plcom.c revision 1.63 1 /* $NetBSD: plcom.c,v 1.63 2021/10/17 22:34:17 jmcneill Exp $ */
2
3 /*-
4 * Copyright (c) 2001 ARM Ltd
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the company may not be used to endorse or promote
16 * products derived from this software without specific prior written
17 * permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
23 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * Copyright (c) 1998, 1999, 2012 The NetBSD Foundation, Inc.
32 * All rights reserved.
33 *
34 * This code is derived from software contributed to The NetBSD Foundation
35 * by Charles M. Hannum and Nick Hudson.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
47 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
48 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
49 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
50 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
51 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
52 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
53 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
54 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
55 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
56 * POSSIBILITY OF SUCH DAMAGE.
57 */
58
59 /*
60 * Copyright (c) 1991 The Regents of the University of California.
61 * All rights reserved.
62 *
63 * Redistribution and use in source and binary forms, with or without
64 * modification, are permitted provided that the following conditions
65 * are met:
66 * 1. Redistributions of source code must retain the above copyright
67 * notice, this list of conditions and the following disclaimer.
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in the
70 * documentation and/or other materials provided with the distribution.
71 * 3. Neither the name of the University nor the names of its contributors
72 * may be used to endorse or promote products derived from this software
73 * without specific prior written permission.
74 *
75 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
76 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
77 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
78 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
79 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
80 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
81 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
82 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
83 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
84 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
85 * SUCH DAMAGE.
86 *
87 * @(#)com.c 7.5 (Berkeley) 5/16/91
88 */
89
90 /*
91 * COM driver for the Prime Cell PL010 and PL011 UARTs. Both are is similar to
92 * the 16C550, but have a completely different programmer's model.
93 * Derived from the NS16550AF com driver.
94 */
95
96 #include <sys/cdefs.h>
97 __KERNEL_RCSID(0, "$NetBSD: plcom.c,v 1.63 2021/10/17 22:34:17 jmcneill Exp $");
98
99 #include "opt_plcom.h"
100 #include "opt_ddb.h"
101 #include "opt_kgdb.h"
102 #include "opt_lockdebug.h"
103 #include "opt_multiprocessor.h"
104
105 /*
106 * Override cnmagic(9) macro before including <sys/systm.h>.
107 * We need to know if cn_check_magic triggered debugger, so set a flag.
108 * Callers of cn_check_magic must declare int cn_trapped = 0;
109 * XXX: this is *ugly*!
110 */
111 #define cn_trap() \
112 do { \
113 console_debugger(); \
114 cn_trapped = 1; \
115 } while (/* CONSTCOND */ 0)
116
117 #include <sys/param.h>
118 #include <sys/systm.h>
119 #include <sys/ioctl.h>
120 #include <sys/select.h>
121 #include <sys/tty.h>
122 #include <sys/proc.h>
123 #include <sys/conf.h>
124 #include <sys/file.h>
125 #include <sys/uio.h>
126 #include <sys/kernel.h>
127 #include <sys/syslog.h>
128 #include <sys/types.h>
129 #include <sys/device.h>
130 #include <sys/malloc.h>
131 #include <sys/timepps.h>
132 #include <sys/vnode.h>
133 #include <sys/kauth.h>
134 #include <sys/intr.h>
135 #include <sys/bus.h>
136 #ifdef RND_COM
137 #include <sys/rndsource.h>
138 #endif
139
140 #include <evbarm/dev/plcomreg.h>
141 #include <evbarm/dev/plcomvar.h>
142
143 #include <dev/cons.h>
144
145 static void plcom_enable_debugport (struct plcom_softc *);
146
147 void plcom_config (struct plcom_softc *);
148 void plcom_shutdown (struct plcom_softc *);
149 int pl010comspeed (long, long);
150 int pl011comspeed (long, long);
151 static u_char cflag2lcr (tcflag_t);
152 int plcomparam (struct tty *, struct termios *);
153 void plcomstart (struct tty *);
154 int plcomhwiflow (struct tty *, int);
155
156 void plcom_loadchannelregs (struct plcom_softc *);
157 void plcom_hwiflow (struct plcom_softc *);
158 void plcom_break (struct plcom_softc *, int);
159 void plcom_modem (struct plcom_softc *, int);
160 void tiocm_to_plcom (struct plcom_softc *, u_long, int);
161 int plcom_to_tiocm (struct plcom_softc *);
162 void plcom_iflush (struct plcom_softc *);
163
164 int plcom_common_getc (dev_t, struct plcom_instance *);
165 void plcom_common_putc (dev_t, struct plcom_instance *, int);
166
167 int plcominit (struct plcom_instance *, int, int, tcflag_t);
168
169 dev_type_open(plcomopen);
170 dev_type_close(plcomclose);
171 dev_type_read(plcomread);
172 dev_type_write(plcomwrite);
173 dev_type_ioctl(plcomioctl);
174 dev_type_stop(plcomstop);
175 dev_type_tty(plcomtty);
176 dev_type_poll(plcompoll);
177
178 int plcomcngetc (dev_t);
179 void plcomcnputc (dev_t, int);
180 void plcomcnpollc (dev_t, int);
181 void plcomcnhalt (dev_t);
182
183 #define integrate static inline
184 void plcomsoft (void *);
185 integrate void plcom_rxsoft (struct plcom_softc *, struct tty *);
186 integrate void plcom_txsoft (struct plcom_softc *, struct tty *);
187 integrate void plcom_stsoft (struct plcom_softc *, struct tty *);
188 integrate void plcom_schedrx (struct plcom_softc *);
189 void plcomdiag (void *);
190
191 bool plcom_intstatus(struct plcom_instance *, u_int *);
192
193 extern struct cfdriver plcom_cd;
194
195 const struct cdevsw plcom_cdevsw = {
196 .d_open = plcomopen,
197 .d_close = plcomclose,
198 .d_read = plcomread,
199 .d_write = plcomwrite,
200 .d_ioctl = plcomioctl,
201 .d_stop = plcomstop,
202 .d_tty = plcomtty,
203 .d_poll = plcompoll,
204 .d_mmap = nommap,
205 .d_kqfilter = ttykqfilter,
206 .d_discard = nodiscard,
207 .d_flag = D_TTY
208 };
209
210 /*
211 * Make this an option variable one can patch.
212 * But be warned: this must be a power of 2!
213 */
214 u_int plcom_rbuf_size = PLCOM_RING_SIZE;
215
216 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
217 u_int plcom_rbuf_hiwat = (PLCOM_RING_SIZE * 1) / 4;
218 u_int plcom_rbuf_lowat = (PLCOM_RING_SIZE * 3) / 4;
219
220 static int plcomconsunit = -1;
221 static struct plcom_instance plcomcons_info;
222
223 static int plcomconsattached;
224 static int plcomconsrate;
225 static tcflag_t plcomconscflag;
226 static struct cnm_state plcom_cnm_state;
227
228 static int ppscap =
229 PPS_TSFMT_TSPEC |
230 PPS_CAPTUREASSERT |
231 PPS_CAPTURECLEAR |
232 #ifdef PPS_SYNC
233 PPS_HARDPPSONASSERT | PPS_HARDPPSONCLEAR |
234 #endif /* PPS_SYNC */
235 PPS_OFFSETASSERT | PPS_OFFSETCLEAR;
236
237 #ifdef KGDB
238 #include <sys/kgdb.h>
239
240 static struct plcom_instance plcomkgdb_info;
241 static int plcom_kgdb_attached;
242
243 int plcom_kgdb_getc (void *);
244 void plcom_kgdb_putc (void *, int);
245 #endif /* KGDB */
246
247 #define PLCOMDIALOUT_MASK TTDIALOUT_MASK
248
249 #define PLCOMUNIT(x) TTUNIT(x)
250 #define PLCOMDIALOUT(x) TTDIALOUT(x)
251
252 #define PLCOM_ISALIVE(sc) ((sc)->enabled != 0 && \
253 device_is_active((sc)->sc_dev))
254
255 #define BR BUS_SPACE_BARRIER_READ
256 #define BW BUS_SPACE_BARRIER_WRITE
257 #define PLCOM_BARRIER(pi, f) \
258 bus_space_barrier((pi)->pi_iot, (pi)->pi_ioh, 0, (pi)->pi_size, (f))
259
260 static uint8_t
261 pread1(struct plcom_instance *pi, bus_size_t reg)
262 {
263 if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS))
264 return bus_space_read_1(pi->pi_iot, pi->pi_ioh, reg);
265
266 return bus_space_read_4(pi->pi_iot, pi->pi_ioh, reg & -4) >>
267 (8 * (reg & 3));
268 }
269 int nhcr;
270 static void
271 pwrite1(struct plcom_instance *pi, bus_size_t o, uint8_t val)
272 {
273 if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS)) {
274 bus_space_write_1(pi->pi_iot, pi->pi_ioh, o, val);
275 } else {
276 const size_t shift = 8 * (o & 3);
277 o &= -4;
278 uint32_t tmp = bus_space_read_4(pi->pi_iot, pi->pi_ioh, o);
279 tmp = (val << shift) | (tmp & ~(0xff << shift));
280 bus_space_write_4(pi->pi_iot, pi->pi_ioh, o, tmp);
281 }
282 }
283
284 static void
285 pwritem1(struct plcom_instance *pi, bus_size_t o, const uint8_t *datap,
286 bus_size_t count)
287 {
288 if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS)) {
289 bus_space_write_multi_1(pi->pi_iot, pi->pi_ioh, o, datap, count);
290 } else {
291 KASSERT((o & 3) == 0);
292 while (count--) {
293 bus_space_write_4(pi->pi_iot, pi->pi_ioh, o, *datap++);
294 };
295 }
296 }
297
298 #define PREAD1(pi, reg) pread1(pi, reg)
299 #define PREAD4(pi, reg) \
300 bus_space_read_4((pi)->pi_iot, (pi)->pi_ioh, (reg))
301
302 #define PWRITE1(pi, reg, val) pwrite1(pi, reg, val)
303 #define PWRITEM1(pi, reg, d, c) pwritem1(pi, reg, d, c)
304 #define PWRITE4(pi, reg, val) \
305 bus_space_write_4((pi)->pi_iot, (pi)->pi_ioh, (reg), (val))
306
307 int
308 pl010comspeed(long speed, long frequency)
309 {
310 #define divrnd(n, q) (((n)*2/(q)+1)/2) /* divide and round off */
311
312 int x, err;
313
314 #if 0
315 if (speed == 0)
316 return 0;
317 #endif
318 if (speed <= 0)
319 return -1;
320 x = divrnd(frequency / 16, speed);
321 if (x <= 0)
322 return -1;
323 err = divrnd(((quad_t)frequency) * 1000 / 16, speed * x) - 1000;
324 if (err < 0)
325 err = -err;
326 if (err > PLCOM_TOLERANCE)
327 return -1;
328 return x;
329
330 #undef divrnd
331 }
332
333 int
334 pl011comspeed(long speed, long frequency)
335 {
336 int denom = 16 * speed;
337 int div = frequency / denom;
338 int rem = frequency % denom;
339
340 int ibrd = div << 6;
341 int fbrd = (((8 * rem) / speed) + 1) / 2;
342
343 /* Tolerance? */
344 return ibrd | fbrd;
345 }
346
347 #ifdef PLCOM_DEBUG
348 int plcom_debug = 0;
349
350 void plcomstatus (struct plcom_softc *, const char *);
351 void
352 plcomstatus(struct plcom_softc *sc, const char *str)
353 {
354 struct tty *tp = sc->sc_tty;
355
356 printf("%s: %s %sclocal %sdcd %sts_carr_on %sdtr %stx_stopped\n",
357 device_xname(sc->sc_dev), str,
358 ISSET(tp->t_cflag, CLOCAL) ? "+" : "-",
359 ISSET(sc->sc_msr, PL01X_MSR_DCD) ? "+" : "-",
360 ISSET(tp->t_state, TS_CARR_ON) ? "+" : "-",
361 ISSET(sc->sc_mcr, PL01X_MCR_DTR) ? "+" : "-",
362 sc->sc_tx_stopped ? "+" : "-");
363
364 printf("%s: %s %scrtscts %scts %sts_ttstop %srts %xrx_flags\n",
365 device_xname(sc->sc_dev), str,
366 ISSET(tp->t_cflag, CRTSCTS) ? "+" : "-",
367 ISSET(sc->sc_msr, PL01X_MSR_CTS) ? "+" : "-",
368 ISSET(tp->t_state, TS_TTSTOP) ? "+" : "-",
369 ISSET(sc->sc_mcr, PL01X_MCR_RTS) ? "+" : "-",
370 sc->sc_rx_flags);
371 }
372 #endif
373
374 #if 0
375 int
376 plcomprobe1(bus_space_tag_t iot, bus_space_handle_t ioh)
377 {
378 int data;
379
380 /* Disable the UART. */
381 bus_space_write_1(iot, ioh, plcom_cr, 0);
382 /* Make sure the FIFO is off. */
383 bus_space_write_1(iot, ioh, plcom_lcr, PL01X_LCR_8BITS);
384 /* Disable interrupts. */
385 bus_space_write_1(iot, ioh, plcom_iir, 0);
386
387 /* Make sure we swallow anything in the receiving register. */
388 data = bus_space_read_1(iot, ioh, plcom_dr);
389
390 if (bus_space_read_1(iot, ioh, plcom_lcr) != PL01X_LCR_8BITS)
391 return 0;
392
393 data = bus_space_read_1(iot, ioh, plcom_fr) & (PL01X_FR_RXFF | PL01X_FR_RXFE);
394
395 if (data != PL01X_FR_RXFE)
396 return 0;
397
398 return 1;
399 }
400 #endif
401
402 /*
403 * No locking in this routine; it is only called during attach,
404 * or with the port already locked.
405 */
406 static void
407 plcom_enable_debugport(struct plcom_softc *sc)
408 {
409 struct plcom_instance *pi = &sc->sc_pi;
410
411 sc->sc_cr = PL01X_CR_UARTEN;
412 SET(sc->sc_mcr, PL01X_MCR_DTR | PL01X_MCR_RTS);
413
414 /* Turn on line break interrupt, set carrier. */
415 switch (pi->pi_type) {
416 case PLCOM_TYPE_PL010:
417 SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE);
418 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
419 if (sc->sc_set_mcr) {
420 /* XXX device_unit() abuse */
421 sc->sc_set_mcr(sc->sc_set_mcr_arg,
422 device_unit(sc->sc_dev), sc->sc_mcr);
423 }
424 break;
425 case PLCOM_TYPE_PL011:
426 sc->sc_imsc = PL011_INT_RX | PL011_INT_RT;
427 SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
428 SET(sc->sc_cr, PL011_MCR(sc->sc_mcr));
429 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
430 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
431 break;
432 }
433
434 }
435
436 void
437 plcom_attach_subr(struct plcom_softc *sc)
438 {
439 struct plcom_instance *pi = &sc->sc_pi;
440 struct tty *tp;
441
442 callout_init(&sc->sc_diag_callout, 0);
443 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_HIGH);
444
445 switch (pi->pi_type) {
446 case PLCOM_TYPE_PL010:
447 case PLCOM_TYPE_PL011:
448 break;
449 default:
450 aprint_error_dev(sc->sc_dev,
451 "Unknown plcom type: %d\n", pi->pi_type);
452 return;
453 }
454
455 /* Disable interrupts before configuring the device. */
456 sc->sc_cr = 0;
457 sc->sc_imsc = 0;
458
459 if (bus_space_is_equal(pi->pi_iot, plcomcons_info.pi_iot) &&
460 pi->pi_iobase == plcomcons_info.pi_iobase) {
461 plcomconsattached = 1;
462
463 /* Make sure the console is always "hardwired". */
464 delay(1000); /* wait for output to finish */
465 SET(sc->sc_hwflags, PLCOM_HW_CONSOLE);
466 SET(sc->sc_swflags, TIOCFLAG_SOFTCAR);
467 /*
468 * Must re-enable the console immediately, or we will
469 * hang when trying to print.
470 */
471 sc->sc_cr = PL01X_CR_UARTEN;
472 if (pi->pi_type == PLCOM_TYPE_PL011)
473 SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
474 }
475
476 switch (pi->pi_type) {
477 case PLCOM_TYPE_PL010:
478 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
479 break;
480
481 case PLCOM_TYPE_PL011:
482 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
483 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
484 break;
485 }
486
487 if (sc->sc_fifolen == 0) {
488 switch (pi->pi_type) {
489 case PLCOM_TYPE_PL010:
490 /*
491 * The PL010 has a 16-byte fifo, but the tx interrupt
492 * triggers when there is space for 8 more bytes.
493 */
494 sc->sc_fifolen = 8;
495 break;
496 case PLCOM_TYPE_PL011:
497 /* Some revisions have a 32 byte TX FIFO */
498 sc->sc_fifolen = 16;
499 break;
500 }
501 }
502
503 if (ISSET(sc->sc_hwflags, PLCOM_HW_TXFIFO_DISABLE)) {
504 sc->sc_fifolen = 1;
505 aprint_normal_dev(sc->sc_dev, "txfifo disabled\n");
506 }
507
508 if (sc->sc_fifolen > 1)
509 SET(sc->sc_hwflags, PLCOM_HW_FIFO);
510
511 tp = tty_alloc();
512 tp->t_oproc = plcomstart;
513 tp->t_param = plcomparam;
514 tp->t_hwiflow = plcomhwiflow;
515
516 sc->sc_tty = tp;
517 sc->sc_rbuf = malloc(plcom_rbuf_size << 1, M_DEVBUF, M_WAITOK);
518 sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
519 sc->sc_rbavail = plcom_rbuf_size;
520 sc->sc_ebuf = sc->sc_rbuf + (plcom_rbuf_size << 1);
521
522 tty_attach(tp);
523
524 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
525 int maj;
526
527 /* locate the major number */
528 maj = cdevsw_lookup_major(&plcom_cdevsw);
529
530 tp->t_dev = cn_tab->cn_dev = makedev(maj, device_unit(sc->sc_dev));
531
532 aprint_normal_dev(sc->sc_dev, "console\n");
533 }
534
535 #ifdef KGDB
536 /*
537 * Allow kgdb to "take over" this port. If this is
538 * the kgdb device, it has exclusive use.
539 */
540 if (bus_space_is_equal(pi->pi_iot, plcomkgdb_info.pi_iot) &&
541 pi->pi_iobase == plcomkgdb_info.pi_iobase) {
542 if (!ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
543 plcom_kgdb_attached = 1;
544
545 SET(sc->sc_hwflags, PLCOM_HW_KGDB);
546 }
547 aprint_normal_dev(sc->sc_dev, "kgdb\n");
548 }
549 #endif
550
551 sc->sc_si = softint_establish(SOFTINT_SERIAL, plcomsoft, sc);
552
553 #ifdef RND_COM
554 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
555 RND_TYPE_TTY, RND_FLAG_DEFAULT);
556 #endif
557
558 /*
559 * if there are no enable/disable functions, assume the device
560 * is always enabled
561 */
562 if (!sc->enable)
563 sc->enabled = 1;
564
565 plcom_config(sc);
566
567 SET(sc->sc_hwflags, PLCOM_HW_DEV_OK);
568 }
569
570 void
571 plcom_config(struct plcom_softc *sc)
572 {
573 struct plcom_instance *pi = &sc->sc_pi;
574
575 /* Disable interrupts before configuring the device. */
576 sc->sc_cr = 0;
577 sc->sc_imsc = 0;
578 switch (pi->pi_type) {
579 case PLCOM_TYPE_PL010:
580 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
581 break;
582
583 case PLCOM_TYPE_PL011:
584 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
585 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
586 break;
587 }
588
589 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE|PLCOM_HW_KGDB))
590 plcom_enable_debugport(sc);
591 }
592
593 int
594 plcom_detach(device_t self, int flags)
595 {
596 struct plcom_softc *sc = device_private(self);
597 int maj, mn;
598
599 if (sc->sc_hwflags & (PLCOM_HW_CONSOLE|PLCOM_HW_KGDB))
600 return EBUSY;
601
602 if (sc->disable != NULL && sc->enabled != 0) {
603 (*sc->disable)(sc);
604 sc->enabled = 0;
605 }
606
607 /* locate the major number */
608 maj = cdevsw_lookup_major(&plcom_cdevsw);
609
610 /* Nuke the vnodes for any open instances. */
611 mn = device_unit(self);
612 vdevgone(maj, mn, mn, VCHR);
613
614 mn |= PLCOMDIALOUT_MASK;
615 vdevgone(maj, mn, mn, VCHR);
616
617 if (sc->sc_rbuf == NULL) {
618 /*
619 * Ring buffer allocation failed in the plcom_attach_subr,
620 * only the tty is allocated, and nothing else.
621 */
622 tty_free(sc->sc_tty);
623 return 0;
624 }
625
626 /* Free the receive buffer. */
627 free(sc->sc_rbuf, M_DEVBUF);
628
629 /* Detach and free the tty. */
630 tty_detach(sc->sc_tty);
631 tty_free(sc->sc_tty);
632
633 /* Unhook the soft interrupt handler. */
634 softint_disestablish(sc->sc_si);
635
636 #ifdef RND_COM
637 /* Unhook the entropy source. */
638 rnd_detach_source(&sc->rnd_source);
639 #endif
640 callout_destroy(&sc->sc_diag_callout);
641
642 /* Destroy the lock. */
643 mutex_destroy(&sc->sc_lock);
644
645 return 0;
646 }
647
648 int
649 plcom_activate(device_t self, enum devact act)
650 {
651 struct plcom_softc *sc = device_private(self);
652
653 switch (act) {
654 case DVACT_DEACTIVATE:
655 sc->enabled = 0;
656 return 0;
657 default:
658 return EOPNOTSUPP;
659 }
660 }
661
662 void
663 plcom_shutdown(struct plcom_softc *sc)
664 {
665 struct plcom_instance *pi = &sc->sc_pi;
666 struct tty *tp = sc->sc_tty;
667 mutex_spin_enter(&sc->sc_lock);
668
669 /* If we were asserting flow control, then deassert it. */
670 SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
671 plcom_hwiflow(sc);
672
673 /* Clear any break condition set with TIOCSBRK. */
674 plcom_break(sc, 0);
675
676 /* Turn off PPS capture on last close. */
677 mutex_spin_enter(&timecounter_lock);
678 sc->sc_ppsmask = 0;
679 sc->ppsparam.mode = 0;
680 mutex_spin_exit(&timecounter_lock);
681
682 /*
683 * Hang up if necessary. Wait a bit, so the other side has time to
684 * notice even if we immediately open the port again.
685 * Avoid tsleeping above splhigh().
686 */
687 if (ISSET(tp->t_cflag, HUPCL)) {
688 plcom_modem(sc, 0);
689 microtime(&sc->sc_hup_pending);
690 sc->sc_hup_pending.tv_sec++;
691 }
692
693 sc->sc_cr = 0;
694 sc->sc_imsc = 0;
695 /* Turn off interrupts. */
696 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
697 /* interrupt on break */
698
699 sc->sc_cr = PL01X_CR_UARTEN;
700 sc->sc_imsc = 0;
701 switch (pi->pi_type) {
702 case PLCOM_TYPE_PL010:
703 SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE);
704 break;
705 case PLCOM_TYPE_PL011:
706 SET(sc->sc_cr, PL011_CR_RXE);
707 SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX);
708 break;
709 }
710 }
711 switch (pi->pi_type) {
712 case PLCOM_TYPE_PL010:
713 SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE);
714 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
715 break;
716 case PLCOM_TYPE_PL011:
717 SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
718 SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX);
719 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
720 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
721 break;
722 }
723
724 mutex_spin_exit(&sc->sc_lock);
725 if (sc->disable) {
726 #ifdef DIAGNOSTIC
727 if (!sc->enabled)
728 panic("plcom_shutdown: not enabled?");
729 #endif
730 (*sc->disable)(sc);
731 sc->enabled = 0;
732 }
733 }
734
735 int
736 plcomopen(dev_t dev, int flag, int mode, struct lwp *l)
737 {
738 struct plcom_softc *sc;
739 struct plcom_instance *pi;
740 struct tty *tp;
741 int s;
742 int error;
743
744 sc = device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
745 if (sc == NULL || !ISSET(sc->sc_hwflags, PLCOM_HW_DEV_OK) ||
746 sc->sc_rbuf == NULL)
747 return ENXIO;
748
749 if (!device_is_active(sc->sc_dev))
750 return ENXIO;
751
752 pi = &sc->sc_pi;
753
754 #ifdef KGDB
755 /*
756 * If this is the kgdb port, no other use is permitted.
757 */
758 if (ISSET(sc->sc_hwflags, PLCOM_HW_KGDB))
759 return EBUSY;
760 #endif
761
762 tp = sc->sc_tty;
763
764 if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
765 return (EBUSY);
766
767 s = spltty();
768
769 /*
770 * Do the following iff this is a first open.
771 */
772 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
773 struct termios t;
774 struct timeval now, diff;
775
776 tp->t_dev = dev;
777
778 if (sc->enable) {
779 if ((*sc->enable)(sc)) {
780 splx(s);
781 aprint_error_dev(sc->sc_dev,
782 "device enable failed\n");
783 return EIO;
784 }
785 mutex_spin_enter(&sc->sc_lock);
786 sc->enabled = 1;
787 plcom_config(sc);
788 } else {
789 mutex_spin_enter(&sc->sc_lock);
790 }
791
792 if (timerisset(&sc->sc_hup_pending)) {
793 microtime(&now);
794 while (timercmp(&now, &sc->sc_hup_pending, <)) {
795 timersub(&sc->sc_hup_pending, &now, &diff);
796 const int ms = diff.tv_sec * 100 +
797 uimax(diff.tv_usec / 1000, 1);
798 kpause(ttclos, false, mstohz(ms), &sc->sc_lock);
799 microtime(&now);
800 }
801 timerclear(&sc->sc_hup_pending);
802 }
803
804 /* Turn on interrupts. */
805 /* IER_ERXRDY | IER_ERLS | IER_EMSC; */
806 /* Fetch the current modem control status, needed later. */
807 sc->sc_cr = PL01X_CR_UARTEN;
808 switch (pi->pi_type) {
809 case PLCOM_TYPE_PL010:
810 SET(sc->sc_cr,
811 PL010_CR_RIE | PL010_CR_RTIE | PL010_CR_MSIE);
812 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
813 sc->sc_msr = PREAD1(pi, PL01XCOM_FR);
814 break;
815 case PLCOM_TYPE_PL011:
816 SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
817 SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX |
818 PL011_INT_MSMASK);
819 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
820 sc->sc_msr = PREAD4(pi, PL01XCOM_FR);
821 break;
822 }
823
824 /* Clear PPS capture state on first open. */
825
826 mutex_spin_enter(&timecounter_lock);
827 sc->sc_ppsmask = 0;
828 sc->ppsparam.mode = 0;
829 mutex_spin_exit(&timecounter_lock);
830
831 mutex_spin_exit(&sc->sc_lock);
832
833 /*
834 * Initialize the termios status to the defaults. Add in the
835 * sticky bits from TIOCSFLAGS.
836 */
837 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
838 t.c_ospeed = plcomconsrate;
839 t.c_cflag = plcomconscflag;
840 } else {
841 t.c_ospeed = TTYDEF_SPEED;
842 t.c_cflag = TTYDEF_CFLAG;
843 }
844 t.c_ispeed = t.c_ospeed;
845
846 if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL))
847 SET(t.c_cflag, CLOCAL);
848 if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS))
849 SET(t.c_cflag, CRTSCTS);
850 if (ISSET(sc->sc_swflags, TIOCFLAG_MDMBUF))
851 SET(t.c_cflag, MDMBUF);
852 /* Make sure plcomparam() will do something. */
853 tp->t_ospeed = 0;
854 (void) plcomparam(tp, &t);
855 tp->t_iflag = TTYDEF_IFLAG;
856 tp->t_oflag = TTYDEF_OFLAG;
857 tp->t_lflag = TTYDEF_LFLAG;
858 ttychars(tp);
859 ttsetwater(tp);
860
861 mutex_spin_enter(&sc->sc_lock);
862
863 /*
864 * Turn on DTR. We must always do this, even if carrier is not
865 * present, because otherwise we'd have to use TIOCSDTR
866 * immediately after setting CLOCAL, which applications do not
867 * expect. We always assert DTR while the device is open
868 * unless explicitly requested to deassert it.
869 */
870 plcom_modem(sc, 1);
871
872 /* Clear the input ring, and unblock. */
873 sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
874 sc->sc_rbavail = plcom_rbuf_size;
875 plcom_iflush(sc);
876 CLR(sc->sc_rx_flags, RX_ANY_BLOCK);
877 plcom_hwiflow(sc);
878
879 #ifdef PLCOM_DEBUG
880 if (plcom_debug)
881 plcomstatus(sc, "plcomopen ");
882 #endif
883
884 mutex_spin_exit(&sc->sc_lock);
885 }
886
887 splx(s);
888
889 error = ttyopen(tp, PLCOMDIALOUT(dev), ISSET(flag, O_NONBLOCK));
890 if (error)
891 goto bad;
892
893 error = (*tp->t_linesw->l_open)(dev, tp);
894 if (error)
895 goto bad;
896
897 return 0;
898
899 bad:
900 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
901 /*
902 * We failed to open the device, and nobody else had it opened.
903 * Clean up the state as appropriate.
904 */
905 plcom_shutdown(sc);
906 }
907
908 return error;
909 }
910
911 int
912 plcomclose(dev_t dev, int flag, int mode, struct lwp *l)
913 {
914 struct plcom_softc *sc =
915 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
916 struct tty *tp = sc->sc_tty;
917
918 /* XXX This is for cons.c. */
919 if (!ISSET(tp->t_state, TS_ISOPEN))
920 return 0;
921
922 (*tp->t_linesw->l_close)(tp, flag);
923 ttyclose(tp);
924
925 if (PLCOM_ISALIVE(sc) == 0)
926 return 0;
927
928 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
929 /*
930 * Although we got a last close, the device may still be in
931 * use; e.g. if this was the dialout node, and there are still
932 * processes waiting for carrier on the non-dialout node.
933 */
934 plcom_shutdown(sc);
935 }
936
937 return 0;
938 }
939
940 int
941 plcomread(dev_t dev, struct uio *uio, int flag)
942 {
943 struct plcom_softc *sc =
944 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
945 struct tty *tp = sc->sc_tty;
946
947 if (PLCOM_ISALIVE(sc) == 0)
948 return EIO;
949
950 return (*tp->t_linesw->l_read)(tp, uio, flag);
951 }
952
953 int
954 plcomwrite(dev_t dev, struct uio *uio, int flag)
955 {
956 struct plcom_softc *sc =
957 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
958 struct tty *tp = sc->sc_tty;
959
960 if (PLCOM_ISALIVE(sc) == 0)
961 return EIO;
962
963 return (*tp->t_linesw->l_write)(tp, uio, flag);
964 }
965
966 int
967 plcompoll(dev_t dev, int events, struct lwp *l)
968 {
969 struct plcom_softc *sc =
970 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
971 struct tty *tp = sc->sc_tty;
972
973 if (PLCOM_ISALIVE(sc) == 0)
974 return EIO;
975
976 return (*tp->t_linesw->l_poll)(tp, events, l);
977 }
978
979 struct tty *
980 plcomtty(dev_t dev)
981 {
982 struct plcom_softc *sc =
983 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
984 struct tty *tp = sc->sc_tty;
985
986 return tp;
987 }
988
989 int
990 plcomioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
991 {
992 struct plcom_softc *sc =
993 device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
994 struct tty *tp;
995 int error;
996
997 if (sc == NULL)
998 return ENXIO;
999 if (PLCOM_ISALIVE(sc) == 0)
1000 return EIO;
1001
1002 tp = sc->sc_tty;
1003
1004 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
1005 if (error != EPASSTHROUGH)
1006 return error;
1007
1008 error = ttioctl(tp, cmd, data, flag, l);
1009 if (error != EPASSTHROUGH)
1010 return error;
1011
1012 error = 0;
1013 switch (cmd) {
1014 case TIOCSFLAGS:
1015 error = kauth_authorize_device_tty(l->l_cred,
1016 KAUTH_DEVICE_TTY_PRIVSET, tp);
1017 break;
1018 default:
1019 /* nothing */
1020 break;
1021 }
1022 if (error) {
1023 return error;
1024 }
1025
1026 mutex_spin_enter(&sc->sc_lock);
1027 switch (cmd) {
1028 case TIOCSBRK:
1029 plcom_break(sc, 1);
1030 break;
1031
1032 case TIOCCBRK:
1033 plcom_break(sc, 0);
1034 break;
1035
1036 case TIOCSDTR:
1037 plcom_modem(sc, 1);
1038 break;
1039
1040 case TIOCCDTR:
1041 plcom_modem(sc, 0);
1042 break;
1043
1044 case TIOCGFLAGS:
1045 *(int *)data = sc->sc_swflags;
1046 break;
1047
1048 case TIOCSFLAGS:
1049 sc->sc_swflags = *(int *)data;
1050 break;
1051
1052 case TIOCMSET:
1053 case TIOCMBIS:
1054 case TIOCMBIC:
1055 tiocm_to_plcom(sc, cmd, *(int *)data);
1056 break;
1057
1058 case TIOCMGET:
1059 *(int *)data = plcom_to_tiocm(sc);
1060 break;
1061
1062 case PPS_IOC_CREATE:
1063 break;
1064
1065 case PPS_IOC_DESTROY:
1066 break;
1067
1068 case PPS_IOC_GETPARAMS: {
1069 pps_params_t *pp;
1070 pp = (pps_params_t *)data;
1071 mutex_spin_enter(&timecounter_lock);
1072 *pp = sc->ppsparam;
1073 mutex_spin_exit(&timecounter_lock);
1074 break;
1075 }
1076
1077 case PPS_IOC_SETPARAMS: {
1078 pps_params_t *pp;
1079 int mode;
1080 pp = (pps_params_t *)data;
1081 mutex_spin_enter(&timecounter_lock);
1082 if (pp->mode & ~ppscap) {
1083 error = EINVAL;
1084 mutex_spin_exit(&timecounter_lock);
1085 break;
1086 }
1087 sc->ppsparam = *pp;
1088 /*
1089 * Compute msr masks from user-specified timestamp state.
1090 */
1091 mode = sc->ppsparam.mode;
1092 #ifdef PPS_SYNC
1093 if (mode & PPS_HARDPPSONASSERT) {
1094 mode |= PPS_CAPTUREASSERT;
1095 /* XXX revoke any previous HARDPPS source */
1096 }
1097 if (mode & PPS_HARDPPSONCLEAR) {
1098 mode |= PPS_CAPTURECLEAR;
1099 /* XXX revoke any previous HARDPPS source */
1100 }
1101 #endif /* PPS_SYNC */
1102 switch (mode & PPS_CAPTUREBOTH) {
1103 case 0:
1104 sc->sc_ppsmask = 0;
1105 break;
1106
1107 case PPS_CAPTUREASSERT:
1108 sc->sc_ppsmask = PL01X_MSR_DCD;
1109 sc->sc_ppsassert = PL01X_MSR_DCD;
1110 sc->sc_ppsclear = -1;
1111 break;
1112
1113 case PPS_CAPTURECLEAR:
1114 sc->sc_ppsmask = PL01X_MSR_DCD;
1115 sc->sc_ppsassert = -1;
1116 sc->sc_ppsclear = 0;
1117 break;
1118
1119 case PPS_CAPTUREBOTH:
1120 sc->sc_ppsmask = PL01X_MSR_DCD;
1121 sc->sc_ppsassert = PL01X_MSR_DCD;
1122 sc->sc_ppsclear = 0;
1123 break;
1124
1125 default:
1126 error = EINVAL;
1127 break;
1128 }
1129 mutex_spin_exit(&timecounter_lock);
1130 break;
1131 }
1132
1133 case PPS_IOC_GETCAP:
1134 *(int*)data = ppscap;
1135 break;
1136
1137 case PPS_IOC_FETCH: {
1138 pps_info_t *pi;
1139 pi = (pps_info_t *)data;
1140 mutex_spin_enter(&timecounter_lock);
1141 *pi = sc->ppsinfo;
1142 mutex_spin_exit(&timecounter_lock);
1143 break;
1144 }
1145
1146 case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */
1147 /*
1148 * Some GPS clocks models use the falling rather than
1149 * rising edge as the on-the-second signal.
1150 * The old API has no way to specify PPS polarity.
1151 */
1152 mutex_spin_enter(&timecounter_lock);
1153 sc->sc_ppsmask = PL01X_MSR_DCD;
1154 #ifndef PPS_TRAILING_EDGE
1155 sc->sc_ppsassert = PL01X_MSR_DCD;
1156 sc->sc_ppsclear = -1;
1157 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
1158 &sc->ppsinfo.assert_timestamp);
1159 #else
1160 sc->sc_ppsassert = -1
1161 sc->sc_ppsclear = 0;
1162 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
1163 &sc->ppsinfo.clear_timestamp);
1164 #endif
1165 mutex_spin_exit(&timecounter_lock);
1166 break;
1167
1168 default:
1169 error = EPASSTHROUGH;
1170 break;
1171 }
1172
1173 mutex_spin_exit(&sc->sc_lock);
1174
1175 #ifdef PLCOM_DEBUG
1176 if (plcom_debug)
1177 plcomstatus(sc, "plcomioctl ");
1178 #endif
1179
1180 return error;
1181 }
1182
1183 integrate void
1184 plcom_schedrx(struct plcom_softc *sc)
1185 {
1186
1187 sc->sc_rx_ready = 1;
1188
1189 /* Wake up the poller. */
1190 softint_schedule(sc->sc_si);
1191 }
1192
1193 void
1194 plcom_break(struct plcom_softc *sc, int onoff)
1195 {
1196
1197 if (onoff)
1198 SET(sc->sc_lcr, PL01X_LCR_BRK);
1199 else
1200 CLR(sc->sc_lcr, PL01X_LCR_BRK);
1201
1202 if (!sc->sc_heldchange) {
1203 if (sc->sc_tx_busy) {
1204 sc->sc_heldtbc = sc->sc_tbc;
1205 sc->sc_tbc = 0;
1206 sc->sc_heldchange = 1;
1207 } else
1208 plcom_loadchannelregs(sc);
1209 }
1210 }
1211
1212 void
1213 plcom_modem(struct plcom_softc *sc, int onoff)
1214 {
1215
1216 if (sc->sc_mcr_dtr == 0)
1217 return;
1218
1219 if (onoff)
1220 SET(sc->sc_mcr, sc->sc_mcr_dtr);
1221 else
1222 CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1223
1224 if (!sc->sc_heldchange) {
1225 if (sc->sc_tx_busy) {
1226 sc->sc_heldtbc = sc->sc_tbc;
1227 sc->sc_tbc = 0;
1228 sc->sc_heldchange = 1;
1229 } else
1230 plcom_loadchannelregs(sc);
1231 }
1232 }
1233
1234 void
1235 tiocm_to_plcom(struct plcom_softc *sc, u_long how, int ttybits)
1236 {
1237 u_char plcombits;
1238
1239 plcombits = 0;
1240 if (ISSET(ttybits, TIOCM_DTR))
1241 SET(plcombits, PL01X_MCR_DTR);
1242 if (ISSET(ttybits, TIOCM_RTS))
1243 SET(plcombits, PL01X_MCR_RTS);
1244
1245 switch (how) {
1246 case TIOCMBIC:
1247 CLR(sc->sc_mcr, plcombits);
1248 break;
1249
1250 case TIOCMBIS:
1251 SET(sc->sc_mcr, plcombits);
1252 break;
1253
1254 case TIOCMSET:
1255 CLR(sc->sc_mcr, PL01X_MCR_DTR | PL01X_MCR_RTS);
1256 SET(sc->sc_mcr, plcombits);
1257 break;
1258 }
1259
1260 if (!sc->sc_heldchange) {
1261 if (sc->sc_tx_busy) {
1262 sc->sc_heldtbc = sc->sc_tbc;
1263 sc->sc_tbc = 0;
1264 sc->sc_heldchange = 1;
1265 } else
1266 plcom_loadchannelregs(sc);
1267 }
1268 }
1269
1270 int
1271 plcom_to_tiocm(struct plcom_softc *sc)
1272 {
1273 u_char plcombits;
1274 int ttybits = 0;
1275
1276 plcombits = sc->sc_mcr;
1277 if (ISSET(plcombits, PL01X_MCR_DTR))
1278 SET(ttybits, TIOCM_DTR);
1279 if (ISSET(plcombits, PL01X_MCR_RTS))
1280 SET(ttybits, TIOCM_RTS);
1281
1282 plcombits = sc->sc_msr;
1283 if (ISSET(plcombits, PL01X_MSR_DCD))
1284 SET(ttybits, TIOCM_CD);
1285 if (ISSET(plcombits, PL01X_MSR_CTS))
1286 SET(ttybits, TIOCM_CTS);
1287 if (ISSET(plcombits, PL01X_MSR_DSR))
1288 SET(ttybits, TIOCM_DSR);
1289 if (ISSET(plcombits, PL011_MSR_RI))
1290 SET(ttybits, TIOCM_RI);
1291
1292 if (sc->sc_cr != 0)
1293 SET(ttybits, TIOCM_LE);
1294
1295 return ttybits;
1296 }
1297
1298 static u_char
1299 cflag2lcr(tcflag_t cflag)
1300 {
1301 u_char lcr = 0;
1302
1303 switch (ISSET(cflag, CSIZE)) {
1304 case CS5:
1305 SET(lcr, PL01X_LCR_5BITS);
1306 break;
1307 case CS6:
1308 SET(lcr, PL01X_LCR_6BITS);
1309 break;
1310 case CS7:
1311 SET(lcr, PL01X_LCR_7BITS);
1312 break;
1313 case CS8:
1314 SET(lcr, PL01X_LCR_8BITS);
1315 break;
1316 }
1317 if (ISSET(cflag, PARENB)) {
1318 SET(lcr, PL01X_LCR_PEN);
1319 if (!ISSET(cflag, PARODD))
1320 SET(lcr, PL01X_LCR_EPS);
1321 }
1322 if (ISSET(cflag, CSTOPB))
1323 SET(lcr, PL01X_LCR_STP2);
1324
1325 return lcr;
1326 }
1327
1328 int
1329 plcomparam(struct tty *tp, struct termios *t)
1330 {
1331 struct plcom_softc *sc =
1332 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1333 struct plcom_instance *pi = &sc->sc_pi;
1334 int ospeed = -1;
1335 u_char lcr;
1336
1337 if (PLCOM_ISALIVE(sc) == 0)
1338 return EIO;
1339
1340 switch (pi->pi_type) {
1341 case PLCOM_TYPE_PL010:
1342 ospeed = pl010comspeed(t->c_ospeed, sc->sc_frequency);
1343 break;
1344 case PLCOM_TYPE_PL011:
1345 ospeed = pl011comspeed(t->c_ospeed, sc->sc_frequency);
1346 break;
1347 }
1348
1349 /* Check requested parameters. */
1350 if (ospeed < 0)
1351 return EINVAL;
1352 if (t->c_ispeed && t->c_ispeed != t->c_ospeed)
1353 return EINVAL;
1354
1355 /*
1356 * For the console, always force CLOCAL and !HUPCL, so that the port
1357 * is always active.
1358 */
1359 if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR) ||
1360 ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
1361 SET(t->c_cflag, CLOCAL);
1362 CLR(t->c_cflag, HUPCL);
1363 }
1364
1365 /*
1366 * If there were no changes, don't do anything. This avoids dropping
1367 * input and improves performance when all we did was frob things like
1368 * VMIN and VTIME.
1369 */
1370 if (tp->t_ospeed == t->c_ospeed &&
1371 tp->t_cflag == t->c_cflag)
1372 return 0;
1373
1374 lcr = ISSET(sc->sc_lcr, PL01X_LCR_BRK) | cflag2lcr(t->c_cflag);
1375
1376 mutex_spin_enter(&sc->sc_lock);
1377
1378 sc->sc_lcr = lcr;
1379
1380 /*
1381 * PL010 has a fixed-length FIFO trigger point.
1382 */
1383 if (ISSET(sc->sc_hwflags, PLCOM_HW_FIFO))
1384 sc->sc_fifo = 1;
1385 else
1386 sc->sc_fifo = 0;
1387
1388 if (sc->sc_fifo)
1389 SET(sc->sc_lcr, PL01X_LCR_FEN);
1390
1391 /*
1392 * If we're not in a mode that assumes a connection is present, then
1393 * ignore carrier changes.
1394 */
1395 if (ISSET(t->c_cflag, CLOCAL | MDMBUF))
1396 sc->sc_msr_dcd = 0;
1397 else
1398 sc->sc_msr_dcd = PL01X_MSR_DCD;
1399 /*
1400 * Set the flow control pins depending on the current flow control
1401 * mode.
1402 */
1403 if (ISSET(t->c_cflag, CRTSCTS)) {
1404 sc->sc_mcr_dtr = PL01X_MCR_DTR;
1405 sc->sc_mcr_rts = PL01X_MCR_RTS;
1406 sc->sc_msr_cts = PL01X_MSR_CTS;
1407 } else if (ISSET(t->c_cflag, MDMBUF)) {
1408 /*
1409 * For DTR/DCD flow control, make sure we don't toggle DTR for
1410 * carrier detection.
1411 */
1412 sc->sc_mcr_dtr = 0;
1413 sc->sc_mcr_rts = PL01X_MCR_DTR;
1414 sc->sc_msr_cts = PL01X_MSR_DCD;
1415 } else {
1416 /*
1417 * If no flow control, then always set RTS. This will make
1418 * the other side happy if it mistakenly thinks we're doing
1419 * RTS/CTS flow control.
1420 */
1421 sc->sc_mcr_dtr = PL01X_MCR_DTR | PL01X_MCR_RTS;
1422 sc->sc_mcr_rts = 0;
1423 sc->sc_msr_cts = 0;
1424 if (ISSET(sc->sc_mcr, PL01X_MCR_DTR))
1425 SET(sc->sc_mcr, PL01X_MCR_RTS);
1426 else
1427 CLR(sc->sc_mcr, PL01X_MCR_RTS);
1428 }
1429 sc->sc_msr_mask = sc->sc_msr_cts | sc->sc_msr_dcd;
1430
1431 #if 0
1432 if (ospeed == 0)
1433 CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1434 else
1435 SET(sc->sc_mcr, sc->sc_mcr_dtr);
1436 #endif
1437
1438 switch (pi->pi_type) {
1439 case PLCOM_TYPE_PL010:
1440 sc->sc_ratel = ospeed & 0xff;
1441 sc->sc_rateh = (ospeed >> 8) & 0xff;
1442 break;
1443 case PLCOM_TYPE_PL011:
1444 sc->sc_ratel = ospeed & ((1 << 6) - 1);
1445 sc->sc_rateh = ospeed >> 6;
1446 break;
1447 }
1448
1449 /* And copy to tty. */
1450 tp->t_ispeed = t->c_ospeed;
1451 tp->t_ospeed = t->c_ospeed;
1452 tp->t_cflag = t->c_cflag;
1453
1454 if (!sc->sc_heldchange) {
1455 if (sc->sc_tx_busy) {
1456 sc->sc_heldtbc = sc->sc_tbc;
1457 sc->sc_tbc = 0;
1458 sc->sc_heldchange = 1;
1459 } else
1460 plcom_loadchannelregs(sc);
1461 }
1462
1463 if (!ISSET(t->c_cflag, CHWFLOW)) {
1464 /* Disable the high water mark. */
1465 sc->sc_r_hiwat = 0;
1466 sc->sc_r_lowat = 0;
1467 if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1468 CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1469 plcom_schedrx(sc);
1470 }
1471 if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
1472 CLR(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
1473 plcom_hwiflow(sc);
1474 }
1475 } else {
1476 sc->sc_r_hiwat = plcom_rbuf_hiwat;
1477 sc->sc_r_lowat = plcom_rbuf_lowat;
1478 }
1479
1480 mutex_spin_exit(&sc->sc_lock);
1481
1482 /*
1483 * Update the tty layer's idea of the carrier bit, in case we changed
1484 * CLOCAL or MDMBUF. We don't hang up here; we only do that by
1485 * explicit request.
1486 */
1487 (void) (*tp->t_linesw->l_modem)(tp, ISSET(sc->sc_msr, PL01X_MSR_DCD));
1488
1489 #ifdef PLCOM_DEBUG
1490 if (plcom_debug)
1491 plcomstatus(sc, "plcomparam ");
1492 #endif
1493
1494 if (!ISSET(t->c_cflag, CHWFLOW)) {
1495 if (sc->sc_tx_stopped) {
1496 sc->sc_tx_stopped = 0;
1497 plcomstart(tp);
1498 }
1499 }
1500
1501 return 0;
1502 }
1503
1504 void
1505 plcom_iflush(struct plcom_softc *sc)
1506 {
1507 struct plcom_instance *pi = &sc->sc_pi;
1508 #ifdef DIAGNOSTIC
1509 int reg;
1510 #endif
1511 int timo;
1512
1513 #ifdef DIAGNOSTIC
1514 reg = 0xffff;
1515 #endif
1516 timo = 50000;
1517 /* flush any pending I/O */
1518 while (! ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE)
1519 && --timo)
1520 #ifdef DIAGNOSTIC
1521 reg =
1522 #else
1523 (void)
1524 #endif
1525 PREAD1(pi, PL01XCOM_DR);
1526 #ifdef DIAGNOSTIC
1527 if (!timo)
1528 aprint_error_dev(sc->sc_dev, ": %s timeout %02x\n", __func__,
1529 reg);
1530 #endif
1531 }
1532
1533 void
1534 plcom_loadchannelregs(struct plcom_softc *sc)
1535 {
1536 struct plcom_instance *pi = &sc->sc_pi;
1537
1538 /* XXXXX necessary? */
1539 plcom_iflush(sc);
1540
1541 switch (pi->pi_type) {
1542 case PLCOM_TYPE_PL010:
1543 PWRITE1(pi, PL010COM_CR, 0);
1544 if (sc->sc_frequency != 0) {
1545 PWRITE1(pi, PL010COM_DLBL, sc->sc_ratel);
1546 PWRITE1(pi, PL010COM_DLBH, sc->sc_rateh);
1547 }
1548 PWRITE1(pi, PL010COM_LCR, sc->sc_lcr);
1549
1550 /* XXX device_unit() abuse */
1551 if (sc->sc_set_mcr)
1552 sc->sc_set_mcr(sc->sc_set_mcr_arg,
1553 device_unit(sc->sc_dev),
1554 sc->sc_mcr_active = sc->sc_mcr);
1555
1556 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
1557 break;
1558
1559 case PLCOM_TYPE_PL011:
1560 PWRITE4(pi, PL011COM_CR, 0);
1561 if (sc->sc_frequency != 0) {
1562 PWRITE1(pi, PL011COM_FBRD, sc->sc_ratel);
1563 PWRITE4(pi, PL011COM_IBRD, sc->sc_rateh);
1564 }
1565 PWRITE1(pi, PL011COM_LCRH, sc->sc_lcr);
1566 sc->sc_mcr_active = sc->sc_mcr;
1567 CLR(sc->sc_cr, PL011_MCR(PL01X_MCR_RTS | PL01X_MCR_DTR));
1568 SET(sc->sc_cr, PL011_MCR(sc->sc_mcr_active));
1569 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
1570 break;
1571 }
1572 }
1573
1574 int
1575 plcomhwiflow(struct tty *tp, int block)
1576 {
1577 struct plcom_softc *sc =
1578 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1579
1580 if (PLCOM_ISALIVE(sc) == 0)
1581 return 0;
1582
1583 if (sc->sc_mcr_rts == 0)
1584 return 0;
1585
1586 mutex_spin_enter(&sc->sc_lock);
1587
1588 if (block) {
1589 if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1590 SET(sc->sc_rx_flags, RX_TTY_BLOCKED);
1591 plcom_hwiflow(sc);
1592 }
1593 } else {
1594 if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1595 CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1596 plcom_schedrx(sc);
1597 }
1598 if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1599 CLR(sc->sc_rx_flags, RX_TTY_BLOCKED);
1600 plcom_hwiflow(sc);
1601 }
1602 }
1603
1604 mutex_spin_exit(&sc->sc_lock);
1605 return 1;
1606 }
1607
1608 /*
1609 * (un)block input via hw flowcontrol
1610 */
1611 void
1612 plcom_hwiflow(struct plcom_softc *sc)
1613 {
1614 struct plcom_instance *pi = &sc->sc_pi;
1615
1616 if (sc->sc_mcr_rts == 0)
1617 return;
1618
1619 if (ISSET(sc->sc_rx_flags, RX_ANY_BLOCK)) {
1620 CLR(sc->sc_mcr, sc->sc_mcr_rts);
1621 CLR(sc->sc_mcr_active, sc->sc_mcr_rts);
1622 } else {
1623 SET(sc->sc_mcr, sc->sc_mcr_rts);
1624 SET(sc->sc_mcr_active, sc->sc_mcr_rts);
1625 }
1626 switch (pi->pi_type) {
1627 case PLCOM_TYPE_PL010:
1628 if (sc->sc_set_mcr)
1629 /* XXX device_unit() abuse */
1630 sc->sc_set_mcr(sc->sc_set_mcr_arg,
1631 device_unit(sc->sc_dev), sc->sc_mcr_active);
1632 break;
1633 case PLCOM_TYPE_PL011:
1634 CLR(sc->sc_cr, PL011_MCR(PL01X_MCR_RTS | PL01X_MCR_DTR));
1635 SET(sc->sc_cr, PL011_MCR(sc->sc_mcr_active));
1636 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
1637 break;
1638 }
1639 }
1640
1641
1642 void
1643 plcomstart(struct tty *tp)
1644 {
1645 struct plcom_softc *sc =
1646 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1647 struct plcom_instance *pi = &sc->sc_pi;
1648 int s;
1649
1650 if (PLCOM_ISALIVE(sc) == 0)
1651 return;
1652
1653 s = spltty();
1654 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
1655 goto out;
1656 if (sc->sc_tx_stopped)
1657 goto out;
1658
1659 if (!ttypull(tp))
1660 goto out;
1661
1662 /* Grab the first contiguous region of buffer space. */
1663 {
1664 u_char *tba;
1665 int tbc;
1666
1667 tba = tp->t_outq.c_cf;
1668 tbc = ndqb(&tp->t_outq, 0);
1669
1670 mutex_spin_enter(&sc->sc_lock);
1671
1672 sc->sc_tba = tba;
1673 sc->sc_tbc = tbc;
1674 }
1675
1676 SET(tp->t_state, TS_BUSY);
1677 sc->sc_tx_busy = 1;
1678
1679 /* Enable transmit completion interrupts if necessary. */
1680 switch (pi->pi_type) {
1681 case PLCOM_TYPE_PL010:
1682 if (!ISSET(sc->sc_cr, PL010_CR_TIE)) {
1683 SET(sc->sc_cr, PL010_CR_TIE);
1684 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
1685 }
1686 break;
1687 case PLCOM_TYPE_PL011:
1688 if (!ISSET(sc->sc_imsc, PL011_INT_TX)) {
1689 SET(sc->sc_imsc, PL011_INT_TX);
1690 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
1691 }
1692 break;
1693 }
1694
1695 /* Output the first chunk of the contiguous buffer. */
1696 {
1697 int n;
1698
1699 n = sc->sc_tbc;
1700 if (n > sc->sc_fifolen)
1701 n = sc->sc_fifolen;
1702 PWRITEM1(pi, PL01XCOM_DR, sc->sc_tba, n);
1703 sc->sc_tbc -= n;
1704 sc->sc_tba += n;
1705 }
1706 mutex_spin_exit(&sc->sc_lock);
1707 out:
1708 splx(s);
1709 return;
1710 }
1711
1712 /*
1713 * Stop output on a line.
1714 */
1715 void
1716 plcomstop(struct tty *tp, int flag)
1717 {
1718 struct plcom_softc *sc =
1719 device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1720
1721 mutex_spin_enter(&sc->sc_lock);
1722 if (ISSET(tp->t_state, TS_BUSY)) {
1723 /* Stop transmitting at the next chunk. */
1724 sc->sc_tbc = 0;
1725 sc->sc_heldtbc = 0;
1726 if (!ISSET(tp->t_state, TS_TTSTOP))
1727 SET(tp->t_state, TS_FLUSH);
1728 }
1729 mutex_spin_exit(&sc->sc_lock);
1730 }
1731
1732 void
1733 plcomdiag(void *arg)
1734 {
1735 struct plcom_softc *sc = arg;
1736 int overflows, floods;
1737
1738 mutex_spin_enter(&sc->sc_lock);
1739 overflows = sc->sc_overflows;
1740 sc->sc_overflows = 0;
1741 floods = sc->sc_floods;
1742 sc->sc_floods = 0;
1743 sc->sc_errors = 0;
1744 mutex_spin_exit(&sc->sc_lock);
1745
1746 log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
1747 device_xname(sc->sc_dev),
1748 overflows, overflows == 1 ? "" : "s",
1749 floods, floods == 1 ? "" : "s");
1750 }
1751
1752 integrate void
1753 plcom_rxsoft(struct plcom_softc *sc, struct tty *tp)
1754 {
1755 int (*rint) (int, struct tty *) = tp->t_linesw->l_rint;
1756 struct plcom_instance *pi = &sc->sc_pi;
1757 u_char *get, *end;
1758 u_int cc, scc;
1759 u_char rsr;
1760 int code;
1761
1762 end = sc->sc_ebuf;
1763 get = sc->sc_rbget;
1764 scc = cc = plcom_rbuf_size - sc->sc_rbavail;
1765
1766 if (cc == plcom_rbuf_size) {
1767 sc->sc_floods++;
1768 if (sc->sc_errors++ == 0)
1769 callout_reset(&sc->sc_diag_callout, 60 * hz,
1770 plcomdiag, sc);
1771 }
1772
1773 while (cc) {
1774 code = get[0];
1775 rsr = get[1];
1776 if (ISSET(rsr, PL01X_RSR_ERROR)) {
1777 if (ISSET(rsr, PL01X_RSR_OE)) {
1778 sc->sc_overflows++;
1779 if (sc->sc_errors++ == 0)
1780 callout_reset(&sc->sc_diag_callout,
1781 60 * hz, plcomdiag, sc);
1782 }
1783 if (ISSET(rsr, PL01X_RSR_BE | PL01X_RSR_FE))
1784 SET(code, TTY_FE);
1785 if (ISSET(rsr, PL01X_RSR_PE))
1786 SET(code, TTY_PE);
1787 }
1788 if ((*rint)(code, tp) == -1) {
1789 /*
1790 * The line discipline's buffer is out of space.
1791 */
1792 if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1793 /*
1794 * We're either not using flow control, or the
1795 * line discipline didn't tell us to block for
1796 * some reason. Either way, we have no way to
1797 * know when there's more space available, so
1798 * just drop the rest of the data.
1799 */
1800 get += cc << 1;
1801 if (get >= end)
1802 get -= plcom_rbuf_size << 1;
1803 cc = 0;
1804 } else {
1805 /*
1806 * Don't schedule any more receive processing
1807 * until the line discipline tells us there's
1808 * space available (through plcomhwiflow()).
1809 * Leave the rest of the data in the input
1810 * buffer.
1811 */
1812 SET(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1813 }
1814 break;
1815 }
1816 get += 2;
1817 if (get >= end)
1818 get = sc->sc_rbuf;
1819 cc--;
1820 }
1821
1822 if (cc != scc) {
1823 sc->sc_rbget = get;
1824 mutex_spin_enter(&sc->sc_lock);
1825
1826 cc = sc->sc_rbavail += scc - cc;
1827 /* Buffers should be ok again, release possible block. */
1828 if (cc >= sc->sc_r_lowat) {
1829 if (ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1830 CLR(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
1831 switch (pi->pi_type) {
1832 case PLCOM_TYPE_PL010:
1833 SET(sc->sc_cr,
1834 PL010_CR_RIE | PL010_CR_RTIE);
1835 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
1836 break;
1837 case PLCOM_TYPE_PL011:
1838 SET(sc->sc_imsc,
1839 PL011_INT_RX | PL011_INT_RT);
1840 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
1841 break;
1842 }
1843 }
1844 if (ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED)) {
1845 CLR(sc->sc_rx_flags, RX_IBUF_BLOCKED);
1846 plcom_hwiflow(sc);
1847 }
1848 }
1849 mutex_spin_exit(&sc->sc_lock);
1850 }
1851 }
1852
1853 integrate void
1854 plcom_txsoft(struct plcom_softc *sc, struct tty *tp)
1855 {
1856
1857 CLR(tp->t_state, TS_BUSY);
1858 if (ISSET(tp->t_state, TS_FLUSH))
1859 CLR(tp->t_state, TS_FLUSH);
1860 else
1861 ndflush(&tp->t_outq, (int)(sc->sc_tba - tp->t_outq.c_cf));
1862 (*tp->t_linesw->l_start)(tp);
1863 }
1864
1865 integrate void
1866 plcom_stsoft(struct plcom_softc *sc, struct tty *tp)
1867 {
1868 u_char msr, delta;
1869
1870 mutex_spin_enter(&sc->sc_lock);
1871 msr = sc->sc_msr;
1872 delta = sc->sc_msr_delta;
1873 sc->sc_msr_delta = 0;
1874 mutex_spin_exit(&sc->sc_lock);
1875
1876 if (ISSET(delta, sc->sc_msr_dcd)) {
1877 /*
1878 * Inform the tty layer that carrier detect changed.
1879 */
1880 (void) (*tp->t_linesw->l_modem)(tp, ISSET(msr, PL01X_MSR_DCD));
1881 }
1882
1883 if (ISSET(delta, sc->sc_msr_cts)) {
1884 /* Block or unblock output according to flow control. */
1885 if (ISSET(msr, sc->sc_msr_cts)) {
1886 sc->sc_tx_stopped = 0;
1887 (*tp->t_linesw->l_start)(tp);
1888 } else {
1889 sc->sc_tx_stopped = 1;
1890 }
1891 }
1892
1893 #ifdef PLCOM_DEBUG
1894 if (plcom_debug)
1895 plcomstatus(sc, "plcom_stsoft");
1896 #endif
1897 }
1898
1899 void
1900 plcomsoft(void *arg)
1901 {
1902 struct plcom_softc *sc = arg;
1903 struct tty *tp;
1904
1905 if (PLCOM_ISALIVE(sc) == 0)
1906 return;
1907
1908 tp = sc->sc_tty;
1909
1910 if (sc->sc_rx_ready) {
1911 sc->sc_rx_ready = 0;
1912 plcom_rxsoft(sc, tp);
1913 }
1914
1915 if (sc->sc_st_check) {
1916 sc->sc_st_check = 0;
1917 plcom_stsoft(sc, tp);
1918 }
1919
1920 if (sc->sc_tx_done) {
1921 sc->sc_tx_done = 0;
1922 plcom_txsoft(sc, tp);
1923 }
1924 }
1925
1926 bool
1927 plcom_intstatus(struct plcom_instance *pi, u_int *istatus)
1928 {
1929 bool ret = false;
1930 u_int stat = 0;
1931
1932 switch (pi->pi_type) {
1933 case PLCOM_TYPE_PL010:
1934 stat = PREAD1(pi, PL010COM_IIR);
1935 ret = ISSET(stat, PL010_IIR_IMASK);
1936 break;
1937 case PLCOM_TYPE_PL011:
1938 stat = PREAD4(pi, PL011COM_MIS);
1939 ret = ISSET(stat, PL011_INT_ALLMASK);
1940 break;
1941 }
1942 *istatus = stat;
1943
1944 return ret;
1945 }
1946
1947 int
1948 plcomintr(void *arg)
1949 {
1950 struct plcom_softc *sc = arg;
1951 struct plcom_instance *pi = &sc->sc_pi;
1952 u_char *put, *end;
1953 u_int cc;
1954 u_int istatus = 0;
1955 u_char rsr;
1956 bool intr = false;
1957
1958 PLCOM_BARRIER(pi, BR | BW);
1959
1960 if (PLCOM_ISALIVE(sc) == 0)
1961 return 0;
1962
1963 mutex_spin_enter(&sc->sc_lock);
1964 intr = plcom_intstatus(pi, &istatus);
1965 if (!intr) {
1966 mutex_spin_exit(&sc->sc_lock);
1967 return 0;
1968 }
1969
1970 end = sc->sc_ebuf;
1971 put = sc->sc_rbput;
1972 cc = sc->sc_rbavail;
1973
1974 do {
1975 u_int msr = 0, delta, fr;
1976 bool rxintr = false, txintr = false, msintr;
1977
1978 /* don't need RI here*/
1979 fr = PREAD1(pi, PL01XCOM_FR);
1980
1981 if (!ISSET(fr, PL01X_FR_RXFE) &&
1982 !ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1983 while (cc > 0) {
1984 int cn_trapped = 0;
1985 put[0] = PREAD1(pi, PL01XCOM_DR);
1986 rsr = PREAD1(pi, PL01XCOM_RSR);
1987 /* Clear any error status. */
1988 if (ISSET(rsr, PL01X_RSR_ERROR))
1989 PWRITE1(pi, PL01XCOM_ECR, 0);
1990 if (ISSET(rsr, PL01X_RSR_BE)) {
1991 cn_trapped = 0;
1992 cn_check_magic(sc->sc_tty->t_dev,
1993 CNC_BREAK, plcom_cnm_state);
1994 if (cn_trapped)
1995 continue;
1996 #if defined(KGDB)
1997 if (ISSET(sc->sc_hwflags,
1998 PLCOM_HW_KGDB)) {
1999 kgdb_connect(1);
2000 continue;
2001 }
2002 #endif
2003 }
2004
2005 put[1] = rsr;
2006 cn_trapped = 0;
2007 cn_check_magic(sc->sc_tty->t_dev, put[0],
2008 plcom_cnm_state);
2009 if (cn_trapped) {
2010 fr = PREAD1(pi, PL01XCOM_FR);
2011 if (ISSET(fr, PL01X_FR_RXFE))
2012 break;
2013
2014 continue;
2015 }
2016 put += 2;
2017 if (put >= end)
2018 put = sc->sc_rbuf;
2019 cc--;
2020
2021 /* don't need RI here*/
2022 fr = PREAD1(pi, PL01XCOM_FR);
2023 if (ISSET(fr, PL01X_FR_RXFE))
2024 break;
2025 }
2026
2027 /*
2028 * Current string of incoming characters ended because
2029 * no more data was available or we ran out of space.
2030 * Schedule a receive event if any data was received.
2031 * If we're out of space, turn off receive interrupts.
2032 */
2033 sc->sc_rbput = put;
2034 sc->sc_rbavail = cc;
2035 if (!ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED))
2036 sc->sc_rx_ready = 1;
2037
2038 /*
2039 * See if we are in danger of overflowing a buffer. If
2040 * so, use hardware flow control to ease the pressure.
2041 */
2042 if (!ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED) &&
2043 cc < sc->sc_r_hiwat) {
2044 SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
2045 plcom_hwiflow(sc);
2046 }
2047
2048 /*
2049 * If we're out of space, disable receive interrupts
2050 * until the queue has drained a bit.
2051 */
2052 if (!cc) {
2053 SET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
2054 switch (pi->pi_type) {
2055 case PLCOM_TYPE_PL010:
2056 CLR(sc->sc_cr,
2057 PL010_CR_RIE | PL010_CR_RTIE);
2058 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
2059 break;
2060 case PLCOM_TYPE_PL011:
2061 CLR(sc->sc_imsc,
2062 PL011_INT_RT | PL011_INT_RX);
2063 PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
2064 break;
2065 }
2066 }
2067 } else {
2068 switch (pi->pi_type) {
2069 case PLCOM_TYPE_PL010:
2070 rxintr = ISSET(istatus, PL010_IIR_RIS);
2071 if (rxintr) {
2072 PWRITE1(pi, PL010COM_CR, 0);
2073 delay(10);
2074 PWRITE1(pi, PL010COM_CR, sc->sc_cr);
2075 continue;
2076 }
2077 break;
2078 case PLCOM_TYPE_PL011:
2079 rxintr = ISSET(istatus, PL011_INT_RX);
2080 if (rxintr) {
2081 PWRITE4(pi, PL011COM_CR, 0);
2082 delay(10);
2083 PWRITE4(pi, PL011COM_CR, sc->sc_cr);
2084 continue;
2085 }
2086 break;
2087 }
2088 }
2089
2090 switch (pi->pi_type) {
2091 case PLCOM_TYPE_PL010:
2092 msr = PREAD1(pi, PL01XCOM_FR);
2093 break;
2094 case PLCOM_TYPE_PL011:
2095 msr = PREAD4(pi, PL01XCOM_FR);
2096 break;
2097 }
2098 delta = msr ^ sc->sc_msr;
2099 sc->sc_msr = msr;
2100
2101 /* Clear any pending modem status interrupt. */
2102 switch (pi->pi_type) {
2103 case PLCOM_TYPE_PL010:
2104 msintr = ISSET(istatus, PL010_IIR_MIS);
2105 if (msintr) {
2106 PWRITE1(pi, PL010COM_ICR, 0);
2107 }
2108 break;
2109 case PLCOM_TYPE_PL011:
2110 msintr = ISSET(istatus, PL011_INT_MSMASK);
2111 if (msintr) {
2112 PWRITE4(pi, PL011COM_ICR, PL011_INT_MSMASK);
2113 }
2114 break;
2115 }
2116 /*
2117 * Pulse-per-second (PSS) signals on edge of DCD?
2118 * Process these even if line discipline is ignoring DCD.
2119 */
2120 if (delta & sc->sc_ppsmask) {
2121 struct timeval tv;
2122 mutex_spin_enter(&timecounter_lock);
2123 if ((msr & sc->sc_ppsmask) == sc->sc_ppsassert) {
2124 /* XXX nanotime() */
2125 microtime(&tv);
2126 TIMEVAL_TO_TIMESPEC(&tv,
2127 &sc->ppsinfo.assert_timestamp);
2128 if (sc->ppsparam.mode & PPS_OFFSETASSERT) {
2129 timespecadd(&sc->ppsinfo.assert_timestamp,
2130 &sc->ppsparam.assert_offset,
2131 &sc->ppsinfo.assert_timestamp);
2132 }
2133
2134 #ifdef PPS_SYNC
2135 if (sc->ppsparam.mode & PPS_HARDPPSONASSERT)
2136 hardpps(&tv, tv.tv_usec);
2137 #endif
2138 sc->ppsinfo.assert_sequence++;
2139 sc->ppsinfo.current_mode = sc->ppsparam.mode;
2140
2141 } else if ((msr & sc->sc_ppsmask) == sc->sc_ppsclear) {
2142 /* XXX nanotime() */
2143 microtime(&tv);
2144 TIMEVAL_TO_TIMESPEC(&tv,
2145 &sc->ppsinfo.clear_timestamp);
2146 if (sc->ppsparam.mode & PPS_OFFSETCLEAR) {
2147 timespecadd(&sc->ppsinfo.clear_timestamp,
2148 &sc->ppsparam.clear_offset,
2149 &sc->ppsinfo.clear_timestamp);
2150 }
2151
2152 #ifdef PPS_SYNC
2153 if (sc->ppsparam.mode & PPS_HARDPPSONCLEAR)
2154 hardpps(&tv, tv.tv_usec);
2155 #endif
2156 sc->ppsinfo.clear_sequence++;
2157 sc->ppsinfo.current_mode = sc->ppsparam.mode;
2158 }
2159 mutex_spin_exit(&timecounter_lock);
2160 }
2161
2162 /*
2163 * Process normal status changes
2164 */
2165 if (ISSET(delta, sc->sc_msr_mask)) {
2166 SET(sc->sc_msr_delta, delta);
2167
2168 /*
2169 * Stop output immediately if we lose the output
2170 * flow control signal or carrier detect.
2171 */
2172 if (ISSET(~msr, sc->sc_msr_mask)) {
2173 sc->sc_tbc = 0;
2174 sc->sc_heldtbc = 0;
2175 #ifdef PLCOM_DEBUG
2176 if (plcom_debug)
2177 plcomstatus(sc, "plcomintr ");
2178 #endif
2179 }
2180
2181 sc->sc_st_check = 1;
2182 }
2183
2184 /*
2185 * Done handling any receive interrupts. See if data
2186 * can be transmitted as well. Schedule tx done
2187 * event if no data left and tty was marked busy.
2188 */
2189
2190 switch (pi->pi_type) {
2191 case PLCOM_TYPE_PL010:
2192 txintr = ISSET(istatus, PL010_IIR_TIS);
2193 break;
2194 case PLCOM_TYPE_PL011:
2195 txintr = ISSET(istatus, PL011_INT_TX);
2196 break;
2197 }
2198 if (txintr) {
2199 /*
2200 * If we've delayed a parameter change, do it
2201 * now, and restart * output.
2202 */
2203 // PWRITE4(pi, PL011COM_ICR, PL011_INT_TX);
2204 if (sc->sc_heldchange) {
2205 plcom_loadchannelregs(sc);
2206 sc->sc_heldchange = 0;
2207 sc->sc_tbc = sc->sc_heldtbc;
2208 sc->sc_heldtbc = 0;
2209 }
2210
2211 /*
2212 * Output the next chunk of the contiguous
2213 * buffer, if any.
2214 */
2215 if (sc->sc_tbc > 0) {
2216 int n;
2217
2218 n = sc->sc_tbc;
2219 if (n > sc->sc_fifolen)
2220 n = sc->sc_fifolen;
2221 PWRITEM1(pi, PL01XCOM_DR, sc->sc_tba, n);
2222 sc->sc_tbc -= n;
2223 sc->sc_tba += n;
2224 } else {
2225 /*
2226 * Disable transmit completion
2227 * interrupts if necessary.
2228 */
2229 switch (pi->pi_type) {
2230 case PLCOM_TYPE_PL010:
2231 if (ISSET(sc->sc_cr, PL010_CR_TIE)) {
2232 CLR(sc->sc_cr, PL010_CR_TIE);
2233 PWRITE1(pi, PL010COM_CR,
2234 sc->sc_cr);
2235 }
2236 break;
2237 case PLCOM_TYPE_PL011:
2238 if (ISSET(sc->sc_imsc, PL011_INT_TX)) {
2239 CLR(sc->sc_imsc, PL011_INT_TX);
2240 PWRITE4(pi, PL011COM_IMSC,
2241 sc->sc_imsc);
2242 }
2243 break;
2244 }
2245 if (sc->sc_tx_busy) {
2246 sc->sc_tx_busy = 0;
2247 sc->sc_tx_done = 1;
2248 }
2249 }
2250 }
2251
2252 } while (plcom_intstatus(pi, &istatus));
2253
2254 mutex_spin_exit(&sc->sc_lock);
2255
2256 /* Wake up the poller. */
2257 softint_schedule(sc->sc_si);
2258
2259 #ifdef RND_COM
2260 rnd_add_uint32(&sc->rnd_source, istatus | rsr);
2261 #endif
2262
2263 PLCOM_BARRIER(pi, BR | BW);
2264
2265 return 1;
2266 }
2267
2268 /*
2269 * The following functions are polled getc and putc routines, shared
2270 * by the console and kgdb glue.
2271 *
2272 * The read-ahead code is so that you can detect pending in-band
2273 * cn_magic in polled mode while doing output rather than having to
2274 * wait until the kernel decides it needs input.
2275 */
2276
2277 #define MAX_READAHEAD 20
2278 static int plcom_readahead[MAX_READAHEAD];
2279 static int plcom_readaheadcount = 0;
2280
2281 int
2282 plcom_common_getc(dev_t dev, struct plcom_instance *pi)
2283 {
2284 int s = splserial();
2285 u_char c;
2286
2287 /* got a character from reading things earlier */
2288 if (plcom_readaheadcount > 0) {
2289 int i;
2290
2291 c = plcom_readahead[0];
2292 for (i = 1; i < plcom_readaheadcount; i++) {
2293 plcom_readahead[i-1] = plcom_readahead[i];
2294 }
2295 plcom_readaheadcount--;
2296 splx(s);
2297 return c;
2298 }
2299
2300 if (ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE)) {
2301 splx(s);
2302 return -1;
2303 }
2304
2305 c = PREAD1(pi, PL01XCOM_DR);
2306 {
2307 int cn_trapped __unused = 0;
2308 #ifdef DDB
2309 extern int db_active;
2310 if (!db_active)
2311 #endif
2312 cn_check_magic(dev, c, plcom_cnm_state);
2313 }
2314 splx(s);
2315 return c;
2316 }
2317
2318 void
2319 plcom_common_putc(dev_t dev, struct plcom_instance *pi, int c)
2320 {
2321 int s = splserial();
2322 int timo;
2323
2324 int cin, stat;
2325 if (plcom_readaheadcount < MAX_READAHEAD
2326 && !ISSET(stat = PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE)) {
2327 int cn_trapped __unused = 0;
2328 cin = PREAD1(pi, PL01XCOM_DR);
2329 cn_check_magic(dev, cin, plcom_cnm_state);
2330 plcom_readahead[plcom_readaheadcount++] = cin;
2331 }
2332
2333 /* wait for any pending transmission to finish */
2334 timo = 150000;
2335 while (ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_TXFF) && --timo)
2336 continue;
2337
2338 PWRITE1(pi, PL01XCOM_DR, c);
2339 PLCOM_BARRIER(pi, BR | BW);
2340
2341 splx(s);
2342 }
2343
2344 /*
2345 * Initialize UART for use as console or KGDB line.
2346 */
2347 int
2348 plcominit(struct plcom_instance *pi, int rate, int frequency, tcflag_t cflag)
2349 {
2350 u_char lcr;
2351
2352 switch (pi->pi_type) {
2353 case PLCOM_TYPE_PL010:
2354 if (pi->pi_size == 0)
2355 pi->pi_size = PL010COM_UART_SIZE;
2356 break;
2357 case PLCOM_TYPE_PL011:
2358 if (pi->pi_size == 0)
2359 pi->pi_size = PL011COM_UART_SIZE;
2360 break;
2361 default:
2362 panic("Unknown plcom type");
2363 }
2364
2365 if (bus_space_map(pi->pi_iot, pi->pi_iobase, pi->pi_size, 0,
2366 &pi->pi_ioh))
2367 return ENOMEM; /* ??? */
2368
2369 lcr = cflag2lcr(cflag) | PL01X_LCR_FEN;
2370 switch (pi->pi_type) {
2371 case PLCOM_TYPE_PL010:
2372 PWRITE1(pi, PL010COM_CR, 0);
2373
2374 if (rate && frequency) {
2375 rate = pl010comspeed(rate, frequency);
2376 PWRITE1(pi, PL010COM_DLBL, (rate & 0xff));
2377 PWRITE1(pi, PL010COM_DLBH, ((rate >> 8) & 0xff));
2378 }
2379 PWRITE1(pi, PL010COM_LCR, lcr);
2380 PWRITE1(pi, PL010COM_CR, PL01X_CR_UARTEN);
2381 break;
2382 case PLCOM_TYPE_PL011:
2383 PWRITE4(pi, PL011COM_CR, 0);
2384
2385 if (rate && frequency) {
2386 rate = pl011comspeed(rate, frequency);
2387 PWRITE1(pi, PL011COM_FBRD, rate & ((1 << 6) - 1));
2388 PWRITE4(pi, PL011COM_IBRD, rate >> 6);
2389 }
2390 PWRITE1(pi, PL011COM_LCRH, lcr);
2391 PWRITE4(pi, PL011COM_CR,
2392 PL01X_CR_UARTEN | PL011_CR_RXE | PL011_CR_TXE);
2393 break;
2394 }
2395
2396 #if 0
2397 /* Ought to do something like this, but we have no sc to
2398 dereference. */
2399 /* XXX device_unit() abuse */
2400 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(sc->sc_dev),
2401 PL01X_MCR_DTR | PL01X_MCR_RTS);
2402 #endif
2403
2404 return 0;
2405 }
2406
2407 /*
2408 * Following are all routines needed for PLCOM to act as console
2409 */
2410 struct consdev plcomcons = {
2411 NULL, NULL, plcomcngetc, plcomcnputc, plcomcnpollc, NULL,
2412 plcomcnhalt, NULL, NODEV, CN_NORMAL
2413 };
2414
2415 int
2416 plcomcnattach(struct plcom_instance *pi, int rate, int frequency,
2417 tcflag_t cflag, int unit)
2418 {
2419 int res;
2420
2421 plcomcons_info = *pi;
2422
2423 res = plcominit(&plcomcons_info, rate, frequency, cflag);
2424 if (res)
2425 return res;
2426
2427 cn_tab = &plcomcons;
2428 cn_init_magic(&plcom_cnm_state);
2429 cn_set_magic("\047\001"); /* default magic is BREAK */
2430
2431 plcomconsunit = unit;
2432 plcomconsrate = rate;
2433 plcomconscflag = cflag;
2434
2435 return 0;
2436 }
2437
2438 void
2439 plcomcndetach(void)
2440 {
2441
2442 bus_space_unmap(plcomcons_info.pi_iot, plcomcons_info.pi_ioh,
2443 plcomcons_info.pi_size);
2444 plcomcons_info.pi_iot = NULL;
2445
2446 cn_tab = NULL;
2447 }
2448
2449 int
2450 plcomcngetc(dev_t dev)
2451 {
2452 return plcom_common_getc(dev, &plcomcons_info);
2453 }
2454
2455 /*
2456 * Console kernel output character routine.
2457 */
2458 void
2459 plcomcnputc(dev_t dev, int c)
2460 {
2461 plcom_common_putc(dev, &plcomcons_info, c);
2462 }
2463
2464 void
2465 plcomcnpollc(dev_t dev, int on)
2466 {
2467
2468 plcom_readaheadcount = 0;
2469 }
2470
2471 void
2472 plcomcnhalt(dev_t dev)
2473 {
2474 struct plcom_instance *pi = &plcomcons_info;
2475
2476 switch (pi->pi_type) {
2477 case PLCOM_TYPE_PL010:
2478 PWRITE1(pi, PL010COM_CR, PL01X_CR_UARTEN);
2479 break;
2480 case PLCOM_TYPE_PL011:
2481 PWRITE4(pi, PL011COM_CR,
2482 PL01X_CR_UARTEN | PL011_CR_RXE | PL011_CR_TXE);
2483 PWRITE4(pi, PL011COM_IMSC, 0);
2484 break;
2485 }
2486 }
2487
2488 #ifdef KGDB
2489 int
2490 plcom_kgdb_attach(struct plcom_instance *pi, int rate, int frequency,
2491 tcflag_t cflag, int unit)
2492 {
2493 int res;
2494
2495 if (pi->pi_iot == plcomcons_info.pi_iot &&
2496 pi->pi_iobase == plcomcons_info.pi_iobase)
2497 return EBUSY; /* cannot share with console */
2498
2499 res = plcominit(pi, rate, frequency, cflag);
2500 if (res)
2501 return res;
2502
2503 kgdb_attach(plcom_kgdb_getc, plcom_kgdb_putc, NULL);
2504 kgdb_dev = 123; /* unneeded, only to satisfy some tests */
2505
2506 plcomkgdb_info.pi_iot = pi->pi_iot;
2507 plcomkgdb_info.pi_ioh = pi->pi_ioh;
2508 plcomkgdb_info.pi_iobase = pi->pi_iobase;
2509
2510 return 0;
2511 }
2512
2513 /* ARGSUSED */
2514 int
2515 plcom_kgdb_getc(void *arg)
2516 {
2517 return plcom_common_getc(NODEV, &plcomkgdb_info);
2518 }
2519
2520 /* ARGSUSED */
2521 void
2522 plcom_kgdb_putc(void *arg, int c)
2523 {
2524 plcom_common_putc(NODEV, &plcomkgdb_info, c);
2525 }
2526 #endif /* KGDB */
2527
2528 /* helper function to identify the plcom ports used by
2529 console or KGDB (and not yet autoconf attached) */
2530 int
2531 plcom_is_console(bus_space_tag_t iot, bus_addr_t iobase,
2532 bus_space_handle_t *ioh)
2533 {
2534 bus_space_handle_t help;
2535
2536 if (!plcomconsattached &&
2537 bus_space_is_equal(iot, plcomcons_info.pi_iot) &&
2538 iobase == plcomcons_info.pi_iobase)
2539 help = plcomcons_info.pi_ioh;
2540 #ifdef KGDB
2541 else if (!plcom_kgdb_attached &&
2542 bus_space_is_equal(iot, plcomkgdb_info.pi_iot) &&
2543 iobase == plcomkgdb_info.pi_iobase)
2544 help = plcomkgdb_info.pi_ioh;
2545 #endif
2546 else
2547 return 0;
2548
2549 if (ioh)
2550 *ioh = help;
2551 return 1;
2552 }
2553