDB))
766 return EBUSY;
767 #endif
768
769 tp = sc->sc_tty;
770
771 if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
772 return (EBUSY);
773
774 s = spltty();
775
776 /*
777 * Do the following iff this is a first open.
778 */
779 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
780 struct termios t;
781
782 tp->t_dev = dev;
783
784 if (sc->enable) {
785 if ((*sc->enable)(sc)) {
786 splx(s);
787 aprint_error_dev(sc->sc_dev,
788 "device enable failed\n");
789 return EIO;
790 }
791 mutex_spin_enter(&sc->sc_lock);
792 sc->enabled = 1;
793 plcom_config(sc);
794 } else {
795 mutex_spin_enter(&sc->sc_lock);
796 }
797
798 /* Turn on interrupts. */
799 /* IER_ERXRDY | IER_ERLS | IER_EMSC; */
800 /* Fetch the current modem control status, needed later. */
801 sc->sc_cr = PL01X_CR_UARTEN;
802 switch (pi->pi_type) {
803 case PLCOM_TYPE_PL010:
804 SET(sc->sc_cr,
805 PL010_CR_RIE | PL010_CR_RTIE | PL010_CR_MSIE);
806 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
807 sc->sc_msr = PREAD1(pi, PL01XCOM_FR);
808 break;
809 case PLCOM_TYPE_PL011:
810 SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
811 SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX |
812 PL011_INT_MSMASK);
813 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
814 sc->sc_msr = PREAD4(pi, PL01XCOM_FR);
815 break;
816 }
817
818 /* Clear PPS capture state on first open. */
819
820 mutex_spin_enter(&timecounter_lock);
821 sc->sc_ppsmask = 0;
822 sc->ppsparam.mode = 0;
823 mutex_spin_exit(&timecounter_lock);
824
825 mutex_spin_exit(&sc->sc_lock);
826
827 /*
828 * Initialize the termios status to the defaults. Add in the
829 * sticky bits from TIOCSFLAGS.
830 */
831 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
832 t.c_ospeed = plcomconsrate;
833 t.c_cflag = plcomconscflag;
834 } else {
835 t.c_ospeed = TTYDEF_SPEED;
836 t.c_cflag = TTYDEF_CFLAG;
837 }
838 t.c_ispeed = t.c_ospeed;
839
840 if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL))
841 SET(t.c_cflag, CLOCAL);
842 if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS))
843 SET(t.c_cflag, CRTSCTS);
844 if (ISSET(sc->sc_swflags, TIOCFLAG_MDMBUF))
845 SET(t.c_cflag, MDMBUF);
846 /* Make sure plcomparam() will do something. */
847 tp->t_ospeed = 0;
848 (void) plcomparam(tp, &t);
849 tp->t_iflag = TTYDEF_IFLAG;
850 tp->t_oflag = TTYDEF_OFLAG;
851 tp->t_lflag = TTYDEF_LFLAG;
852 ttychars(tp);
853 ttsetwater(tp);
854
855 mutex_spin_enter(&sc->sc_lock);
856
857 /*
858 * Turn on DTR. We must always do this, even if carrier is not
859 * present, because otherwise we'd have to use TIOCSDTR
860 * immediately after setting CLOCAL, which applications do not
861 * expect. We always assert DTR while the device is open
862 * unless explicitly requested to deassert it.
863 */
864 plcom_modem(sc, 1);
865
866 /* Clear the input ring, and unblock. */
867 sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
868 sc->sc_rbavail = plcom_rbuf_size;
869 plcom_iflush(sc);
870 CLR(sc->sc_rx_flags, RX_ANY_BLOCK);
871 plcom_hwiflow(sc);
872
873 #ifdef PLCOM_DEBUG
874 if (plcom_debug)
875 plcomstatus(sc, "plcomopen ");
876 #endif
877
878 mutex_spin_exit(&sc->sc_lock);
879 }
880
881 splx(s);
882
883 error = ttyopen(tp, PLCOMDIALOUT(dev), ISSET(flag, O_NONBLOCK));
884 if (error)
885 goto bad;
886
887 error = (*tp->t_linesw->l_open)(dev, tp);
888 if (error)
889 goto bad;
890
891 return 0;
892
893 bad:
894 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
895 /*
896 * We failed to open the device, and nobody else had it opened.
897 * Clean up the state as appropriate.
898 */
899 plcom_shutdown(sc);
900 }
901
902 return error;
903 }
904
905 int
906 plcomclose(dev_t dev, int flag, int mode, struct lwp *l)
907 {
908 struct plcom_softc *sc =
909 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
910 struct tty *tp = sc->sc_tty;
911
912 /* XXX This is for cons.c. */
913 if (!ISSET(tp->t_state, TS_ISOPEN))
914 return 0;
915
916 (*tp->t_linesw->l_close)(tp, flag);
917 ttyclose(tp);
918
919 if (PLCOM_ISALIVE(sc) == 0)
920 return 0;
921
922 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
923 /*
924 * Although we got a last close, the device may still be in
925 * use; e.g. if this was the dialout node, and there are still
926 * processes waiting for carrier on the non-dialout node.
927 */
928 plcom_shutdown(sc);
929 }
930
931 return 0;
932 }
933
934 int
935 plcomread(dev_t dev, struct uio *uio, int flag)
936 {
937 struct plcom_softc *sc =
938 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
939 struct tty *tp = sc->sc_tty;
940
941 if (PLCOM_ISALIVE(sc) == 0)
942 return EIO;
943
944 return (*tp->t_linesw->l_read)(tp, uio, flag);
945 }
946
947 int
948 plcomwrite(dev_t dev, struct uio *uio, int flag)
949 {
950 struct plcom_softc *sc =
951 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
952 struct tty *tp = sc->sc_tty;
953
954 if (PLCOM_ISALIVE(sc) == 0)
955 return EIO;
956
957 return (*tp->t_linesw->l_write)(tp, uio, flag);
958 }
959
960 int
961 plcompoll(dev_t dev, int events, struct lwp *l)
962 {
963 struct plcom_softc *sc =
964 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
965 struct tty *tp = sc->sc_tty;
966
967 if (PLCOM_ISALIVE(sc) == 0)
968 return EIO;
969
970 return (*tp->t_linesw->l_poll)(tp, events, l);
971 }
972
973 struct tty *
974 plcomtty(dev_t dev)
975 {
976 struct plcom_softc *sc =
977 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
978 struct tty *tp = sc->sc_tty;
979
980 return tp;
981 }
982
983 int
984 plcomioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
985 {
986 struct plcom_softc *sc =
987 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
988 struct tty *tp;
989 int error;
990
991 if (sc == NULL)
992 return ENXIO;
993 if (PLCOM_ISALIVE(sc) == 0)
994 return EIO;
995
996 tp = sc->sc_tty;
997
998 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
999 if (error != EPASSTHROUGH)
1000 return error;
1001
1002 error = ttioctl(tp, cmd, data, flag, l);
1003 if (error != EPASSTHROUGH)
1004 return error;
1005
1006 error = 0;
1007 switch (cmd) {
1008 case TIOCSFLAGS:
1009 error = kauth_authorize_device_tty(l->l_cred,
1010 KAUTH_DEVICE_TTY_PRIVSET, tp);
1011 break;
1012 default:
1013 /* nothing */
1014 break;
1015 }
1016 if (error) {
1017 return error;
1018 }
1019
1020 mutex_spin_enter(&sc->sc_lock);
1021 switch (cmd) {
1022 case TIOCSBRK:
1023 plcom_break(sc, 1);
1024 break;
1025
1026 case TIOCCBRK:
1027 plcom_break(sc, 0);
1028 break;
1029
1030 case TIOCSDTR:
1031 plcom_modem(sc, 1);
1032 break;
1033
1034 case TIOCCDTR:
1035 plcom_modem(sc, 0);
1036 break;
1037
1038 case TIOCGFLAGS:
1039 *(int *)data = sc->sc_swflags;
1040 break;
1041
1042 case TIOCSFLAGS:
1043 sc->sc_swflags = *(int *)data;
1044 break;
1045
1046 case TIOCMSET:
1047 case TIOCMBIS:
1048 case TIOCMBIC:
1049 tiocm_to_plcom(sc, cmd, *(int *)data);
1050 break;
1051
1052 case TIOCMGET:
1053 *(int *)data = plcom_to_tiocm(sc);
1054 break;
1055
1056 case PPS_IOC_CREATE:
1057 break;
1058
1059 case PPS_IOC_DESTROY:
1060 break;
1061
1062 case PPS_IOC_GETPARAMS: {
1063 pps_params_t *pp;
1064 pp = (pps_params_t *)data;
1065 mutex_spin_enter(&timecounter_lock);
1066 *pp = sc->ppsparam;
1067 mutex_spin_exit(&timecounter_lock);
1068 break;
1069 }
1070
1071 case PPS_IOC_SETPARAMS: {
1072 pps_params_t *pp;
1073 int mode;
1074 pp = (pps_params_t *)data;
1075 mutex_spin_enter(&timecounter_lock);
1076 if (pp->mode & ~ppscap) {
1077 error = EINVAL;
1078 mutex_spin_exit(&timecounter_lock);
1079 break;
1080 }
1081 sc->ppsparam = *pp;
1082 /*
1083 * Compute msr masks from user-specified timestamp state.
1084 */
1085 mode = sc->ppsparam.mode;
1086 #ifdef PPS_SYNC
1087 if (mode & PPS_HARDPPSONASSERT) {
1088 mode |= PPS_CAPTUREASSERT;
1089 /* XXX revoke any previous HARDPPS source */
1090 }
1091 if (mode & PPS_HARDPPSONCLEAR) {
1092 mode |= PPS_CAPTURECLEAR;
1093 /* XXX revoke any previous HARDPPS source */
1094 }
1095 #endif /* PPS_SYNC */
1096 switch (mode & PPS_CAPTUREBOTH) {
1097 case 0:
1098 sc->sc_ppsmask = 0;
1099 break;
1100
1101 case PPS_CAPTUREASSERT:
1102 sc->sc_ppsmask = PL01X_MSR_DCD;
1103 sc->sc_ppsassert = PL01X_MSR_DCD;
1104 sc->sc_ppsclear = -1;
1105 break;
1106
1107 case PPS_CAPTURECLEAR:
1108 sc->sc_ppsmask = PL01X_MSR_DCD;
1109 sc->sc_ppsassert = -1;
1110 sc->sc_ppsclear = 0;
1111 break;
1112
1113 case PPS_CAPTUREBOTH:
1114 sc->sc_ppsmask = PL01X_MSR_DCD;
1115 sc->sc_ppsassert = PL01X_MSR_DCD;
1116 sc->sc_ppsclear = 0;
1117 break;
1118
1119 default:
1120 error = EINVAL;
1121 break;
1122 }
1123 mutex_spin_exit(&timecounter_lock);
1124 break;
1125 }
1126
1127 case PPS_IOC_GETCAP:
1128 *(int*)data = ppscap;
1129 break;
1130
1131 case PPS_IOC_FETCH: {
1132 pps_info_t *pi;
1133 pi = (pps_info_t *)data;
1134 mutex_spin_enter(&timecounter_lock);
1135 *pi = sc->ppsinfo;
1136 mutex_spin_exit(&timecounter_lock);
1137 break;
1138 }
1139
1140 case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */
1141 /*
1142 * Some GPS clocks models use the falling rather than
1143 * rising edge as the on-the-second signal.
1144 * The old API has no way to specify PPS polarity.
1145 */
1146 mutex_spin_enter(&timecounter_lock);
1147 sc->sc_ppsmask = PL01X_MSR_DCD;
1148 #ifndef PPS_TRAILING_EDGE
1149 sc->sc_ppsassert = PL01X_MSR_DCD;
1150 sc->sc_ppsclear = -1;
1151 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
1152 &sc->ppsinfo.assert_timestamp);
1153 #else
1154 sc->sc_ppsassert = -1
1155 sc->sc_ppsclear = 0;
1156 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
1157 &sc->ppsinfo.clear_timestamp);
1158 #endif
1159 mutex_spin_exit(&timecounter_lock);
1160 break;
1161
1162 default:
1163 error = EPASSTHROUGH;
1164 break;
1165 }
1166
1167 mutex_spin_exit(&sc->sc_lock);
1168
1169 #ifdef PLCOM_DEBUG
1170 if (plcom_debug)
1171 plcomstatus(sc, "plcomioctl ");
1172 #endif
1173
1174 return error;
1175 }
1176
1177 integrate void
1178 plcom_schedrx(struct plcom_softc *sc)
1179 {
1180
1181 sc->sc_rx_ready = 1;
1182
1183 /* Wake up the poller. */
1184 softint_schedule(sc->sc_si);
1185 }
1186
1187 void
1188 plcom_break(struct plcom_softc *sc, int onoff)
1189 {
1190
1191 if (onoff)
1192 SET(sc->sc_lcr, PL01X_LCR_BRK);
1193 else
1194 CLR(sc->sc_lcr, PL01X_LCR_BRK);
1195
1196 if (!sc->sc_heldchange) {
1197 if (sc->sc_tx_busy) {
1198 sc->sc_heldtbc = sc->sc_tbc;
1199 sc->sc_tbc = 0;
1200 sc->sc_heldchange = 1;
1201 } else
1202 plcom_loadchannelregs(sc);
1203 }
1204 }
1205
1206 void
1207 plcom_modem(struct plcom_softc *sc, int onoff)
1208 {
1209
1210 if (sc->sc_mcr_dtr == 0)
1211 return;
1212
1213 if (onoff)
1214 SET(sc->sc_mcr, sc->sc_mcr_dtr);
1215 else
1216 CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1217
1218 if (!sc->sc_heldchange) {
1219 if (sc->sc_tx_busy) {
1220 sc->sc_heldtbc = sc->sc_tbc;
1221 sc->sc_tbc = 0;
1222 sc->sc_heldchange = 1;
1223 } else
1224 plcom_loadchannelregs(sc);
1225 }
1226 }
1227
1228 void
1229 tiocm_to_plcom(struct plcom_softc *sc, u_long how, int ttybits)
1230 {
1231 u_char plcombits;
1232
1233 plcombits = 0;
1234 if (ISSET(ttybits, TIOCM_DTR))
1235 SET(plcombits, PL01X_MCR_DTR);
1236 if (ISSET(ttybits, TIOCM_RTS))
1237 SET(plcombits, PL01X_MCR_RTS);
1238
1239 switch (how) {
1240 case TIOCMBIC:
1241 CLR(sc->sc_mcr, plcombits);
1242 break;
1243
1244 case TIOCMBIS:
1245 SET(sc->sc_mcr, plcombits);
1246 break;
1247
1248 case TIOCMSET:
1249 CLR(sc->sc_mcr, PL01X_MCR_DTR | PL01X_MCR_RTS);
1250 SET(sc->sc_mcr, plcombits);
1251 break;
1252 }
1253
1254 if (!sc->sc_heldchange) {
1255 if (sc->sc_tx_busy) {
1256 sc->sc_heldtbc = sc->sc_tbc;
1257 sc->sc_tbc = 0;
1258 sc->sc_heldchange = 1;
1259 } else
1260 plcom_loadchannelregs(sc);
1261 }
1262 }
1263
1264 int
1265 plcom_to_tiocm(struct plcom_softc *sc)
1266 {
1267 u_char plcombits;
1268 int ttybits = 0;
1269
1270 plcombits = sc->sc_mcr;
1271 if (ISSET(plcombits, PL01X_MCR_DTR))
1272 SET(ttybits, TIOCM_DTR);
1273 if (ISSET(plcombits, PL01X_MCR_RTS))
1274 SET(ttybits, TIOCM_RTS);
1275
1276 plcombits = sc->sc_msr;
1277 if (ISSET(plcombits, PL01X_MSR_DCD))
1278 SET(ttybits, TIOCM_CD);
1279 if (ISSET(plcombits, PL01X_MSR_CTS))
1280 SET(ttybits, TIOCM_CTS);
1281 if (ISSET(plcombits, PL01X_MSR_DSR))
1282 SET(ttybits, TIOCM_DSR);
1283 if (ISSET(plcombits, PL011_MSR_RI))
1284 SET(ttybits, TIOCM_RI);
1285
1286 if (sc->sc_cr != 0)
1287 SET(ttybits, TIOCM_LE);
1288
1289 return ttybits;
1290 }
1291
1292 static u_char
1293 cflag2lcr(tcflag_t cflag)
1294 {
1295 u_char lcr = 0;
1296
1297 switch (ISSET(cflag, CSIZE)) {
1298 case CS5:
1299 SET(lcr, PL01X_LCR_5BITS);
1300 break;
1301 case CS6:
1302 SET(lcr, PL01X_LCR_6BITS);
1303 break;
1304 case CS7:
1305 SET(lcr, PL01X_LCR_7BITS);
1306 break;
1307 case CS8:
1308 SET(lcr, PL01X_LCR_8BITS);
1309 break;
1310 }
1311 if (ISSET(cflag, PARENB)) {
1312 SET(lcr, PL01X_LCR_PEN);
1313 if (!ISSET(cflag, PARODD))
1314 SET(lcr, PL01X_LCR_EPS);
1315 }
1316 if (ISSET(cflag, CSTOPB))
1317 SET(lcr, PL01X_LCR_STP2);
1318
1319 return lcr;
1320 }
1321
1322 int
1323 plcomparam(struct tty *tp, struct termios *t)
1324 {
1325 struct plcom_softc *sc =
1326 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1327 struct plcom_instance *pi = &sc->sc_pi;
1328 int ospeed = -1;
1329 u_char lcr;
1330
1331 if (PLCOM_ISALIVE(sc) == 0)
1332 return EIO;
1333
1334 switch (pi->pi_type) {
1335 case PLCOM_TYPE_PL010:
1336 ospeed = pl010comspeed(t->c_ospeed, sc->sc_frequency);
1337 break;
1338 case PLCOM_TYPE_PL011:
1339 ospeed = pl011comspeed(t->c_ospeed, sc->sc_frequency);
1340 break;
1341 }
1342
1343 /* Check requested parameters. */
1344 if (ospeed < 0)
1345 return EINVAL;
1346 if (t->c_ispeed && t->c_ispeed != t->c_ospeed)
1347 return EINVAL;
1348
1349 /*
1350 * For the console, always force CLOCAL and !HUPCL, so that the port
1351 * is always active.
1352 */
1353 if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR) ||
1354 ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
1355 SET(t->c_cflag, CLOCAL);
1356 CLR(t->c_cflag, HUPCL);
1357 }
1358
1359 /*
1360 * If there were no changes, don't do anything. This avoids dropping
1361 * input and improves performance when all we did was frob things like
1362 * VMIN and VTIME.
1363 */
1364 if (tp->t_ospeed == t->c_ospeed &&
1365 tp->t_cflag == t->c_cflag)
1366 return 0;
1367
1368 lcr = ISSET(sc->sc_lcr, PL01X_LCR_BRK) | cflag2lcr(t->c_cflag);
1369
1370 mutex_spin_enter(&sc->sc_lock);
1371
1372 sc->sc_lcr = lcr;
1373
1374 /*
1375 * PL010 has a fixed-length FIFO trigger point.
1376 */
1377 if (ISSET(sc->sc_hwflags, PLCOM_HW_FIFO))
1378 sc->sc_fifo = 1;
1379 else
1380 sc->sc_fifo = 0;
1381
1382 if (sc->sc_fifo)
1383 SET(sc->sc_lcr, PL01X_LCR_FEN);
1384
1385 /*
1386 * If we're not in a mode that assumes a connection is present, then
1387 * ignore carrier changes.
1388 */
1389 if (ISSET(t->c_cflag, CLOCAL | MDMBUF))
1390 sc->sc_msr_dcd = 0;
1391 else
1392 sc->sc_msr_dcd = PL01X_MSR_DCD;
1393 /*
1394 * Set the flow control pins depending on the current flow control
1395 * mode.
1396 */
1397 if (ISSET(t->c_cflag, CRTSCTS)) {
1398 sc->sc_mcr_dtr = PL01X_MCR_DTR;
1399 sc->sc_mcr_rts = PL01X_MCR_RTS;
1400 sc->sc_msr_cts = PL01X_MSR_CTS;
1401 } else if (ISSET(t->c_cflag, MDMBUF)) {
1402 /*
1403 * For DTR/DCD flow control, make sure we don't toggle DTR for
1404 * carrier detection.
1405 */
1406 sc->sc_mcr_dtr = 0;
1407 sc->sc_mcr_rts = PL01X_MCR_DTR;
1408 sc->sc_msr_cts = PL01X_MSR_DCD;
1409 } else {
1410 /*
1411 * If no flow control, then always set RTS. This will make
1412 * the other side happy if it mistakenly thinks we're doing
1413 * RTS/CTS flow control.
1414 */
1415 sc->sc_mcr_dtr = PL01X_MCR_DTR | PL01X_MCR_RTS;
1416 sc->sc_mcr_rts = 0;
1417 sc->sc_msr_cts = 0;
1418 if (ISSET(sc->sc_mcr, PL01X_MCR_DTR))
1419 SET(sc->sc_mcr, PL01X_MCR_RTS);
1420 else
1421 CLR(sc->sc_mcr, PL01X_MCR_RTS);
1422 }
1423 sc->sc_msr_mask = sc->sc_msr_cts | sc->sc_msr_dcd;
1424
1425 #if 0
1426 if (ospeed == 0)
1427 CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1428 else
1429 SET(sc->sc_mcr, sc->sc_mcr_dtr);
1430 #endif
1431
1432 switch (pi->pi_type) {
1433 case PLCOM_TYPE_PL010:
1434 sc->sc_ratel = ospeed & 0xff;
1435 sc->sc_rateh = (ospeed >> 8) & 0xff;
1436 break;
1437 case PLCOM_TYPE_PL011:
1438 sc->sc_ratel = ospeed & ((1 << 6) - 1);
1439 sc->sc_rateh = ospeed >> 6;
1440 break;
1441 }
1442
1443 /* And copy to tty. */
1444 tp->t_ispeed = t->c_ospeed;
1445 tp->t_ospeed = t->c_ospeed;
1446 tp->t_cflag = t->c_cflag;
1447
1448 if (!sc->sc_heldchange) {
1449 if (sc->sc_tx_busy) {
1450 sc->sc_heldtbc = sc->sc_tbc;
1451 sc->sc_tbc = 0;
1452 sc->sc_heldchange = 1;
1453 } else
1454 plcom_loadchannelregs(sc);
1455 }
1456
1457 if (!ISSET(t->c_cflag, CHWFLOW)) {
1458 /* Disable the high water mark. */
1459 sc->sc_r_hiwat = 0;
1460 sc->sc_r_lowat = 0;
1461 if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1462 CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1463 plcom_schedrx(sc);
1464 }
1465 if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
1466 CLR(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
1467 plcom_hwiflow(sc);
1468 }
1469 } else {
1470 sc->sc_r_hiwat = plcom_rbuf_hiwat;
1471 sc->sc_r_lowat = plcom_rbuf_lowat;
1472 }
1473
1474 mutex_spin_exit(&sc->sc_lock);
1475
1476 /*
1477 * Update the tty layer's idea of the carrier bit, in case we changed
1478 * CLOCAL or MDMBUF. We don't hang up here; we only do that by
1479 * explicit request.
1480 */
1481 (void) (*tp->t_linesw->l_modem)(tp, ISSET(sc->sc_msr, PL01X_MSR_DCD));
1482
1483 #ifdef PLCOM_DEBUG
1484 if (plcom_debug)
1485 plcomstatus(sc, "plcomparam ");
1486 #endif
1487
1488 if (!ISSET(t->c_cflag, CHWFLOW)) {
1489 if (sc->sc_tx_stopped) {
1490 sc->sc_tx_stopped = 0;
1491 plcomstart(tp);
1492 }
1493 }
1494
1495 return 0;
1496 }
1497
1498 void
1499 plcom_iflush(struct plcom_softc *sc)
1500 {
1501 struct plcom_instance *pi = &sc->sc_pi;
1502 #ifdef DIAGNOSTIC
1503 int reg;
1504 #endif
1505 int timo;
1506
1507 #ifdef DIAGNOSTIC
1508 reg = 0xffff;
1509 #endif
1510 timo = 50000;
1511 /* flush any pending I/O */
1512 while (! ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE)
1513 && --timo)
1514 #ifdef DIAGNOSTIC
1515 reg =
1516 #else
1517 (void)
1518 #endif
1519 PREAD1(pi, PL01XCOM_DR);
1520 #ifdef DIAGNOSTIC
1521 if (!timo)
1522 aprint_error_dev(sc->sc_dev, ": %s timeout %02x\n", __func__,
1523 reg);
1524 #endif
1525 }
1526
1527 void
1528 plcom_loadchannelregs(struct plcom_softc *sc)
1529 {
1530 struct plcom_instance *pi = &sc->sc_pi;
1531
1532 /* XXXXX necessary? */
1533 plcom_iflush(sc);
1534
1535 switch (pi->pi_type) {
1536 case PLCOM_TYPE_PL010:
1537 PWRITE1(pi, PL010COM_CR, 0);
1538 if (sc->sc_frequency != 0) {
1539 PWRITE1(pi, PL010COM_DLBL, sc->sc_ratel);
1540 PWRITE1(pi, PL010COM_DLBH, sc->sc_rateh);
1541 }
1542 PWRITE1(pi, PL010COM_LCR, sc->sc_lcr);
1543
1544 /* XXX device_unit() abuse */
1545 if (sc->sc_set_mcr)
1546 sc->sc_set_mcr(sc->sc_set_mcr_arg,
1547 device_unit(sc->sc_dev),
1548 sc->sc_mcr_active = sc->sc_mcr);
1549
1550 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
1551 break;
1552
1553 case PLCOM_TYPE_PL011:
1554 PWRITE4(pi, PL011COM_CR, 0);
1555 if (sc->sc_frequency != 0) {
1556 PWRITE1(pi, PL011COM_FBRD, sc->sc_ratel);
1557 PWRITE4(pi, PL011COM_IBRD, sc->sc_rateh);
1558 }
1559 PWRITE1(pi, PL011COM_LCRH, sc->sc_lcr);
1560 sc->sc_mcr_active = sc->sc_mcr;
1561 CLR(sc->sc_cr, PL011_MCR(PL01X_MCR_RTS | PL01X_MCR_DTR));
1562 SET(sc->sc_cr, PL011_MCR(sc->sc_mcr_active));
1563 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
1564 break;
1565 }
1566 }
1567
1568 int
1569 plcomhwiflow(struct tty *tp, int block)
1570 {
1571 struct plcom_softc *sc =
1572 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1573
1574 if (PLCOM_ISALIVE(sc) == 0)
1575 return 0;
1576
1577 if (sc->sc_mcr_rts == 0)
1578 return 0;
1579
1580 mutex_spin_enter(&sc->sc_lock);
1581
1582 if (block) {
1583 if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1584 SET(sc->sc_rx_flags, RX_TTY_BLOCKED);
1585 plcom_hwiflow(sc);
1586 }
1587 } else {
1588 if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1589 CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1590 plcom_schedrx(sc);
1591 }
1592 if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1593 CLR(sc->sc_rx_flags, RX_TTY_BLOCKED);
1594 plcom_hwiflow(sc);
1595 }
1596 }
1597
1598 mutex_spin_exit(&sc->sc_lock);
1599 return 1;
1600 }
1601
1602 /*
1603 * (un)block input via hw flowcontrol
1604 */
1605 void
1606 plcom_hwiflow(struct plcom_softc *sc)
1607 {
1608 struct plcom_instance *pi = &sc->sc_pi;
1609
1610 if (sc->sc_mcr_rts == 0)
1611 return;
1612
1613 if (ISSET(sc->sc_rx_flags, RX_ANY_BLOCK)) {
1614 CLR(sc->sc_mcr, sc->sc_mcr_rts);
1615 CLR(sc->sc_mcr_active, sc->sc_mcr_rts);
1616 } else {
1617 SET(sc->sc_mcr, sc->sc_mcr_rts);
1618 SET(sc->sc_mcr_active, sc->sc_mcr_rts);
1619 }
1620 switch (pi->pi_type) {
1621 case PLCOM_TYPE_PL010:
1622 if (sc->sc_set_mcr)
1623 /* XXX device_unit() abuse */
1624 sc->sc_set_mcr(sc->sc_set_mcr_arg,
1625 device_unit(sc->sc_dev), sc->sc_mcr_active);
1626 break;
1627 case PLCOM_TYPE_PL011:
1628 CLR(sc->sc_cr, PL011_MCR(PL01X_MCR_RTS | PL01X_MCR_DTR));
1629 SET(sc->sc_cr, PL011_MCR(sc->sc_mcr_active));
1630 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
1631 break;
1632 }
1633 }
1634
1635
1636 void
1637 plcomstart(struct tty *tp)
1638 {
1639 struct plcom_softc *sc =
1640 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1641 struct plcom_instance *pi = &sc->sc_pi;
1642 int s;
1643
1644 if (PLCOM_ISALIVE(sc) == 0)
1645 return;
1646
1647 s = spltty();
1648 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
1649 goto out;
1650 if (sc->sc_tx_stopped)
1651 goto out;
1652
1653 if (!ttypull(tp))
1654 goto out;
1655
1656 /* Grab the first contiguous region of buffer space. */
1657 {
1658 u_char *tba;
1659 int tbc;
1660
1661 tba = tp->t_outq.c_cf;
1662 tbc = ndqb(&tp->t_outq, 0);
1663
1664 mutex_spin_enter(&sc->sc_lock);
1665
1666 sc->sc_tba = tba;
1667 sc->sc_tbc = tbc;
1668 }
1669
1670 SET(tp->t_state, TS_BUSY);
1671 sc->sc_tx_busy = 1;
1672
1673 /* Enable transmit completion interrupts if necessary. */
1674 switch (pi->pi_type) {
1675 case PLCOM_TYPE_PL010:
1676 if (!ISSET(sc->sc_cr, PL010_CR_TIE)) {
1677 SET(sc->sc_cr, PL010_CR_TIE);
1678 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
1679 }
1680 break;
1681 case PLCOM_TYPE_PL011:
1682 if (!ISSET(sc->sc_imsc, PL011_INT_TX)) {
1683 SET(sc->sc_imsc, PL011_INT_TX);
1684 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
1685 }
1686 break;
1687 }
1688
1689 /* Output the first chunk of the contiguous buffer. */
1690 {
1691 int n;
1692
1693 n = sc->sc_tbc;
1694 if (n > sc->sc_fifolen)
1695 n = sc->sc_fifolen;
1696 PWRITEM1(pi, PL01XCOM_DR, sc->sc_tba, n);
1697 sc->sc_tbc -= n;
1698 sc->sc_tba += n;
1699 }
1700 mutex_spin_exit(&sc->sc_lock);
1701 out:
1702 splx(s);
1703 return;
1704 }
1705
1706 /*
1707 * Stop output on a line.
1708 */
1709 void
1710 plcomstop(struct tty *tp, int flag)
1711 {
1712 struct plcom_softc *sc =
1713 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1714
1715 mutex_spin_enter(&sc->sc_lock);
1716 if (ISSET(tp->t_state, TS_BUSY)) {
1717 /* Stop transmitting at the next chunk. */
1718 sc->sc_tbc = 0;
1719 sc->sc_heldtbc = 0;
1720 if (!ISSET(tp->t_state, TS_TTSTOP))
1721 SET(tp->t_state, TS_FLUSH);
1722 }
1723 mutex_spin_exit(&sc->sc_lock);
1724 }
1725
1726 void
1727 plcomdiag(void *arg)
1728 {
1729 struct plcom_softc *sc = arg;
1730 int overflows, floods;
1731
1732 mutex_spin_enter(&sc->sc_lock);
1733 overflows = sc->sc_overflows;
1734 sc->sc_overflows = 0;
1735 floods = sc->sc_floods;
1736 sc->sc_floods = 0;
1737 sc->sc_errors = 0;
1738 mutex_spin_exit(&sc->sc_lock);
1739
1740 log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
1741 device_xname(sc->sc_dev),
1742 overflows, overflows == 1 ? "" : "s",
1743 floods, floods == 1 ? "" : "s");
1744 }
1745
1746 integrate void
1747 plcom_rxsoft(struct plcom_softc *sc, struct tty *tp)
1748 {
1749 int (*rint) (int, struct tty *) = tp->t_linesw->l_rint;
1750 struct plcom_instance *pi = &sc->sc_pi;
1751 u_char *get, *end;
1752 u_int cc, scc;
1753 u_char rsr;
1754 int code;
1755
1756 end = sc->sc_ebuf;
1757 get = sc->sc_rbget;
1758 scc = cc = plcom_rbuf_size - sc->sc_rbavail;
1759
1760 if (cc == plcom_rbuf_size) {
1761 sc->sc_floods++;
1762 if (sc->sc_errors++ == 0)
1763 callout_reset(&sc->sc_diag_callout, 60 * hz,
1764 plcomdiag, sc);
1765 }
1766
1767 while (cc) {
1768 code = get[0];
1769 rsr = get[1];
1770 if (ISSET(rsr, PL01X_RSR_ERROR)) {
1771 if (ISSET(rsr, PL01X_RSR_OE)) {
1772 sc->sc_overflows++;
1773 if (sc->sc_errors++ == 0)
1774 callout_reset(&sc->sc_diag_callout,
1775 60 * hz, plcomdiag, sc);
1776 }
1777 if (ISSET(rsr, PL01X_RSR_BE | PL01X_RSR_FE))
1778 SET(code, TTY_FE);
1779 if (ISSET(rsr, PL01X_RSR_PE))
1780 SET(code, TTY_PE);
1781 }
1782 if ((*rint)(code, tp) == -1) {
1783 /*
1784 * The line discipline's buffer is out of space.
1785 */
1786 if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1787 /*
1788 * We're either not using flow control, or the
1789 * line discipline didn't tell us to block for
1790 * some reason. Either way, we have no way to
1791 * know when there's more space available, so
1792 * just drop the rest of the data.
1793 */
1794 get += cc << 1;
1795 if (get >= end)
1796 get -= plcom_rbuf_size << 1;
1797 cc = 0;
1798 } else {
1799 /*
1800 * Don't schedule any more receive processing
1801 * until the line discipline tells us there's
1802 * space available (through plcomhwiflow()).
1803 * Leave the rest of the data in the input
1804 * buffer.
1805 */
1806 SET(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1807 }
1808 break;
1809 }
1810 get += 2;
1811 if (get >= end)
1812 get = sc->sc_rbuf;
1813 cc--;
1814 }
1815
1816 if (cc != scc) {
1817 sc->sc_rbget = get;
1818 mutex_spin_enter(&sc->sc_lock);
1819
1820 cc = sc->sc_rbavail += scc - cc;
1821 /* Buffers should be ok again, release possible block. */
1822 if (cc >= sc->sc_r_lowat) {
1823 if (ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1824 CLR(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
1825 switch (pi->pi_type) {
1826 case PLCOM_TYPE_PL010:
1827 SET(sc->sc_cr,
1828 PL010_CR_RIE | PL010_CR_RTIE);
1829 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
1830 break;
1831 case PLCOM_TYPE_PL011:
1832 SET(sc->sc_imsc,
1833 PL011_INT_RX | PL011_INT_RT);
1834 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
1835 break;
1836 }
1837 }
1838 if (ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED)) {
1839 CLR(sc->sc_rx_flags, RX_IBUF_BLOCKED);
1840 plcom_hwiflow(sc);
1841 }
1842 }
1843 mutex_spin_exit(&sc->sc_lock);
1844 }
1845 }
1846
1847 integrate void
1848 plcom_txsoft(struct plcom_softc *sc, struct tty *tp)
1849 {
1850
1851 CLR(tp->t_state, TS_BUSY);
1852 if (ISSET(tp->t_state, TS_FLUSH))
1853 CLR(tp->t_state, TS_FLUSH);
1854 else
1855 ndflush(&tp->t_outq, (int)(sc->sc_tba - tp->t_outq.c_cf));
1856 (*tp->t_linesw->l_start)(tp);
1857 }
1858
1859 integrate void
1860 plcom_stsoft(struct plcom_softc *sc, struct tty *tp)
1861 {
1862 u_char msr, delta;
1863
1864 mutex_spin_enter(&sc->sc_lock);
1865 msr = sc->sc_msr;
1866 delta = sc->sc_msr_delta;
1867 sc->sc_msr_delta = 0;
1868 mutex_spin_exit(&sc->sc_lock);
1869
1870 if (ISSET(delta, sc->sc_msr_dcd)) {
1871 /*
1872 * Inform the tty layer that carrier detect changed.
1873 */
1874 (void) (*tp->t_linesw->l_modem)(tp, ISSET(msr, PL01X_MSR_DCD));
1875 }
1876
1877 if (ISSET(delta, sc->sc_msr_cts)) {
1878 /* Block or unblock output according to flow control. */
1879 if (ISSET(msr, sc->sc_msr_cts)) {
1880 sc->sc_tx_stopped = 0;
1881 (*tp->t_linesw->l_start)(tp);
1882 } else {
1883 sc->sc_tx_stopped = 1;
1884 }
1885 }
1886
1887 #ifdef PLCOM_DEBUG
1888 if (plcom_debug)
1889 plcomstatus(sc, "plcom_stsoft");
1890 #endif
1891 }
1892
1893 void
1894 plcomsoft(void *arg)
1895 {
1896 struct plcom_softc *sc = arg;
1897 struct tty *tp;
1898
1899 if (PLCOM_ISALIVE(sc) == 0)
1900 return;
1901
1902 tp = sc->sc_tty;
1903
1904 if (sc->sc_rx_ready) {
1905 sc->sc_rx_ready = 0;
1906 plcom_rxsoft(sc, tp);
1907 }
1908
1909 if (sc->sc_st_check) {
1910 sc->sc_st_check = 0;
1911 plcom_stsoft(sc, tp);
1912 }
1913
1914 if (sc->sc_tx_done) {
1915 sc->sc_tx_done = 0;
1916 plcom_txsoft(sc, tp);
1917 }
1918 }
1919
1920 bool
1921 plcom_intstatus(struct plcom_instance *pi, u_int *istatus)
1922 {
1923 bool ret = false;
1924 u_int stat = 0;
1925
1926 switch (pi->pi_type) {
1927 case PLCOM_TYPE_PL010:
1928 stat = PREAD1(pi, PL010COM_IIR);
1929 ret = ISSET(stat, PL010_IIR_IMASK);
1930 break;
1931 case PLCOM_TYPE_PL011:
1932 stat = PREAD4(pi, PL011COM_MIS);
1933 ret = ISSET(stat, PL011_INT_ALLMASK);
1934 break;
1935 }
1936 *istatus = stat;
1937
1938 return ret;
1939 }
1940
1941 int
1942 plcomintr(void *arg)
1943 {
1944 struct plcom_softc *sc = arg;
1945 struct plcom_instance *pi = &sc->sc_pi;
1946 u_char *put, *end;
1947 u_int cc;
1948 u_int istatus = 0;
1949 u_char rsr;
1950 bool intr = false;
1951
1952 PLCOM_BARRIER(pi, BR | BW);
1953
1954 if (PLCOM_ISALIVE(sc) == 0)
1955 return 0;
1956
1957 mutex_spin_enter(&sc->sc_lock);
1958 intr = plcom_intstatus(pi, &istatus);
1959 if (!intr) {
1960 mutex_spin_exit(&sc->sc_lock);
1961 return 0;
1962 }
1963
1964 end = sc->sc_ebuf;
1965 put = sc->sc_rbput;
1966 cc = sc->sc_rbavail;
1967
1968 do {
1969 u_int msr = 0, delta, fr;
1970 bool rxintr = false, txintr = false, msintr;
1971
1972 /* don't need RI here*/
1973 fr = PREAD1(pi, PL01XCOM_FR);
1974
1975 if (!ISSET(fr, PL01X_FR_RXFE) &&
1976 !ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1977 while (cc > 0) {
1978 int cn_trapped = 0;
1979 put[0] = PREAD1(pi, PL01XCOM_DR);
1980 rsr = PREAD1(pi, PL01XCOM_RSR);
1981 /* Clear any error status. */
1982 if (ISSET(rsr, PL01X_RSR_ERROR))
1983 PWRITE1(pi, PL01XCOM_ECR, 0);
1984 if (ISSET(rsr, PL01X_RSR_BE)) {
1985 cn_trapped = 0;
1986 cn_check_magic(sc->sc_tty->t_dev,
1987 CNC_BREAK, plcom_cnm_state);
1988 if (cn_trapped)
1989 continue;
1990 #if defined(KGDB)
1991 if (ISSET(sc->sc_hwflags,
1992 PLCOM_HW_KGDB)) {
1993 kgdb_connect(1);
1994 continue;
1995 }
1996 #endif
1997 }
1998
1999 put[1] = rsr;
2000 cn_trapped = 0;
2001 cn_check_magic(sc->sc_tty->t_dev, put[0],
2002 plcom_cnm_state);
2003 if (cn_trapped) {
2004 fr = PREAD1(pi, PL01XCOM_FR);
2005 if (ISSET(fr, PL01X_FR_RXFE))
2006 break;
2007
2008 continue;
2009 }
2010 put += 2;
2011 if (put >= end)
2012 put = sc->sc_rbuf;
2013 cc--;
2014
2015 /* don't need RI here*/
2016 fr = PREAD1(pi, PL01XCOM_FR);
2017 if (ISSET(fr, PL01X_FR_RXFE))
2018 break;
2019 }
2020
2021 /*
2022 * Current string of incoming characters ended because
2023 * no more data was available or we ran out of space.
2024 * Schedule a receive event if any data was received.
2025 * If we're out of space, turn off receive interrupts.
2026 */
2027 sc->sc_rbput = put;
2028 sc->sc_rbavail = cc;
2029 if (!ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED))
2030 sc->sc_rx_ready = 1;
2031
2032 /*
2033 * See if we are in danger of overflowing a buffer. If
2034 * so, use hardware flow control to ease the pressure.
2035 */
2036 if (!ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED) &&
2037 cc < sc->sc_r_hiwat) {
2038 SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
2039 plcom_hwiflow(sc);
2040 }
2041
2042 /*
2043 * If we're out of space, disable receive interrupts
2044 * until the queue has drained a bit.
2045 */
2046 if (!cc) {
2047 SET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
2048 switch (pi->pi_type) {
2049 case PLCOM_TYPE_PL010:
2050 CLR(sc->sc_cr,
2051 PL010_CR_RIE | PL010_CR_RTIE);
2052 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
2053 break;
2054 case PLCOM_TYPE_PL011:
2055 CLR(sc->sc_imsc,
2056 PL011_INT_RT | PL011_INT_RX);
2057 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
2058 break;
2059 }
2060 }
2061 } else {
2062 switch (pi->pi_type) {
2063 case PLCOM_TYPE_PL010:
2064 rxintr = ISSET(istatus, PL010_IIR_RIS);
2065 if (rxintr) {
2066 PWRITE1(pi, PL010COM_CR, 0);
2067 delay(10);
2068 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
2069 continue;
2070 }
2071 break;
2072 case PLCOM_TYPE_PL011:
2073 rxintr = ISSET(istatus, PL011_INT_RX);
2074 if (rxintr) {
2075 PWRITE4(pi, PL011COM_CR, 0);
2076 delay(10);
2077 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
2078 continue;
2079 }
2080 break;
2081 }
2082 }
2083
2084 switch (pi->pi_type) {
2085 case PLCOM_TYPE_PL010:
2086 msr = PREAD1(pi, PL01XCOM_FR);
2087 break;
2088 case PLCOM_TYPE_PL011:
2089 msr = PREAD4(pi, PL01XCOM_FR);
2090 break;
2091 }
2092 delta = msr ^ sc->sc_msr;
2093 sc->sc_msr = msr;
2094
2095 /* Clear any pending modem status interrupt. */
2096 switch (pi->pi_type) {
2097 case PLCOM_TYPE_PL010:
2098 msintr = ISSET(istatus, PL010_IIR_MIS);
2099 if (msintr) {
2100 PWRITE1(pi, PL010COM_ICR, 0);
2101 }
2102 break;
2103 case PLCOM_TYPE_PL011:
2104 msintr = ISSET(istatus, PL011_INT_MSMASK);
2105 if (msintr) {
2106 PWRITE4(pi, PL011COM_ICR, PL011_INT_MSMASK);
2107 }
2108 break;
2109 }
2110 /*
2111 * Pulse-per-second (PSS) signals on edge of DCD?
2112 * Process these even if line discipline is ignoring DCD.
2113 */
2114 if (delta & sc->sc_ppsmask) {
2115 struct timeval tv;
2116 mutex_spin_enter(&timecounter_lock);
2117 if ((msr & sc->sc_ppsmask) == sc->sc_ppsassert) {
2118 /* XXX nanotime() */
2119 microtime(&tv);
2120 TIMEVAL_TO_TIMESPEC(&tv,
2121 &sc->ppsinfo.assert_timestamp);
2122 if (sc->ppsparam.mode & PPS_OFFSETASSERT) {
2123 timespecadd(&sc->ppsinfo.assert_timestamp,
2124 &sc->ppsparam.assert_offset,
2125 &sc->ppsinfo.assert_timestamp);
2126 }
2127
2128 #ifdef PPS_SYNC
2129 if (sc->ppsparam.mode & PPS_HARDPPSONASSERT)
2130 hardpps(&tv, tv.tv_usec);
2131 #endif
2132 sc->ppsinfo.assert_sequence++;
2133 sc->ppsinfo.current_mode = sc->ppsparam.mode;
2134
2135 } else if ((msr & sc->sc_ppsmask) == sc->sc_ppsclear) {
2136 /* XXX nanotime() */
2137 microtime(&tv);
2138 TIMEVAL_TO_TIMESPEC(&tv,
2139 &sc->ppsinfo.clear_timestamp);
2140 if (sc->ppsparam.mode & PPS_OFFSETCLEAR) {
2141 timespecadd(&sc->ppsinfo.clear_timestamp,
2142 &sc->ppsparam.clear_offset,
2143 &sc->ppsinfo.clear_timestamp);
2144 }
2145
2146 #ifdef PPS_SYNC
2147 if (sc->ppsparam.mode & PPS_HARDPPSONCLEAR)
2148 hardpps(&tv, tv.tv_usec);
2149 #endif
2150 sc->ppsinfo.clear_sequence++;
2151 sc->ppsinfo.current_mode = sc->ppsparam.mode;
2152 }
2153 mutex_spin_exit(&timecounter_lock);
2154 }
2155
2156 /*
2157 * Process normal status changes
2158 */
2159 if (ISSET(delta, sc->sc_msr_mask)) {
2160 SET(sc->sc_msr_delta, delta);
2161
2162 /*
2163 * Stop output immediately if we lose the output
2164 * flow control signal or carrier detect.
2165 */
2166 if (ISSET(~msr, sc->sc_msr_mask)) {
2167 sc->sc_tbc = 0;
2168 sc->sc_heldtbc = 0;
2169 #ifdef PLCOM_DEBUG
2170 if (plcom_debug)
2171 plcomstatus(sc, "plcomintr ");
2172 #endif
2173 }
2174
2175 sc->sc_st_check = 1;
2176 }
2177
2178 /*
2179 * Done handling any receive interrupts. See if data
2180 * can be transmitted as well. Schedule tx done
2181 * event if no data left and tty was marked busy.
2182 */
2183
2184 switch (pi->pi_type) {
2185 case PLCOM_TYPE_PL010:
2186 txintr = ISSET(istatus, PL010_IIR_TIS);
2187 break;
2188 case PLCOM_TYPE_PL011:
2189 txintr = ISSET(istatus, PL011_INT_TX);
2190 break;
2191 }
2192 if (txintr) {
2193 /*
2194 * If we've delayed a parameter change, do it
2195 * now, and restart * output.
2196 */
2197 // PWRITE4(pi, PL011COM_ICR, PL011_INT_TX);
2198 if (sc->sc_heldchange) {
2199 plcom_loadchannelregs(sc);
2200 sc->sc_heldchange = 0;
2201 sc->sc_tbc = sc->sc_heldtbc;
2202 sc->sc_heldtbc = 0;
2203 }
2204
2205 /*
2206 * Output the next chunk of the contiguous
2207 * buffer, if any.
2208 */
2209 if (sc->sc_tbc > 0) {
2210 int n;
2211
2212 n = sc->sc_tbc;
2213 if (n > sc->sc_fifolen)
2214 n = sc->sc_fifolen;
2215 PWRITEM1(pi, PL01XCOM_DR, sc->sc_tba, n);
2216 sc->sc_tbc -= n;
2217 sc->sc_tba += n;
2218 } else {
2219 /*
2220 * Disable transmit completion
2221 * interrupts if necessary.
2222 */
2223 switch (pi->pi_type) {
2224 case PLCOM_TYPE_PL010:
2225 if (ISSET(sc->sc_cr, PL010_CR_TIE)) {
2226 CLR(sc->sc_cr, PL010_CR_TIE);
2227 PWRITE1(pi, PL010COM_CR,
2228 sc->sc_cr);
2229 }
2230 break;
2231 case PLCOM_TYPE_PL011:
2232 if (ISSET(sc->sc_imsc, PL011_INT_TX)) {
2233 CLR(sc->sc_imsc, PL011_INT_TX);
2234 PWRITE4(pi, PL011COM_IMSC,
2235 sc->sc_imsc);
2236 }
2237 break;
2238 }
2239 if (sc->sc_tx_busy) {
2240 sc->sc_tx_busy = 0;
2241 sc->sc_tx_done = 1;
2242 }
2243 }
2244 }
2245
2246 } while (plcom_intstatus(pi, &istatus));
2247
2248 mutex_spin_exit(&sc->sc_lock);
2249
2250 /* Wake up the poller. */
2251 softint_schedule(sc->sc_si);
2252
2253 #ifdef RND_COM
2254 rnd_add_uint32(&sc->rnd_source, istatus | rsr);
2255 #endif
2256
2257 PLCOM_BARRIER(pi, BR | BW);
2258
2259 return 1;
2260 }
2261
2262 /*
2263 * The following functions are polled getc and putc routines, shared
2264 * by the console and kgdb glue.
2265 *
2266 * The read-ahead code is so that you can detect pending in-band
2267 * cn_magic in polled mode while doing output rather than having to
2268 * wait until the kernel decides it needs input.
2269 */
2270
2271 #define MAX_READAHEAD 20
2272 static int plcom_readahead[MAX_READAHEAD];
2273 static int plcom_readaheadcount = 0;
2274
2275 int
2276 plcom_common_getc(dev_t dev, struct plcom_instance *pi)
2277 {
2278 int s = splserial();
2279 u_char c;
2280
2281 /* got a character from reading things earlier */
2282 if (plcom_readaheadcount > 0) {
2283 int i;
2284
2285 c = plcom_readahead[0];
2286 for (i = 1; i < plcom_readaheadcount; i++) {
2287 plcom_readahead[i-1] = plcom_readahead[i];
2288 }
2289 plcom_readaheadcount--;
2290 splx(s);
2291 return c;
2292 }
2293
2294 if (ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE)) {
2295 splx(s);
2296 return -1;
2297 }
2298
2299 c = PREAD1(pi, PL01XCOM_DR);
2300 {
2301 int cn_trapped __unused = 0;
2302 #ifdef DDB
2303 extern int db_active;
2304 if (!db_active)
2305 #endif
2306 cn_check_magic(dev, c, plcom_cnm_state);
2307 }
2308 splx(s);
2309 return c;
2310 }
2311
2312 void
2313 plcom_common_putc(dev_t dev, struct plcom_instance *pi, int c)
2314 {
2315 int s = splserial();
2316 int timo;
2317
2318 int cin, stat;
2319 if (plcom_readaheadcount < MAX_READAHEAD
2320 && !ISSET(stat = PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE)) {
2321 int cn_trapped __unused = 0;
2322 cin = PREAD1(pi, PL01XCOM_DR);
2323 cn_check_magic(dev, cin, plcom_cnm_state);
2324 plcom_readahead[plcom_readaheadcount++] = cin;
2325 }
2326
2327 /* wait for any pending transmission to finish */
2328 timo = 150000;
2329 while (ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_TXFF) && --timo)
2330 continue;
2331
2332 PWRITE1(pi, PL01XCOM_DR, c);
2333 PLCOM_BARRIER(pi, BR | BW);
2334
2335 /* wait for this transmission to complete */
2336 timo = 1500000;
2337 while (!ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_TXFE) && --timo)
2338 continue;
2339
2340 splx(s);
2341 }
2342
2343 /*
2344 * Initialize UART for use as console or KGDB line.
2345 */
2346 int
2347 plcominit(struct plcom_instance *pi, int rate, int frequency, tcflag_t cflag)
2348 {
2349 u_char lcr;
2350
2351 switch (pi->pi_type) {
2352 case PLCOM_TYPE_PL010:
2353 if (pi->pi_size == 0)
2354 pi->pi_size = PL010COM_UART_SIZE;
2355 break;
2356 case PLCOM_TYPE_PL011:
2357 if (pi->pi_size == 0)
2358 pi->pi_size = PL011COM_UART_SIZE;
2359 break;
2360 default:
2361 panic("Unknown plcom type");
2362 }
2363
2364 if (bus_space_map(pi->pi_iot, pi->pi_iobase, pi->pi_size, 0,
2365 &pi->pi_ioh))
2366 return ENOMEM; /* ??? */
2367
2368 lcr = cflag2lcr(cflag) | PL01X_LCR_FEN;
2369 switch (pi->pi_type) {
2370 case PLCOM_TYPE_PL010:
2371 PWRITE1(pi, PL010COM_CR, 0);
2372
2373 if (rate && frequency) {
2374 rate = pl010comspeed(rate, frequency);
2375 PWRITE1(pi, PL010COM_DLBL, (rate & 0xff));
2376 PWRITE1(pi, PL010COM_DLBH, ((rate >> 8) & 0xff));
2377 }
2378 PWRITE1(pi, PL010COM_LCR, lcr);
2379 PWRITE1(pi, PL010COM_CR, PL01X_CR_UARTEN);
2380 break;
2381 case PLCOM_TYPE_PL011:
2382 PWRITE4(pi, PL011COM_CR, 0);
2383
2384 if (rate && frequency) {
2385 rate = pl011comspeed(rate, frequency);
2386 PWRITE1(pi, PL011COM_FBRD, rate & ((1 << 6) - 1));
2387 PWRITE4(pi, PL011COM_IBRD, rate >> 6);
2388 }
2389 PWRITE1(pi, PL011COM_LCRH, lcr);
2390 PWRITE4(pi, PL011COM_CR,
2391 PL01X_CR_UARTEN | PL011_CR_RXE | PL011_CR_TXE);
2392 break;
2393 }
2394
2395 #if 0
2396 /* Ought to do something like this, but we have no sc to
2397 dereference. */
2398 /* XXX device_unit() abuse */
2399 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(sc->sc_dev),
2400 PL01X_MCR_DTR | PL01X_MCR_RTS);
2401 #endif
2402
2403 return 0;
2404 }
2405
2406 /*
2407 * Following are all routines needed for PLCOM to act as console
2408 */
2409 struct consdev plcomcons = {
2410 NULL, NULL, plcomcngetc, plcomcnputc, plcomcnpollc, NULL,
2411 plcomcnhalt, NULL, NODEV, CN_NORMAL
2412 };
2413
2414 int
2415 plcomcnattach(struct plcom_instance *pi, int rate, int frequency,
2416 tcflag_t cflag, int unit)
2417 {
2418 int res;
2419
2420 plcomcons_info = *pi;
2421
2422 res = plcominit(&plcomcons_info, rate, frequency, cflag);
2423 if (res)
2424 return res;
2425
2426 cn_tab = &plcomcons;
2427 cn_init_magic(&plcom_cnm_state);
2428 cn_set_magic("\047\001"); /* default magic is BREAK */
2429
2430 plcomconsunit = unit;
2431 plcomconsrate = rate;
2432 plcomconscflag = cflag;
2433
2434 return 0;
2435 }
2436
2437 void
2438 plcomcndetach(void)
2439 {
2440
2441 bus_space_unmap(plcomcons_info.pi_iot, plcomcons_info.pi_ioh,
2442 plcomcons_info.pi_size);
2443 plcomcons_info.pi_iot = NULL;
2444
2445 cn_tab = NULL;
2446 }
2447
2448 int
2449 plcomcngetc(dev_t dev)
2450 {
2451 return plcom_common_getc(dev, &plcomcons_info);
2452 }
2453
2454 /*
2455 * Console kernel output character routine.
2456 */
2457 void
2458 plcomcnputc(dev_t dev, int c)
2459 {
2460 plcom_common_putc(dev, &plcomcons_info, c);
2461 }
2462
2463 void
2464 plcomcnpollc(dev_t dev, int on)
2465 {
2466
2467 plcom_readaheadcount = 0;
2468 }
2469
2470 void
2471 plcomcnhalt(dev_t dev)
2472 {
2473 struct plcom_instance *pi = &plcomcons_info;
2474
2475 switch (pi->pi_type) {
2476 case PLCOM_TYPE_PL010:
2477 PWRITE1(pi, PL010COM_CR, PL01X_CR_UARTEN);
2478 break;
2479 case PLCOM_TYPE_PL011:
2480 PWRITE4(pi, PL011COM_CR,
2481 PL01X_CR_UARTEN | PL011_CR_RXE | PL011_CR_TXE);
2482 PWRITE4(pi, PL011COM_IMSC, 0);
2483 break;
2484 }
2485 }
2486
2487 #ifdef KGDB
2488 int
2489 plcom_kgdb_attach(struct plcom_instance *pi, int rate, int frequency,
2490 tcflag_t cflag, int unit)
2491 {
2492 int res;
2493
2494 if (pi->pi_iot == plcomcons_info.pi_iot &&
2495 pi->pi_iobase == plcomcons_info.pi_iobase)
2496 return EBUSY; /* cannot share with console */
2497
2498 res = plcominit(pi, rate, frequency, cflag);
2499 if (res)
2500 return res;
2501
2502 kgdb_attach(plcom_kgdb_getc, plcom_kgdb_putc, NULL);
2503 kgdb_dev = 123; /* unneeded, only to satisfy some tests */
2504
2505 plcomkgdb_info.pi_iot = pi->pi_iot;
2506 plcomkgdb_info.pi_ioh = pi->pi_ioh;
2507 plcomkgdb_info.pi_iobase = pi->pi_iobase;
2508
2509 return 0;
2510 }
2511
2512 /* ARGSUSED */
2513 int
2514 plcom_kgdb_getc(void *arg)
2515 {
2516 return plcom_common_getc(NODEV, &plcomkgdb_info);
2517 }
2518
2519 /* ARGSUSED */
2520 void
2521 plcom_kgdb_putc(void *arg, int c)
2522 {
2523 plcom_common_putc(NODEV, &plcomkgdb_info, c);
2524 }
2525 #endif /* KGDB */
2526
2527 /* helper function to identify the plcom ports used by
2528 console or KGDB (and not yet autoconf attached) */
2529 int
2530 plcom_is_console(bus_space_tag_t iot, bus_addr_t iobase,
2531 bus_space_handle_t *ioh)
2532 {
2533 bus_space_handle_t help;
2534
2535 if (!plcomconsattached &&
2536 bus_space_is_equal(iot, plcomcons_info.pi_iot) &&
2537 iobase == plcomcons_info.pi_iobase)
2538 help = plcomcons_info.pi_ioh;
2539 #ifdef KGDB
2540 else if (!plcom_kgdb_attached &&
2541 bus_space_is_equal(iot, plcomkgdb_info.pi_iot) &&
2542 iobase == plcomkgdb_info.pi_iobase)
2543 help = plcomkgdb_info.pi_ioh;
2544 #endif
2545 else
2546 return 0;
2547
2548 if (ioh)
2549 *ioh = help;
2550 return 1;
2551 }
2552