g42xxeb_machdep.c revision 1.25 1 1.25 matt /* $NetBSD: g42xxeb_machdep.c,v 1.25 2012/07/29 00:07:07 matt Exp $ */
2 1.1 bsh
3 1.1 bsh /*
4 1.1 bsh * Copyright (c) 2002, 2003, 2004, 2005 Genetec Corporation.
5 1.1 bsh * All rights reserved.
6 1.1 bsh *
7 1.1 bsh * Written by Hiroyuki Bessho for Genetec Corporation.
8 1.1 bsh *
9 1.1 bsh * Redistribution and use in source and binary forms, with or without
10 1.1 bsh * modification, are permitted provided that the following conditions
11 1.1 bsh * are met:
12 1.1 bsh * 1. Redistributions of source code must retain the above copyright
13 1.1 bsh * notice, this list of conditions and the following disclaimer.
14 1.1 bsh * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 bsh * notice, this list of conditions and the following disclaimer in the
16 1.1 bsh * documentation and/or other materials provided with the distribution.
17 1.1 bsh * 3. The name of Genetec Corporation may not be used to endorse or
18 1.1 bsh * promote products derived from this software without specific prior
19 1.1 bsh * written permission.
20 1.1 bsh *
21 1.1 bsh * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
22 1.1 bsh * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 1.1 bsh * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 1.1 bsh * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
25 1.1 bsh * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 1.1 bsh * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 1.1 bsh * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 1.1 bsh * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 1.1 bsh * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 1.1 bsh * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 1.1 bsh * POSSIBILITY OF SUCH DAMAGE.
32 1.1 bsh *
33 1.23 wiz * Machine dependent functions for kernel setup for Genetec G4250EBX
34 1.1 bsh * evaluation board.
35 1.1 bsh *
36 1.1 bsh * Based on iq80310_machhdep.c
37 1.1 bsh */
38 1.1 bsh /*
39 1.1 bsh * Copyright (c) 2001 Wasabi Systems, Inc.
40 1.1 bsh * All rights reserved.
41 1.1 bsh *
42 1.1 bsh * Written by Jason R. Thorpe for Wasabi Systems, Inc.
43 1.1 bsh *
44 1.1 bsh * Redistribution and use in source and binary forms, with or without
45 1.1 bsh * modification, are permitted provided that the following conditions
46 1.1 bsh * are met:
47 1.1 bsh * 1. Redistributions of source code must retain the above copyright
48 1.1 bsh * notice, this list of conditions and the following disclaimer.
49 1.1 bsh * 2. Redistributions in binary form must reproduce the above copyright
50 1.1 bsh * notice, this list of conditions and the following disclaimer in the
51 1.1 bsh * documentation and/or other materials provided with the distribution.
52 1.1 bsh * 3. All advertising materials mentioning features or use of this software
53 1.1 bsh * must display the following acknowledgement:
54 1.1 bsh * This product includes software developed for the NetBSD Project by
55 1.1 bsh * Wasabi Systems, Inc.
56 1.1 bsh * 4. The name of Wasabi Systems, Inc. may not be used to endorse
57 1.1 bsh * or promote products derived from this software without specific prior
58 1.1 bsh * written permission.
59 1.1 bsh *
60 1.1 bsh * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
61 1.1 bsh * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
62 1.1 bsh * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
63 1.1 bsh * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
64 1.1 bsh * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
65 1.1 bsh * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
66 1.1 bsh * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
67 1.1 bsh * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
68 1.1 bsh * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
69 1.1 bsh * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
70 1.1 bsh * POSSIBILITY OF SUCH DAMAGE.
71 1.1 bsh */
72 1.1 bsh
73 1.1 bsh /*
74 1.1 bsh * Copyright (c) 1997,1998 Mark Brinicombe.
75 1.1 bsh * Copyright (c) 1997,1998 Causality Limited.
76 1.1 bsh * All rights reserved.
77 1.1 bsh *
78 1.1 bsh * Redistribution and use in source and binary forms, with or without
79 1.1 bsh * modification, are permitted provided that the following conditions
80 1.1 bsh * are met:
81 1.1 bsh * 1. Redistributions of source code must retain the above copyright
82 1.1 bsh * notice, this list of conditions and the following disclaimer.
83 1.1 bsh * 2. Redistributions in binary form must reproduce the above copyright
84 1.1 bsh * notice, this list of conditions and the following disclaimer in the
85 1.1 bsh * documentation and/or other materials provided with the distribution.
86 1.1 bsh * 3. All advertising materials mentioning features or use of this software
87 1.1 bsh * must display the following acknowledgement:
88 1.1 bsh * This product includes software developed by Mark Brinicombe
89 1.1 bsh * for the NetBSD Project.
90 1.1 bsh * 4. The name of the company nor the name of the author may be used to
91 1.1 bsh * endorse or promote products derived from this software without specific
92 1.1 bsh * prior written permission.
93 1.1 bsh *
94 1.1 bsh * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
95 1.1 bsh * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
96 1.1 bsh * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
97 1.1 bsh * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
98 1.1 bsh * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
99 1.1 bsh * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
100 1.1 bsh * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
101 1.1 bsh * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
102 1.1 bsh * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
103 1.1 bsh * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
104 1.1 bsh * SUCH DAMAGE.
105 1.1 bsh *
106 1.23 wiz * Machine dependent functions for kernel setup for Intel IQ80310 evaluation
107 1.1 bsh * boards using RedBoot firmware.
108 1.1 bsh */
109 1.1 bsh
110 1.1 bsh #include "opt_ddb.h"
111 1.1 bsh #include "opt_kgdb.h"
112 1.1 bsh #include "opt_pmap_debug.h"
113 1.1 bsh #include "opt_md.h"
114 1.1 bsh #include "opt_com.h"
115 1.1 bsh #include "lcd.h"
116 1.1 bsh
117 1.1 bsh #include <sys/param.h>
118 1.1 bsh #include <sys/device.h>
119 1.1 bsh #include <sys/systm.h>
120 1.1 bsh #include <sys/kernel.h>
121 1.1 bsh #include <sys/exec.h>
122 1.1 bsh #include <sys/proc.h>
123 1.1 bsh #include <sys/msgbuf.h>
124 1.1 bsh #include <sys/reboot.h>
125 1.1 bsh #include <sys/termios.h>
126 1.1 bsh #include <sys/ksyms.h>
127 1.1 bsh
128 1.1 bsh #include <uvm/uvm_extern.h>
129 1.1 bsh
130 1.1 bsh #include <sys/conf.h>
131 1.1 bsh #include <dev/cons.h>
132 1.1 bsh #include <dev/md.h>
133 1.1 bsh
134 1.1 bsh #include <machine/db_machdep.h>
135 1.1 bsh #include <ddb/db_sym.h>
136 1.1 bsh #include <ddb/db_extern.h>
137 1.1 bsh #ifdef KGDB
138 1.1 bsh #include <sys/kgdb.h>
139 1.1 bsh #endif
140 1.1 bsh
141 1.1 bsh #include <machine/bootconfig.h>
142 1.24 dyoung #include <sys/bus.h>
143 1.1 bsh #include <machine/cpu.h>
144 1.1 bsh #include <machine/frame.h>
145 1.1 bsh #include <arm/undefined.h>
146 1.1 bsh
147 1.1 bsh #include <arm/arm32/machdep.h>
148 1.1 bsh
149 1.1 bsh #include <arm/xscale/pxa2x0reg.h>
150 1.1 bsh #include <arm/xscale/pxa2x0var.h>
151 1.1 bsh #include <arm/xscale/pxa2x0_gpio.h>
152 1.1 bsh #include <evbarm/g42xxeb/g42xxeb_reg.h>
153 1.1 bsh #include <evbarm/g42xxeb/g42xxeb_var.h>
154 1.1 bsh
155 1.1 bsh /* Kernel text starts 2MB in from the bottom of the kernel address space. */
156 1.1 bsh #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
157 1.1 bsh #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
158 1.1 bsh
159 1.1 bsh /*
160 1.1 bsh * The range 0xc1000000 - 0xccffffff is available for kernel VM space
161 1.1 bsh * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
162 1.1 bsh */
163 1.1 bsh #define KERNEL_VM_SIZE 0x0C000000
164 1.1 bsh
165 1.1 bsh
166 1.1 bsh /*
167 1.1 bsh * Address to call from cpu_reset() to reset the machine.
168 1.23 wiz * This is machine architecture dependent as it varies depending
169 1.1 bsh * on where the ROM appears when you turn the MMU off.
170 1.1 bsh */
171 1.1 bsh
172 1.1 bsh u_int cpu_reset_address = 0;
173 1.1 bsh
174 1.1 bsh /* Define various stack sizes in pages */
175 1.1 bsh #define IRQ_STACK_SIZE 1
176 1.1 bsh #define ABT_STACK_SIZE 1
177 1.1 bsh #define UND_STACK_SIZE 1
178 1.1 bsh
179 1.1 bsh BootConfig bootconfig; /* Boot config storage */
180 1.1 bsh char *boot_args = NULL;
181 1.1 bsh char *boot_file = NULL;
182 1.1 bsh
183 1.1 bsh vm_offset_t physical_start;
184 1.1 bsh vm_offset_t physical_freestart;
185 1.1 bsh vm_offset_t physical_freeend;
186 1.1 bsh vm_offset_t physical_end;
187 1.1 bsh u_int free_pages;
188 1.1 bsh
189 1.1 bsh /*int debug_flags;*/
190 1.1 bsh #ifndef PMAP_STATIC_L1S
191 1.1 bsh int max_processes = 64; /* Default number */
192 1.1 bsh #endif /* !PMAP_STATIC_L1S */
193 1.1 bsh
194 1.1 bsh /* Physical and virtual addresses for some global pages */
195 1.1 bsh pv_addr_t minidataclean;
196 1.1 bsh
197 1.1 bsh vm_offset_t msgbufphys;
198 1.1 bsh
199 1.1 bsh #ifdef PMAP_DEBUG
200 1.1 bsh extern int pmap_debug_level;
201 1.1 bsh #endif
202 1.1 bsh
203 1.1 bsh #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
204 1.1 bsh #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
205 1.1 bsh #define KERNEL_PT_KERNEL_NUM 4
206 1.1 bsh #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
207 1.1 bsh /* Page tables for mapping kernel VM */
208 1.1 bsh #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
209 1.1 bsh #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
210 1.1 bsh
211 1.1 bsh pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
212 1.1 bsh
213 1.1 bsh /* Prototypes */
214 1.1 bsh
215 1.1 bsh #if 0
216 1.1 bsh void process_kernel_args(char *);
217 1.1 bsh #endif
218 1.1 bsh
219 1.1 bsh void consinit(void);
220 1.1 bsh void kgdb_port_init(void);
221 1.1 bsh void change_clock(uint32_t v);
222 1.1 bsh
223 1.1 bsh bs_protos(bs_notimpl);
224 1.1 bsh
225 1.1 bsh #include "com.h"
226 1.1 bsh #if NCOM > 0
227 1.1 bsh #include <dev/ic/comreg.h>
228 1.1 bsh #include <dev/ic/comvar.h>
229 1.1 bsh #endif
230 1.1 bsh
231 1.1 bsh #ifndef CONSPEED
232 1.1 bsh #define CONSPEED B115200 /* What RedBoot uses */
233 1.1 bsh #endif
234 1.1 bsh #ifndef CONMODE
235 1.1 bsh #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
236 1.1 bsh #endif
237 1.1 bsh
238 1.1 bsh int comcnspeed = CONSPEED;
239 1.1 bsh int comcnmode = CONMODE;
240 1.1 bsh
241 1.11 kiyohara static struct pxa2x0_gpioconf boarddep_gpioconf[] = {
242 1.11 kiyohara { 44, GPIO_ALT_FN_1_IN }, /* BTCST */
243 1.11 kiyohara { 45, GPIO_ALT_FN_2_OUT }, /* BTRST */
244 1.11 kiyohara
245 1.11 kiyohara { -1 }
246 1.11 kiyohara };
247 1.11 kiyohara static struct pxa2x0_gpioconf *g42xxeb_gpioconf[] = {
248 1.11 kiyohara pxa25x_com_btuart_gpioconf,
249 1.11 kiyohara pxa25x_com_ffuart_gpioconf,
250 1.11 kiyohara #if 0
251 1.11 kiyohara pxa25x_com_stuart_gpioconf,
252 1.11 kiyohara pxa25x_pxaacu_gpioconf,
253 1.11 kiyohara #endif
254 1.11 kiyohara boarddep_gpioconf,
255 1.11 kiyohara NULL
256 1.11 kiyohara };
257 1.11 kiyohara
258 1.1 bsh /*
259 1.1 bsh * void cpu_reboot(int howto, char *bootstr)
260 1.1 bsh *
261 1.1 bsh * Reboots the system
262 1.1 bsh *
263 1.1 bsh * Deal with any syncing, unmounting, dumping and shutdown hooks,
264 1.1 bsh * then reset the CPU.
265 1.1 bsh */
266 1.1 bsh void
267 1.1 bsh cpu_reboot(int howto, char *bootstr)
268 1.1 bsh {
269 1.1 bsh #ifdef DIAGNOSTIC
270 1.1 bsh /* info */
271 1.1 bsh printf("boot: howto=%08x curproc=%p\n", howto, curproc);
272 1.1 bsh #endif
273 1.1 bsh
274 1.1 bsh /*
275 1.1 bsh * If we are still cold then hit the air brakes
276 1.1 bsh * and crash to earth fast
277 1.1 bsh */
278 1.1 bsh if (cold) {
279 1.1 bsh doshutdownhooks();
280 1.15 dyoung pmf_system_shutdown(boothowto);
281 1.1 bsh printf("The operating system has halted.\n");
282 1.1 bsh printf("Please press any key to reboot.\n\n");
283 1.1 bsh cngetc();
284 1.1 bsh printf("rebooting...\n");
285 1.1 bsh cpu_reset();
286 1.1 bsh /*NOTREACHED*/
287 1.1 bsh }
288 1.1 bsh
289 1.1 bsh /* Disable console buffering */
290 1.1 bsh /* cnpollc(1);*/
291 1.1 bsh
292 1.1 bsh /*
293 1.1 bsh * If RB_NOSYNC was not specified sync the discs.
294 1.1 bsh * Note: Unless cold is set to 1 here, syslogd will die during the
295 1.1 bsh * unmount. It looks like syslogd is getting woken up only to find
296 1.1 bsh * that it cannot page part of the binary in as the filesystem has
297 1.1 bsh * been unmounted.
298 1.1 bsh */
299 1.1 bsh if (!(howto & RB_NOSYNC))
300 1.1 bsh bootsync();
301 1.1 bsh
302 1.1 bsh /* Say NO to interrupts */
303 1.1 bsh splhigh();
304 1.1 bsh
305 1.1 bsh /* Do a dump if requested. */
306 1.1 bsh if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
307 1.1 bsh dumpsys();
308 1.1 bsh
309 1.1 bsh /* Run any shutdown hooks */
310 1.1 bsh doshutdownhooks();
311 1.1 bsh
312 1.15 dyoung pmf_system_shutdown(boothowto);
313 1.15 dyoung
314 1.1 bsh /* Make sure IRQ's are disabled */
315 1.1 bsh IRQdisable;
316 1.1 bsh
317 1.1 bsh if (howto & RB_HALT) {
318 1.1 bsh printf("The operating system has halted.\n");
319 1.1 bsh printf("Please press any key to reboot.\n\n");
320 1.1 bsh cngetc();
321 1.1 bsh }
322 1.1 bsh
323 1.1 bsh printf("rebooting...\n");
324 1.1 bsh cpu_reset();
325 1.1 bsh /*NOTREACHED*/
326 1.1 bsh }
327 1.1 bsh
328 1.6 perry static inline
329 1.1 bsh pd_entry_t *
330 1.1 bsh read_ttb(void)
331 1.1 bsh {
332 1.1 bsh long ttb;
333 1.1 bsh
334 1.6 perry __asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r" (ttb));
335 1.1 bsh
336 1.1 bsh
337 1.1 bsh return (pd_entry_t *)(ttb & ~((1<<14)-1));
338 1.1 bsh }
339 1.1 bsh
340 1.1 bsh /*
341 1.2 bsh * Static device mappings. These peripheral registers are mapped at
342 1.2 bsh * fixed virtual addresses very early in initarm() so that we can use
343 1.2 bsh * them while booting the kernel, and stay at the same address
344 1.2 bsh * throughout whole kernel's life time.
345 1.2 bsh *
346 1.2 bsh * We use this table twice; once with bootstrap page table, and once
347 1.2 bsh * with kernel's page table which we build up in initarm().
348 1.2 bsh *
349 1.2 bsh * Since we map these registers into the bootstrap page table using
350 1.2 bsh * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
351 1.2 bsh * registers segment-aligned and segment-rounded in order to avoid
352 1.2 bsh * using the 2nd page tables.
353 1.1 bsh */
354 1.2 bsh
355 1.2 bsh #define _A(a) ((a) & ~L1_S_OFFSET)
356 1.2 bsh #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
357 1.2 bsh
358 1.2 bsh static const struct pmap_devmap g42xxeb_devmap[] = {
359 1.1 bsh {
360 1.1 bsh G42XXEB_PLDREG_VBASE,
361 1.2 bsh _A(G42XXEB_PLDREG_BASE),
362 1.2 bsh _S(G42XXEB_PLDREG_SIZE),
363 1.2 bsh VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
364 1.1 bsh },
365 1.1 bsh {
366 1.1 bsh G42XXEB_GPIO_VBASE,
367 1.2 bsh _A(PXA2X0_GPIO_BASE),
368 1.4 bsh _S(PXA250_GPIO_SIZE),
369 1.2 bsh VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
370 1.1 bsh },
371 1.1 bsh {
372 1.1 bsh G42XXEB_CLKMAN_VBASE,
373 1.2 bsh _A(PXA2X0_CLKMAN_BASE),
374 1.2 bsh _S(PXA2X0_CLKMAN_SIZE),
375 1.2 bsh VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
376 1.1 bsh },
377 1.1 bsh {
378 1.1 bsh G42XXEB_INTCTL_VBASE,
379 1.2 bsh _A(PXA2X0_INTCTL_BASE),
380 1.2 bsh _S(PXA2X0_INTCTL_SIZE),
381 1.2 bsh VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
382 1.2 bsh },
383 1.2 bsh {
384 1.2 bsh G42XXEB_FFUART_VBASE,
385 1.2 bsh _A(PXA2X0_FFUART_BASE),
386 1.2 bsh _S(4 * COM_NPORTS),
387 1.2 bsh VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
388 1.2 bsh },
389 1.2 bsh {
390 1.2 bsh G42XXEB_BTUART_VBASE,
391 1.2 bsh _A(PXA2X0_BTUART_BASE),
392 1.2 bsh _S(4 * COM_NPORTS),
393 1.2 bsh VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
394 1.1 bsh },
395 1.1 bsh {0, 0, 0, 0,}
396 1.1 bsh };
397 1.1 bsh
398 1.2 bsh #undef _A
399 1.2 bsh #undef _S
400 1.1 bsh
401 1.1 bsh
402 1.1 bsh /*
403 1.1 bsh * u_int initarm(...)
404 1.1 bsh *
405 1.1 bsh * Initial entry point on startup. This gets called before main() is
406 1.1 bsh * entered.
407 1.1 bsh * It should be responsible for setting up everything that must be
408 1.1 bsh * in place when main is called.
409 1.1 bsh * This includes
410 1.1 bsh * Taking a copy of the boot configuration structure.
411 1.1 bsh * Initialising the physical console so characters can be printed.
412 1.1 bsh * Setting up page tables for the kernel
413 1.1 bsh * Relocating the kernel to the bottom of physical memory
414 1.1 bsh */
415 1.1 bsh u_int
416 1.1 bsh initarm(void *arg)
417 1.1 bsh {
418 1.1 bsh extern vaddr_t xscale_cache_clean_addr;
419 1.1 bsh int loop;
420 1.1 bsh int loop1;
421 1.1 bsh u_int l1pagetable;
422 1.1 bsh paddr_t memstart;
423 1.1 bsh psize_t memsize;
424 1.1 bsh int led_data = 1;
425 1.1 bsh #ifdef DIAGNOSTIC
426 1.1 bsh extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */
427 1.1 bsh #endif
428 1.1 bsh
429 1.1 bsh #define LEDSTEP_P() ioreg8_write(G42XXEB_PLDREG_BASE+G42XXEB_LED, led_data++)
430 1.1 bsh #define LEDSTEP() pldreg8_write(G42XXEB_LED, led_data++);
431 1.1 bsh
432 1.1 bsh /* use physical address until pagetable is set */
433 1.1 bsh LEDSTEP_P();
434 1.1 bsh
435 1.2 bsh /* map some peripheral registers at static I/O area */
436 1.2 bsh pmap_devmap_bootstrap((vaddr_t)read_ttb(), g42xxeb_devmap);
437 1.2 bsh
438 1.2 bsh LEDSTEP_P();
439 1.2 bsh
440 1.7 lukem /* start 32.768 kHz OSC */
441 1.2 bsh ioreg_write(G42XXEB_CLKMAN_VBASE + 0x08, 2);
442 1.2 bsh /* Get ready for splfoo() */
443 1.2 bsh pxa2x0_intr_bootstrap(G42XXEB_INTCTL_VBASE);
444 1.2 bsh
445 1.2 bsh LEDSTEP();
446 1.1 bsh
447 1.1 bsh /*
448 1.1 bsh * Heads up ... Setup the CPU / MMU / TLB functions
449 1.1 bsh */
450 1.1 bsh if (set_cpufuncs())
451 1.1 bsh panic("cpu not recognized!");
452 1.1 bsh
453 1.2 bsh LEDSTEP();
454 1.1 bsh
455 1.1 bsh /*
456 1.1 bsh * Okay, RedBoot has provided us with the following memory map:
457 1.1 bsh *
458 1.1 bsh * Physical Address Range Description
459 1.1 bsh * ----------------------- ----------------------------------
460 1.1 bsh * 0x00000000 - 0x01ffffff flash Memory (32MB)
461 1.1 bsh * 0x04000000 - 0x05ffffff Application flash Memory (32MB)
462 1.1 bsh * 0x08000000 - 0x080000ff I/O baseboard registers
463 1.1 bsh * 0x0c000000 - 0x0c0fffff Ethernet Controller
464 1.1 bsh * 0x14000000 - 0x17ffffff Expansion Card (64MB)
465 1.1 bsh * 0x40000000 - 0x480fffff Processor Registers
466 1.1 bsh * 0xa0000000 - 0xa3ffffff SDRAM Bank 0 (64MB)
467 1.1 bsh *
468 1.1 bsh *
469 1.1 bsh * Virtual Address Range X C B Description
470 1.1 bsh * ----------------------- - - - ----------------------------------
471 1.1 bsh * 0x00000000 - 0x00003fff N Y Y SDRAM
472 1.1 bsh * 0x00004000 - 0x01ffffff N Y N ROM
473 1.1 bsh * 0x08000000 - 0x080fffff N N N I/O baseboard registers
474 1.1 bsh * 0x0a000000 - 0x0a0fffff N N N SRAM
475 1.1 bsh * 0x40000000 - 0x480fffff N N N Processor Registers
476 1.1 bsh * 0xa0000000 - 0xa000ffff N Y N RedBoot SDRAM
477 1.1 bsh * 0xa0017000 - 0xa3ffffff Y Y Y SDRAM
478 1.1 bsh * 0xc0000000 - 0xcfffffff Y Y Y Cache Flush Region
479 1.1 bsh * (done by this routine)
480 1.1 bsh * 0xfd000000 - 0xfd0000ff N N N I/O baseboard registers
481 1.2 bsh * 0xfd100000 - 0xfd3fffff N N N Processor Registers.
482 1.2 bsh * 0xfd400000 - 0xfd4fffff N N N FF-UART
483 1.2 bsh * 0xfd500000 - 0xfd5fffff N N N BT-UART
484 1.1 bsh *
485 1.3 bsh * RedBoot's first level page table is at 0xa0004000. There
486 1.3 bsh * are also 2 second-level tables at 0xa0008000 and
487 1.3 bsh * 0xa0008400. We will continue to use them until we switch to
488 1.21 uebayasi * our pagetable by cpu_setttb().
489 1.1 bsh */
490 1.1 bsh
491 1.1 bsh cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
492 1.1 bsh
493 1.1 bsh LEDSTEP();
494 1.1 bsh
495 1.1 bsh /* setup GPIO for BTUART, in case bootloader doesn't take care of it */
496 1.1 bsh pxa2x0_gpio_bootstrap(G42XXEB_GPIO_VBASE);
497 1.11 kiyohara pxa2x0_gpio_config(g42xxeb_gpioconf);
498 1.1 bsh
499 1.1 bsh LEDSTEP();
500 1.1 bsh
501 1.1 bsh consinit();
502 1.1 bsh #ifdef KGDB
503 1.1 bsh LEDSTEP();
504 1.1 bsh kgdb_port_init();
505 1.1 bsh #endif
506 1.1 bsh
507 1.1 bsh LEDSTEP();
508 1.1 bsh
509 1.1 bsh /* Talk to the user */
510 1.1 bsh printf("\nNetBSD/evbarm (g42xxeb) booting ...\n");
511 1.1 bsh
512 1.1 bsh #if 0
513 1.1 bsh /*
514 1.1 bsh * Examine the boot args string for options we need to know about
515 1.1 bsh * now.
516 1.1 bsh */
517 1.1 bsh process_kernel_args((char *)nwbootinfo.bt_args);
518 1.1 bsh #endif
519 1.1 bsh
520 1.1 bsh memstart = 0xa0000000;
521 1.1 bsh memsize = 0x04000000; /* 64MB */
522 1.1 bsh
523 1.1 bsh printf("initarm: Configuring system ...\n");
524 1.1 bsh
525 1.1 bsh /* Fake bootconfig structure for the benefit of pmap.c */
526 1.10 wiz /* XXX must make the memory description h/w independent */
527 1.1 bsh bootconfig.dramblocks = 1;
528 1.1 bsh bootconfig.dram[0].address = memstart;
529 1.1 bsh bootconfig.dram[0].pages = memsize / PAGE_SIZE;
530 1.1 bsh
531 1.1 bsh /*
532 1.1 bsh * Set up the variables that define the availablilty of
533 1.1 bsh * physical memory. For now, we're going to set
534 1.1 bsh * physical_freestart to 0xa0200000 (where the kernel
535 1.1 bsh * was loaded), and allocate the memory we need downwards.
536 1.1 bsh * If we get too close to the L1 table that we set up, we
537 1.1 bsh * will panic. We will update physical_freestart and
538 1.1 bsh * physical_freeend later to reflect what pmap_bootstrap()
539 1.1 bsh * wants to see.
540 1.1 bsh *
541 1.1 bsh * XXX pmap_bootstrap() needs an enema.
542 1.1 bsh */
543 1.1 bsh physical_start = bootconfig.dram[0].address;
544 1.1 bsh physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
545 1.1 bsh
546 1.1 bsh physical_freestart = 0xa0009000UL;
547 1.1 bsh physical_freeend = 0xa0200000UL;
548 1.1 bsh
549 1.1 bsh physmem = (physical_end - physical_start) / PAGE_SIZE;
550 1.1 bsh
551 1.1 bsh #ifdef VERBOSE_INIT_ARM
552 1.1 bsh /* Tell the user about the memory */
553 1.1 bsh printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
554 1.1 bsh physical_start, physical_end - 1);
555 1.1 bsh #endif
556 1.1 bsh
557 1.1 bsh /*
558 1.1 bsh * Okay, the kernel starts 2MB in from the bottom of physical
559 1.1 bsh * memory. We are going to allocate our bootstrap pages downwards
560 1.1 bsh * from there.
561 1.1 bsh *
562 1.1 bsh * We need to allocate some fixed page tables to get the kernel
563 1.1 bsh * going. We allocate one page directory and a number of page
564 1.1 bsh * tables and store the physical addresses in the kernel_pt_table
565 1.1 bsh * array.
566 1.1 bsh *
567 1.1 bsh * The kernel page directory must be on a 16K boundary. The page
568 1.1 bsh * tables must be on 4K bounaries. What we do is allocate the
569 1.1 bsh * page directory on the first 16K boundary that we encounter, and
570 1.1 bsh * the page tables on 4K boundaries otherwise. Since we allocate
571 1.1 bsh * at least 3 L2 page tables, we are guaranteed to encounter at
572 1.1 bsh * least one 16K aligned region.
573 1.1 bsh */
574 1.1 bsh
575 1.1 bsh #ifdef VERBOSE_INIT_ARM
576 1.1 bsh printf("Allocating page tables\n");
577 1.1 bsh #endif
578 1.1 bsh
579 1.1 bsh free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
580 1.1 bsh
581 1.1 bsh #ifdef VERBOSE_INIT_ARM
582 1.1 bsh printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
583 1.1 bsh physical_freestart, free_pages, free_pages);
584 1.1 bsh #endif
585 1.1 bsh
586 1.1 bsh /* Define a macro to simplify memory allocation */
587 1.1 bsh #define valloc_pages(var, np) \
588 1.1 bsh alloc_pages((var).pv_pa, (np)); \
589 1.1 bsh (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
590 1.1 bsh
591 1.1 bsh #define alloc_pages(var, np) \
592 1.1 bsh physical_freeend -= ((np) * PAGE_SIZE); \
593 1.1 bsh if (physical_freeend < physical_freestart) \
594 1.1 bsh panic("initarm: out of memory"); \
595 1.1 bsh (var) = physical_freeend; \
596 1.1 bsh free_pages -= (np); \
597 1.1 bsh memset((char *)(var), 0, ((np) * PAGE_SIZE));
598 1.1 bsh
599 1.1 bsh loop1 = 0;
600 1.1 bsh for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
601 1.1 bsh /* Are we 16KB aligned for an L1 ? */
602 1.1 bsh if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
603 1.1 bsh && kernel_l1pt.pv_pa == 0) {
604 1.1 bsh valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
605 1.1 bsh } else {
606 1.1 bsh valloc_pages(kernel_pt_table[loop1],
607 1.1 bsh L2_TABLE_SIZE / PAGE_SIZE);
608 1.1 bsh ++loop1;
609 1.1 bsh }
610 1.1 bsh }
611 1.1 bsh
612 1.1 bsh /* This should never be able to happen but better confirm that. */
613 1.1 bsh if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
614 1.1 bsh panic("initarm: Failed to align the kernel page directory");
615 1.1 bsh
616 1.1 bsh LEDSTEP();
617 1.1 bsh
618 1.1 bsh /*
619 1.1 bsh * Allocate a page for the system page mapped to V0x00000000
620 1.1 bsh * This page will just contain the system vectors and can be
621 1.1 bsh * shared by all processes.
622 1.1 bsh */
623 1.1 bsh alloc_pages(systempage.pv_pa, 1);
624 1.1 bsh
625 1.1 bsh /* Allocate stacks for all modes */
626 1.1 bsh valloc_pages(irqstack, IRQ_STACK_SIZE);
627 1.1 bsh valloc_pages(abtstack, ABT_STACK_SIZE);
628 1.1 bsh valloc_pages(undstack, UND_STACK_SIZE);
629 1.1 bsh valloc_pages(kernelstack, UPAGES);
630 1.1 bsh
631 1.1 bsh /* Allocate enough pages for cleaning the Mini-Data cache. */
632 1.1 bsh KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
633 1.1 bsh valloc_pages(minidataclean, 1);
634 1.1 bsh
635 1.1 bsh #ifdef VERBOSE_INIT_ARM
636 1.1 bsh printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
637 1.1 bsh irqstack.pv_va);
638 1.1 bsh printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
639 1.1 bsh abtstack.pv_va);
640 1.1 bsh printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
641 1.1 bsh undstack.pv_va);
642 1.1 bsh printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
643 1.1 bsh kernelstack.pv_va);
644 1.1 bsh #endif
645 1.1 bsh
646 1.1 bsh /*
647 1.1 bsh * XXX Defer this to later so that we can reclaim the memory
648 1.1 bsh * XXX used by the RedBoot page tables.
649 1.1 bsh */
650 1.1 bsh alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
651 1.1 bsh
652 1.1 bsh /*
653 1.1 bsh * Ok we have allocated physical pages for the primary kernel
654 1.1 bsh * page tables
655 1.1 bsh */
656 1.1 bsh
657 1.1 bsh #ifdef VERBOSE_INIT_ARM
658 1.1 bsh printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
659 1.1 bsh #endif
660 1.1 bsh
661 1.1 bsh /*
662 1.1 bsh * Now we start construction of the L1 page table
663 1.1 bsh * We start by mapping the L2 page tables into the L1.
664 1.1 bsh * This means that we can replace L1 mappings later on if necessary
665 1.1 bsh */
666 1.1 bsh l1pagetable = kernel_l1pt.pv_pa;
667 1.1 bsh
668 1.1 bsh /* Map the L2 pages tables in the L1 page table */
669 1.1 bsh pmap_link_l2pt(l1pagetable, 0x00000000,
670 1.1 bsh &kernel_pt_table[KERNEL_PT_SYS]);
671 1.1 bsh for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
672 1.1 bsh pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
673 1.1 bsh &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
674 1.1 bsh for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
675 1.1 bsh pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
676 1.1 bsh &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
677 1.1 bsh
678 1.1 bsh /* update the top of the kernel VM */
679 1.1 bsh pmap_curmaxkvaddr =
680 1.1 bsh KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
681 1.1 bsh
682 1.1 bsh #ifdef VERBOSE_INIT_ARM
683 1.1 bsh printf("Mapping kernel\n");
684 1.1 bsh #endif
685 1.1 bsh
686 1.1 bsh /* Now we fill in the L2 pagetable for the kernel static code/data */
687 1.1 bsh {
688 1.1 bsh extern char etext[], _end[];
689 1.1 bsh size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
690 1.1 bsh size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
691 1.1 bsh u_int logical;
692 1.1 bsh
693 1.1 bsh textsize = (textsize + PGOFSET) & ~PGOFSET;
694 1.1 bsh totalsize = (totalsize + PGOFSET) & ~PGOFSET;
695 1.1 bsh
696 1.1 bsh logical = 0x00200000; /* offset of kernel in RAM */
697 1.1 bsh
698 1.1 bsh logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
699 1.1 bsh physical_start + logical, textsize,
700 1.1 bsh VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
701 1.1 bsh logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
702 1.1 bsh physical_start + logical, totalsize - textsize,
703 1.1 bsh VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
704 1.1 bsh }
705 1.1 bsh
706 1.1 bsh #ifdef VERBOSE_INIT_ARM
707 1.1 bsh printf("Constructing L2 page tables\n");
708 1.1 bsh #endif
709 1.1 bsh
710 1.1 bsh /* Map the stack pages */
711 1.1 bsh pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
712 1.1 bsh IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
713 1.1 bsh pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
714 1.1 bsh ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
715 1.1 bsh pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
716 1.1 bsh UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
717 1.1 bsh pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
718 1.1 bsh UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
719 1.1 bsh
720 1.1 bsh pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
721 1.1 bsh L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
722 1.1 bsh
723 1.1 bsh for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
724 1.1 bsh pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
725 1.1 bsh kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
726 1.1 bsh VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
727 1.1 bsh }
728 1.1 bsh
729 1.1 bsh /* Map the Mini-Data cache clean area. */
730 1.1 bsh xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
731 1.1 bsh minidataclean.pv_pa);
732 1.1 bsh
733 1.1 bsh /* Map the vector page. */
734 1.1 bsh #if 1
735 1.1 bsh /* MULTI-ICE requires that page 0 is NC/NB so that it can download the
736 1.1 bsh * cache-clean code there. */
737 1.1 bsh pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
738 1.1 bsh VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
739 1.1 bsh #else
740 1.1 bsh pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
741 1.1 bsh VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
742 1.1 bsh #endif
743 1.1 bsh
744 1.1 bsh /*
745 1.1 bsh * map integrated peripherals at same address in l1pagetable
746 1.1 bsh * so that we can continue to use console.
747 1.1 bsh */
748 1.2 bsh pmap_devmap_bootstrap(l1pagetable, g42xxeb_devmap);
749 1.1 bsh
750 1.1 bsh /*
751 1.1 bsh * Give the XScale global cache clean code an appropriately
752 1.1 bsh * sized chunk of unmapped VA space starting at 0xff000000
753 1.1 bsh * (our device mappings end before this address).
754 1.1 bsh */
755 1.1 bsh xscale_cache_clean_addr = 0xff000000U;
756 1.1 bsh
757 1.1 bsh /*
758 1.1 bsh * Now we have the real page tables in place so we can switch to them.
759 1.1 bsh * Once this is done we will be running with the REAL kernel page
760 1.1 bsh * tables.
761 1.1 bsh */
762 1.1 bsh
763 1.1 bsh /*
764 1.1 bsh * Update the physical_freestart/physical_freeend/free_pages
765 1.1 bsh * variables.
766 1.1 bsh */
767 1.1 bsh {
768 1.1 bsh extern char _end[];
769 1.1 bsh
770 1.1 bsh physical_freestart = physical_start +
771 1.1 bsh (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
772 1.1 bsh KERNEL_BASE);
773 1.1 bsh physical_freeend = physical_end;
774 1.1 bsh free_pages =
775 1.1 bsh (physical_freeend - physical_freestart) / PAGE_SIZE;
776 1.1 bsh }
777 1.1 bsh
778 1.1 bsh /* Switch tables */
779 1.1 bsh #ifdef VERBOSE_INIT_ARM
780 1.1 bsh printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
781 1.1 bsh physical_freestart, free_pages, free_pages);
782 1.1 bsh printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
783 1.1 bsh #endif
784 1.1 bsh LEDSTEP();
785 1.1 bsh
786 1.20 uebayasi cpu_setttb(kernel_l1pt.pv_pa);
787 1.1 bsh cpu_tlb_flushID();
788 1.1 bsh cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
789 1.1 bsh LEDSTEP();
790 1.1 bsh
791 1.1 bsh /*
792 1.1 bsh * Moved from cpu_startup() as data_abort_handler() references
793 1.1 bsh * this during uvm init
794 1.1 bsh */
795 1.18 rmind uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
796 1.1 bsh
797 1.1 bsh #ifdef VERBOSE_INIT_ARM
798 1.1 bsh printf("bootstrap done.\n");
799 1.1 bsh #endif
800 1.1 bsh
801 1.1 bsh arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
802 1.1 bsh
803 1.1 bsh /*
804 1.1 bsh * Pages were allocated during the secondary bootstrap for the
805 1.1 bsh * stacks for different CPU modes.
806 1.1 bsh * We must now set the r13 registers in the different CPU modes to
807 1.1 bsh * point to these stacks.
808 1.1 bsh * Since the ARM stacks use STMFD etc. we must set r13 to the top end
809 1.1 bsh * of the stack memory.
810 1.1 bsh */
811 1.2 bsh #ifdef VERBOSE_INIT_ARM
812 1.1 bsh printf("init subsystems: stacks ");
813 1.2 bsh #endif
814 1.1 bsh
815 1.1 bsh set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
816 1.1 bsh set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
817 1.1 bsh set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
818 1.1 bsh
819 1.1 bsh /*
820 1.1 bsh * Well we should set a data abort handler.
821 1.1 bsh * Once things get going this will change as we will need a proper
822 1.1 bsh * handler.
823 1.1 bsh * Until then we will use a handler that just panics but tells us
824 1.1 bsh * why.
825 1.1 bsh * Initialisation of the vectors will just panic on a data abort.
826 1.1 bsh * This just fills in a slighly better one.
827 1.1 bsh */
828 1.2 bsh #ifdef VERBOSE_INIT_ARM
829 1.1 bsh printf("vectors ");
830 1.2 bsh #endif
831 1.1 bsh data_abort_handler_address = (u_int)data_abort_handler;
832 1.1 bsh prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
833 1.1 bsh undefined_handler_address = (u_int)undefinedinstruction_bounce;
834 1.1 bsh
835 1.1 bsh /* Initialise the undefined instruction handlers */
836 1.2 bsh #ifdef VERBOSE_INIT_ARM
837 1.1 bsh printf("undefined ");
838 1.2 bsh #endif
839 1.1 bsh undefined_init();
840 1.1 bsh
841 1.1 bsh /* Load memory into UVM. */
842 1.2 bsh #ifdef VERBOSE_INIT_ARM
843 1.1 bsh printf("page ");
844 1.2 bsh #endif
845 1.1 bsh uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
846 1.1 bsh uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
847 1.1 bsh atop(physical_freestart), atop(physical_freeend),
848 1.1 bsh VM_FREELIST_DEFAULT);
849 1.1 bsh
850 1.1 bsh /* Boot strap pmap telling it where the kernel page table is */
851 1.2 bsh #ifdef VERBOSE_INIT_ARM
852 1.1 bsh printf("pmap ");
853 1.2 bsh #endif
854 1.1 bsh LEDSTEP();
855 1.14 matt pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
856 1.1 bsh LEDSTEP();
857 1.1 bsh
858 1.1 bsh #ifdef __HAVE_MEMORY_DISK__
859 1.1 bsh md_root_setconf(memory_disk, sizeof memory_disk);
860 1.1 bsh #endif
861 1.1 bsh
862 1.1 bsh #ifdef BOOTHOWTO
863 1.1 bsh boothowto |= BOOTHOWTO;
864 1.1 bsh #endif
865 1.1 bsh
866 1.1 bsh {
867 1.1 bsh uint8_t sw = pldreg8_read(G42XXEB_DIPSW);
868 1.1 bsh
869 1.1 bsh if (0 == (sw & (1<<0)))
870 1.1 bsh boothowto ^= RB_KDB;
871 1.1 bsh if (0 == (sw & (1<<1)))
872 1.1 bsh boothowto ^= RB_SINGLE;
873 1.1 bsh }
874 1.1 bsh
875 1.1 bsh LEDSTEP();
876 1.1 bsh
877 1.1 bsh #ifdef KGDB
878 1.1 bsh if (boothowto & RB_KDB) {
879 1.1 bsh kgdb_debug_init = 1;
880 1.1 bsh kgdb_connect(1);
881 1.1 bsh }
882 1.1 bsh #endif
883 1.1 bsh
884 1.1 bsh #ifdef DDB
885 1.1 bsh db_machine_init();
886 1.1 bsh
887 1.1 bsh /* Firmware doesn't load symbols. */
888 1.1 bsh ddb_init(0, NULL, NULL);
889 1.1 bsh
890 1.1 bsh if (boothowto & RB_KDB)
891 1.1 bsh Debugger();
892 1.1 bsh #endif
893 1.1 bsh
894 1.1 bsh pldreg8_write(G42XXEB_LED, 0);
895 1.1 bsh
896 1.1 bsh /* We return the new stack pointer address */
897 1.1 bsh return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
898 1.1 bsh }
899 1.1 bsh
900 1.1 bsh #if 0
901 1.1 bsh void
902 1.1 bsh process_kernel_args(char *args)
903 1.1 bsh {
904 1.1 bsh
905 1.1 bsh boothowto = 0;
906 1.1 bsh
907 1.1 bsh /* Make a local copy of the bootargs */
908 1.1 bsh strncpy(bootargs, args, MAX_BOOT_STRING);
909 1.1 bsh
910 1.1 bsh args = bootargs;
911 1.1 bsh boot_file = bootargs;
912 1.1 bsh
913 1.1 bsh /* Skip the kernel image filename */
914 1.1 bsh while (*args != ' ' && *args != 0)
915 1.1 bsh ++args;
916 1.1 bsh
917 1.1 bsh if (*args != 0)
918 1.1 bsh *args++ = 0;
919 1.1 bsh
920 1.1 bsh while (*args == ' ')
921 1.1 bsh ++args;
922 1.1 bsh
923 1.1 bsh boot_args = args;
924 1.1 bsh
925 1.1 bsh printf("bootfile: %s\n", boot_file);
926 1.1 bsh printf("bootargs: %s\n", boot_args);
927 1.1 bsh
928 1.1 bsh parse_mi_bootargs(boot_args);
929 1.1 bsh }
930 1.1 bsh #endif
931 1.1 bsh
932 1.1 bsh #ifdef KGDB
933 1.1 bsh #ifndef KGDB_DEVNAME
934 1.1 bsh #define KGDB_DEVNAME "ffuart"
935 1.1 bsh #endif
936 1.1 bsh const char kgdb_devname[] = KGDB_DEVNAME;
937 1.1 bsh
938 1.1 bsh #if (NCOM > 0)
939 1.1 bsh #ifndef KGDB_DEVMODE
940 1.1 bsh #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
941 1.1 bsh #endif
942 1.1 bsh int comkgdbmode = KGDB_DEVMODE;
943 1.1 bsh #endif /* NCOM */
944 1.1 bsh
945 1.1 bsh #endif /* KGDB */
946 1.1 bsh
947 1.1 bsh
948 1.1 bsh void
949 1.1 bsh consinit(void)
950 1.1 bsh {
951 1.1 bsh static int consinit_called = 0;
952 1.1 bsh uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN);
953 1.1 bsh #if 0
954 1.1 bsh char *console = CONSDEVNAME;
955 1.1 bsh #endif
956 1.1 bsh
957 1.1 bsh if (consinit_called != 0)
958 1.1 bsh return;
959 1.1 bsh
960 1.1 bsh consinit_called = 1;
961 1.1 bsh
962 1.1 bsh #if NCOM > 0
963 1.1 bsh
964 1.1 bsh #ifdef FFUARTCONSOLE
965 1.1 bsh #ifdef KGDB
966 1.1 bsh if (0 == strcmp(kgdb_devname, "ffuart")){
967 1.1 bsh /* port is reserved for kgdb */
968 1.1 bsh } else
969 1.1 bsh #endif
970 1.1 bsh if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE,
971 1.1 bsh comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
972 1.1 bsh #if 0
973 1.1 bsh pxa2x0_clkman_config(CKEN_FFUART, 1);
974 1.1 bsh #else
975 1.1 bsh ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN,
976 1.1 bsh ckenreg|CKEN_FFUART);
977 1.1 bsh #endif
978 1.1 bsh
979 1.1 bsh return;
980 1.1 bsh }
981 1.1 bsh #endif /* FFUARTCONSOLE */
982 1.1 bsh
983 1.1 bsh #ifdef BTUARTCONSOLE
984 1.1 bsh #ifdef KGDB
985 1.1 bsh if (0 == strcmp(kgdb_devname, "btuart")) {
986 1.1 bsh /* port is reserved for kgdb */
987 1.1 bsh } else
988 1.1 bsh #endif
989 1.1 bsh if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE,
990 1.1 bsh comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
991 1.1 bsh ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN,
992 1.1 bsh ckenreg|CKEN_BTUART);
993 1.1 bsh return;
994 1.1 bsh }
995 1.1 bsh #endif /* BTUARTCONSOLE */
996 1.1 bsh
997 1.1 bsh
998 1.1 bsh #endif /* NCOM */
999 1.1 bsh
1000 1.1 bsh }
1001 1.1 bsh
1002 1.1 bsh #ifdef KGDB
1003 1.1 bsh void
1004 1.1 bsh kgdb_port_init(void)
1005 1.1 bsh {
1006 1.1 bsh #if (NCOM > 0) && defined(COM_PXA2X0)
1007 1.1 bsh paddr_t paddr = 0;
1008 1.1 bsh uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN);
1009 1.1 bsh
1010 1.1 bsh if (0 == strcmp(kgdb_devname, "ffuart")) {
1011 1.1 bsh paddr = PXA2X0_FFUART_BASE;
1012 1.1 bsh ckenreg |= CKEN_FFUART;
1013 1.1 bsh }
1014 1.1 bsh else if (0 == strcmp(kgdb_devname, "btuart")) {
1015 1.1 bsh paddr = PXA2X0_BTUART_BASE;
1016 1.1 bsh ckenreg |= CKEN_BTUART;
1017 1.1 bsh }
1018 1.1 bsh
1019 1.1 bsh if (paddr &&
1020 1.1 bsh 0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr,
1021 1.1 bsh kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) {
1022 1.1 bsh
1023 1.1 bsh ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg);
1024 1.1 bsh
1025 1.1 bsh }
1026 1.1 bsh
1027 1.1 bsh #endif
1028 1.1 bsh }
1029 1.1 bsh #endif
1030 1.1 bsh
1031