g42xxeb_machdep.c revision 1.12.2.1       1 /*	$NetBSD: g42xxeb_machdep.c,v 1.12.2.1 2008/02/18 21:04:27 mjf Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2002, 2003, 2004, 2005  Genetec Corporation.
      5  * All rights reserved.
      6  *
      7  * Written by Hiroyuki Bessho for Genetec Corporation.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. The name of Genetec Corporation may not be used to endorse or
     18  *    promote products derived from this software without specific prior
     19  *    written permission.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
     22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  *
     33  * Machine dependant functions for kernel setup for Genetec G4250EBX
     34  * evaluation board.
     35  *
     36  * Based on iq80310_machhdep.c
     37  */
     38 /*
     39  * Copyright (c) 2001 Wasabi Systems, Inc.
     40  * All rights reserved.
     41  *
     42  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed for the NetBSD Project by
     55  *	Wasabi Systems, Inc.
     56  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     57  *    or promote products derived from this software without specific prior
     58  *    written permission.
     59  *
     60  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     61  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     62  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     63  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     64  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     65  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     66  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     67  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     68  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     69  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     70  * POSSIBILITY OF SUCH DAMAGE.
     71  */
     72 
     73 /*
     74  * Copyright (c) 1997,1998 Mark Brinicombe.
     75  * Copyright (c) 1997,1998 Causality Limited.
     76  * All rights reserved.
     77  *
     78  * Redistribution and use in source and binary forms, with or without
     79  * modification, are permitted provided that the following conditions
     80  * are met:
     81  * 1. Redistributions of source code must retain the above copyright
     82  *    notice, this list of conditions and the following disclaimer.
     83  * 2. Redistributions in binary form must reproduce the above copyright
     84  *    notice, this list of conditions and the following disclaimer in the
     85  *    documentation and/or other materials provided with the distribution.
     86  * 3. All advertising materials mentioning features or use of this software
     87  *    must display the following acknowledgement:
     88  *	This product includes software developed by Mark Brinicombe
     89  *	for the NetBSD Project.
     90  * 4. The name of the company nor the name of the author may be used to
     91  *    endorse or promote products derived from this software without specific
     92  *    prior written permission.
     93  *
     94  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     95  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     96  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     97  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     98  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     99  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    100  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    101  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    102  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    103  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    104  * SUCH DAMAGE.
    105  *
    106  * Machine dependant functions for kernel setup for Intel IQ80310 evaluation
    107  * boards using RedBoot firmware.
    108  */
    109 
    110 #include "opt_ddb.h"
    111 #include "opt_kgdb.h"
    112 #include "opt_pmap_debug.h"
    113 #include "opt_md.h"
    114 #include "opt_com.h"
    115 #include "md.h"
    116 #include "lcd.h"
    117 
    118 #include <sys/param.h>
    119 #include <sys/device.h>
    120 #include <sys/systm.h>
    121 #include <sys/kernel.h>
    122 #include <sys/exec.h>
    123 #include <sys/proc.h>
    124 #include <sys/msgbuf.h>
    125 #include <sys/reboot.h>
    126 #include <sys/termios.h>
    127 #include <sys/ksyms.h>
    128 
    129 #include <uvm/uvm_extern.h>
    130 
    131 #include <sys/conf.h>
    132 #include <dev/cons.h>
    133 #include <dev/md.h>
    134 
    135 #include <machine/db_machdep.h>
    136 #include <ddb/db_sym.h>
    137 #include <ddb/db_extern.h>
    138 #ifdef KGDB
    139 #include <sys/kgdb.h>
    140 #endif
    141 
    142 #include <machine/bootconfig.h>
    143 #include <machine/bus.h>
    144 #include <machine/cpu.h>
    145 #include <machine/frame.h>
    146 #include <arm/undefined.h>
    147 
    148 #include <arm/arm32/machdep.h>
    149 
    150 #include <arm/xscale/pxa2x0reg.h>
    151 #include <arm/xscale/pxa2x0var.h>
    152 #include <arm/xscale/pxa2x0_gpio.h>
    153 #include <evbarm/g42xxeb/g42xxeb_reg.h>
    154 #include <evbarm/g42xxeb/g42xxeb_var.h>
    155 
    156 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
    157 #define	KERNEL_TEXT_BASE	(KERNEL_BASE + 0x00200000)
    158 #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
    159 
    160 /*
    161  * The range 0xc1000000 - 0xccffffff is available for kernel VM space
    162  * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
    163  */
    164 #define KERNEL_VM_SIZE		0x0C000000
    165 
    166 
    167 /*
    168  * Address to call from cpu_reset() to reset the machine.
    169  * This is machine architecture dependant as it varies depending
    170  * on where the ROM appears when you turn the MMU off.
    171  */
    172 
    173 u_int cpu_reset_address = 0;
    174 
    175 /* Define various stack sizes in pages */
    176 #define IRQ_STACK_SIZE	1
    177 #define ABT_STACK_SIZE	1
    178 #define UND_STACK_SIZE	1
    179 
    180 BootConfig bootconfig;		/* Boot config storage */
    181 char *boot_args = NULL;
    182 char *boot_file = NULL;
    183 
    184 vm_offset_t physical_start;
    185 vm_offset_t physical_freestart;
    186 vm_offset_t physical_freeend;
    187 vm_offset_t physical_end;
    188 u_int free_pages;
    189 vm_offset_t pagetables_start;
    190 int physmem = 0;
    191 
    192 /*int debug_flags;*/
    193 #ifndef PMAP_STATIC_L1S
    194 int max_processes = 64;			/* Default number */
    195 #endif	/* !PMAP_STATIC_L1S */
    196 
    197 /* Physical and virtual addresses for some global pages */
    198 pv_addr_t systempage;
    199 pv_addr_t irqstack;
    200 pv_addr_t undstack;
    201 pv_addr_t abtstack;
    202 pv_addr_t kernelstack;
    203 pv_addr_t minidataclean;
    204 
    205 vm_offset_t msgbufphys;
    206 
    207 extern u_int data_abort_handler_address;
    208 extern u_int prefetch_abort_handler_address;
    209 extern u_int undefined_handler_address;
    210 
    211 #ifdef PMAP_DEBUG
    212 extern int pmap_debug_level;
    213 #endif
    214 
    215 #define KERNEL_PT_SYS		0	/* Page table for mapping proc0 zero page */
    216 #define KERNEL_PT_KERNEL	1	/* Page table for mapping kernel */
    217 #define	KERNEL_PT_KERNEL_NUM	4
    218 #define KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
    219 				        /* Page tables for mapping kernel VM */
    220 #define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
    221 #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
    222 
    223 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
    224 
    225 struct user *proc0paddr;
    226 
    227 /* Prototypes */
    228 
    229 #if 0
    230 void	process_kernel_args(char *);
    231 #endif
    232 
    233 void	consinit(void);
    234 void	kgdb_port_init(void);
    235 void	change_clock(uint32_t v);
    236 
    237 bs_protos(bs_notimpl);
    238 
    239 #include "com.h"
    240 #if NCOM > 0
    241 #include <dev/ic/comreg.h>
    242 #include <dev/ic/comvar.h>
    243 #endif
    244 
    245 #ifndef CONSPEED
    246 #define CONSPEED B115200	/* What RedBoot uses */
    247 #endif
    248 #ifndef CONMODE
    249 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
    250 #endif
    251 
    252 int comcnspeed = CONSPEED;
    253 int comcnmode = CONMODE;
    254 
    255 static struct pxa2x0_gpioconf boarddep_gpioconf[] = {
    256 	{ 44, GPIO_ALT_FN_1_IN },	/* BTCST */
    257 	{ 45, GPIO_ALT_FN_2_OUT },	/* BTRST */
    258 
    259 	{ -1 }
    260 };
    261 static struct pxa2x0_gpioconf *g42xxeb_gpioconf[] = {
    262 	pxa25x_com_btuart_gpioconf,
    263 	pxa25x_com_ffuart_gpioconf,
    264 #if 0
    265 	pxa25x_com_stuart_gpioconf,
    266 	pxa25x_pxaacu_gpioconf,
    267 #endif
    268 	boarddep_gpioconf,
    269 	NULL
    270 };
    271 
    272 /*
    273  * void cpu_reboot(int howto, char *bootstr)
    274  *
    275  * Reboots the system
    276  *
    277  * Deal with any syncing, unmounting, dumping and shutdown hooks,
    278  * then reset the CPU.
    279  */
    280 void
    281 cpu_reboot(int howto, char *bootstr)
    282 {
    283 #ifdef DIAGNOSTIC
    284 	/* info */
    285 	printf("boot: howto=%08x curproc=%p\n", howto, curproc);
    286 #endif
    287 
    288 	/*
    289 	 * If we are still cold then hit the air brakes
    290 	 * and crash to earth fast
    291 	 */
    292 	if (cold) {
    293 		doshutdownhooks();
    294 		printf("The operating system has halted.\n");
    295 		printf("Please press any key to reboot.\n\n");
    296 		cngetc();
    297 		printf("rebooting...\n");
    298 		cpu_reset();
    299 		/*NOTREACHED*/
    300 	}
    301 
    302 	/* Disable console buffering */
    303 /*	cnpollc(1);*/
    304 
    305 	/*
    306 	 * If RB_NOSYNC was not specified sync the discs.
    307 	 * Note: Unless cold is set to 1 here, syslogd will die during the
    308 	 * unmount.  It looks like syslogd is getting woken up only to find
    309 	 * that it cannot page part of the binary in as the filesystem has
    310 	 * been unmounted.
    311 	 */
    312 	if (!(howto & RB_NOSYNC))
    313 		bootsync();
    314 
    315 	/* Say NO to interrupts */
    316 	splhigh();
    317 
    318 	/* Do a dump if requested. */
    319 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
    320 		dumpsys();
    321 
    322 	/* Run any shutdown hooks */
    323 	doshutdownhooks();
    324 
    325 	/* Make sure IRQ's are disabled */
    326 	IRQdisable;
    327 
    328 	if (howto & RB_HALT) {
    329 		printf("The operating system has halted.\n");
    330 		printf("Please press any key to reboot.\n\n");
    331 		cngetc();
    332 	}
    333 
    334 	printf("rebooting...\n");
    335 	cpu_reset();
    336 	/*NOTREACHED*/
    337 }
    338 
    339 static inline
    340 pd_entry_t *
    341 read_ttb(void)
    342 {
    343   long ttb;
    344 
    345   __asm volatile("mrc	p15, 0, %0, c2, c0, 0" : "=r" (ttb));
    346 
    347 
    348   return (pd_entry_t *)(ttb & ~((1<<14)-1));
    349 }
    350 
    351 /*
    352  * Static device mappings. These peripheral registers are mapped at
    353  * fixed virtual addresses very early in initarm() so that we can use
    354  * them while booting the kernel, and stay at the same address
    355  * throughout whole kernel's life time.
    356  *
    357  * We use this table twice; once with bootstrap page table, and once
    358  * with kernel's page table which we build up in initarm().
    359  *
    360  * Since we map these registers into the bootstrap page table using
    361  * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
    362  * registers segment-aligned and segment-rounded in order to avoid
    363  * using the 2nd page tables.
    364  */
    365 
    366 #define	_A(a)	((a) & ~L1_S_OFFSET)
    367 #define	_S(s)	(((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
    368 
    369 static const struct pmap_devmap g42xxeb_devmap[] = {
    370     {
    371 	    G42XXEB_PLDREG_VBASE,
    372 	    _A(G42XXEB_PLDREG_BASE),
    373 	    _S(G42XXEB_PLDREG_SIZE),
    374 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    375     },
    376     {
    377 	    G42XXEB_GPIO_VBASE,
    378 	    _A(PXA2X0_GPIO_BASE),
    379 	    _S(PXA250_GPIO_SIZE),
    380 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    381     },
    382     {
    383 	    G42XXEB_CLKMAN_VBASE,
    384 	    _A(PXA2X0_CLKMAN_BASE),
    385 	    _S(PXA2X0_CLKMAN_SIZE),
    386 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    387     },
    388     {
    389 	    G42XXEB_INTCTL_VBASE,
    390 	    _A(PXA2X0_INTCTL_BASE),
    391 	    _S(PXA2X0_INTCTL_SIZE),
    392 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    393     },
    394     {
    395 	    G42XXEB_FFUART_VBASE,
    396 	    _A(PXA2X0_FFUART_BASE),
    397 	    _S(4 * COM_NPORTS),
    398 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    399     },
    400     {
    401 	    G42XXEB_BTUART_VBASE,
    402 	    _A(PXA2X0_BTUART_BASE),
    403 	    _S(4 * COM_NPORTS),
    404 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    405     },
    406     {0, 0, 0, 0,}
    407 };
    408 
    409 #undef	_A
    410 #undef	_S
    411 
    412 
    413 /*
    414  * u_int initarm(...)
    415  *
    416  * Initial entry point on startup. This gets called before main() is
    417  * entered.
    418  * It should be responsible for setting up everything that must be
    419  * in place when main is called.
    420  * This includes
    421  *   Taking a copy of the boot configuration structure.
    422  *   Initialising the physical console so characters can be printed.
    423  *   Setting up page tables for the kernel
    424  *   Relocating the kernel to the bottom of physical memory
    425  */
    426 u_int
    427 initarm(void *arg)
    428 {
    429 	extern vaddr_t xscale_cache_clean_addr;
    430 	int loop;
    431 	int loop1;
    432 	u_int l1pagetable;
    433 	pv_addr_t kernel_l1pt;
    434 	paddr_t memstart;
    435 	psize_t memsize;
    436 	int led_data = 1;
    437 #ifdef DIAGNOSTIC
    438 	extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */
    439 #endif
    440 
    441 #define LEDSTEP_P() ioreg8_write(G42XXEB_PLDREG_BASE+G42XXEB_LED, led_data++)
    442 #define LEDSTEP() pldreg8_write(G42XXEB_LED, led_data++);
    443 
    444 	/* use physical address until pagetable is set */
    445 	LEDSTEP_P();
    446 
    447 	/* map some peripheral registers at static I/O area */
    448 	pmap_devmap_bootstrap((vaddr_t)read_ttb(), g42xxeb_devmap);
    449 
    450 	LEDSTEP_P();
    451 
    452 	/* start 32.768 kHz OSC */
    453 	ioreg_write(G42XXEB_CLKMAN_VBASE + 0x08, 2);
    454 	/* Get ready for splfoo() */
    455 	pxa2x0_intr_bootstrap(G42XXEB_INTCTL_VBASE);
    456 
    457 	LEDSTEP();
    458 
    459 	/*
    460 	 * Heads up ... Setup the CPU / MMU / TLB functions
    461 	 */
    462 	if (set_cpufuncs())
    463 		panic("cpu not recognized!");
    464 
    465 	LEDSTEP();
    466 
    467 	/*
    468 	 * Okay, RedBoot has provided us with the following memory map:
    469 	 *
    470 	 * Physical Address Range     Description
    471 	 * -----------------------    ----------------------------------
    472 	 * 0x00000000 - 0x01ffffff    flash Memory   (32MB)
    473 	 * 0x04000000 - 0x05ffffff    Application flash Memory  (32MB)
    474 	 * 0x08000000 - 0x080000ff    I/O baseboard registers
    475 	 * 0x0c000000 - 0x0c0fffff    Ethernet Controller
    476 	 * 0x14000000 - 0x17ffffff    Expansion Card (64MB)
    477 	 * 0x40000000 - 0x480fffff    Processor Registers
    478 	 * 0xa0000000 - 0xa3ffffff    SDRAM Bank 0 (64MB)
    479 	 *
    480 	 *
    481 	 * Virtual Address Range    X C B  Description
    482 	 * -----------------------  - - -  ----------------------------------
    483 	 * 0x00000000 - 0x00003fff  N Y Y  SDRAM
    484 	 * 0x00004000 - 0x01ffffff  N Y N  ROM
    485 	 * 0x08000000 - 0x080fffff  N N N  I/O baseboard registers
    486 	 * 0x0a000000 - 0x0a0fffff  N N N  SRAM
    487 	 * 0x40000000 - 0x480fffff  N N N  Processor Registers
    488 	 * 0xa0000000 - 0xa000ffff  N Y N  RedBoot SDRAM
    489 	 * 0xa0017000 - 0xa3ffffff  Y Y Y  SDRAM
    490 	 * 0xc0000000 - 0xcfffffff  Y Y Y  Cache Flush Region
    491 	 * (done by this routine)
    492 	 * 0xfd000000 - 0xfd0000ff  N N N  I/O baseboard registers
    493 	 * 0xfd100000 - 0xfd3fffff  N N N  Processor Registers.
    494 	 * 0xfd400000 - 0xfd4fffff  N N N  FF-UART
    495 	 * 0xfd500000 - 0xfd5fffff  N N N  BT-UART
    496 	 *
    497 	 * RedBoot's first level page table is at 0xa0004000.  There
    498 	 * are also 2 second-level tables at 0xa0008000 and
    499 	 * 0xa0008400.  We will continue to use them until we switch to
    500 	 * our pagetable by setttb().
    501 	 */
    502 
    503 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    504 
    505 	LEDSTEP();
    506 
    507 	/* setup GPIO for BTUART, in case bootloader doesn't take care of it */
    508 	pxa2x0_gpio_bootstrap(G42XXEB_GPIO_VBASE);
    509 	pxa2x0_gpio_config(g42xxeb_gpioconf);
    510 
    511 	LEDSTEP();
    512 
    513 	consinit();
    514 #ifdef KGDB
    515 	LEDSTEP();
    516 	kgdb_port_init();
    517 #endif
    518 
    519 	LEDSTEP();
    520 
    521 	/* Talk to the user */
    522 	printf("\nNetBSD/evbarm (g42xxeb) booting ...\n");
    523 
    524 #if 0
    525 	/*
    526 	 * Examine the boot args string for options we need to know about
    527 	 * now.
    528 	 */
    529 	process_kernel_args((char *)nwbootinfo.bt_args);
    530 #endif
    531 
    532 	memstart = 0xa0000000;
    533 	memsize = 0x04000000;		/* 64MB */
    534 
    535 	printf("initarm: Configuring system ...\n");
    536 
    537 	/* Fake bootconfig structure for the benefit of pmap.c */
    538 	/* XXX must make the memory description h/w independent */
    539 	bootconfig.dramblocks = 1;
    540 	bootconfig.dram[0].address = memstart;
    541 	bootconfig.dram[0].pages = memsize / PAGE_SIZE;
    542 
    543 	/*
    544 	 * Set up the variables that define the availablilty of
    545 	 * physical memory.  For now, we're going to set
    546 	 * physical_freestart to 0xa0200000 (where the kernel
    547 	 * was loaded), and allocate the memory we need downwards.
    548 	 * If we get too close to the L1 table that we set up, we
    549 	 * will panic.  We will update physical_freestart and
    550 	 * physical_freeend later to reflect what pmap_bootstrap()
    551 	 * wants to see.
    552 	 *
    553 	 * XXX pmap_bootstrap() needs an enema.
    554 	 */
    555 	physical_start = bootconfig.dram[0].address;
    556 	physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
    557 
    558 	physical_freestart = 0xa0009000UL;
    559 	physical_freeend = 0xa0200000UL;
    560 
    561 	physmem = (physical_end - physical_start) / PAGE_SIZE;
    562 
    563 #ifdef VERBOSE_INIT_ARM
    564 	/* Tell the user about the memory */
    565 	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
    566 	    physical_start, physical_end - 1);
    567 #endif
    568 
    569 	/*
    570 	 * Okay, the kernel starts 2MB in from the bottom of physical
    571 	 * memory.  We are going to allocate our bootstrap pages downwards
    572 	 * from there.
    573 	 *
    574 	 * We need to allocate some fixed page tables to get the kernel
    575 	 * going.  We allocate one page directory and a number of page
    576 	 * tables and store the physical addresses in the kernel_pt_table
    577 	 * array.
    578 	 *
    579 	 * The kernel page directory must be on a 16K boundary.  The page
    580 	 * tables must be on 4K bounaries.  What we do is allocate the
    581 	 * page directory on the first 16K boundary that we encounter, and
    582 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    583 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    584 	 * least one 16K aligned region.
    585 	 */
    586 
    587 #ifdef VERBOSE_INIT_ARM
    588 	printf("Allocating page tables\n");
    589 #endif
    590 
    591 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
    592 
    593 #ifdef VERBOSE_INIT_ARM
    594 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
    595 	       physical_freestart, free_pages, free_pages);
    596 #endif
    597 
    598 	/* Define a macro to simplify memory allocation */
    599 #define	valloc_pages(var, np)				\
    600 	alloc_pages((var).pv_pa, (np));			\
    601 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
    602 
    603 #define alloc_pages(var, np)				\
    604 	physical_freeend -= ((np) * PAGE_SIZE);		\
    605 	if (physical_freeend < physical_freestart)	\
    606 		panic("initarm: out of memory");	\
    607 	(var) = physical_freeend;			\
    608 	free_pages -= (np);				\
    609 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
    610 
    611 	loop1 = 0;
    612 	kernel_l1pt.pv_pa = 0;
    613 	kernel_l1pt.pv_va = 0;
    614 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
    615 		/* Are we 16KB aligned for an L1 ? */
    616 		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
    617 		    && kernel_l1pt.pv_pa == 0) {
    618 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
    619 		} else {
    620 			valloc_pages(kernel_pt_table[loop1],
    621 			    L2_TABLE_SIZE / PAGE_SIZE);
    622 			++loop1;
    623 		}
    624 	}
    625 
    626 	/* This should never be able to happen but better confirm that. */
    627 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
    628 		panic("initarm: Failed to align the kernel page directory");
    629 
    630 	LEDSTEP();
    631 
    632 	/*
    633 	 * Allocate a page for the system page mapped to V0x00000000
    634 	 * This page will just contain the system vectors and can be
    635 	 * shared by all processes.
    636 	 */
    637 	alloc_pages(systempage.pv_pa, 1);
    638 
    639 	/* Allocate stacks for all modes */
    640 	valloc_pages(irqstack, IRQ_STACK_SIZE);
    641 	valloc_pages(abtstack, ABT_STACK_SIZE);
    642 	valloc_pages(undstack, UND_STACK_SIZE);
    643 	valloc_pages(kernelstack, UPAGES);
    644 
    645 	/* Allocate enough pages for cleaning the Mini-Data cache. */
    646 	KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
    647 	valloc_pages(minidataclean, 1);
    648 
    649 #ifdef VERBOSE_INIT_ARM
    650 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
    651 	    irqstack.pv_va);
    652 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
    653 	    abtstack.pv_va);
    654 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
    655 	    undstack.pv_va);
    656 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
    657 	    kernelstack.pv_va);
    658 #endif
    659 
    660 	/*
    661 	 * XXX Defer this to later so that we can reclaim the memory
    662 	 * XXX used by the RedBoot page tables.
    663 	 */
    664 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
    665 
    666 	/*
    667 	 * Ok we have allocated physical pages for the primary kernel
    668 	 * page tables
    669 	 */
    670 
    671 #ifdef VERBOSE_INIT_ARM
    672 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    673 #endif
    674 
    675 	/*
    676 	 * Now we start construction of the L1 page table
    677 	 * We start by mapping the L2 page tables into the L1.
    678 	 * This means that we can replace L1 mappings later on if necessary
    679 	 */
    680 	l1pagetable = kernel_l1pt.pv_pa;
    681 
    682 	/* Map the L2 pages tables in the L1 page table */
    683 	pmap_link_l2pt(l1pagetable, 0x00000000,
    684 	    &kernel_pt_table[KERNEL_PT_SYS]);
    685 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
    686 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
    687 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
    688 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
    689 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
    690 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
    691 
    692 	/* update the top of the kernel VM */
    693 	pmap_curmaxkvaddr =
    694 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
    695 
    696 #ifdef VERBOSE_INIT_ARM
    697 	printf("Mapping kernel\n");
    698 #endif
    699 
    700 	/* Now we fill in the L2 pagetable for the kernel static code/data */
    701 	{
    702 		extern char etext[], _end[];
    703 		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
    704 		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
    705 		u_int logical;
    706 
    707 		textsize = (textsize + PGOFSET) & ~PGOFSET;
    708 		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
    709 
    710 		logical = 0x00200000;	/* offset of kernel in RAM */
    711 
    712 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    713 		    physical_start + logical, textsize,
    714 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    715 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    716 		    physical_start + logical, totalsize - textsize,
    717 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    718 	}
    719 
    720 #ifdef VERBOSE_INIT_ARM
    721 	printf("Constructing L2 page tables\n");
    722 #endif
    723 
    724 	/* Map the stack pages */
    725 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
    726 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    727 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
    728 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    729 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
    730 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    731 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
    732 	    UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
    733 
    734 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
    735 	    L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
    736 
    737 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
    738 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
    739 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
    740 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    741 	}
    742 
    743 	/* Map the Mini-Data cache clean area. */
    744 	xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
    745 	    minidataclean.pv_pa);
    746 
    747 	/* Map the vector page. */
    748 #if 1
    749 	/* MULTI-ICE requires that page 0 is NC/NB so that it can download the
    750 	 * cache-clean code there.  */
    751 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
    752 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
    753 #else
    754 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
    755 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    756 #endif
    757 
    758 	/*
    759 	 * map integrated peripherals at same address in l1pagetable
    760 	 * so that we can continue to use console.
    761 	 */
    762 	pmap_devmap_bootstrap(l1pagetable, g42xxeb_devmap);
    763 
    764 	/*
    765 	 * Give the XScale global cache clean code an appropriately
    766 	 * sized chunk of unmapped VA space starting at 0xff000000
    767 	 * (our device mappings end before this address).
    768 	 */
    769 	xscale_cache_clean_addr = 0xff000000U;
    770 
    771 	/*
    772 	 * Now we have the real page tables in place so we can switch to them.
    773 	 * Once this is done we will be running with the REAL kernel page
    774 	 * tables.
    775 	 */
    776 
    777 	/*
    778 	 * Update the physical_freestart/physical_freeend/free_pages
    779 	 * variables.
    780 	 */
    781 	{
    782 		extern char _end[];
    783 
    784 		physical_freestart = physical_start +
    785 		    (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
    786 		     KERNEL_BASE);
    787 		physical_freeend = physical_end;
    788 		free_pages =
    789 		    (physical_freeend - physical_freestart) / PAGE_SIZE;
    790 	}
    791 
    792 	/* Switch tables */
    793 #ifdef VERBOSE_INIT_ARM
    794 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
    795 	       physical_freestart, free_pages, free_pages);
    796 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
    797 #endif
    798 	LEDSTEP();
    799 
    800 	setttb(kernel_l1pt.pv_pa);
    801 	cpu_tlb_flushID();
    802 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
    803 	LEDSTEP();
    804 
    805 	/*
    806 	 * Moved from cpu_startup() as data_abort_handler() references
    807 	 * this during uvm init
    808 	 */
    809 	proc0paddr = (struct user *)kernelstack.pv_va;
    810 	lwp0.l_addr = proc0paddr;
    811 
    812 #ifdef VERBOSE_INIT_ARM
    813 	printf("bootstrap done.\n");
    814 #endif
    815 
    816 	arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
    817 
    818 	/*
    819 	 * Pages were allocated during the secondary bootstrap for the
    820 	 * stacks for different CPU modes.
    821 	 * We must now set the r13 registers in the different CPU modes to
    822 	 * point to these stacks.
    823 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
    824 	 * of the stack memory.
    825 	 */
    826 #ifdef	VERBOSE_INIT_ARM
    827 	printf("init subsystems: stacks ");
    828 #endif
    829 
    830 	set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
    831 	set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
    832 	set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
    833 
    834 	/*
    835 	 * Well we should set a data abort handler.
    836 	 * Once things get going this will change as we will need a proper
    837 	 * handler.
    838 	 * Until then we will use a handler that just panics but tells us
    839 	 * why.
    840 	 * Initialisation of the vectors will just panic on a data abort.
    841 	 * This just fills in a slighly better one.
    842 	 */
    843 #ifdef	VERBOSE_INIT_ARM
    844 	printf("vectors ");
    845 #endif
    846 	data_abort_handler_address = (u_int)data_abort_handler;
    847 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
    848 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
    849 
    850 	/* Initialise the undefined instruction handlers */
    851 #ifdef	VERBOSE_INIT_ARM
    852 	printf("undefined ");
    853 #endif
    854 	undefined_init();
    855 
    856 	/* Load memory into UVM. */
    857 #ifdef	VERBOSE_INIT_ARM
    858 	printf("page ");
    859 #endif
    860 	uvm_setpagesize();	/* initialize PAGE_SIZE-dependent variables */
    861 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
    862 	    atop(physical_freestart), atop(physical_freeend),
    863 	    VM_FREELIST_DEFAULT);
    864 
    865 	/* Boot strap pmap telling it where the kernel page table is */
    866 #ifdef	VERBOSE_INIT_ARM
    867 	printf("pmap ");
    868 #endif
    869 	LEDSTEP();
    870 	pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE,
    871 	    KERNEL_VM_BASE + KERNEL_VM_SIZE);
    872 	LEDSTEP();
    873 
    874 #ifdef __HAVE_MEMORY_DISK__
    875 	md_root_setconf(memory_disk, sizeof memory_disk);
    876 #endif
    877 
    878 #ifdef BOOTHOWTO
    879 	boothowto |= BOOTHOWTO;
    880 #endif
    881 
    882 	{
    883 		uint8_t sw = pldreg8_read(G42XXEB_DIPSW);
    884 
    885 		if (0 == (sw & (1<<0)))
    886 			boothowto ^= RB_KDB;
    887 		if (0 == (sw & (1<<1)))
    888 			boothowto ^= RB_SINGLE;
    889 	}
    890 
    891 	LEDSTEP();
    892 
    893 #ifdef KGDB
    894 	if (boothowto & RB_KDB) {
    895 		kgdb_debug_init = 1;
    896 		kgdb_connect(1);
    897 	}
    898 #endif
    899 
    900 #ifdef DDB
    901 	db_machine_init();
    902 
    903 	/* Firmware doesn't load symbols. */
    904 	ddb_init(0, NULL, NULL);
    905 
    906 	if (boothowto & RB_KDB)
    907 		Debugger();
    908 #endif
    909 
    910 	pldreg8_write(G42XXEB_LED, 0);
    911 
    912 	/* We return the new stack pointer address */
    913 	return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
    914 }
    915 
    916 #if 0
    917 void
    918 process_kernel_args(char *args)
    919 {
    920 
    921 	boothowto = 0;
    922 
    923 	/* Make a local copy of the bootargs */
    924 	strncpy(bootargs, args, MAX_BOOT_STRING);
    925 
    926 	args = bootargs;
    927 	boot_file = bootargs;
    928 
    929 	/* Skip the kernel image filename */
    930 	while (*args != ' ' && *args != 0)
    931 		++args;
    932 
    933 	if (*args != 0)
    934 		*args++ = 0;
    935 
    936 	while (*args == ' ')
    937 		++args;
    938 
    939 	boot_args = args;
    940 
    941 	printf("bootfile: %s\n", boot_file);
    942 	printf("bootargs: %s\n", boot_args);
    943 
    944 	parse_mi_bootargs(boot_args);
    945 }
    946 #endif
    947 
    948 #ifdef KGDB
    949 #ifndef KGDB_DEVNAME
    950 #define KGDB_DEVNAME "ffuart"
    951 #endif
    952 const char kgdb_devname[] = KGDB_DEVNAME;
    953 
    954 #if (NCOM > 0)
    955 #ifndef KGDB_DEVMODE
    956 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
    957 #endif
    958 int comkgdbmode = KGDB_DEVMODE;
    959 #endif /* NCOM */
    960 
    961 #endif /* KGDB */
    962 
    963 
    964 void
    965 consinit(void)
    966 {
    967 	static int consinit_called = 0;
    968 	uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN);
    969 #if 0
    970 	char *console = CONSDEVNAME;
    971 #endif
    972 
    973 	if (consinit_called != 0)
    974 		return;
    975 
    976 	consinit_called = 1;
    977 
    978 #if NCOM > 0
    979 
    980 #ifdef FFUARTCONSOLE
    981 #ifdef KGDB
    982 	if (0 == strcmp(kgdb_devname, "ffuart")){
    983 		/* port is reserved for kgdb */
    984 	} else
    985 #endif
    986 	if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE,
    987 		comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
    988 #if 0
    989 		pxa2x0_clkman_config(CKEN_FFUART, 1);
    990 #else
    991 		ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN,
    992 		    ckenreg|CKEN_FFUART);
    993 #endif
    994 
    995 		return;
    996 	}
    997 #endif /* FFUARTCONSOLE */
    998 
    999 #ifdef BTUARTCONSOLE
   1000 #ifdef KGDB
   1001 	if (0 == strcmp(kgdb_devname, "btuart")) {
   1002 		/* port is reserved for kgdb */
   1003 	} else
   1004 #endif
   1005 	if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE,
   1006 		comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
   1007 		ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN,
   1008 		    ckenreg|CKEN_BTUART);
   1009 		return;
   1010 	}
   1011 #endif /* BTUARTCONSOLE */
   1012 
   1013 
   1014 #endif /* NCOM */
   1015 
   1016 }
   1017 
   1018 #ifdef KGDB
   1019 void
   1020 kgdb_port_init(void)
   1021 {
   1022 #if (NCOM > 0) && defined(COM_PXA2X0)
   1023 	paddr_t paddr = 0;
   1024 	uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN);
   1025 
   1026 	if (0 == strcmp(kgdb_devname, "ffuart")) {
   1027 		paddr = PXA2X0_FFUART_BASE;
   1028 		ckenreg |= CKEN_FFUART;
   1029 	}
   1030 	else if (0 == strcmp(kgdb_devname, "btuart")) {
   1031 		paddr = PXA2X0_BTUART_BASE;
   1032 		ckenreg |= CKEN_BTUART;
   1033 	}
   1034 
   1035 	if (paddr &&
   1036 	    0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr,
   1037 		kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) {
   1038 
   1039 		ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg);
   1040 
   1041 	}
   1042 
   1043 #endif
   1044 }
   1045 #endif
   1046 
   1047