plcom.c revision 1.60 1 /* $NetBSD: plcom.c,v 1.60 2019/11/10 21:16:25 chs Exp $ */
2
3 /*-
4 * Copyright (c) 2001 ARM Ltd
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the company may not be used to endorse or promote
16 * products derived from this software without specific prior written
17 * permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
23 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * Copyright (c) 1998, 1999, 2012 The NetBSD Foundation, Inc.
32 * All rights reserved.
33 *
34 * This code is derived from software contributed to The NetBSD Foundation
35 * by Charles M. Hannum and Nick Hudson.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
47 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
48 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
49 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
50 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
51 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
52 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
53 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
54 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
55 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
56 * POSSIBILITY OF SUCH DAMAGE.
57 */
58
59 /*
60 * Copyright (c) 1991 The Regents of the University of California.
61 * All rights reserved.
62 *
63 * Redistribution and use in source and binary forms, with or without
64 * modification, are permitted provided that the following conditions
65 * are met:
66 * 1. Redistributions of source code must retain the above copyright
67 * notice, this list of conditions and the following disclaimer.
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in the
70 * documentation and/or other materials provided with the distribution.
71 * 3. Neither the name of the University nor the names of its contributors
72 * may be used to endorse or promote products derived from this software
73 * without specific prior written permission.
74 *
75 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
76 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
77 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
78 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
79 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
80 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
81 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
82 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
83 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
84 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
85 * SUCH DAMAGE.
86 *
87 * @(#)com.c 7.5 (Berkeley) 5/16/91
88 */
89
90 /*
91 * COM driver for the Prime Cell PL010 and PL011 UARTs. Both are is similar to
92 * the 16C550, but have a completely different programmer's model.
93 * Derived from the NS16550AF com driver.
94 */
95
96 #include <sys/cdefs.h>
97 __KERNEL_RCSID(0, "$NetBSD: plcom.c,v 1.60 2019/11/10 21:16:25 chs Exp $");
98
99 #include "opt_plcom.h"
100 #include "opt_ddb.h"
101 #include "opt_kgdb.h"
102 #include "opt_lockdebug.h"
103 #include "opt_multiprocessor.h"
104
105 /*
106 * Override cnmagic(9) macro before including <sys/systm.h>.
107 * We need to know if cn_check_magic triggered debugger, so set a flag.
108 * Callers of cn_check_magic must declare int cn_trapped = 0;
109 * XXX: this is *ugly*!
110 */
111 #define cn_trap() \
112 do { \
113 console_debugger(); \
114 cn_trapped = 1; \
115 } while (/* CONSTCOND */ 0)
116
117 #include <sys/param.h>
118 #include <sys/systm.h>
119 #include <sys/ioctl.h>
120 #include <sys/select.h>
121 #include <sys/tty.h>
122 #include <sys/proc.h>
123 #include <sys/conf.h>
124 #include <sys/file.h>
125 #include <sys/uio.h>
126 #include <sys/kernel.h>
127 #include <sys/syslog.h>
128 #include <sys/types.h>
129 #include <sys/device.h>
130 #include <sys/malloc.h>
131 #include <sys/timepps.h>
132 #include <sys/vnode.h>
133 #include <sys/kauth.h>
134 #include <sys/intr.h>
135 #include <sys/bus.h>
136 #ifdef RND_COM
137 #include <sys/rndsource.h>
138 #endif
139
140 #include <evbarm/dev/plcomreg.h>
141 #include <evbarm/dev/plcomvar.h>
142
143 #include <dev/cons.h>
144
145 static void plcom_enable_debugport (struct plcom_softc *);
146
147 void plcom_config (struct plcom_softc *);
148 void plcom_shutdown (struct plcom_softc *);
149 int pl010comspeed (long, long);
150 int pl011comspeed (long, long);
151 static u_char cflag2lcr (tcflag_t);
152 int plcomparam (struct tty *, struct termios *);
153 void plcomstart (struct tty *);
154 int plcomhwiflow (struct tty *, int);
155
156 void plcom_loadchannelregs (struct plcom_softc *);
157 void plcom_hwiflow (struct plcom_softc *);
158 void plcom_break (struct plcom_softc *, int);
159 void plcom_modem (struct plcom_softc *, int);
160 void tiocm_to_plcom (struct plcom_softc *, u_long, int);
161 int plcom_to_tiocm (struct plcom_softc *);
162 void plcom_iflush (struct plcom_softc *);
163
164 int plcom_common_getc (dev_t, struct plcom_instance *);
165 void plcom_common_putc (dev_t, struct plcom_instance *, int);
166
167 int plcominit (struct plcom_instance *, int, int, tcflag_t);
168
169 dev_type_open(plcomopen);
170 dev_type_close(plcomclose);
171 dev_type_read(plcomread);
172 dev_type_write(plcomwrite);
173 dev_type_ioctl(plcomioctl);
174 dev_type_stop(plcomstop);
175 dev_type_tty(plcomtty);
176 dev_type_poll(plcompoll);
177
178 int plcomcngetc (dev_t);
179 void plcomcnputc (dev_t, int);
180 void plcomcnpollc (dev_t, int);
181 void plcomcnhalt (dev_t);
182
183 #define integrate static inline
184 void plcomsoft (void *);
185 integrate void plcom_rxsoft (struct plcom_softc *, struct tty *);
186 integrate void plcom_txsoft (struct plcom_softc *, struct tty *);
187 integrate void plcom_stsoft (struct plcom_softc *, struct tty *);
188 integrate void plcom_schedrx (struct plcom_softc *);
189 void plcomdiag (void *);
190
191 bool plcom_intstatus(struct plcom_instance *, u_int *);
192
193 extern struct cfdriver plcom_cd;
194
195 const struct cdevsw plcom_cdevsw = {
196 .d_open = plcomopen,
197 .d_close = plcomclose,
198 .d_read = plcomread,
199 .d_write = plcomwrite,
200 .d_ioctl = plcomioctl,
201 .d_stop = plcomstop,
202 .d_tty = plcomtty,
203 .d_poll = plcompoll,
204 .d_mmap = nommap,
205 .d_kqfilter = ttykqfilter,
206 .d_discard = nodiscard,
207 .d_flag = D_TTY
208 };
209
210 /*
211 * Make this an option variable one can patch.
212 * But be warned: this must be a power of 2!
213 */
214 u_int plcom_rbuf_size = PLCOM_RING_SIZE;
215
216 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
217 u_int plcom_rbuf_hiwat = (PLCOM_RING_SIZE * 1) / 4;
218 u_int plcom_rbuf_lowat = (PLCOM_RING_SIZE * 3) / 4;
219
220 static int plcomconsunit = -1;
221 static struct plcom_instance plcomcons_info;
222
223 static int plcomconsattached;
224 static int plcomconsrate;
225 static tcflag_t plcomconscflag;
226 static struct cnm_state plcom_cnm_state;
227
228 static int ppscap =
229 PPS_TSFMT_TSPEC |
230 PPS_CAPTUREASSERT |
231 PPS_CAPTURECLEAR |
232 #ifdef PPS_SYNC
233 PPS_HARDPPSONASSERT | PPS_HARDPPSONCLEAR |
234 #endif /* PPS_SYNC */
235 PPS_OFFSETASSERT | PPS_OFFSETCLEAR;
236
237 #ifdef KGDB
238 #include <sys/kgdb.h>
239
240 static struct plcom_instance plcomkgdb_info;
241 static int plcom_kgdb_attached;
242
243 int plcom_kgdb_getc (void *);
244 void plcom_kgdb_putc (void *, int);
245 #endif /* KGDB */
246
247 #define PLCOMDIALOUT_MASK TTDIALOUT_MASK
248
249 #define PLCOMUNIT(x) TTUNIT(x)
250 #define PLCOMDIALOUT(x) TTDIALOUT(x)
251
252 #define PLCOM_ISALIVE(sc) ((sc)->enabled != 0 && \
253 device_is_active((sc)->sc_dev))
254
255 #define BR BUS_SPACE_BARRIER_READ
256 #define BW BUS_SPACE_BARRIER_WRITE
257 #define PLCOM_BARRIER(pi, f) \
258 bus_space_barrier((pi)->pi_iot, (pi)->pi_ioh, 0, (pi)->pi_size, (f))
259
260 static uint8_t
261 pread1(struct plcom_instance *pi, bus_size_t reg)
262 {
263 if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS))
264 return bus_space_read_1(pi->pi_iot, pi->pi_ioh, reg);
265
266 return bus_space_read_4(pi->pi_iot, pi->pi_ioh, reg & -4) >>
267 (8 * (reg & 3));
268 }
269 int nhcr;
270 static void
271 pwrite1(struct plcom_instance *pi, bus_size_t o, uint8_t val)
272 {
273 if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS)) {
274 bus_space_write_1(pi->pi_iot, pi->pi_ioh, o, val);
275 } else {
276 const size_t shift = 8 * (o & 3);
277 o &= -4;
278 uint32_t tmp = bus_space_read_4(pi->pi_iot, pi->pi_ioh, o);
279 tmp = (val << shift) | (tmp & ~(0xff << shift));
280 bus_space_write_4(pi->pi_iot, pi->pi_ioh, o, tmp);
281 }
282 }
283
284 static void
285 pwritem1(struct plcom_instance *pi, bus_size_t o, const uint8_t *datap,
286 bus_size_t count)
287 {
288 if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS)) {
289 bus_space_write_multi_1(pi->pi_iot, pi->pi_ioh, o, datap, count);
290 } else {
291 KASSERT((o & 3) == 0);
292 while (count--) {
293 bus_space_write_4(pi->pi_iot, pi->pi_ioh, o, *datap++);
294 };
295 }
296 }
297
298 #define PREAD1(pi, reg) pread1(pi, reg)
299 #define PREAD4(pi, reg) \
300 (bus_space_read_4((pi)->pi_iot, (pi)->pi_ioh, (reg)))
301
302 #define PWRITE1(pi, reg, val) pwrite1(pi, reg, val)
303 #define PWRITEM1(pi, reg, d, c) pwritem1(pi, reg, d, c)
304 #define PWRITE4(pi, reg, val) \
305 (bus_space_write_4((pi)->pi_iot, (pi)->pi_ioh, (reg), (val)))
306
307 int
308 pl010comspeed(long speed, long frequency)
309 {
310 #define divrnd(n, q) (((n)*2/(q)+1)/2) /* divide and round off */
311
312 int x, err;
313
314 #if 0
315 if (speed == 0)
316 return 0;
317 #endif
318 if (speed <= 0)
319 return -1;
320 x = divrnd(frequency / 16, speed);
321 if (x <= 0)
322 return -1;
323 err = divrnd(((quad_t)frequency) * 1000 / 16, speed * x) - 1000;
324 if (err < 0)
325 err = -err;
326 if (err > PLCOM_TOLERANCE)
327 return -1;
328 return x;
329
330 #undef divrnd
331 }
332
333 int
334 pl011comspeed(long speed, long frequency)
335 {
336 int denom = 16 * speed;
337 int div = frequency / denom;
338 int rem = frequency % denom;
339
340 int ibrd = div << 6;
341 int fbrd = (((8 * rem) / speed) + 1) / 2;
342
343 /* Tolerance? */
344 return ibrd | fbrd;
345 }
346
347 #ifdef PLCOM_DEBUG
348 int plcom_debug = 0;
349
350 void plcomstatus (struct plcom_softc *, const char *);
351 void
352 plcomstatus(struct plcom_softc *sc, const char *str)
353 {
354 struct tty *tp = sc->sc_tty;
355
356 printf("%s: %s %sclocal %sdcd %sts_carr_on %sdtr %stx_stopped\n",
357 device_xname(sc->sc_dev), str,
358 ISSET(tp->t_cflag, CLOCAL) ? "+" : "-",
359 ISSET(sc->sc_msr, PL01X_MSR_DCD) ? "+" : "-",
360 ISSET(tp->t_state, TS_CARR_ON) ? "+" : "-",
361 ISSET(sc->sc_mcr, PL01X_MCR_DTR) ? "+" : "-",
362 sc->sc_tx_stopped ? "+" : "-");
363
364 printf("%s: %s %scrtscts %scts %sts_ttstop %srts %xrx_flags\n",
365 device_xname(sc->sc_dev), str,
366 ISSET(tp->t_cflag, CRTSCTS) ? "+" : "-",
367 ISSET(sc->sc_msr, PL01X_MSR_CTS) ? "+" : "-",
368 ISSET(tp->t_state, TS_TTSTOP) ? "+" : "-",
369 ISSET(sc->sc_mcr, PL01X_MCR_RTS) ? "+" : "-",
370 sc->sc_rx_flags);
371 }
372 #endif
373
374 #if 0
375 int
376 plcomprobe1(bus_space_tag_t iot, bus_space_handle_t ioh)
377 {
378 int data;
379
380 /* Disable the UART. */
381 bus_space_write_1(iot, ioh, plcom_cr, 0);
382 /* Make sure the FIFO is off. */
383 bus_space_write_1(iot, ioh, plcom_lcr, PL01X_LCR_8BITS);
384 /* Disable interrupts. */
385 bus_space_write_1(iot, ioh, plcom_iir, 0);
386
387 /* Make sure we swallow anything in the receiving register. */
388 data = bus_space_read_1(iot, ioh, plcom_dr);
389
390 if (bus_space_read_1(iot, ioh, plcom_lcr) != PL01X_LCR_8BITS)
391 return 0;
392
393 data = bus_space_read_1(iot, ioh, plcom_fr) & (PL01X_FR_RXFF | PL01X_FR_RXFE);
394
395 if (data != PL01X_FR_RXFE)
396 return 0;
397
398 return 1;
399 }
400 #endif
401
402 /*
403 * No locking in this routine; it is only called during attach,
404 * or with the port already locked.
405 */
406 static void
407 plcom_enable_debugport(struct plcom_softc *sc)
408 {
409 struct plcom_instance *pi = &sc->sc_pi;
410
411 sc->sc_cr = PL01X_CR_UARTEN;
412 SET(sc->sc_mcr, PL01X_MCR_DTR | PL01X_MCR_RTS);
413
414 /* Turn on line break interrupt, set carrier. */
415 switch (pi->pi_type) {
416 case PLCOM_TYPE_PL010:
417 SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE);
418 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
419 if (sc->sc_set_mcr) {
420 /* XXX device_unit() abuse */
421 sc->sc_set_mcr(sc->sc_set_mcr_arg,
422 device_unit(sc->sc_dev), sc->sc_mcr);
423 }
424 break;
425 case PLCOM_TYPE_PL011:
426 sc->sc_imsc = PL011_INT_RX | PL011_INT_RT;
427 SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
428 SET(sc->sc_cr, PL011_MCR(sc->sc_mcr));
429 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
430 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
431 break;
432 }
433
434 }
435
436 void
437 plcom_attach_subr(struct plcom_softc *sc)
438 {
439 struct plcom_instance *pi = &sc->sc_pi;
440 struct tty *tp;
441
442 callout_init(&sc->sc_diag_callout, 0);
443 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_HIGH);
444
445 switch (pi->pi_type) {
446 case PLCOM_TYPE_PL010:
447 case PLCOM_TYPE_PL011:
448 break;
449 default:
450 aprint_error_dev(sc->sc_dev,
451 "Unknown plcom type: %d\n", pi->pi_type);
452 return;
453 }
454
455 /* Disable interrupts before configuring the device. */
456 sc->sc_cr = 0;
457 sc->sc_imsc = 0;
458
459 if (bus_space_is_equal(pi->pi_iot, plcomcons_info.pi_iot) &&
460 pi->pi_iobase == plcomcons_info.pi_iobase) {
461 plcomconsattached = 1;
462
463 /* Make sure the console is always "hardwired". */
464 delay(1000); /* wait for output to finish */
465 SET(sc->sc_hwflags, PLCOM_HW_CONSOLE);
466 SET(sc->sc_swflags, TIOCFLAG_SOFTCAR);
467 /*
468 * Must re-enable the console immediately, or we will
469 * hang when trying to print.
470 */
471 sc->sc_cr = PL01X_CR_UARTEN;
472 if (pi->pi_type == PLCOM_TYPE_PL011)
473 SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
474 }
475
476 switch (pi->pi_type) {
477 case PLCOM_TYPE_PL010:
478 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
479 break;
480
481 case PLCOM_TYPE_PL011:
482 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
483 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
484 break;
485 }
486
487 if (sc->sc_fifolen == 0) {
488 switch (pi->pi_type) {
489 case PLCOM_TYPE_PL010:
490 /*
491 * The PL010 has a 16-byte fifo, but the tx interrupt
492 * triggers when there is space for 8 more bytes.
493 */
494 sc->sc_fifolen = 8;
495 break;
496 case PLCOM_TYPE_PL011:
497 /* Some revisions have a 32 byte TX FIFO */
498 sc->sc_fifolen = 16;
499 break;
500 }
501 }
502
503 if (ISSET(sc->sc_hwflags, PLCOM_HW_TXFIFO_DISABLE)) {
504 sc->sc_fifolen = 1;
505 aprint_normal_dev(sc->sc_dev, "txfifo disabled\n");
506 }
507
508 if (sc->sc_fifolen > 1)
509 SET(sc->sc_hwflags, PLCOM_HW_FIFO);
510
511 tp = tty_alloc();
512 tp->t_oproc = plcomstart;
513 tp->t_param = plcomparam;
514 tp->t_hwiflow = plcomhwiflow;
515
516 sc->sc_tty = tp;
517 sc->sc_rbuf = malloc(plcom_rbuf_size << 1, M_DEVBUF, M_WAITOK);
518 sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
519 sc->sc_rbavail = plcom_rbuf_size;
520 sc->sc_ebuf = sc->sc_rbuf + (plcom_rbuf_size << 1);
521
522 tty_attach(tp);
523
524 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
525 int maj;
526
527 /* locate the major number */
528 maj = cdevsw_lookup_major(&plcom_cdevsw);
529
530 tp->t_dev = cn_tab->cn_dev = makedev(maj, device_unit(sc->sc_dev));
531
532 aprint_normal_dev(sc->sc_dev, "console\n");
533 }
534
535 #ifdef KGDB
536 /*
537 * Allow kgdb to "take over" this port. If this is
538 * the kgdb device, it has exclusive use.
539 */
540 if (bus_space_is_equal(pi->pi_iot, plcomkgdb_info.pi_iot) &&
541 pi->pi_iobase == plcomkgdb_info.pi_iobase) {
542 if (!ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
543 plcom_kgdb_attached = 1;
544
545 SET(sc->sc_hwflags, PLCOM_HW_KGDB);
546 }
547 aprint_normal_dev(sc->sc_dev, "kgdb\n");
548 }
549 #endif
550
551 sc->sc_si = softint_establish(SOFTINT_SERIAL, plcomsoft, sc);
552
553 #ifdef RND_COM
554 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
555 RND_TYPE_TTY, RND_FLAG_DEFAULT);
556 #endif
557
558 /*
559 * if there are no enable/disable functions, assume the device
560 * is always enabled
561 */
562 if (!sc->enable)
563 sc->enabled = 1;
564
565 plcom_config(sc);
566
567 SET(sc->sc_hwflags, PLCOM_HW_DEV_OK);
568 }
569
570 void
571 plcom_config(struct plcom_softc *sc)
572 {
573 struct plcom_instance *pi = &sc->sc_pi;
574
575 /* Disable interrupts before configuring the device. */
576 sc->sc_cr = 0;
577 sc->sc_imsc = 0;
578 switch (pi->pi_type) {
579 case PLCOM_TYPE_PL010:
580 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
581 break;
582
583 case PLCOM_TYPE_PL011:
584 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
585 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
586 break;
587 }
588
589 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE|PLCOM_HW_KGDB))
590 plcom_enable_debugport(sc);
591 }
592
593 int
594 plcom_detach(device_t self, int flags)
595 {
596 struct plcom_softc *sc = device_private(self);
597 int maj, mn;
598
599 if (sc->sc_hwflags & (PLCOM_HW_CONSOLE|PLCOM_HW_KGDB))
600 return EBUSY;
601
602 if (sc->disable != NULL && sc->enabled != 0) {
603 (*sc->disable)(sc);
604 sc->enabled = 0;
605 }
606
607 /* locate the major number */
608 maj = cdevsw_lookup_major(&plcom_cdevsw);
609
610 /* Nuke the vnodes for any open instances. */
611 mn = device_unit(self);
612 vdevgone(maj, mn, mn, VCHR);
613
614 mn |= PLCOMDIALOUT_MASK;
615 vdevgone(maj, mn, mn, VCHR);
616
617 if (sc->sc_rbuf == NULL) {
618 /*
619 * Ring buffer allocation failed in the plcom_attach_subr,
620 * only the tty is allocated, and nothing else.
621 */
622 tty_free(sc->sc_tty);
623 return 0;
624 }
625
626 /* Free the receive buffer. */
627 free(sc->sc_rbuf, M_DEVBUF);
628
629 /* Detach and free the tty. */
630 tty_detach(sc->sc_tty);
631 tty_free(sc->sc_tty);
632
633 /* Unhook the soft interrupt handler. */
634 softint_disestablish(sc->sc_si);
635
636 #ifdef RND_COM
637 /* Unhook the entropy source. */
638 rnd_detach_source(&sc->rnd_source);
639 #endif
640 callout_destroy(&sc->sc_diag_callout);
641
642 /* Destroy the lock. */
643 mutex_destroy(&sc->sc_lock);
644
645 return 0;
646 }
647
648 int
649 plcom_activate(device_t self, enum devact act)
650 {
651 struct plcom_softc *sc = device_private(self);
652
653 switch (act) {
654 case DVACT_DEACTIVATE:
655 sc->enabled = 0;
656 return 0;
657 default:
658 return EOPNOTSUPP;
659 }
660 }
661
662 void
663 plcom_shutdown(struct plcom_softc *sc)
664 {
665 struct plcom_instance *pi = &sc->sc_pi;
666 struct tty *tp = sc->sc_tty;
667 mutex_spin_enter(&sc->sc_lock);
668
669 /* If we were asserting flow control, then deassert it. */
670 SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
671 plcom_hwiflow(sc);
672
673 /* Clear any break condition set with TIOCSBRK. */
674 plcom_break(sc, 0);
675
676 /* Turn off PPS capture on last close. */
677 mutex_spin_enter(&timecounter_lock);
678 sc->sc_ppsmask = 0;
679 sc->ppsparam.mode = 0;
680 mutex_spin_exit(&timecounter_lock);
681
682 /*
683 * Hang up if necessary. Wait a bit, so the other side has time to
684 * notice even if we immediately open the port again.
685 * Avoid tsleeping above splhigh().
686 */
687 if (ISSET(tp->t_cflag, HUPCL)) {
688 plcom_modem(sc, 0);
689 mutex_spin_exit(&sc->sc_lock);
690 /* XXX will only timeout */
691 (void) kpause(ttclos, false, hz, NULL);
692 mutex_spin_enter(&sc->sc_lock);
693 }
694
695 sc->sc_cr = 0;
696 sc->sc_imsc = 0;
697 /* Turn off interrupts. */
698 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
699 /* interrupt on break */
700
701 sc->sc_cr = PL01X_CR_UARTEN;
702 sc->sc_imsc = 0;
703 switch (pi->pi_type) {
704 case PLCOM_TYPE_PL010:
705 SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE);
706 break;
707 case PLCOM_TYPE_PL011:
708 SET(sc->sc_cr, PL011_CR_RXE);
709 SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX);
710 break;
711 }
712 }
713 switch (pi->pi_type) {
714 case PLCOM_TYPE_PL010:
715 SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE);
716 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
717 break;
718 case PLCOM_TYPE_PL011:
719 SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
720 SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX);
721 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
722 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
723 break;
724 }
725
726 mutex_spin_exit(&sc->sc_lock);
727 if (sc->disable) {
728 #ifdef DIAGNOSTIC
729 if (!sc->enabled)
730 panic("plcom_shutdown: not enabled?");
731 #endif
732 (*sc->disable)(sc);
733 sc->enabled = 0;
734 }
735 }
736
737 int
738 plcomopen(dev_t dev, int flag, int mode, struct lwp *l)
739 {
740 struct plcom_softc *sc;
741 struct plcom_instance *pi;
742 struct tty *tp;
743 int s;
744 int error;
745
746 sc = device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
747 if (sc == NULL || !ISSET(sc->sc_hwflags, PLCOM_HW_DEV_OK) ||
748 sc->sc_rbuf == NULL)
749 return ENXIO;
750
751 if (!device_is_active(sc->sc_dev))
752 return ENXIO;
753
754 pi = &sc->sc_pi;
755
756 #ifdef KGDB
757 /*
758 * If this is the kgdb port, no other use is permitted.
759 */
760 if (ISSET(sc->sc_hwflags, PLCOM_HW_KGDB))
761 return EBUSY;
762 #endif
763
764 tp = sc->sc_tty;
765
766 if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
767 return (EBUSY);
768
769 s = spltty();
770
771 /*
772 * Do the following iff this is a first open.
773 */
774 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
775 struct termios t;
776
777 tp->t_dev = dev;
778
779 if (sc->enable) {
780 if ((*sc->enable)(sc)) {
781 splx(s);
782 aprint_error_dev(sc->sc_dev,
783 "device enable failed\n");
784 return EIO;
785 }
786 mutex_spin_enter(&sc->sc_lock);
787 sc->enabled = 1;
788 plcom_config(sc);
789 } else {
790 mutex_spin_enter(&sc->sc_lock);
791 }
792
793 /* Turn on interrupts. */
794 /* IER_ERXRDY | IER_ERLS | IER_EMSC; */
795 /* Fetch the current modem control status, needed later. */
796 sc->sc_cr = PL01X_CR_UARTEN;
797 switch (pi->pi_type) {
798 case PLCOM_TYPE_PL010:
799 SET(sc->sc_cr,
800 PL010_CR_RIE | PL010_CR_RTIE | PL010_CR_MSIE);
801 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
802 sc->sc_msr = PREAD1(pi, PL01XCOM_FR);
803 break;
804 case PLCOM_TYPE_PL011:
805 SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
806 SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX |
807 PL011_INT_MSMASK);
808 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
809 sc->sc_msr = PREAD4(pi, PL01XCOM_FR);
810 break;
811 }
812
813 /* Clear PPS capture state on first open. */
814
815 mutex_spin_enter(&timecounter_lock);
816 sc->sc_ppsmask = 0;
817 sc->ppsparam.mode = 0;
818 mutex_spin_exit(&timecounter_lock);
819
820 mutex_spin_exit(&sc->sc_lock);
821
822 /*
823 * Initialize the termios status to the defaults. Add in the
824 * sticky bits from TIOCSFLAGS.
825 */
826 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
827 t.c_ospeed = plcomconsrate;
828 t.c_cflag = plcomconscflag;
829 } else {
830 t.c_ospeed = TTYDEF_SPEED;
831 t.c_cflag = TTYDEF_CFLAG;
832 }
833 t.c_ispeed = t.c_ospeed;
834
835 if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL))
836 SET(t.c_cflag, CLOCAL);
837 if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS))
838 SET(t.c_cflag, CRTSCTS);
839 if (ISSET(sc->sc_swflags, TIOCFLAG_MDMBUF))
840 SET(t.c_cflag, MDMBUF);
841 /* Make sure plcomparam() will do something. */
842 tp->t_ospeed = 0;
843 (void) plcomparam(tp, &t);
844 tp->t_iflag = TTYDEF_IFLAG;
845 tp->t_oflag = TTYDEF_OFLAG;
846 tp->t_lflag = TTYDEF_LFLAG;
847 ttychars(tp);
848 ttsetwater(tp);
849
850 mutex_spin_enter(&sc->sc_lock);
851
852 /*
853 * Turn on DTR. We must always do this, even if carrier is not
854 * present, because otherwise we'd have to use TIOCSDTR
855 * immediately after setting CLOCAL, which applications do not
856 * expect. We always assert DTR while the device is open
857 * unless explicitly requested to deassert it.
858 */
859 plcom_modem(sc, 1);
860
861 /* Clear the input ring, and unblock. */
862 sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
863 sc->sc_rbavail = plcom_rbuf_size;
864 plcom_iflush(sc);
865 CLR(sc->sc_rx_flags, RX_ANY_BLOCK);
866 plcom_hwiflow(sc);
867
868 #ifdef PLCOM_DEBUG
869 if (plcom_debug)
870 plcomstatus(sc, "plcomopen ");
871 #endif
872
873 mutex_spin_exit(&sc->sc_lock);
874 }
875
876 splx(s);
877
878 error = ttyopen(tp, PLCOMDIALOUT(dev), ISSET(flag, O_NONBLOCK));
879 if (error)
880 goto bad;
881
882 error = (*tp->t_linesw->l_open)(dev, tp);
883 if (error)
884 goto bad;
885
886 return 0;
887
888 bad:
889 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
890 /*
891 * We failed to open the device, and nobody else had it opened.
892 * Clean up the state as appropriate.
893 */
894 plcom_shutdown(sc);
895 }
896
897 return error;
898 }
899
900 int
901 plcomclose(dev_t dev, int flag, int mode, struct lwp *l)
902 {
903 struct plcom_softc *sc =
904 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
905 struct tty *tp = sc->sc_tty;
906
907 /* XXX This is for cons.c. */
908 if (!ISSET(tp->t_state, TS_ISOPEN))
909 return 0;
910
911 (*tp->t_linesw->l_close)(tp, flag);
912 ttyclose(tp);
913
914 if (PLCOM_ISALIVE(sc) == 0)
915 return 0;
916
917 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
918 /*
919 * Although we got a last close, the device may still be in
920 * use; e.g. if this was the dialout node, and there are still
921 * processes waiting for carrier on the non-dialout node.
922 */
923 plcom_shutdown(sc);
924 }
925
926 return 0;
927 }
928
929 int
930 plcomread(dev_t dev, struct uio *uio, int flag)
931 {
932 struct plcom_softc *sc =
933 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
934 struct tty *tp = sc->sc_tty;
935
936 if (PLCOM_ISALIVE(sc) == 0)
937 return EIO;
938
939 return (*tp->t_linesw->l_read)(tp, uio, flag);
940 }
941
942 int
943 plcomwrite(dev_t dev, struct uio *uio, int flag)
944 {
945 struct plcom_softc *sc =
946 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
947 struct tty *tp = sc->sc_tty;
948
949 if (PLCOM_ISALIVE(sc) == 0)
950 return EIO;
951
952 return (*tp->t_linesw->l_write)(tp, uio, flag);
953 }
954
955 int
956 plcompoll(dev_t dev, int events, struct lwp *l)
957 {
958 struct plcom_softc *sc =
959 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
960 struct tty *tp = sc->sc_tty;
961
962 if (PLCOM_ISALIVE(sc) == 0)
963 return EIO;
964
965 return (*tp->t_linesw->l_poll)(tp, events, l);
966 }
967
968 struct tty *
969 plcomtty(dev_t dev)
970 {
971 struct plcom_softc *sc =
972 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
973 struct tty *tp = sc->sc_tty;
974
975 return tp;
976 }
977
978 int
979 plcomioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
980 {
981 struct plcom_softc *sc =
982 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
983 struct tty *tp;
984 int error;
985
986 if (sc == NULL)
987 return ENXIO;
988 if (PLCOM_ISALIVE(sc) == 0)
989 return EIO;
990
991 tp = sc->sc_tty;
992
993 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
994 if (error != EPASSTHROUGH)
995 return error;
996
997 error = ttioctl(tp, cmd, data, flag, l);
998 if (error != EPASSTHROUGH)
999 return error;
1000
1001 error = 0;
1002 switch (cmd) {
1003 case TIOCSFLAGS:
1004 error = kauth_authorize_device_tty(l->l_cred,
1005 KAUTH_DEVICE_TTY_PRIVSET, tp);
1006 break;
1007 default:
1008 /* nothing */
1009 break;
1010 }
1011 if (error) {
1012 return error;
1013 }
1014
1015 mutex_spin_enter(&sc->sc_lock);
1016 switch (cmd) {
1017 case TIOCSBRK:
1018 plcom_break(sc, 1);
1019 break;
1020
1021 case TIOCCBRK:
1022 plcom_break(sc, 0);
1023 break;
1024
1025 case TIOCSDTR:
1026 plcom_modem(sc, 1);
1027 break;
1028
1029 case TIOCCDTR:
1030 plcom_modem(sc, 0);
1031 break;
1032
1033 case TIOCGFLAGS:
1034 *(int *)data = sc->sc_swflags;
1035 break;
1036
1037 case TIOCSFLAGS:
1038 sc->sc_swflags = *(int *)data;
1039 break;
1040
1041 case TIOCMSET:
1042 case TIOCMBIS:
1043 case TIOCMBIC:
1044 tiocm_to_plcom(sc, cmd, *(int *)data);
1045 break;
1046
1047 case TIOCMGET:
1048 *(int *)data = plcom_to_tiocm(sc);
1049 break;
1050
1051 case PPS_IOC_CREATE:
1052 break;
1053
1054 case PPS_IOC_DESTROY:
1055 break;
1056
1057 case PPS_IOC_GETPARAMS: {
1058 pps_params_t *pp;
1059 pp = (pps_params_t *)data;
1060 mutex_spin_enter(&timecounter_lock);
1061 *pp = sc->ppsparam;
1062 mutex_spin_exit(&timecounter_lock);
1063 break;
1064 }
1065
1066 case PPS_IOC_SETPARAMS: {
1067 pps_params_t *pp;
1068 int mode;
1069 pp = (pps_params_t *)data;
1070 mutex_spin_enter(&timecounter_lock);
1071 if (pp->mode & ~ppscap) {
1072 error = EINVAL;
1073 mutex_spin_exit(&timecounter_lock);
1074 break;
1075 }
1076 sc->ppsparam = *pp;
1077 /*
1078 * Compute msr masks from user-specified timestamp state.
1079 */
1080 mode = sc->ppsparam.mode;
1081 #ifdef PPS_SYNC
1082 if (mode & PPS_HARDPPSONASSERT) {
1083 mode |= PPS_CAPTUREASSERT;
1084 /* XXX revoke any previous HARDPPS source */
1085 }
1086 if (mode & PPS_HARDPPSONCLEAR) {
1087 mode |= PPS_CAPTURECLEAR;
1088 /* XXX revoke any previous HARDPPS source */
1089 }
1090 #endif /* PPS_SYNC */
1091 switch (mode & PPS_CAPTUREBOTH) {
1092 case 0:
1093 sc->sc_ppsmask = 0;
1094 break;
1095
1096 case PPS_CAPTUREASSERT:
1097 sc->sc_ppsmask = PL01X_MSR_DCD;
1098 sc->sc_ppsassert = PL01X_MSR_DCD;
1099 sc->sc_ppsclear = -1;
1100 break;
1101
1102 case PPS_CAPTURECLEAR:
1103 sc->sc_ppsmask = PL01X_MSR_DCD;
1104 sc->sc_ppsassert = -1;
1105 sc->sc_ppsclear = 0;
1106 break;
1107
1108 case PPS_CAPTUREBOTH:
1109 sc->sc_ppsmask = PL01X_MSR_DCD;
1110 sc->sc_ppsassert = PL01X_MSR_DCD;
1111 sc->sc_ppsclear = 0;
1112 break;
1113
1114 default:
1115 error = EINVAL;
1116 break;
1117 }
1118 mutex_spin_exit(&timecounter_lock);
1119 break;
1120 }
1121
1122 case PPS_IOC_GETCAP:
1123 *(int*)data = ppscap;
1124 break;
1125
1126 case PPS_IOC_FETCH: {
1127 pps_info_t *pi;
1128 pi = (pps_info_t *)data;
1129 mutex_spin_enter(&timecounter_lock);
1130 *pi = sc->ppsinfo;
1131 mutex_spin_exit(&timecounter_lock);
1132 break;
1133 }
1134
1135 case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */
1136 /*
1137 * Some GPS clocks models use the falling rather than
1138 * rising edge as the on-the-second signal.
1139 * The old API has no way to specify PPS polarity.
1140 */
1141 mutex_spin_enter(&timecounter_lock);
1142 sc->sc_ppsmask = PL01X_MSR_DCD;
1143 #ifndef PPS_TRAILING_EDGE
1144 sc->sc_ppsassert = PL01X_MSR_DCD;
1145 sc->sc_ppsclear = -1;
1146 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
1147 &sc->ppsinfo.assert_timestamp);
1148 #else
1149 sc->sc_ppsassert = -1
1150 sc->sc_ppsclear = 0;
1151 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
1152 &sc->ppsinfo.clear_timestamp);
1153 #endif
1154 mutex_spin_exit(&timecounter_lock);
1155 break;
1156
1157 default:
1158 error = EPASSTHROUGH;
1159 break;
1160 }
1161
1162 mutex_spin_exit(&sc->sc_lock);
1163
1164 #ifdef PLCOM_DEBUG
1165 if (plcom_debug)
1166 plcomstatus(sc, "plcomioctl ");
1167 #endif
1168
1169 return error;
1170 }
1171
1172 integrate void
1173 plcom_schedrx(struct plcom_softc *sc)
1174 {
1175
1176 sc->sc_rx_ready = 1;
1177
1178 /* Wake up the poller. */
1179 softint_schedule(sc->sc_si);
1180 }
1181
1182 void
1183 plcom_break(struct plcom_softc *sc, int onoff)
1184 {
1185
1186 if (onoff)
1187 SET(sc->sc_lcr, PL01X_LCR_BRK);
1188 else
1189 CLR(sc->sc_lcr, PL01X_LCR_BRK);
1190
1191 if (!sc->sc_heldchange) {
1192 if (sc->sc_tx_busy) {
1193 sc->sc_heldtbc = sc->sc_tbc;
1194 sc->sc_tbc = 0;
1195 sc->sc_heldchange = 1;
1196 } else
1197 plcom_loadchannelregs(sc);
1198 }
1199 }
1200
1201 void
1202 plcom_modem(struct plcom_softc *sc, int onoff)
1203 {
1204
1205 if (sc->sc_mcr_dtr == 0)
1206 return;
1207
1208 if (onoff)
1209 SET(sc->sc_mcr, sc->sc_mcr_dtr);
1210 else
1211 CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1212
1213 if (!sc->sc_heldchange) {
1214 if (sc->sc_tx_busy) {
1215 sc->sc_heldtbc = sc->sc_tbc;
1216 sc->sc_tbc = 0;
1217 sc->sc_heldchange = 1;
1218 } else
1219 plcom_loadchannelregs(sc);
1220 }
1221 }
1222
1223 void
1224 tiocm_to_plcom(struct plcom_softc *sc, u_long how, int ttybits)
1225 {
1226 u_char plcombits;
1227
1228 plcombits = 0;
1229 if (ISSET(ttybits, TIOCM_DTR))
1230 SET(plcombits, PL01X_MCR_DTR);
1231 if (ISSET(ttybits, TIOCM_RTS))
1232 SET(plcombits, PL01X_MCR_RTS);
1233
1234 switch (how) {
1235 case TIOCMBIC:
1236 CLR(sc->sc_mcr, plcombits);
1237 break;
1238
1239 case TIOCMBIS:
1240 SET(sc->sc_mcr, plcombits);
1241 break;
1242
1243 case TIOCMSET:
1244 CLR(sc->sc_mcr, PL01X_MCR_DTR | PL01X_MCR_RTS);
1245 SET(sc->sc_mcr, plcombits);
1246 break;
1247 }
1248
1249 if (!sc->sc_heldchange) {
1250 if (sc->sc_tx_busy) {
1251 sc->sc_heldtbc = sc->sc_tbc;
1252 sc->sc_tbc = 0;
1253 sc->sc_heldchange = 1;
1254 } else
1255 plcom_loadchannelregs(sc);
1256 }
1257 }
1258
1259 int
1260 plcom_to_tiocm(struct plcom_softc *sc)
1261 {
1262 u_char plcombits;
1263 int ttybits = 0;
1264
1265 plcombits = sc->sc_mcr;
1266 if (ISSET(plcombits, PL01X_MCR_DTR))
1267 SET(ttybits, TIOCM_DTR);
1268 if (ISSET(plcombits, PL01X_MCR_RTS))
1269 SET(ttybits, TIOCM_RTS);
1270
1271 plcombits = sc->sc_msr;
1272 if (ISSET(plcombits, PL01X_MSR_DCD))
1273 SET(ttybits, TIOCM_CD);
1274 if (ISSET(plcombits, PL01X_MSR_CTS))
1275 SET(ttybits, TIOCM_CTS);
1276 if (ISSET(plcombits, PL01X_MSR_DSR))
1277 SET(ttybits, TIOCM_DSR);
1278 if (ISSET(plcombits, PL011_MSR_RI))
1279 SET(ttybits, TIOCM_RI);
1280
1281 if (sc->sc_cr != 0)
1282 SET(ttybits, TIOCM_LE);
1283
1284 return ttybits;
1285 }
1286
1287 static u_char
1288 cflag2lcr(tcflag_t cflag)
1289 {
1290 u_char lcr = 0;
1291
1292 switch (ISSET(cflag, CSIZE)) {
1293 case CS5:
1294 SET(lcr, PL01X_LCR_5BITS);
1295 break;
1296 case CS6:
1297 SET(lcr, PL01X_LCR_6BITS);
1298 break;
1299 case CS7:
1300 SET(lcr, PL01X_LCR_7BITS);
1301 break;
1302 case CS8:
1303 SET(lcr, PL01X_LCR_8BITS);
1304 break;
1305 }
1306 if (ISSET(cflag, PARENB)) {
1307 SET(lcr, PL01X_LCR_PEN);
1308 if (!ISSET(cflag, PARODD))
1309 SET(lcr, PL01X_LCR_EPS);
1310 }
1311 if (ISSET(cflag, CSTOPB))
1312 SET(lcr, PL01X_LCR_STP2);
1313
1314 return lcr;
1315 }
1316
1317 int
1318 plcomparam(struct tty *tp, struct termios *t)
1319 {
1320 struct plcom_softc *sc =
1321 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1322 struct plcom_instance *pi = &sc->sc_pi;
1323 int ospeed = -1;
1324 u_char lcr;
1325
1326 if (PLCOM_ISALIVE(sc) == 0)
1327 return EIO;
1328
1329 switch (pi->pi_type) {
1330 case PLCOM_TYPE_PL010:
1331 ospeed = pl010comspeed(t->c_ospeed, sc->sc_frequency);
1332 break;
1333 case PLCOM_TYPE_PL011:
1334 ospeed = pl011comspeed(t->c_ospeed, sc->sc_frequency);
1335 break;
1336 }
1337
1338 /* Check requested parameters. */
1339 if (ospeed < 0)
1340 return EINVAL;
1341 if (t->c_ispeed && t->c_ispeed != t->c_ospeed)
1342 return EINVAL;
1343
1344 /*
1345 * For the console, always force CLOCAL and !HUPCL, so that the port
1346 * is always active.
1347 */
1348 if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR) ||
1349 ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
1350 SET(t->c_cflag, CLOCAL);
1351 CLR(t->c_cflag, HUPCL);
1352 }
1353
1354 /*
1355 * If there were no changes, don't do anything. This avoids dropping
1356 * input and improves performance when all we did was frob things like
1357 * VMIN and VTIME.
1358 */
1359 if (tp->t_ospeed == t->c_ospeed &&
1360 tp->t_cflag == t->c_cflag)
1361 return 0;
1362
1363 lcr = ISSET(sc->sc_lcr, PL01X_LCR_BRK) | cflag2lcr(t->c_cflag);
1364
1365 mutex_spin_enter(&sc->sc_lock);
1366
1367 sc->sc_lcr = lcr;
1368
1369 /*
1370 * PL010 has a fixed-length FIFO trigger point.
1371 */
1372 if (ISSET(sc->sc_hwflags, PLCOM_HW_FIFO))
1373 sc->sc_fifo = 1;
1374 else
1375 sc->sc_fifo = 0;
1376
1377 if (sc->sc_fifo)
1378 SET(sc->sc_lcr, PL01X_LCR_FEN);
1379
1380 /*
1381 * If we're not in a mode that assumes a connection is present, then
1382 * ignore carrier changes.
1383 */
1384 if (ISSET(t->c_cflag, CLOCAL | MDMBUF))
1385 sc->sc_msr_dcd = 0;
1386 else
1387 sc->sc_msr_dcd = PL01X_MSR_DCD;
1388 /*
1389 * Set the flow control pins depending on the current flow control
1390 * mode.
1391 */
1392 if (ISSET(t->c_cflag, CRTSCTS)) {
1393 sc->sc_mcr_dtr = PL01X_MCR_DTR;
1394 sc->sc_mcr_rts = PL01X_MCR_RTS;
1395 sc->sc_msr_cts = PL01X_MSR_CTS;
1396 } else if (ISSET(t->c_cflag, MDMBUF)) {
1397 /*
1398 * For DTR/DCD flow control, make sure we don't toggle DTR for
1399 * carrier detection.
1400 */
1401 sc->sc_mcr_dtr = 0;
1402 sc->sc_mcr_rts = PL01X_MCR_DTR;
1403 sc->sc_msr_cts = PL01X_MSR_DCD;
1404 } else {
1405 /*
1406 * If no flow control, then always set RTS. This will make
1407 * the other side happy if it mistakenly thinks we're doing
1408 * RTS/CTS flow control.
1409 */
1410 sc->sc_mcr_dtr = PL01X_MCR_DTR | PL01X_MCR_RTS;
1411 sc->sc_mcr_rts = 0;
1412 sc->sc_msr_cts = 0;
1413 if (ISSET(sc->sc_mcr, PL01X_MCR_DTR))
1414 SET(sc->sc_mcr, PL01X_MCR_RTS);
1415 else
1416 CLR(sc->sc_mcr, PL01X_MCR_RTS);
1417 }
1418 sc->sc_msr_mask = sc->sc_msr_cts | sc->sc_msr_dcd;
1419
1420 #if 0
1421 if (ospeed == 0)
1422 CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1423 else
1424 SET(sc->sc_mcr, sc->sc_mcr_dtr);
1425 #endif
1426
1427 switch (pi->pi_type) {
1428 case PLCOM_TYPE_PL010:
1429 sc->sc_ratel = ospeed & 0xff;
1430 sc->sc_rateh = (ospeed >> 8) & 0xff;
1431 break;
1432 case PLCOM_TYPE_PL011:
1433 sc->sc_ratel = ospeed & ((1 << 6) - 1);
1434 sc->sc_rateh = ospeed >> 6;
1435 break;
1436 }
1437
1438 /* And copy to tty. */
1439 tp->t_ispeed = t->c_ospeed;
1440 tp->t_ospeed = t->c_ospeed;
1441 tp->t_cflag = t->c_cflag;
1442
1443 if (!sc->sc_heldchange) {
1444 if (sc->sc_tx_busy) {
1445 sc->sc_heldtbc = sc->sc_tbc;
1446 sc->sc_tbc = 0;
1447 sc->sc_heldchange = 1;
1448 } else
1449 plcom_loadchannelregs(sc);
1450 }
1451
1452 if (!ISSET(t->c_cflag, CHWFLOW)) {
1453 /* Disable the high water mark. */
1454 sc->sc_r_hiwat = 0;
1455 sc->sc_r_lowat = 0;
1456 if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1457 CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1458 plcom_schedrx(sc);
1459 }
1460 if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
1461 CLR(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
1462 plcom_hwiflow(sc);
1463 }
1464 } else {
1465 sc->sc_r_hiwat = plcom_rbuf_hiwat;
1466 sc->sc_r_lowat = plcom_rbuf_lowat;
1467 }
1468
1469 mutex_spin_exit(&sc->sc_lock);
1470
1471 /*
1472 * Update the tty layer's idea of the carrier bit, in case we changed
1473 * CLOCAL or MDMBUF. We don't hang up here; we only do that by
1474 * explicit request.
1475 */
1476 (void) (*tp->t_linesw->l_modem)(tp, ISSET(sc->sc_msr, PL01X_MSR_DCD));
1477
1478 #ifdef PLCOM_DEBUG
1479 if (plcom_debug)
1480 plcomstatus(sc, "plcomparam ");
1481 #endif
1482
1483 if (!ISSET(t->c_cflag, CHWFLOW)) {
1484 if (sc->sc_tx_stopped) {
1485 sc->sc_tx_stopped = 0;
1486 plcomstart(tp);
1487 }
1488 }
1489
1490 return 0;
1491 }
1492
1493 void
1494 plcom_iflush(struct plcom_softc *sc)
1495 {
1496 struct plcom_instance *pi = &sc->sc_pi;
1497 #ifdef DIAGNOSTIC
1498 int reg;
1499 #endif
1500 int timo;
1501
1502 #ifdef DIAGNOSTIC
1503 reg = 0xffff;
1504 #endif
1505 timo = 50000;
1506 /* flush any pending I/O */
1507 while (! ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE)
1508 && --timo)
1509 #ifdef DIAGNOSTIC
1510 reg =
1511 #else
1512 (void)
1513 #endif
1514 PREAD1(pi, PL01XCOM_DR);
1515 #ifdef DIAGNOSTIC
1516 if (!timo)
1517 aprint_error_dev(sc->sc_dev, ": %s timeout %02x\n", __func__,
1518 reg);
1519 #endif
1520 }
1521
1522 void
1523 plcom_loadchannelregs(struct plcom_softc *sc)
1524 {
1525 struct plcom_instance *pi = &sc->sc_pi;
1526
1527 /* XXXXX necessary? */
1528 plcom_iflush(sc);
1529
1530 switch (pi->pi_type) {
1531 case PLCOM_TYPE_PL010:
1532 PWRITE1(pi, PL010COM_CR, 0);
1533 if (sc->sc_frequency != 0) {
1534 PWRITE1(pi, PL010COM_DLBL, sc->sc_ratel);
1535 PWRITE1(pi, PL010COM_DLBH, sc->sc_rateh);
1536 }
1537 PWRITE1(pi, PL010COM_LCR, sc->sc_lcr);
1538
1539 /* XXX device_unit() abuse */
1540 if (sc->sc_set_mcr)
1541 sc->sc_set_mcr(sc->sc_set_mcr_arg,
1542 device_unit(sc->sc_dev),
1543 sc->sc_mcr_active = sc->sc_mcr);
1544
1545 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
1546 break;
1547
1548 case PLCOM_TYPE_PL011:
1549 PWRITE4(pi, PL011COM_CR, 0);
1550 if (sc->sc_frequency != 0) {
1551 PWRITE1(pi, PL011COM_FBRD, sc->sc_ratel);
1552 PWRITE4(pi, PL011COM_IBRD, sc->sc_rateh);
1553 }
1554 PWRITE1(pi, PL011COM_LCRH, sc->sc_lcr);
1555 sc->sc_mcr_active = sc->sc_mcr;
1556 CLR(sc->sc_cr, PL011_MCR(PL01X_MCR_RTS | PL01X_MCR_DTR));
1557 SET(sc->sc_cr, PL011_MCR(sc->sc_mcr_active));
1558 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
1559 break;
1560 }
1561 }
1562
1563 int
1564 plcomhwiflow(struct tty *tp, int block)
1565 {
1566 struct plcom_softc *sc =
1567 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1568
1569 if (PLCOM_ISALIVE(sc) == 0)
1570 return 0;
1571
1572 if (sc->sc_mcr_rts == 0)
1573 return 0;
1574
1575 mutex_spin_enter(&sc->sc_lock);
1576
1577 if (block) {
1578 if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1579 SET(sc->sc_rx_flags, RX_TTY_BLOCKED);
1580 plcom_hwiflow(sc);
1581 }
1582 } else {
1583 if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1584 CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1585 plcom_schedrx(sc);
1586 }
1587 if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1588 CLR(sc->sc_rx_flags, RX_TTY_BLOCKED);
1589 plcom_hwiflow(sc);
1590 }
1591 }
1592
1593 mutex_spin_exit(&sc->sc_lock);
1594 return 1;
1595 }
1596
1597 /*
1598 * (un)block input via hw flowcontrol
1599 */
1600 void
1601 plcom_hwiflow(struct plcom_softc *sc)
1602 {
1603 struct plcom_instance *pi = &sc->sc_pi;
1604
1605 if (sc->sc_mcr_rts == 0)
1606 return;
1607
1608 if (ISSET(sc->sc_rx_flags, RX_ANY_BLOCK)) {
1609 CLR(sc->sc_mcr, sc->sc_mcr_rts);
1610 CLR(sc->sc_mcr_active, sc->sc_mcr_rts);
1611 } else {
1612 SET(sc->sc_mcr, sc->sc_mcr_rts);
1613 SET(sc->sc_mcr_active, sc->sc_mcr_rts);
1614 }
1615 switch (pi->pi_type) {
1616 case PLCOM_TYPE_PL010:
1617 if (sc->sc_set_mcr)
1618 /* XXX device_unit() abuse */
1619 sc->sc_set_mcr(sc->sc_set_mcr_arg,
1620 device_unit(sc->sc_dev), sc->sc_mcr_active);
1621 break;
1622 case PLCOM_TYPE_PL011:
1623 CLR(sc->sc_cr, PL011_MCR(PL01X_MCR_RTS | PL01X_MCR_DTR));
1624 SET(sc->sc_cr, PL011_MCR(sc->sc_mcr_active));
1625 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
1626 break;
1627 }
1628 }
1629
1630
1631 void
1632 plcomstart(struct tty *tp)
1633 {
1634 struct plcom_softc *sc =
1635 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1636 struct plcom_instance *pi = &sc->sc_pi;
1637 int s;
1638
1639 if (PLCOM_ISALIVE(sc) == 0)
1640 return;
1641
1642 s = spltty();
1643 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
1644 goto out;
1645 if (sc->sc_tx_stopped)
1646 goto out;
1647
1648 if (!ttypull(tp))
1649 goto out;
1650
1651 /* Grab the first contiguous region of buffer space. */
1652 {
1653 u_char *tba;
1654 int tbc;
1655
1656 tba = tp->t_outq.c_cf;
1657 tbc = ndqb(&tp->t_outq, 0);
1658
1659 mutex_spin_enter(&sc->sc_lock);
1660
1661 sc->sc_tba = tba;
1662 sc->sc_tbc = tbc;
1663 }
1664
1665 SET(tp->t_state, TS_BUSY);
1666 sc->sc_tx_busy = 1;
1667
1668 /* Enable transmit completion interrupts if necessary. */
1669 switch (pi->pi_type) {
1670 case PLCOM_TYPE_PL010:
1671 if (!ISSET(sc->sc_cr, PL010_CR_TIE)) {
1672 SET(sc->sc_cr, PL010_CR_TIE);
1673 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
1674 }
1675 break;
1676 case PLCOM_TYPE_PL011:
1677 if (!ISSET(sc->sc_imsc, PL011_INT_TX)) {
1678 SET(sc->sc_imsc, PL011_INT_TX);
1679 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
1680 }
1681 break;
1682 }
1683
1684 /* Output the first chunk of the contiguous buffer. */
1685 {
1686 int n;
1687
1688 n = sc->sc_tbc;
1689 if (n > sc->sc_fifolen)
1690 n = sc->sc_fifolen;
1691 PWRITEM1(pi, PL01XCOM_DR, sc->sc_tba, n);
1692 sc->sc_tbc -= n;
1693 sc->sc_tba += n;
1694 }
1695 mutex_spin_exit(&sc->sc_lock);
1696 out:
1697 splx(s);
1698 return;
1699 }
1700
1701 /*
1702 * Stop output on a line.
1703 */
1704 void
1705 plcomstop(struct tty *tp, int flag)
1706 {
1707 struct plcom_softc *sc =
1708 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1709
1710 mutex_spin_enter(&sc->sc_lock);
1711 if (ISSET(tp->t_state, TS_BUSY)) {
1712 /* Stop transmitting at the next chunk. */
1713 sc->sc_tbc = 0;
1714 sc->sc_heldtbc = 0;
1715 if (!ISSET(tp->t_state, TS_TTSTOP))
1716 SET(tp->t_state, TS_FLUSH);
1717 }
1718 mutex_spin_exit(&sc->sc_lock);
1719 }
1720
1721 void
1722 plcomdiag(void *arg)
1723 {
1724 struct plcom_softc *sc = arg;
1725 int overflows, floods;
1726
1727 mutex_spin_enter(&sc->sc_lock);
1728 overflows = sc->sc_overflows;
1729 sc->sc_overflows = 0;
1730 floods = sc->sc_floods;
1731 sc->sc_floods = 0;
1732 sc->sc_errors = 0;
1733 mutex_spin_exit(&sc->sc_lock);
1734
1735 log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
1736 device_xname(sc->sc_dev),
1737 overflows, overflows == 1 ? "" : "s",
1738 floods, floods == 1 ? "" : "s");
1739 }
1740
1741 integrate void
1742 plcom_rxsoft(struct plcom_softc *sc, struct tty *tp)
1743 {
1744 int (*rint) (int, struct tty *) = tp->t_linesw->l_rint;
1745 struct plcom_instance *pi = &sc->sc_pi;
1746 u_char *get, *end;
1747 u_int cc, scc;
1748 u_char rsr;
1749 int code;
1750
1751 end = sc->sc_ebuf;
1752 get = sc->sc_rbget;
1753 scc = cc = plcom_rbuf_size - sc->sc_rbavail;
1754
1755 if (cc == plcom_rbuf_size) {
1756 sc->sc_floods++;
1757 if (sc->sc_errors++ == 0)
1758 callout_reset(&sc->sc_diag_callout, 60 * hz,
1759 plcomdiag, sc);
1760 }
1761
1762 while (cc) {
1763 code = get[0];
1764 rsr = get[1];
1765 if (ISSET(rsr, PL01X_RSR_ERROR)) {
1766 if (ISSET(rsr, PL01X_RSR_OE)) {
1767 sc->sc_overflows++;
1768 if (sc->sc_errors++ == 0)
1769 callout_reset(&sc->sc_diag_callout,
1770 60 * hz, plcomdiag, sc);
1771 }
1772 if (ISSET(rsr, PL01X_RSR_BE | PL01X_RSR_FE))
1773 SET(code, TTY_FE);
1774 if (ISSET(rsr, PL01X_RSR_PE))
1775 SET(code, TTY_PE);
1776 }
1777 if ((*rint)(code, tp) == -1) {
1778 /*
1779 * The line discipline's buffer is out of space.
1780 */
1781 if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1782 /*
1783 * We're either not using flow control, or the
1784 * line discipline didn't tell us to block for
1785 * some reason. Either way, we have no way to
1786 * know when there's more space available, so
1787 * just drop the rest of the data.
1788 */
1789 get += cc << 1;
1790 if (get >= end)
1791 get -= plcom_rbuf_size << 1;
1792 cc = 0;
1793 } else {
1794 /*
1795 * Don't schedule any more receive processing
1796 * until the line discipline tells us there's
1797 * space available (through plcomhwiflow()).
1798 * Leave the rest of the data in the input
1799 * buffer.
1800 */
1801 SET(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1802 }
1803 break;
1804 }
1805 get += 2;
1806 if (get >= end)
1807 get = sc->sc_rbuf;
1808 cc--;
1809 }
1810
1811 if (cc != scc) {
1812 sc->sc_rbget = get;
1813 mutex_spin_enter(&sc->sc_lock);
1814
1815 cc = sc->sc_rbavail += scc - cc;
1816 /* Buffers should be ok again, release possible block. */
1817 if (cc >= sc->sc_r_lowat) {
1818 if (ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1819 CLR(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
1820 switch (pi->pi_type) {
1821 case PLCOM_TYPE_PL010:
1822 SET(sc->sc_cr,
1823 PL010_CR_RIE | PL010_CR_RTIE);
1824 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
1825 break;
1826 case PLCOM_TYPE_PL011:
1827 SET(sc->sc_imsc,
1828 PL011_INT_RX | PL011_INT_RT);
1829 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
1830 break;
1831 }
1832 }
1833 if (ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED)) {
1834 CLR(sc->sc_rx_flags, RX_IBUF_BLOCKED);
1835 plcom_hwiflow(sc);
1836 }
1837 }
1838 mutex_spin_exit(&sc->sc_lock);
1839 }
1840 }
1841
1842 integrate void
1843 plcom_txsoft(struct plcom_softc *sc, struct tty *tp)
1844 {
1845
1846 CLR(tp->t_state, TS_BUSY);
1847 if (ISSET(tp->t_state, TS_FLUSH))
1848 CLR(tp->t_state, TS_FLUSH);
1849 else
1850 ndflush(&tp->t_outq, (int)(sc->sc_tba - tp->t_outq.c_cf));
1851 (*tp->t_linesw->l_start)(tp);
1852 }
1853
1854 integrate void
1855 plcom_stsoft(struct plcom_softc *sc, struct tty *tp)
1856 {
1857 u_char msr, delta;
1858
1859 mutex_spin_enter(&sc->sc_lock);
1860 msr = sc->sc_msr;
1861 delta = sc->sc_msr_delta;
1862 sc->sc_msr_delta = 0;
1863 mutex_spin_exit(&sc->sc_lock);
1864
1865 if (ISSET(delta, sc->sc_msr_dcd)) {
1866 /*
1867 * Inform the tty layer that carrier detect changed.
1868 */
1869 (void) (*tp->t_linesw->l_modem)(tp, ISSET(msr, PL01X_MSR_DCD));
1870 }
1871
1872 if (ISSET(delta, sc->sc_msr_cts)) {
1873 /* Block or unblock output according to flow control. */
1874 if (ISSET(msr, sc->sc_msr_cts)) {
1875 sc->sc_tx_stopped = 0;
1876 (*tp->t_linesw->l_start)(tp);
1877 } else {
1878 sc->sc_tx_stopped = 1;
1879 }
1880 }
1881
1882 #ifdef PLCOM_DEBUG
1883 if (plcom_debug)
1884 plcomstatus(sc, "plcom_stsoft");
1885 #endif
1886 }
1887
1888 void
1889 plcomsoft(void *arg)
1890 {
1891 struct plcom_softc *sc = arg;
1892 struct tty *tp;
1893
1894 if (PLCOM_ISALIVE(sc) == 0)
1895 return;
1896
1897 tp = sc->sc_tty;
1898
1899 if (sc->sc_rx_ready) {
1900 sc->sc_rx_ready = 0;
1901 plcom_rxsoft(sc, tp);
1902 }
1903
1904 if (sc->sc_st_check) {
1905 sc->sc_st_check = 0;
1906 plcom_stsoft(sc, tp);
1907 }
1908
1909 if (sc->sc_tx_done) {
1910 sc->sc_tx_done = 0;
1911 plcom_txsoft(sc, tp);
1912 }
1913 }
1914
1915 bool
1916 plcom_intstatus(struct plcom_instance *pi, u_int *istatus)
1917 {
1918 bool ret = false;
1919 u_int stat = 0;
1920
1921 switch (pi->pi_type) {
1922 case PLCOM_TYPE_PL010:
1923 stat = PREAD1(pi, PL010COM_IIR);
1924 ret = ISSET(stat, PL010_IIR_IMASK);
1925 break;
1926 case PLCOM_TYPE_PL011:
1927 stat = PREAD4(pi, PL011COM_MIS);
1928 ret = ISSET(stat, PL011_INT_ALLMASK);
1929 break;
1930 }
1931 *istatus = stat;
1932
1933 return ret;
1934 }
1935
1936 int
1937 plcomintr(void *arg)
1938 {
1939 struct plcom_softc *sc = arg;
1940 struct plcom_instance *pi = &sc->sc_pi;
1941 u_char *put, *end;
1942 u_int cc;
1943 u_int istatus = 0;
1944 u_char rsr;
1945 bool intr = false;
1946
1947 PLCOM_BARRIER(pi, BR | BW);
1948
1949 if (PLCOM_ISALIVE(sc) == 0)
1950 return 0;
1951
1952 mutex_spin_enter(&sc->sc_lock);
1953 intr = plcom_intstatus(pi, &istatus);
1954 if (!intr) {
1955 mutex_spin_exit(&sc->sc_lock);
1956 return 0;
1957 }
1958
1959 end = sc->sc_ebuf;
1960 put = sc->sc_rbput;
1961 cc = sc->sc_rbavail;
1962
1963 do {
1964 u_int msr = 0, delta, fr;
1965 bool rxintr = false, txintr = false, msintr;
1966
1967 /* don't need RI here*/
1968 fr = PREAD1(pi, PL01XCOM_FR);
1969
1970 if (!ISSET(fr, PL01X_FR_RXFE) &&
1971 !ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1972 while (cc > 0) {
1973 int cn_trapped = 0;
1974 put[0] = PREAD1(pi, PL01XCOM_DR);
1975 rsr = PREAD1(pi, PL01XCOM_RSR);
1976 /* Clear any error status. */
1977 if (ISSET(rsr, PL01X_RSR_ERROR))
1978 PWRITE1(pi, PL01XCOM_ECR, 0);
1979 if (ISSET(rsr, PL01X_RSR_BE)) {
1980 cn_trapped = 0;
1981 cn_check_magic(sc->sc_tty->t_dev,
1982 CNC_BREAK, plcom_cnm_state);
1983 if (cn_trapped)
1984 continue;
1985 #if defined(KGDB)
1986 if (ISSET(sc->sc_hwflags,
1987 PLCOM_HW_KGDB)) {
1988 kgdb_connect(1);
1989 continue;
1990 }
1991 #endif
1992 }
1993
1994 put[1] = rsr;
1995 cn_trapped = 0;
1996 cn_check_magic(sc->sc_tty->t_dev, put[0],
1997 plcom_cnm_state);
1998 if (cn_trapped) {
1999 fr = PREAD1(pi, PL01XCOM_FR);
2000 if (ISSET(fr, PL01X_FR_RXFE))
2001 break;
2002
2003 continue;
2004 }
2005 put += 2;
2006 if (put >= end)
2007 put = sc->sc_rbuf;
2008 cc--;
2009
2010 /* don't need RI here*/
2011 fr = PREAD1(pi, PL01XCOM_FR);
2012 if (ISSET(fr, PL01X_FR_RXFE))
2013 break;
2014 }
2015
2016 /*
2017 * Current string of incoming characters ended because
2018 * no more data was available or we ran out of space.
2019 * Schedule a receive event if any data was received.
2020 * If we're out of space, turn off receive interrupts.
2021 */
2022 sc->sc_rbput = put;
2023 sc->sc_rbavail = cc;
2024 if (!ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED))
2025 sc->sc_rx_ready = 1;
2026
2027 /*
2028 * See if we are in danger of overflowing a buffer. If
2029 * so, use hardware flow control to ease the pressure.
2030 */
2031 if (!ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED) &&
2032 cc < sc->sc_r_hiwat) {
2033 SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
2034 plcom_hwiflow(sc);
2035 }
2036
2037 /*
2038 * If we're out of space, disable receive interrupts
2039 * until the queue has drained a bit.
2040 */
2041 if (!cc) {
2042 SET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
2043 switch (pi->pi_type) {
2044 case PLCOM_TYPE_PL010:
2045 CLR(sc->sc_cr,
2046 PL010_CR_RIE | PL010_CR_RTIE);
2047 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
2048 break;
2049 case PLCOM_TYPE_PL011:
2050 CLR(sc->sc_imsc,
2051 PL011_INT_RT | PL011_INT_RX);
2052 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
2053 break;
2054 }
2055 }
2056 } else {
2057 switch (pi->pi_type) {
2058 case PLCOM_TYPE_PL010:
2059 rxintr = ISSET(istatus, PL010_IIR_RIS);
2060 if (rxintr) {
2061 PWRITE1(pi, PL010COM_CR, 0);
2062 delay(10);
2063 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
2064 continue;
2065 }
2066 break;
2067 case PLCOM_TYPE_PL011:
2068 rxintr = ISSET(istatus, PL011_INT_RX);
2069 if (rxintr) {
2070 PWRITE4(pi, PL011COM_CR, 0);
2071 delay(10);
2072 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
2073 continue;
2074 }
2075 break;
2076 }
2077 }
2078
2079 switch (pi->pi_type) {
2080 case PLCOM_TYPE_PL010:
2081 msr = PREAD1(pi, PL01XCOM_FR);
2082 break;
2083 case PLCOM_TYPE_PL011:
2084 msr = PREAD4(pi, PL01XCOM_FR);
2085 break;
2086 }
2087 delta = msr ^ sc->sc_msr;
2088 sc->sc_msr = msr;
2089
2090 /* Clear any pending modem status interrupt. */
2091 switch (pi->pi_type) {
2092 case PLCOM_TYPE_PL010:
2093 msintr = ISSET(istatus, PL010_IIR_MIS);
2094 if (msintr) {
2095 PWRITE1(pi, PL010COM_ICR, 0);
2096 }
2097 break;
2098 case PLCOM_TYPE_PL011:
2099 msintr = ISSET(istatus, PL011_INT_MSMASK);
2100 if (msintr) {
2101 PWRITE4(pi, PL011COM_ICR, PL011_INT_MSMASK);
2102 }
2103 break;
2104 }
2105 /*
2106 * Pulse-per-second (PSS) signals on edge of DCD?
2107 * Process these even if line discipline is ignoring DCD.
2108 */
2109 if (delta & sc->sc_ppsmask) {
2110 struct timeval tv;
2111 mutex_spin_enter(&timecounter_lock);
2112 if ((msr & sc->sc_ppsmask) == sc->sc_ppsassert) {
2113 /* XXX nanotime() */
2114 microtime(&tv);
2115 TIMEVAL_TO_TIMESPEC(&tv,
2116 &sc->ppsinfo.assert_timestamp);
2117 if (sc->ppsparam.mode & PPS_OFFSETASSERT) {
2118 timespecadd(&sc->ppsinfo.assert_timestamp,
2119 &sc->ppsparam.assert_offset,
2120 &sc->ppsinfo.assert_timestamp);
2121 }
2122
2123 #ifdef PPS_SYNC
2124 if (sc->ppsparam.mode & PPS_HARDPPSONASSERT)
2125 hardpps(&tv, tv.tv_usec);
2126 #endif
2127 sc->ppsinfo.assert_sequence++;
2128 sc->ppsinfo.current_mode = sc->ppsparam.mode;
2129
2130 } else if ((msr & sc->sc_ppsmask) == sc->sc_ppsclear) {
2131 /* XXX nanotime() */
2132 microtime(&tv);
2133 TIMEVAL_TO_TIMESPEC(&tv,
2134 &sc->ppsinfo.clear_timestamp);
2135 if (sc->ppsparam.mode & PPS_OFFSETCLEAR) {
2136 timespecadd(&sc->ppsinfo.clear_timestamp,
2137 &sc->ppsparam.clear_offset,
2138 &sc->ppsinfo.clear_timestamp);
2139 }
2140
2141 #ifdef PPS_SYNC
2142 if (sc->ppsparam.mode & PPS_HARDPPSONCLEAR)
2143 hardpps(&tv, tv.tv_usec);
2144 #endif
2145 sc->ppsinfo.clear_sequence++;
2146 sc->ppsinfo.current_mode = sc->ppsparam.mode;
2147 }
2148 mutex_spin_exit(&timecounter_lock);
2149 }
2150
2151 /*
2152 * Process normal status changes
2153 */
2154 if (ISSET(delta, sc->sc_msr_mask)) {
2155 SET(sc->sc_msr_delta, delta);
2156
2157 /*
2158 * Stop output immediately if we lose the output
2159 * flow control signal or carrier detect.
2160 */
2161 if (ISSET(~msr, sc->sc_msr_mask)) {
2162 sc->sc_tbc = 0;
2163 sc->sc_heldtbc = 0;
2164 #ifdef PLCOM_DEBUG
2165 if (plcom_debug)
2166 plcomstatus(sc, "plcomintr ");
2167 #endif
2168 }
2169
2170 sc->sc_st_check = 1;
2171 }
2172
2173 /*
2174 * Done handling any receive interrupts. See if data
2175 * can be transmitted as well. Schedule tx done
2176 * event if no data left and tty was marked busy.
2177 */
2178
2179 switch (pi->pi_type) {
2180 case PLCOM_TYPE_PL010:
2181 txintr = ISSET(istatus, PL010_IIR_TIS);
2182 break;
2183 case PLCOM_TYPE_PL011:
2184 txintr = ISSET(istatus, PL011_INT_TX);
2185 break;
2186 }
2187 if (txintr) {
2188 /*
2189 * If we've delayed a parameter change, do it
2190 * now, and restart * output.
2191 */
2192 // PWRITE4(pi, PL011COM_ICR, PL011_INT_TX);
2193 if (sc->sc_heldchange) {
2194 plcom_loadchannelregs(sc);
2195 sc->sc_heldchange = 0;
2196 sc->sc_tbc = sc->sc_heldtbc;
2197 sc->sc_heldtbc = 0;
2198 }
2199
2200 /*
2201 * Output the next chunk of the contiguous
2202 * buffer, if any.
2203 */
2204 if (sc->sc_tbc > 0) {
2205 int n;
2206
2207 n = sc->sc_tbc;
2208 if (n > sc->sc_fifolen)
2209 n = sc->sc_fifolen;
2210 PWRITEM1(pi, PL01XCOM_DR, sc->sc_tba, n);
2211 sc->sc_tbc -= n;
2212 sc->sc_tba += n;
2213 } else {
2214 /*
2215 * Disable transmit completion
2216 * interrupts if necessary.
2217 */
2218 switch (pi->pi_type) {
2219 case PLCOM_TYPE_PL010:
2220 if (ISSET(sc->sc_cr, PL010_CR_TIE)) {
2221 CLR(sc->sc_cr, PL010_CR_TIE);
2222 PWRITE1(pi, PL010COM_CR,
2223 sc->sc_cr);
2224 }
2225 break;
2226 case PLCOM_TYPE_PL011:
2227 if (ISSET(sc->sc_imsc, PL011_INT_TX)) {
2228 CLR(sc->sc_imsc, PL011_INT_TX);
2229 PWRITE4(pi, PL011COM_IMSC,
2230 sc->sc_imsc);
2231 }
2232 break;
2233 }
2234 if (sc->sc_tx_busy) {
2235 sc->sc_tx_busy = 0;
2236 sc->sc_tx_done = 1;
2237 }
2238 }
2239 }
2240
2241 } while (plcom_intstatus(pi, &istatus));
2242
2243 mutex_spin_exit(&sc->sc_lock);
2244
2245 /* Wake up the poller. */
2246 softint_schedule(sc->sc_si);
2247
2248 #ifdef RND_COM
2249 rnd_add_uint32(&sc->rnd_source, istatus | rsr);
2250 #endif
2251
2252 PLCOM_BARRIER(pi, BR | BW);
2253
2254 return 1;
2255 }
2256
2257 /*
2258 * The following functions are polled getc and putc routines, shared
2259 * by the console and kgdb glue.
2260 *
2261 * The read-ahead code is so that you can detect pending in-band
2262 * cn_magic in polled mode while doing output rather than having to
2263 * wait until the kernel decides it needs input.
2264 */
2265
2266 #define MAX_READAHEAD 20
2267 static int plcom_readahead[MAX_READAHEAD];
2268 static int plcom_readaheadcount = 0;
2269
2270 int
2271 plcom_common_getc(dev_t dev, struct plcom_instance *pi)
2272 {
2273 int s = splserial();
2274 u_char c;
2275
2276 /* got a character from reading things earlier */
2277 if (plcom_readaheadcount > 0) {
2278 int i;
2279
2280 c = plcom_readahead[0];
2281 for (i = 1; i < plcom_readaheadcount; i++) {
2282 plcom_readahead[i-1] = plcom_readahead[i];
2283 }
2284 plcom_readaheadcount--;
2285 splx(s);
2286 return c;
2287 }
2288
2289 if (ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE)) {
2290 splx(s);
2291 return -1;
2292 }
2293
2294 c = PREAD1(pi, PL01XCOM_DR);
2295 {
2296 int cn_trapped __unused = 0;
2297 #ifdef DDB
2298 extern int db_active;
2299 if (!db_active)
2300 #endif
2301 cn_check_magic(dev, c, plcom_cnm_state);
2302 }
2303 splx(s);
2304 return c;
2305 }
2306
2307 void
2308 plcom_common_putc(dev_t dev, struct plcom_instance *pi, int c)
2309 {
2310 int s = splserial();
2311 int timo;
2312
2313 int cin, stat;
2314 if (plcom_readaheadcount < MAX_READAHEAD
2315 && !ISSET(stat = PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE)) {
2316 int cn_trapped __unused = 0;
2317 cin = PREAD1(pi, PL01XCOM_DR);
2318 cn_check_magic(dev, cin, plcom_cnm_state);
2319 plcom_readahead[plcom_readaheadcount++] = cin;
2320 }
2321
2322 /* wait for any pending transmission to finish */
2323 timo = 150000;
2324 while (ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_TXFF) && --timo)
2325 continue;
2326
2327 PWRITE1(pi, PL01XCOM_DR, c);
2328 PLCOM_BARRIER(pi, BR | BW);
2329
2330 /* wait for this transmission to complete */
2331 timo = 1500000;
2332 while (!ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_TXFE) && --timo)
2333 continue;
2334
2335 splx(s);
2336 }
2337
2338 /*
2339 * Initialize UART for use as console or KGDB line.
2340 */
2341 int
2342 plcominit(struct plcom_instance *pi, int rate, int frequency, tcflag_t cflag)
2343 {
2344 u_char lcr;
2345
2346 switch (pi->pi_type) {
2347 case PLCOM_TYPE_PL010:
2348 if (pi->pi_size == 0)
2349 pi->pi_size = PL010COM_UART_SIZE;
2350 break;
2351 case PLCOM_TYPE_PL011:
2352 if (pi->pi_size == 0)
2353 pi->pi_size = PL011COM_UART_SIZE;
2354 break;
2355 default:
2356 panic("Unknown plcom type");
2357 }
2358
2359 if (bus_space_map(pi->pi_iot, pi->pi_iobase, pi->pi_size, 0,
2360 &pi->pi_ioh))
2361 return ENOMEM; /* ??? */
2362
2363 lcr = cflag2lcr(cflag) | PL01X_LCR_FEN;
2364 switch (pi->pi_type) {
2365 case PLCOM_TYPE_PL010:
2366 PWRITE1(pi, PL010COM_CR, 0);
2367
2368 if (rate && frequency) {
2369 rate = pl010comspeed(rate, frequency);
2370 PWRITE1(pi, PL010COM_DLBL, (rate & 0xff));
2371 PWRITE1(pi, PL010COM_DLBH, ((rate >> 8) & 0xff));
2372 }
2373 PWRITE1(pi, PL010COM_LCR, lcr);
2374 PWRITE1(pi, PL010COM_CR, PL01X_CR_UARTEN);
2375 break;
2376 case PLCOM_TYPE_PL011:
2377 PWRITE4(pi, PL011COM_CR, 0);
2378
2379 if (rate && frequency) {
2380 rate = pl011comspeed(rate, frequency);
2381 PWRITE1(pi, PL011COM_FBRD, rate & ((1 << 6) - 1));
2382 PWRITE4(pi, PL011COM_IBRD, rate >> 6);
2383 }
2384 PWRITE1(pi, PL011COM_LCRH, lcr);
2385 PWRITE4(pi, PL011COM_CR,
2386 PL01X_CR_UARTEN | PL011_CR_RXE | PL011_CR_TXE);
2387 break;
2388 }
2389
2390 #if 0
2391 /* Ought to do something like this, but we have no sc to
2392 dereference. */
2393 /* XXX device_unit() abuse */
2394 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(sc->sc_dev),
2395 PL01X_MCR_DTR | PL01X_MCR_RTS);
2396 #endif
2397
2398 return 0;
2399 }
2400
2401 /*
2402 * Following are all routines needed for PLCOM to act as console
2403 */
2404 struct consdev plcomcons = {
2405 NULL, NULL, plcomcngetc, plcomcnputc, plcomcnpollc, NULL,
2406 plcomcnhalt, NULL, NODEV, CN_NORMAL
2407 };
2408
2409 int
2410 plcomcnattach(struct plcom_instance *pi, int rate, int frequency,
2411 tcflag_t cflag, int unit)
2412 {
2413 int res;
2414
2415 plcomcons_info = *pi;
2416
2417 res = plcominit(&plcomcons_info, rate, frequency, cflag);
2418 if (res)
2419 return res;
2420
2421 cn_tab = &plcomcons;
2422 cn_init_magic(&plcom_cnm_state);
2423 cn_set_magic("\047\001"); /* default magic is BREAK */
2424
2425 plcomconsunit = unit;
2426 plcomconsrate = rate;
2427 plcomconscflag = cflag;
2428
2429 return 0;
2430 }
2431
2432 void
2433 plcomcndetach(void)
2434 {
2435
2436 bus_space_unmap(plcomcons_info.pi_iot, plcomcons_info.pi_ioh,
2437 plcomcons_info.pi_size);
2438 plcomcons_info.pi_iot = NULL;
2439
2440 cn_tab = NULL;
2441 }
2442
2443 int
2444 plcomcngetc(dev_t dev)
2445 {
2446 return plcom_common_getc(dev, &plcomcons_info);
2447 }
2448
2449 /*
2450 * Console kernel output character routine.
2451 */
2452 void
2453 plcomcnputc(dev_t dev, int c)
2454 {
2455 plcom_common_putc(dev, &plcomcons_info, c);
2456 }
2457
2458 void
2459 plcomcnpollc(dev_t dev, int on)
2460 {
2461
2462 plcom_readaheadcount = 0;
2463 }
2464
2465 void
2466 plcomcnhalt(dev_t dev)
2467 {
2468 struct plcom_instance *pi = &plcomcons_info;
2469
2470 switch (pi->pi_type) {
2471 case PLCOM_TYPE_PL010:
2472 PWRITE1(pi, PL010COM_CR, PL01X_CR_UARTEN);
2473 break;
2474 case PLCOM_TYPE_PL011:
2475 PWRITE4(pi, PL011COM_CR,
2476 PL01X_CR_UARTEN | PL011_CR_RXE | PL011_CR_TXE);
2477 PWRITE4(pi, PL011COM_IMSC, 0);
2478 break;
2479 }
2480 }
2481
2482 #ifdef KGDB
2483 int
2484 plcom_kgdb_attach(struct plcom_instance *pi, int rate, int frequency,
2485 tcflag_t cflag, int unit)
2486 {
2487 int res;
2488
2489 if (pi->pi_iot == plcomcons_info.pi_iot &&
2490 pi->pi_iobase == plcomcons_info.pi_iobase)
2491 return EBUSY; /* cannot share with console */
2492
2493 res = plcominit(pi, rate, frequency, cflag);
2494 if (res)
2495 return res;
2496
2497 kgdb_attach(plcom_kgdb_getc, plcom_kgdb_putc, NULL);
2498 kgdb_dev = 123; /* unneeded, only to satisfy some tests */
2499
2500 plcomkgdb_info.pi_iot = pi->pi_iot;
2501 plcomkgdb_info.pi_ioh = pi->pi_ioh;
2502 plcomkgdb_info.pi_iobase = pi->pi_iobase;
2503
2504 return 0;
2505 }
2506
2507 /* ARGSUSED */
2508 int
2509 plcom_kgdb_getc(void *arg)
2510 {
2511 return plcom_common_getc(NODEV, &plcomkgdb_info);
2512 }
2513
2514 /* ARGSUSED */
2515 void
2516 plcom_kgdb_putc(void *arg, int c)
2517 {
2518 plcom_common_putc(NODEV, &plcomkgdb_info, c);
2519 }
2520 #endif /* KGDB */
2521
2522 /* helper function to identify the plcom ports used by
2523 console or KGDB (and not yet autoconf attached) */
2524 int
2525 plcom_is_console(bus_space_tag_t iot, bus_addr_t iobase,
2526 bus_space_handle_t *ioh)
2527 {
2528 bus_space_handle_t help;
2529
2530 if (!plcomconsattached &&
2531 bus_space_is_equal(iot, plcomcons_info.pi_iot) &&
2532 iobase == plcomcons_info.pi_iobase)
2533 help = plcomcons_info.pi_ioh;
2534 #ifdef KGDB
2535 else if (!plcom_kgdb_attached &&
2536 bus_space_is_equal(iot, plcomkgdb_info.pi_iot) &&
2537 iobase == plcomkgdb_info.pi_iobase)
2538 help = plcomkgdb_info.pi_ioh;
2539 #endif
2540 else
2541 return 0;
2542
2543 if (ioh)
2544 *ioh = help;
2545 return 1;
2546 }
2547