1 1.43 msaitoh /* $NetBSD: g42xxeb_machdep.c,v 1.43 2024/05/13 00:08:06 msaitoh Exp $ */ 2 1.1 bsh 3 1.1 bsh /* 4 1.36 skrll * Copyright (c) 2002, 2003, 2004, 2005 Genetec Corporation. 5 1.1 bsh * All rights reserved. 6 1.1 bsh * 7 1.1 bsh * Written by Hiroyuki Bessho for Genetec Corporation. 8 1.1 bsh * 9 1.1 bsh * Redistribution and use in source and binary forms, with or without 10 1.1 bsh * modification, are permitted provided that the following conditions 11 1.1 bsh * are met: 12 1.1 bsh * 1. Redistributions of source code must retain the above copyright 13 1.1 bsh * notice, this list of conditions and the following disclaimer. 14 1.1 bsh * 2. Redistributions in binary form must reproduce the above copyright 15 1.1 bsh * notice, this list of conditions and the following disclaimer in the 16 1.1 bsh * documentation and/or other materials provided with the distribution. 17 1.36 skrll * 3. The name of Genetec Corporation may not be used to endorse or 18 1.1 bsh * promote products derived from this software without specific prior 19 1.1 bsh * written permission. 20 1.1 bsh * 21 1.1 bsh * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND 22 1.1 bsh * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 1.1 bsh * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 1.1 bsh * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION 25 1.1 bsh * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 1.1 bsh * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 1.1 bsh * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 1.1 bsh * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 1.1 bsh * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 1.1 bsh * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 1.1 bsh * POSSIBILITY OF SUCH DAMAGE. 32 1.1 bsh * 33 1.36 skrll * Machine dependent functions for kernel setup for Genetec G4250EBX 34 1.1 bsh * evaluation board. 35 1.36 skrll * 36 1.1 bsh * Based on iq80310_machhdep.c 37 1.1 bsh */ 38 1.1 bsh /* 39 1.1 bsh * Copyright (c) 2001 Wasabi Systems, Inc. 40 1.1 bsh * All rights reserved. 41 1.1 bsh * 42 1.1 bsh * Written by Jason R. Thorpe for Wasabi Systems, Inc. 43 1.1 bsh * 44 1.1 bsh * Redistribution and use in source and binary forms, with or without 45 1.1 bsh * modification, are permitted provided that the following conditions 46 1.1 bsh * are met: 47 1.1 bsh * 1. Redistributions of source code must retain the above copyright 48 1.1 bsh * notice, this list of conditions and the following disclaimer. 49 1.1 bsh * 2. Redistributions in binary form must reproduce the above copyright 50 1.1 bsh * notice, this list of conditions and the following disclaimer in the 51 1.1 bsh * documentation and/or other materials provided with the distribution. 52 1.1 bsh * 3. All advertising materials mentioning features or use of this software 53 1.1 bsh * must display the following acknowledgement: 54 1.1 bsh * This product includes software developed for the NetBSD Project by 55 1.1 bsh * Wasabi Systems, Inc. 56 1.1 bsh * 4. The name of Wasabi Systems, Inc. may not be used to endorse 57 1.1 bsh * or promote products derived from this software without specific prior 58 1.1 bsh * written permission. 59 1.1 bsh * 60 1.1 bsh * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 61 1.1 bsh * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 62 1.1 bsh * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 63 1.1 bsh * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 64 1.1 bsh * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 65 1.1 bsh * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 66 1.1 bsh * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 67 1.1 bsh * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 68 1.1 bsh * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 69 1.1 bsh * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 70 1.1 bsh * POSSIBILITY OF SUCH DAMAGE. 71 1.1 bsh */ 72 1.1 bsh 73 1.1 bsh /* 74 1.1 bsh * Copyright (c) 1997,1998 Mark Brinicombe. 75 1.1 bsh * Copyright (c) 1997,1998 Causality Limited. 76 1.1 bsh * All rights reserved. 77 1.1 bsh * 78 1.1 bsh * Redistribution and use in source and binary forms, with or without 79 1.1 bsh * modification, are permitted provided that the following conditions 80 1.1 bsh * are met: 81 1.1 bsh * 1. Redistributions of source code must retain the above copyright 82 1.1 bsh * notice, this list of conditions and the following disclaimer. 83 1.1 bsh * 2. Redistributions in binary form must reproduce the above copyright 84 1.1 bsh * notice, this list of conditions and the following disclaimer in the 85 1.1 bsh * documentation and/or other materials provided with the distribution. 86 1.1 bsh * 3. All advertising materials mentioning features or use of this software 87 1.1 bsh * must display the following acknowledgement: 88 1.1 bsh * This product includes software developed by Mark Brinicombe 89 1.1 bsh * for the NetBSD Project. 90 1.1 bsh * 4. The name of the company nor the name of the author may be used to 91 1.1 bsh * endorse or promote products derived from this software without specific 92 1.1 bsh * prior written permission. 93 1.1 bsh * 94 1.1 bsh * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 95 1.1 bsh * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 96 1.1 bsh * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 97 1.1 bsh * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 98 1.1 bsh * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 99 1.1 bsh * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 100 1.1 bsh * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 101 1.1 bsh * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 102 1.1 bsh * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 103 1.1 bsh * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 104 1.1 bsh * SUCH DAMAGE. 105 1.1 bsh * 106 1.23 wiz * Machine dependent functions for kernel setup for Intel IQ80310 evaluation 107 1.1 bsh * boards using RedBoot firmware. 108 1.1 bsh */ 109 1.1 bsh 110 1.31 skrll #include "opt_arm_debug.h" 111 1.32 skrll #include "opt_console.h" 112 1.1 bsh #include "opt_ddb.h" 113 1.1 bsh #include "opt_kgdb.h" 114 1.1 bsh #include "opt_md.h" 115 1.1 bsh #include "opt_com.h" 116 1.1 bsh #include "lcd.h" 117 1.1 bsh 118 1.1 bsh #include <sys/param.h> 119 1.1 bsh #include <sys/device.h> 120 1.1 bsh #include <sys/systm.h> 121 1.1 bsh #include <sys/kernel.h> 122 1.1 bsh #include <sys/exec.h> 123 1.1 bsh #include <sys/proc.h> 124 1.1 bsh #include <sys/msgbuf.h> 125 1.1 bsh #include <sys/reboot.h> 126 1.1 bsh #include <sys/termios.h> 127 1.1 bsh #include <sys/ksyms.h> 128 1.28 matt #include <sys/bus.h> 129 1.28 matt #include <sys/cpu.h> 130 1.1 bsh 131 1.1 bsh #include <uvm/uvm_extern.h> 132 1.1 bsh 133 1.1 bsh #include <sys/conf.h> 134 1.1 bsh #include <dev/cons.h> 135 1.1 bsh #include <dev/md.h> 136 1.1 bsh 137 1.1 bsh #include <machine/db_machdep.h> 138 1.1 bsh #include <ddb/db_sym.h> 139 1.1 bsh #include <ddb/db_extern.h> 140 1.1 bsh #ifdef KGDB 141 1.1 bsh #include <sys/kgdb.h> 142 1.1 bsh #endif 143 1.1 bsh 144 1.1 bsh #include <machine/bootconfig.h> 145 1.28 matt #include <arm/locore.h> 146 1.1 bsh #include <arm/undefined.h> 147 1.1 bsh 148 1.1 bsh #include <arm/arm32/machdep.h> 149 1.1 bsh 150 1.1 bsh #include <arm/xscale/pxa2x0reg.h> 151 1.1 bsh #include <arm/xscale/pxa2x0var.h> 152 1.1 bsh #include <arm/xscale/pxa2x0_gpio.h> 153 1.1 bsh #include <evbarm/g42xxeb/g42xxeb_reg.h> 154 1.1 bsh #include <evbarm/g42xxeb/g42xxeb_var.h> 155 1.1 bsh 156 1.1 bsh /* Kernel text starts 2MB in from the bottom of the kernel address space. */ 157 1.1 bsh #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000) 158 1.1 bsh #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000) 159 1.1 bsh 160 1.1 bsh /* 161 1.1 bsh * The range 0xc1000000 - 0xccffffff is available for kernel VM space 162 1.1 bsh * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff 163 1.1 bsh */ 164 1.1 bsh #define KERNEL_VM_SIZE 0x0C000000 165 1.1 bsh 166 1.1 bsh BootConfig bootconfig; /* Boot config storage */ 167 1.1 bsh char *boot_args = NULL; 168 1.1 bsh char *boot_file = NULL; 169 1.1 bsh 170 1.29 matt vaddr_t physical_start; 171 1.29 matt vaddr_t physical_freestart; 172 1.29 matt vaddr_t physical_freeend; 173 1.29 matt vaddr_t physical_end; 174 1.1 bsh u_int free_pages; 175 1.1 bsh 176 1.1 bsh /*int debug_flags;*/ 177 1.1 bsh #ifndef PMAP_STATIC_L1S 178 1.1 bsh int max_processes = 64; /* Default number */ 179 1.1 bsh #endif /* !PMAP_STATIC_L1S */ 180 1.1 bsh 181 1.1 bsh /* Physical and virtual addresses for some global pages */ 182 1.1 bsh pv_addr_t minidataclean; 183 1.1 bsh 184 1.29 matt paddr_t msgbufphys; 185 1.1 bsh 186 1.1 bsh #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */ 187 1.1 bsh #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */ 188 1.1 bsh #define KERNEL_PT_KERNEL_NUM 4 189 1.1 bsh #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM) 190 1.1 bsh /* Page tables for mapping kernel VM */ 191 1.1 bsh #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */ 192 1.1 bsh #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) 193 1.1 bsh 194 1.1 bsh pv_addr_t kernel_pt_table[NUM_KERNEL_PTS]; 195 1.1 bsh 196 1.1 bsh /* Prototypes */ 197 1.1 bsh 198 1.1 bsh #if 0 199 1.1 bsh void process_kernel_args(char *); 200 1.1 bsh #endif 201 1.1 bsh 202 1.1 bsh void consinit(void); 203 1.1 bsh void kgdb_port_init(void); 204 1.1 bsh void change_clock(uint32_t v); 205 1.1 bsh 206 1.1 bsh bs_protos(bs_notimpl); 207 1.1 bsh 208 1.1 bsh #include "com.h" 209 1.1 bsh #if NCOM > 0 210 1.1 bsh #include <dev/ic/comreg.h> 211 1.1 bsh #include <dev/ic/comvar.h> 212 1.1 bsh #endif 213 1.1 bsh 214 1.1 bsh #ifndef CONSPEED 215 1.1 bsh #define CONSPEED B115200 /* What RedBoot uses */ 216 1.1 bsh #endif 217 1.1 bsh #ifndef CONMODE 218 1.1 bsh #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ 219 1.1 bsh #endif 220 1.1 bsh 221 1.1 bsh int comcnspeed = CONSPEED; 222 1.1 bsh int comcnmode = CONMODE; 223 1.1 bsh 224 1.11 kiyohara static struct pxa2x0_gpioconf boarddep_gpioconf[] = { 225 1.11 kiyohara { 44, GPIO_ALT_FN_1_IN }, /* BTCST */ 226 1.11 kiyohara { 45, GPIO_ALT_FN_2_OUT }, /* BTRST */ 227 1.11 kiyohara 228 1.11 kiyohara { -1 } 229 1.11 kiyohara }; 230 1.11 kiyohara static struct pxa2x0_gpioconf *g42xxeb_gpioconf[] = { 231 1.11 kiyohara pxa25x_com_btuart_gpioconf, 232 1.11 kiyohara pxa25x_com_ffuart_gpioconf, 233 1.11 kiyohara #if 0 234 1.11 kiyohara pxa25x_com_stuart_gpioconf, 235 1.11 kiyohara pxa25x_pxaacu_gpioconf, 236 1.11 kiyohara #endif 237 1.11 kiyohara boarddep_gpioconf, 238 1.11 kiyohara NULL 239 1.11 kiyohara }; 240 1.11 kiyohara 241 1.1 bsh /* 242 1.1 bsh * void cpu_reboot(int howto, char *bootstr) 243 1.1 bsh * 244 1.1 bsh * Reboots the system 245 1.1 bsh * 246 1.1 bsh * Deal with any syncing, unmounting, dumping and shutdown hooks, 247 1.1 bsh * then reset the CPU. 248 1.1 bsh */ 249 1.1 bsh void 250 1.1 bsh cpu_reboot(int howto, char *bootstr) 251 1.1 bsh { 252 1.1 bsh #ifdef DIAGNOSTIC 253 1.1 bsh /* info */ 254 1.1 bsh printf("boot: howto=%08x curproc=%p\n", howto, curproc); 255 1.1 bsh #endif 256 1.1 bsh 257 1.1 bsh /* 258 1.1 bsh * If we are still cold then hit the air brakes 259 1.1 bsh * and crash to earth fast 260 1.1 bsh */ 261 1.1 bsh if (cold) { 262 1.1 bsh doshutdownhooks(); 263 1.15 dyoung pmf_system_shutdown(boothowto); 264 1.1 bsh printf("The operating system has halted.\n"); 265 1.1 bsh printf("Please press any key to reboot.\n\n"); 266 1.1 bsh cngetc(); 267 1.1 bsh printf("rebooting...\n"); 268 1.1 bsh cpu_reset(); 269 1.1 bsh /*NOTREACHED*/ 270 1.1 bsh } 271 1.1 bsh 272 1.1 bsh /* Disable console buffering */ 273 1.1 bsh /* cnpollc(1);*/ 274 1.1 bsh 275 1.1 bsh /* 276 1.1 bsh * If RB_NOSYNC was not specified sync the discs. 277 1.1 bsh * Note: Unless cold is set to 1 here, syslogd will die during the 278 1.1 bsh * unmount. It looks like syslogd is getting woken up only to find 279 1.1 bsh * that it cannot page part of the binary in as the filesystem has 280 1.1 bsh * been unmounted. 281 1.1 bsh */ 282 1.1 bsh if (!(howto & RB_NOSYNC)) 283 1.1 bsh bootsync(); 284 1.1 bsh 285 1.1 bsh /* Say NO to interrupts */ 286 1.1 bsh splhigh(); 287 1.1 bsh 288 1.1 bsh /* Do a dump if requested. */ 289 1.1 bsh if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) 290 1.1 bsh dumpsys(); 291 1.36 skrll 292 1.1 bsh /* Run any shutdown hooks */ 293 1.1 bsh doshutdownhooks(); 294 1.1 bsh 295 1.15 dyoung pmf_system_shutdown(boothowto); 296 1.15 dyoung 297 1.1 bsh /* Make sure IRQ's are disabled */ 298 1.1 bsh IRQdisable; 299 1.1 bsh 300 1.1 bsh if (howto & RB_HALT) { 301 1.1 bsh printf("The operating system has halted.\n"); 302 1.1 bsh printf("Please press any key to reboot.\n\n"); 303 1.1 bsh cngetc(); 304 1.1 bsh } 305 1.1 bsh 306 1.1 bsh printf("rebooting...\n"); 307 1.1 bsh cpu_reset(); 308 1.1 bsh /*NOTREACHED*/ 309 1.1 bsh } 310 1.1 bsh 311 1.6 perry static inline 312 1.1 bsh pd_entry_t * 313 1.1 bsh read_ttb(void) 314 1.1 bsh { 315 1.1 bsh long ttb; 316 1.1 bsh 317 1.6 perry __asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r" (ttb)); 318 1.1 bsh 319 1.1 bsh 320 1.1 bsh return (pd_entry_t *)(ttb & ~((1<<14)-1)); 321 1.1 bsh } 322 1.1 bsh 323 1.1 bsh /* 324 1.2 bsh * Static device mappings. These peripheral registers are mapped at 325 1.2 bsh * fixed virtual addresses very early in initarm() so that we can use 326 1.2 bsh * them while booting the kernel, and stay at the same address 327 1.2 bsh * throughout whole kernel's life time. 328 1.2 bsh * 329 1.2 bsh * We use this table twice; once with bootstrap page table, and once 330 1.2 bsh * with kernel's page table which we build up in initarm(). 331 1.2 bsh * 332 1.2 bsh * Since we map these registers into the bootstrap page table using 333 1.2 bsh * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map 334 1.2 bsh * registers segment-aligned and segment-rounded in order to avoid 335 1.2 bsh * using the 2nd page tables. 336 1.1 bsh */ 337 1.2 bsh 338 1.2 bsh static const struct pmap_devmap g42xxeb_devmap[] = { 339 1.40 skrll DEVMAP_ENTRY( 340 1.1 bsh G42XXEB_PLDREG_VBASE, 341 1.40 skrll G42XXEB_PLDREG_BASE, 342 1.40 skrll G42XXEB_PLDREG_SIZE 343 1.40 skrll ), 344 1.40 skrll DEVMAP_ENTRY( 345 1.1 bsh G42XXEB_GPIO_VBASE, 346 1.40 skrll PXA2X0_GPIO_BASE, 347 1.40 skrll PXA250_GPIO_SIZE 348 1.40 skrll ), 349 1.40 skrll DEVMAP_ENTRY( 350 1.1 bsh G42XXEB_CLKMAN_VBASE, 351 1.40 skrll PXA2X0_CLKMAN_BASE, 352 1.40 skrll PXA2X0_CLKMAN_SIZE 353 1.40 skrll ), 354 1.40 skrll DEVMAP_ENTRY( 355 1.1 bsh G42XXEB_INTCTL_VBASE, 356 1.40 skrll PXA2X0_INTCTL_BASE, 357 1.40 skrll PXA2X0_INTCTL_SIZE 358 1.40 skrll ), 359 1.40 skrll DEVMAP_ENTRY( 360 1.2 bsh G42XXEB_FFUART_VBASE, 361 1.40 skrll PXA2X0_FFUART_BASE, 362 1.40 skrll 4 * COM_NPORTS 363 1.40 skrll ), 364 1.40 skrll DEVMAP_ENTRY( 365 1.2 bsh G42XXEB_BTUART_VBASE, 366 1.40 skrll PXA2X0_BTUART_BASE, 367 1.40 skrll 4 * COM_NPORTS 368 1.40 skrll ), 369 1.40 skrll DEVMAP_ENTRY_END 370 1.1 bsh }; 371 1.1 bsh 372 1.1 bsh /* 373 1.35 skrll * vaddr_t initarm(...) 374 1.1 bsh * 375 1.1 bsh * Initial entry point on startup. This gets called before main() is 376 1.1 bsh * entered. 377 1.1 bsh * It should be responsible for setting up everything that must be 378 1.1 bsh * in place when main is called. 379 1.1 bsh * This includes 380 1.1 bsh * Taking a copy of the boot configuration structure. 381 1.1 bsh * Initialising the physical console so characters can be printed. 382 1.1 bsh * Setting up page tables for the kernel 383 1.1 bsh * Relocating the kernel to the bottom of physical memory 384 1.1 bsh */ 385 1.35 skrll vaddr_t 386 1.1 bsh initarm(void *arg) 387 1.1 bsh { 388 1.1 bsh int loop; 389 1.1 bsh int loop1; 390 1.1 bsh u_int l1pagetable; 391 1.1 bsh paddr_t memstart; 392 1.1 bsh psize_t memsize; 393 1.1 bsh int led_data = 1; 394 1.1 bsh 395 1.1 bsh #define LEDSTEP_P() ioreg8_write(G42XXEB_PLDREG_BASE+G42XXEB_LED, led_data++) 396 1.1 bsh #define LEDSTEP() pldreg8_write(G42XXEB_LED, led_data++); 397 1.1 bsh 398 1.1 bsh /* use physical address until pagetable is set */ 399 1.1 bsh LEDSTEP_P(); 400 1.1 bsh 401 1.2 bsh /* map some peripheral registers at static I/O area */ 402 1.2 bsh pmap_devmap_bootstrap((vaddr_t)read_ttb(), g42xxeb_devmap); 403 1.2 bsh 404 1.2 bsh LEDSTEP_P(); 405 1.2 bsh 406 1.7 lukem /* start 32.768 kHz OSC */ 407 1.2 bsh ioreg_write(G42XXEB_CLKMAN_VBASE + 0x08, 2); 408 1.2 bsh /* Get ready for splfoo() */ 409 1.2 bsh pxa2x0_intr_bootstrap(G42XXEB_INTCTL_VBASE); 410 1.2 bsh 411 1.2 bsh LEDSTEP(); 412 1.1 bsh 413 1.1 bsh /* 414 1.1 bsh * Heads up ... Setup the CPU / MMU / TLB functions 415 1.1 bsh */ 416 1.1 bsh if (set_cpufuncs()) 417 1.1 bsh panic("cpu not recognized!"); 418 1.1 bsh 419 1.2 bsh LEDSTEP(); 420 1.1 bsh 421 1.1 bsh /* 422 1.1 bsh * Okay, RedBoot has provided us with the following memory map: 423 1.1 bsh * 424 1.36 skrll * Physical Address Range Description 425 1.36 skrll * ----------------------- ---------------------------------- 426 1.1 bsh * 0x00000000 - 0x01ffffff flash Memory (32MB) 427 1.1 bsh * 0x04000000 - 0x05ffffff Application flash Memory (32MB) 428 1.1 bsh * 0x08000000 - 0x080000ff I/O baseboard registers 429 1.1 bsh * 0x0c000000 - 0x0c0fffff Ethernet Controller 430 1.1 bsh * 0x14000000 - 0x17ffffff Expansion Card (64MB) 431 1.1 bsh * 0x40000000 - 0x480fffff Processor Registers 432 1.1 bsh * 0xa0000000 - 0xa3ffffff SDRAM Bank 0 (64MB) 433 1.1 bsh * 434 1.1 bsh * 435 1.36 skrll * Virtual Address Range X C B Description 436 1.36 skrll * ----------------------- - - - ---------------------------------- 437 1.36 skrll * 0x00000000 - 0x00003fff N Y Y SDRAM 438 1.1 bsh * 0x00004000 - 0x01ffffff N Y N ROM 439 1.1 bsh * 0x08000000 - 0x080fffff N N N I/O baseboard registers 440 1.1 bsh * 0x0a000000 - 0x0a0fffff N N N SRAM 441 1.1 bsh * 0x40000000 - 0x480fffff N N N Processor Registers 442 1.36 skrll * 0xa0000000 - 0xa000ffff N Y N RedBoot SDRAM 443 1.1 bsh * 0xa0017000 - 0xa3ffffff Y Y Y SDRAM 444 1.36 skrll * 0xc0000000 - 0xcfffffff Y Y Y Cache Flush Region 445 1.1 bsh * (done by this routine) 446 1.1 bsh * 0xfd000000 - 0xfd0000ff N N N I/O baseboard registers 447 1.2 bsh * 0xfd100000 - 0xfd3fffff N N N Processor Registers. 448 1.2 bsh * 0xfd400000 - 0xfd4fffff N N N FF-UART 449 1.2 bsh * 0xfd500000 - 0xfd5fffff N N N BT-UART 450 1.1 bsh * 451 1.3 bsh * RedBoot's first level page table is at 0xa0004000. There 452 1.3 bsh * are also 2 second-level tables at 0xa0008000 and 453 1.3 bsh * 0xa0008400. We will continue to use them until we switch to 454 1.21 uebayasi * our pagetable by cpu_setttb(). 455 1.1 bsh */ 456 1.1 bsh 457 1.1 bsh cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); 458 1.1 bsh 459 1.1 bsh LEDSTEP(); 460 1.1 bsh 461 1.1 bsh /* setup GPIO for BTUART, in case bootloader doesn't take care of it */ 462 1.1 bsh pxa2x0_gpio_bootstrap(G42XXEB_GPIO_VBASE); 463 1.11 kiyohara pxa2x0_gpio_config(g42xxeb_gpioconf); 464 1.1 bsh 465 1.1 bsh LEDSTEP(); 466 1.1 bsh 467 1.1 bsh consinit(); 468 1.1 bsh #ifdef KGDB 469 1.1 bsh LEDSTEP(); 470 1.1 bsh kgdb_port_init(); 471 1.1 bsh #endif 472 1.1 bsh 473 1.1 bsh LEDSTEP(); 474 1.1 bsh 475 1.1 bsh /* Talk to the user */ 476 1.1 bsh printf("\nNetBSD/evbarm (g42xxeb) booting ...\n"); 477 1.1 bsh 478 1.1 bsh #if 0 479 1.1 bsh /* 480 1.1 bsh * Examine the boot args string for options we need to know about 481 1.1 bsh * now. 482 1.1 bsh */ 483 1.1 bsh process_kernel_args((char *)nwbootinfo.bt_args); 484 1.1 bsh #endif 485 1.1 bsh 486 1.1 bsh memstart = 0xa0000000; 487 1.1 bsh memsize = 0x04000000; /* 64MB */ 488 1.1 bsh 489 1.1 bsh printf("initarm: Configuring system ...\n"); 490 1.1 bsh 491 1.1 bsh /* Fake bootconfig structure for the benefit of pmap.c */ 492 1.10 wiz /* XXX must make the memory description h/w independent */ 493 1.1 bsh bootconfig.dramblocks = 1; 494 1.1 bsh bootconfig.dram[0].address = memstart; 495 1.1 bsh bootconfig.dram[0].pages = memsize / PAGE_SIZE; 496 1.1 bsh 497 1.1 bsh /* 498 1.38 andvar * Set up the variables that define the availability of 499 1.1 bsh * physical memory. For now, we're going to set 500 1.1 bsh * physical_freestart to 0xa0200000 (where the kernel 501 1.1 bsh * was loaded), and allocate the memory we need downwards. 502 1.1 bsh * If we get too close to the L1 table that we set up, we 503 1.1 bsh * will panic. We will update physical_freestart and 504 1.1 bsh * physical_freeend later to reflect what pmap_bootstrap() 505 1.1 bsh * wants to see. 506 1.1 bsh * 507 1.1 bsh * XXX pmap_bootstrap() needs an enema. 508 1.1 bsh */ 509 1.1 bsh physical_start = bootconfig.dram[0].address; 510 1.1 bsh physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE); 511 1.1 bsh 512 1.1 bsh physical_freestart = 0xa0009000UL; 513 1.1 bsh physical_freeend = 0xa0200000UL; 514 1.1 bsh 515 1.1 bsh physmem = (physical_end - physical_start) / PAGE_SIZE; 516 1.1 bsh 517 1.1 bsh #ifdef VERBOSE_INIT_ARM 518 1.1 bsh /* Tell the user about the memory */ 519 1.42 andvar printf("physmemory: 0x%"PRIxPSIZE" pages at 0x%08lx -> 0x%08lx\n", physmem, 520 1.1 bsh physical_start, physical_end - 1); 521 1.1 bsh #endif 522 1.1 bsh 523 1.1 bsh /* 524 1.1 bsh * Okay, the kernel starts 2MB in from the bottom of physical 525 1.1 bsh * memory. We are going to allocate our bootstrap pages downwards 526 1.1 bsh * from there. 527 1.1 bsh * 528 1.1 bsh * We need to allocate some fixed page tables to get the kernel 529 1.1 bsh * going. We allocate one page directory and a number of page 530 1.1 bsh * tables and store the physical addresses in the kernel_pt_table 531 1.1 bsh * array. 532 1.1 bsh * 533 1.1 bsh * The kernel page directory must be on a 16K boundary. The page 534 1.39 andvar * tables must be on 4K boundaries. What we do is allocate the 535 1.1 bsh * page directory on the first 16K boundary that we encounter, and 536 1.1 bsh * the page tables on 4K boundaries otherwise. Since we allocate 537 1.1 bsh * at least 3 L2 page tables, we are guaranteed to encounter at 538 1.1 bsh * least one 16K aligned region. 539 1.1 bsh */ 540 1.1 bsh 541 1.1 bsh #ifdef VERBOSE_INIT_ARM 542 1.1 bsh printf("Allocating page tables\n"); 543 1.1 bsh #endif 544 1.1 bsh 545 1.1 bsh free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; 546 1.1 bsh 547 1.1 bsh #ifdef VERBOSE_INIT_ARM 548 1.1 bsh printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n", 549 1.1 bsh physical_freestart, free_pages, free_pages); 550 1.1 bsh #endif 551 1.1 bsh 552 1.1 bsh /* Define a macro to simplify memory allocation */ 553 1.1 bsh #define valloc_pages(var, np) \ 554 1.1 bsh alloc_pages((var).pv_pa, (np)); \ 555 1.1 bsh (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; 556 1.1 bsh 557 1.1 bsh #define alloc_pages(var, np) \ 558 1.1 bsh physical_freeend -= ((np) * PAGE_SIZE); \ 559 1.1 bsh if (physical_freeend < physical_freestart) \ 560 1.1 bsh panic("initarm: out of memory"); \ 561 1.1 bsh (var) = physical_freeend; \ 562 1.1 bsh free_pages -= (np); \ 563 1.1 bsh memset((char *)(var), 0, ((np) * PAGE_SIZE)); 564 1.1 bsh 565 1.1 bsh loop1 = 0; 566 1.1 bsh for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { 567 1.1 bsh /* Are we 16KB aligned for an L1 ? */ 568 1.1 bsh if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 569 1.1 bsh && kernel_l1pt.pv_pa == 0) { 570 1.1 bsh valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); 571 1.1 bsh } else { 572 1.1 bsh valloc_pages(kernel_pt_table[loop1], 573 1.1 bsh L2_TABLE_SIZE / PAGE_SIZE); 574 1.1 bsh ++loop1; 575 1.1 bsh } 576 1.1 bsh } 577 1.1 bsh 578 1.1 bsh /* This should never be able to happen but better confirm that. */ 579 1.1 bsh if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) 580 1.1 bsh panic("initarm: Failed to align the kernel page directory"); 581 1.1 bsh 582 1.1 bsh LEDSTEP(); 583 1.1 bsh 584 1.1 bsh /* 585 1.1 bsh * Allocate a page for the system page mapped to V0x00000000 586 1.1 bsh * This page will just contain the system vectors and can be 587 1.1 bsh * shared by all processes. 588 1.1 bsh */ 589 1.1 bsh alloc_pages(systempage.pv_pa, 1); 590 1.1 bsh 591 1.1 bsh /* Allocate stacks for all modes */ 592 1.1 bsh valloc_pages(irqstack, IRQ_STACK_SIZE); 593 1.1 bsh valloc_pages(abtstack, ABT_STACK_SIZE); 594 1.1 bsh valloc_pages(undstack, UND_STACK_SIZE); 595 1.1 bsh valloc_pages(kernelstack, UPAGES); 596 1.1 bsh 597 1.1 bsh /* Allocate enough pages for cleaning the Mini-Data cache. */ 598 1.1 bsh KASSERT(xscale_minidata_clean_size <= PAGE_SIZE); 599 1.1 bsh valloc_pages(minidataclean, 1); 600 1.1 bsh 601 1.1 bsh #ifdef VERBOSE_INIT_ARM 602 1.1 bsh printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, 603 1.36 skrll irqstack.pv_va); 604 1.1 bsh printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, 605 1.36 skrll abtstack.pv_va); 606 1.1 bsh printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, 607 1.36 skrll undstack.pv_va); 608 1.1 bsh printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, 609 1.36 skrll kernelstack.pv_va); 610 1.1 bsh #endif 611 1.1 bsh 612 1.1 bsh /* 613 1.1 bsh * XXX Defer this to later so that we can reclaim the memory 614 1.1 bsh * XXX used by the RedBoot page tables. 615 1.1 bsh */ 616 1.1 bsh alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); 617 1.1 bsh 618 1.1 bsh /* 619 1.1 bsh * Ok we have allocated physical pages for the primary kernel 620 1.1 bsh * page tables 621 1.1 bsh */ 622 1.1 bsh 623 1.1 bsh #ifdef VERBOSE_INIT_ARM 624 1.1 bsh printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); 625 1.1 bsh #endif 626 1.1 bsh 627 1.1 bsh /* 628 1.1 bsh * Now we start construction of the L1 page table 629 1.1 bsh * We start by mapping the L2 page tables into the L1. 630 1.1 bsh * This means that we can replace L1 mappings later on if necessary 631 1.1 bsh */ 632 1.1 bsh l1pagetable = kernel_l1pt.pv_pa; 633 1.1 bsh 634 1.1 bsh /* Map the L2 pages tables in the L1 page table */ 635 1.1 bsh pmap_link_l2pt(l1pagetable, 0x00000000, 636 1.1 bsh &kernel_pt_table[KERNEL_PT_SYS]); 637 1.1 bsh for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) 638 1.1 bsh pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, 639 1.1 bsh &kernel_pt_table[KERNEL_PT_KERNEL + loop]); 640 1.1 bsh for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) 641 1.1 bsh pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, 642 1.1 bsh &kernel_pt_table[KERNEL_PT_VMDATA + loop]); 643 1.1 bsh 644 1.1 bsh /* update the top of the kernel VM */ 645 1.1 bsh pmap_curmaxkvaddr = 646 1.1 bsh KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); 647 1.1 bsh 648 1.1 bsh #ifdef VERBOSE_INIT_ARM 649 1.1 bsh printf("Mapping kernel\n"); 650 1.1 bsh #endif 651 1.1 bsh 652 1.1 bsh /* Now we fill in the L2 pagetable for the kernel static code/data */ 653 1.1 bsh { 654 1.1 bsh extern char etext[], _end[]; 655 1.1 bsh size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE; 656 1.1 bsh size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE; 657 1.1 bsh u_int logical; 658 1.1 bsh 659 1.1 bsh textsize = (textsize + PGOFSET) & ~PGOFSET; 660 1.1 bsh totalsize = (totalsize + PGOFSET) & ~PGOFSET; 661 1.36 skrll 662 1.1 bsh logical = 0x00200000; /* offset of kernel in RAM */ 663 1.1 bsh 664 1.1 bsh logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, 665 1.1 bsh physical_start + logical, textsize, 666 1.1 bsh VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 667 1.1 bsh logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, 668 1.1 bsh physical_start + logical, totalsize - textsize, 669 1.1 bsh VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 670 1.1 bsh } 671 1.1 bsh 672 1.1 bsh #ifdef VERBOSE_INIT_ARM 673 1.1 bsh printf("Constructing L2 page tables\n"); 674 1.1 bsh #endif 675 1.1 bsh 676 1.1 bsh /* Map the stack pages */ 677 1.1 bsh pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, 678 1.1 bsh IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 679 1.1 bsh pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, 680 1.1 bsh ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 681 1.1 bsh pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, 682 1.1 bsh UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 683 1.1 bsh pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, 684 1.1 bsh UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); 685 1.1 bsh 686 1.1 bsh pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, 687 1.1 bsh L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE); 688 1.1 bsh 689 1.1 bsh for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { 690 1.1 bsh pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, 691 1.1 bsh kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, 692 1.1 bsh VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); 693 1.1 bsh } 694 1.1 bsh 695 1.1 bsh /* Map the Mini-Data cache clean area. */ 696 1.1 bsh xscale_setup_minidata(l1pagetable, minidataclean.pv_va, 697 1.1 bsh minidataclean.pv_pa); 698 1.1 bsh 699 1.1 bsh /* Map the vector page. */ 700 1.1 bsh #if 1 701 1.1 bsh /* MULTI-ICE requires that page 0 is NC/NB so that it can download the 702 1.1 bsh * cache-clean code there. */ 703 1.1 bsh pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, 704 1.1 bsh VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE); 705 1.1 bsh #else 706 1.1 bsh pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, 707 1.1 bsh VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 708 1.1 bsh #endif 709 1.1 bsh 710 1.1 bsh /* 711 1.1 bsh * map integrated peripherals at same address in l1pagetable 712 1.1 bsh * so that we can continue to use console. 713 1.1 bsh */ 714 1.2 bsh pmap_devmap_bootstrap(l1pagetable, g42xxeb_devmap); 715 1.1 bsh 716 1.1 bsh /* 717 1.1 bsh * Give the XScale global cache clean code an appropriately 718 1.1 bsh * sized chunk of unmapped VA space starting at 0xff000000 719 1.1 bsh * (our device mappings end before this address). 720 1.1 bsh */ 721 1.1 bsh xscale_cache_clean_addr = 0xff000000U; 722 1.1 bsh 723 1.1 bsh /* 724 1.1 bsh * Now we have the real page tables in place so we can switch to them. 725 1.1 bsh * Once this is done we will be running with the REAL kernel page 726 1.1 bsh * tables. 727 1.1 bsh */ 728 1.1 bsh 729 1.1 bsh /* 730 1.1 bsh * Update the physical_freestart/physical_freeend/free_pages 731 1.1 bsh * variables. 732 1.1 bsh */ 733 1.1 bsh { 734 1.1 bsh extern char _end[]; 735 1.1 bsh 736 1.1 bsh physical_freestart = physical_start + 737 1.1 bsh (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) - 738 1.1 bsh KERNEL_BASE); 739 1.1 bsh physical_freeend = physical_end; 740 1.1 bsh free_pages = 741 1.1 bsh (physical_freeend - physical_freestart) / PAGE_SIZE; 742 1.1 bsh } 743 1.1 bsh 744 1.1 bsh /* Switch tables */ 745 1.1 bsh #ifdef VERBOSE_INIT_ARM 746 1.1 bsh printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", 747 1.1 bsh physical_freestart, free_pages, free_pages); 748 1.1 bsh printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); 749 1.1 bsh #endif 750 1.1 bsh LEDSTEP(); 751 1.1 bsh 752 1.27 matt cpu_setttb(kernel_l1pt.pv_pa, true); 753 1.1 bsh cpu_tlb_flushID(); 754 1.1 bsh cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); 755 1.1 bsh LEDSTEP(); 756 1.1 bsh 757 1.1 bsh /* 758 1.1 bsh * Moved from cpu_startup() as data_abort_handler() references 759 1.1 bsh * this during uvm init 760 1.1 bsh */ 761 1.18 rmind uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); 762 1.1 bsh 763 1.1 bsh #ifdef VERBOSE_INIT_ARM 764 1.1 bsh printf("bootstrap done.\n"); 765 1.1 bsh #endif 766 1.1 bsh 767 1.1 bsh arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); 768 1.1 bsh 769 1.1 bsh /* 770 1.1 bsh * Pages were allocated during the secondary bootstrap for the 771 1.1 bsh * stacks for different CPU modes. 772 1.1 bsh * We must now set the r13 registers in the different CPU modes to 773 1.1 bsh * point to these stacks. 774 1.1 bsh * Since the ARM stacks use STMFD etc. we must set r13 to the top end 775 1.1 bsh * of the stack memory. 776 1.1 bsh */ 777 1.2 bsh #ifdef VERBOSE_INIT_ARM 778 1.1 bsh printf("init subsystems: stacks "); 779 1.2 bsh #endif 780 1.1 bsh 781 1.1 bsh set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); 782 1.1 bsh set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); 783 1.1 bsh set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); 784 1.1 bsh 785 1.1 bsh /* 786 1.1 bsh * Well we should set a data abort handler. 787 1.1 bsh * Once things get going this will change as we will need a proper 788 1.1 bsh * handler. 789 1.1 bsh * Until then we will use a handler that just panics but tells us 790 1.1 bsh * why. 791 1.1 bsh * Initialisation of the vectors will just panic on a data abort. 792 1.43 msaitoh * This just fills in a slightly better one. 793 1.1 bsh */ 794 1.2 bsh #ifdef VERBOSE_INIT_ARM 795 1.1 bsh printf("vectors "); 796 1.2 bsh #endif 797 1.1 bsh data_abort_handler_address = (u_int)data_abort_handler; 798 1.1 bsh prefetch_abort_handler_address = (u_int)prefetch_abort_handler; 799 1.1 bsh undefined_handler_address = (u_int)undefinedinstruction_bounce; 800 1.1 bsh 801 1.1 bsh /* Initialise the undefined instruction handlers */ 802 1.2 bsh #ifdef VERBOSE_INIT_ARM 803 1.1 bsh printf("undefined "); 804 1.2 bsh #endif 805 1.1 bsh undefined_init(); 806 1.1 bsh 807 1.1 bsh /* Load memory into UVM. */ 808 1.2 bsh #ifdef VERBOSE_INIT_ARM 809 1.1 bsh printf("page "); 810 1.2 bsh #endif 811 1.30 cherry uvm_md_init(); 812 1.1 bsh uvm_page_physload(atop(physical_freestart), atop(physical_freeend), 813 1.1 bsh atop(physical_freestart), atop(physical_freeend), 814 1.1 bsh VM_FREELIST_DEFAULT); 815 1.1 bsh 816 1.33 skrll /* Boot strap pmap telling it where managed kernel virtual memory is */ 817 1.2 bsh #ifdef VERBOSE_INIT_ARM 818 1.1 bsh printf("pmap "); 819 1.2 bsh #endif 820 1.1 bsh LEDSTEP(); 821 1.14 matt pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); 822 1.1 bsh LEDSTEP(); 823 1.1 bsh 824 1.1 bsh #ifdef __HAVE_MEMORY_DISK__ 825 1.1 bsh md_root_setconf(memory_disk, sizeof memory_disk); 826 1.1 bsh #endif 827 1.1 bsh 828 1.1 bsh #ifdef BOOTHOWTO 829 1.1 bsh boothowto |= BOOTHOWTO; 830 1.1 bsh #endif 831 1.1 bsh 832 1.1 bsh { 833 1.1 bsh uint8_t sw = pldreg8_read(G42XXEB_DIPSW); 834 1.1 bsh 835 1.1 bsh if (0 == (sw & (1<<0))) 836 1.1 bsh boothowto ^= RB_KDB; 837 1.1 bsh if (0 == (sw & (1<<1))) 838 1.1 bsh boothowto ^= RB_SINGLE; 839 1.1 bsh } 840 1.1 bsh 841 1.1 bsh LEDSTEP(); 842 1.1 bsh 843 1.1 bsh #ifdef KGDB 844 1.1 bsh if (boothowto & RB_KDB) { 845 1.1 bsh kgdb_debug_init = 1; 846 1.1 bsh kgdb_connect(1); 847 1.1 bsh } 848 1.1 bsh #endif 849 1.1 bsh 850 1.1 bsh #ifdef DDB 851 1.1 bsh db_machine_init(); 852 1.1 bsh 853 1.1 bsh /* Firmware doesn't load symbols. */ 854 1.1 bsh ddb_init(0, NULL, NULL); 855 1.1 bsh 856 1.1 bsh if (boothowto & RB_KDB) 857 1.1 bsh Debugger(); 858 1.1 bsh #endif 859 1.1 bsh 860 1.1 bsh pldreg8_write(G42XXEB_LED, 0); 861 1.1 bsh 862 1.1 bsh /* We return the new stack pointer address */ 863 1.34 skrll return kernelstack.pv_va + USPACE_SVC_STACK_TOP; 864 1.1 bsh } 865 1.1 bsh 866 1.1 bsh #if 0 867 1.1 bsh void 868 1.1 bsh process_kernel_args(char *args) 869 1.1 bsh { 870 1.1 bsh 871 1.1 bsh boothowto = 0; 872 1.1 bsh 873 1.1 bsh /* Make a local copy of the bootargs */ 874 1.1 bsh strncpy(bootargs, args, MAX_BOOT_STRING); 875 1.1 bsh 876 1.1 bsh args = bootargs; 877 1.1 bsh boot_file = bootargs; 878 1.1 bsh 879 1.1 bsh /* Skip the kernel image filename */ 880 1.1 bsh while (*args != ' ' && *args != 0) 881 1.1 bsh ++args; 882 1.1 bsh 883 1.1 bsh if (*args != 0) 884 1.1 bsh *args++ = 0; 885 1.1 bsh 886 1.1 bsh while (*args == ' ') 887 1.1 bsh ++args; 888 1.1 bsh 889 1.1 bsh boot_args = args; 890 1.1 bsh 891 1.1 bsh printf("bootfile: %s\n", boot_file); 892 1.1 bsh printf("bootargs: %s\n", boot_args); 893 1.1 bsh 894 1.1 bsh parse_mi_bootargs(boot_args); 895 1.1 bsh } 896 1.1 bsh #endif 897 1.1 bsh 898 1.1 bsh #ifdef KGDB 899 1.1 bsh #ifndef KGDB_DEVNAME 900 1.1 bsh #define KGDB_DEVNAME "ffuart" 901 1.1 bsh #endif 902 1.1 bsh const char kgdb_devname[] = KGDB_DEVNAME; 903 1.1 bsh 904 1.1 bsh #if (NCOM > 0) 905 1.1 bsh #ifndef KGDB_DEVMODE 906 1.1 bsh #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ 907 1.1 bsh #endif 908 1.1 bsh int comkgdbmode = KGDB_DEVMODE; 909 1.1 bsh #endif /* NCOM */ 910 1.1 bsh 911 1.1 bsh #endif /* KGDB */ 912 1.1 bsh 913 1.1 bsh 914 1.1 bsh void 915 1.1 bsh consinit(void) 916 1.1 bsh { 917 1.1 bsh static int consinit_called = 0; 918 1.1 bsh uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN); 919 1.1 bsh #if 0 920 1.1 bsh char *console = CONSDEVNAME; 921 1.1 bsh #endif 922 1.1 bsh 923 1.1 bsh if (consinit_called != 0) 924 1.1 bsh return; 925 1.1 bsh 926 1.1 bsh consinit_called = 1; 927 1.1 bsh 928 1.1 bsh #if NCOM > 0 929 1.1 bsh 930 1.1 bsh #ifdef FFUARTCONSOLE 931 1.1 bsh #ifdef KGDB 932 1.1 bsh if (0 == strcmp(kgdb_devname, "ffuart")){ 933 1.1 bsh /* port is reserved for kgdb */ 934 1.36 skrll } else 935 1.1 bsh #endif 936 1.36 skrll if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE, 937 1.1 bsh comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) { 938 1.1 bsh #if 0 939 1.1 bsh pxa2x0_clkman_config(CKEN_FFUART, 1); 940 1.1 bsh #else 941 1.1 bsh ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, 942 1.1 bsh ckenreg|CKEN_FFUART); 943 1.1 bsh #endif 944 1.1 bsh 945 1.1 bsh return; 946 1.1 bsh } 947 1.1 bsh #endif /* FFUARTCONSOLE */ 948 1.1 bsh 949 1.1 bsh #ifdef BTUARTCONSOLE 950 1.1 bsh #ifdef KGDB 951 1.1 bsh if (0 == strcmp(kgdb_devname, "btuart")) { 952 1.1 bsh /* port is reserved for kgdb */ 953 1.1 bsh } else 954 1.1 bsh #endif 955 1.1 bsh if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE, 956 1.1 bsh comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) { 957 1.1 bsh ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, 958 1.1 bsh ckenreg|CKEN_BTUART); 959 1.1 bsh return; 960 1.1 bsh } 961 1.1 bsh #endif /* BTUARTCONSOLE */ 962 1.1 bsh 963 1.1 bsh 964 1.1 bsh #endif /* NCOM */ 965 1.1 bsh 966 1.1 bsh } 967 1.1 bsh 968 1.1 bsh #ifdef KGDB 969 1.1 bsh void 970 1.1 bsh kgdb_port_init(void) 971 1.1 bsh { 972 1.1 bsh #if (NCOM > 0) && defined(COM_PXA2X0) 973 1.1 bsh paddr_t paddr = 0; 974 1.1 bsh uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN); 975 1.1 bsh 976 1.1 bsh if (0 == strcmp(kgdb_devname, "ffuart")) { 977 1.1 bsh paddr = PXA2X0_FFUART_BASE; 978 1.1 bsh ckenreg |= CKEN_FFUART; 979 1.1 bsh } 980 1.1 bsh else if (0 == strcmp(kgdb_devname, "btuart")) { 981 1.1 bsh paddr = PXA2X0_BTUART_BASE; 982 1.1 bsh ckenreg |= CKEN_BTUART; 983 1.1 bsh } 984 1.1 bsh 985 1.1 bsh if (paddr && 986 1.1 bsh 0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr, 987 1.1 bsh kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) { 988 1.1 bsh 989 1.1 bsh ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg); 990 1.1 bsh 991 1.1 bsh } 992 1.1 bsh 993 1.1 bsh #endif 994 1.1 bsh } 995 1.1 bsh #endif 996 1.1 bsh 997