g42xxeb_machdep.c revision 1.14 1 /* $NetBSD: g42xxeb_machdep.c,v 1.14 2008/04/27 18:58:46 matt Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2003, 2004, 2005 Genetec Corporation.
5 * All rights reserved.
6 *
7 * Written by Hiroyuki Bessho for Genetec Corporation.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. The name of Genetec Corporation may not be used to endorse or
18 * promote products derived from this software without specific prior
19 * written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 *
33 * Machine dependant functions for kernel setup for Genetec G4250EBX
34 * evaluation board.
35 *
36 * Based on iq80310_machhdep.c
37 */
38 /*
39 * Copyright (c) 2001 Wasabi Systems, Inc.
40 * All rights reserved.
41 *
42 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed for the NetBSD Project by
55 * Wasabi Systems, Inc.
56 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
57 * or promote products derived from this software without specific prior
58 * written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
62 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
63 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
64 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
65 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
66 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
67 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
68 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
69 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
70 * POSSIBILITY OF SUCH DAMAGE.
71 */
72
73 /*
74 * Copyright (c) 1997,1998 Mark Brinicombe.
75 * Copyright (c) 1997,1998 Causality Limited.
76 * All rights reserved.
77 *
78 * Redistribution and use in source and binary forms, with or without
79 * modification, are permitted provided that the following conditions
80 * are met:
81 * 1. Redistributions of source code must retain the above copyright
82 * notice, this list of conditions and the following disclaimer.
83 * 2. Redistributions in binary form must reproduce the above copyright
84 * notice, this list of conditions and the following disclaimer in the
85 * documentation and/or other materials provided with the distribution.
86 * 3. All advertising materials mentioning features or use of this software
87 * must display the following acknowledgement:
88 * This product includes software developed by Mark Brinicombe
89 * for the NetBSD Project.
90 * 4. The name of the company nor the name of the author may be used to
91 * endorse or promote products derived from this software without specific
92 * prior written permission.
93 *
94 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
95 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
96 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
97 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
98 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
99 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
100 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
101 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
102 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
103 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
104 * SUCH DAMAGE.
105 *
106 * Machine dependant functions for kernel setup for Intel IQ80310 evaluation
107 * boards using RedBoot firmware.
108 */
109
110 #include "opt_ddb.h"
111 #include "opt_kgdb.h"
112 #include "opt_pmap_debug.h"
113 #include "opt_md.h"
114 #include "opt_com.h"
115 #include "md.h"
116 #include "lcd.h"
117
118 #include <sys/param.h>
119 #include <sys/device.h>
120 #include <sys/systm.h>
121 #include <sys/kernel.h>
122 #include <sys/exec.h>
123 #include <sys/proc.h>
124 #include <sys/msgbuf.h>
125 #include <sys/reboot.h>
126 #include <sys/termios.h>
127 #include <sys/ksyms.h>
128
129 #include <uvm/uvm_extern.h>
130
131 #include <sys/conf.h>
132 #include <dev/cons.h>
133 #include <dev/md.h>
134
135 #include <machine/db_machdep.h>
136 #include <ddb/db_sym.h>
137 #include <ddb/db_extern.h>
138 #ifdef KGDB
139 #include <sys/kgdb.h>
140 #endif
141
142 #include <machine/bootconfig.h>
143 #include <machine/bus.h>
144 #include <machine/cpu.h>
145 #include <machine/frame.h>
146 #include <arm/undefined.h>
147
148 #include <arm/arm32/machdep.h>
149
150 #include <arm/xscale/pxa2x0reg.h>
151 #include <arm/xscale/pxa2x0var.h>
152 #include <arm/xscale/pxa2x0_gpio.h>
153 #include <evbarm/g42xxeb/g42xxeb_reg.h>
154 #include <evbarm/g42xxeb/g42xxeb_var.h>
155
156 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
157 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
158 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
159
160 /*
161 * The range 0xc1000000 - 0xccffffff is available for kernel VM space
162 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
163 */
164 #define KERNEL_VM_SIZE 0x0C000000
165
166
167 /*
168 * Address to call from cpu_reset() to reset the machine.
169 * This is machine architecture dependant as it varies depending
170 * on where the ROM appears when you turn the MMU off.
171 */
172
173 u_int cpu_reset_address = 0;
174
175 /* Define various stack sizes in pages */
176 #define IRQ_STACK_SIZE 1
177 #define ABT_STACK_SIZE 1
178 #define UND_STACK_SIZE 1
179
180 BootConfig bootconfig; /* Boot config storage */
181 char *boot_args = NULL;
182 char *boot_file = NULL;
183
184 vm_offset_t physical_start;
185 vm_offset_t physical_freestart;
186 vm_offset_t physical_freeend;
187 vm_offset_t physical_end;
188 u_int free_pages;
189 vm_offset_t pagetables_start;
190 int physmem = 0;
191
192 /*int debug_flags;*/
193 #ifndef PMAP_STATIC_L1S
194 int max_processes = 64; /* Default number */
195 #endif /* !PMAP_STATIC_L1S */
196
197 /* Physical and virtual addresses for some global pages */
198 pv_addr_t irqstack;
199 pv_addr_t undstack;
200 pv_addr_t abtstack;
201 pv_addr_t kernelstack;
202 pv_addr_t minidataclean;
203
204 vm_offset_t msgbufphys;
205
206 extern u_int data_abort_handler_address;
207 extern u_int prefetch_abort_handler_address;
208 extern u_int undefined_handler_address;
209
210 #ifdef PMAP_DEBUG
211 extern int pmap_debug_level;
212 #endif
213
214 #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
215 #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
216 #define KERNEL_PT_KERNEL_NUM 4
217 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
218 /* Page tables for mapping kernel VM */
219 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
220 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
221
222 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
223
224 struct user *proc0paddr;
225
226 /* Prototypes */
227
228 #if 0
229 void process_kernel_args(char *);
230 #endif
231
232 void consinit(void);
233 void kgdb_port_init(void);
234 void change_clock(uint32_t v);
235
236 bs_protos(bs_notimpl);
237
238 #include "com.h"
239 #if NCOM > 0
240 #include <dev/ic/comreg.h>
241 #include <dev/ic/comvar.h>
242 #endif
243
244 #ifndef CONSPEED
245 #define CONSPEED B115200 /* What RedBoot uses */
246 #endif
247 #ifndef CONMODE
248 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
249 #endif
250
251 int comcnspeed = CONSPEED;
252 int comcnmode = CONMODE;
253
254 static struct pxa2x0_gpioconf boarddep_gpioconf[] = {
255 { 44, GPIO_ALT_FN_1_IN }, /* BTCST */
256 { 45, GPIO_ALT_FN_2_OUT }, /* BTRST */
257
258 { -1 }
259 };
260 static struct pxa2x0_gpioconf *g42xxeb_gpioconf[] = {
261 pxa25x_com_btuart_gpioconf,
262 pxa25x_com_ffuart_gpioconf,
263 #if 0
264 pxa25x_com_stuart_gpioconf,
265 pxa25x_pxaacu_gpioconf,
266 #endif
267 boarddep_gpioconf,
268 NULL
269 };
270
271 /*
272 * void cpu_reboot(int howto, char *bootstr)
273 *
274 * Reboots the system
275 *
276 * Deal with any syncing, unmounting, dumping and shutdown hooks,
277 * then reset the CPU.
278 */
279 void
280 cpu_reboot(int howto, char *bootstr)
281 {
282 #ifdef DIAGNOSTIC
283 /* info */
284 printf("boot: howto=%08x curproc=%p\n", howto, curproc);
285 #endif
286
287 /*
288 * If we are still cold then hit the air brakes
289 * and crash to earth fast
290 */
291 if (cold) {
292 doshutdownhooks();
293 printf("The operating system has halted.\n");
294 printf("Please press any key to reboot.\n\n");
295 cngetc();
296 printf("rebooting...\n");
297 cpu_reset();
298 /*NOTREACHED*/
299 }
300
301 /* Disable console buffering */
302 /* cnpollc(1);*/
303
304 /*
305 * If RB_NOSYNC was not specified sync the discs.
306 * Note: Unless cold is set to 1 here, syslogd will die during the
307 * unmount. It looks like syslogd is getting woken up only to find
308 * that it cannot page part of the binary in as the filesystem has
309 * been unmounted.
310 */
311 if (!(howto & RB_NOSYNC))
312 bootsync();
313
314 /* Say NO to interrupts */
315 splhigh();
316
317 /* Do a dump if requested. */
318 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
319 dumpsys();
320
321 /* Run any shutdown hooks */
322 doshutdownhooks();
323
324 /* Make sure IRQ's are disabled */
325 IRQdisable;
326
327 if (howto & RB_HALT) {
328 printf("The operating system has halted.\n");
329 printf("Please press any key to reboot.\n\n");
330 cngetc();
331 }
332
333 printf("rebooting...\n");
334 cpu_reset();
335 /*NOTREACHED*/
336 }
337
338 static inline
339 pd_entry_t *
340 read_ttb(void)
341 {
342 long ttb;
343
344 __asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r" (ttb));
345
346
347 return (pd_entry_t *)(ttb & ~((1<<14)-1));
348 }
349
350 /*
351 * Static device mappings. These peripheral registers are mapped at
352 * fixed virtual addresses very early in initarm() so that we can use
353 * them while booting the kernel, and stay at the same address
354 * throughout whole kernel's life time.
355 *
356 * We use this table twice; once with bootstrap page table, and once
357 * with kernel's page table which we build up in initarm().
358 *
359 * Since we map these registers into the bootstrap page table using
360 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
361 * registers segment-aligned and segment-rounded in order to avoid
362 * using the 2nd page tables.
363 */
364
365 #define _A(a) ((a) & ~L1_S_OFFSET)
366 #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
367
368 static const struct pmap_devmap g42xxeb_devmap[] = {
369 {
370 G42XXEB_PLDREG_VBASE,
371 _A(G42XXEB_PLDREG_BASE),
372 _S(G42XXEB_PLDREG_SIZE),
373 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
374 },
375 {
376 G42XXEB_GPIO_VBASE,
377 _A(PXA2X0_GPIO_BASE),
378 _S(PXA250_GPIO_SIZE),
379 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
380 },
381 {
382 G42XXEB_CLKMAN_VBASE,
383 _A(PXA2X0_CLKMAN_BASE),
384 _S(PXA2X0_CLKMAN_SIZE),
385 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
386 },
387 {
388 G42XXEB_INTCTL_VBASE,
389 _A(PXA2X0_INTCTL_BASE),
390 _S(PXA2X0_INTCTL_SIZE),
391 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
392 },
393 {
394 G42XXEB_FFUART_VBASE,
395 _A(PXA2X0_FFUART_BASE),
396 _S(4 * COM_NPORTS),
397 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
398 },
399 {
400 G42XXEB_BTUART_VBASE,
401 _A(PXA2X0_BTUART_BASE),
402 _S(4 * COM_NPORTS),
403 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
404 },
405 {0, 0, 0, 0,}
406 };
407
408 #undef _A
409 #undef _S
410
411
412 /*
413 * u_int initarm(...)
414 *
415 * Initial entry point on startup. This gets called before main() is
416 * entered.
417 * It should be responsible for setting up everything that must be
418 * in place when main is called.
419 * This includes
420 * Taking a copy of the boot configuration structure.
421 * Initialising the physical console so characters can be printed.
422 * Setting up page tables for the kernel
423 * Relocating the kernel to the bottom of physical memory
424 */
425 u_int
426 initarm(void *arg)
427 {
428 extern vaddr_t xscale_cache_clean_addr;
429 int loop;
430 int loop1;
431 u_int l1pagetable;
432 paddr_t memstart;
433 psize_t memsize;
434 int led_data = 1;
435 #ifdef DIAGNOSTIC
436 extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */
437 #endif
438
439 #define LEDSTEP_P() ioreg8_write(G42XXEB_PLDREG_BASE+G42XXEB_LED, led_data++)
440 #define LEDSTEP() pldreg8_write(G42XXEB_LED, led_data++);
441
442 /* use physical address until pagetable is set */
443 LEDSTEP_P();
444
445 /* map some peripheral registers at static I/O area */
446 pmap_devmap_bootstrap((vaddr_t)read_ttb(), g42xxeb_devmap);
447
448 LEDSTEP_P();
449
450 /* start 32.768 kHz OSC */
451 ioreg_write(G42XXEB_CLKMAN_VBASE + 0x08, 2);
452 /* Get ready for splfoo() */
453 pxa2x0_intr_bootstrap(G42XXEB_INTCTL_VBASE);
454
455 LEDSTEP();
456
457 /*
458 * Heads up ... Setup the CPU / MMU / TLB functions
459 */
460 if (set_cpufuncs())
461 panic("cpu not recognized!");
462
463 LEDSTEP();
464
465 /*
466 * Okay, RedBoot has provided us with the following memory map:
467 *
468 * Physical Address Range Description
469 * ----------------------- ----------------------------------
470 * 0x00000000 - 0x01ffffff flash Memory (32MB)
471 * 0x04000000 - 0x05ffffff Application flash Memory (32MB)
472 * 0x08000000 - 0x080000ff I/O baseboard registers
473 * 0x0c000000 - 0x0c0fffff Ethernet Controller
474 * 0x14000000 - 0x17ffffff Expansion Card (64MB)
475 * 0x40000000 - 0x480fffff Processor Registers
476 * 0xa0000000 - 0xa3ffffff SDRAM Bank 0 (64MB)
477 *
478 *
479 * Virtual Address Range X C B Description
480 * ----------------------- - - - ----------------------------------
481 * 0x00000000 - 0x00003fff N Y Y SDRAM
482 * 0x00004000 - 0x01ffffff N Y N ROM
483 * 0x08000000 - 0x080fffff N N N I/O baseboard registers
484 * 0x0a000000 - 0x0a0fffff N N N SRAM
485 * 0x40000000 - 0x480fffff N N N Processor Registers
486 * 0xa0000000 - 0xa000ffff N Y N RedBoot SDRAM
487 * 0xa0017000 - 0xa3ffffff Y Y Y SDRAM
488 * 0xc0000000 - 0xcfffffff Y Y Y Cache Flush Region
489 * (done by this routine)
490 * 0xfd000000 - 0xfd0000ff N N N I/O baseboard registers
491 * 0xfd100000 - 0xfd3fffff N N N Processor Registers.
492 * 0xfd400000 - 0xfd4fffff N N N FF-UART
493 * 0xfd500000 - 0xfd5fffff N N N BT-UART
494 *
495 * RedBoot's first level page table is at 0xa0004000. There
496 * are also 2 second-level tables at 0xa0008000 and
497 * 0xa0008400. We will continue to use them until we switch to
498 * our pagetable by setttb().
499 */
500
501 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
502
503 LEDSTEP();
504
505 /* setup GPIO for BTUART, in case bootloader doesn't take care of it */
506 pxa2x0_gpio_bootstrap(G42XXEB_GPIO_VBASE);
507 pxa2x0_gpio_config(g42xxeb_gpioconf);
508
509 LEDSTEP();
510
511 consinit();
512 #ifdef KGDB
513 LEDSTEP();
514 kgdb_port_init();
515 #endif
516
517 LEDSTEP();
518
519 /* Talk to the user */
520 printf("\nNetBSD/evbarm (g42xxeb) booting ...\n");
521
522 #if 0
523 /*
524 * Examine the boot args string for options we need to know about
525 * now.
526 */
527 process_kernel_args((char *)nwbootinfo.bt_args);
528 #endif
529
530 memstart = 0xa0000000;
531 memsize = 0x04000000; /* 64MB */
532
533 printf("initarm: Configuring system ...\n");
534
535 /* Fake bootconfig structure for the benefit of pmap.c */
536 /* XXX must make the memory description h/w independent */
537 bootconfig.dramblocks = 1;
538 bootconfig.dram[0].address = memstart;
539 bootconfig.dram[0].pages = memsize / PAGE_SIZE;
540
541 /*
542 * Set up the variables that define the availablilty of
543 * physical memory. For now, we're going to set
544 * physical_freestart to 0xa0200000 (where the kernel
545 * was loaded), and allocate the memory we need downwards.
546 * If we get too close to the L1 table that we set up, we
547 * will panic. We will update physical_freestart and
548 * physical_freeend later to reflect what pmap_bootstrap()
549 * wants to see.
550 *
551 * XXX pmap_bootstrap() needs an enema.
552 */
553 physical_start = bootconfig.dram[0].address;
554 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
555
556 physical_freestart = 0xa0009000UL;
557 physical_freeend = 0xa0200000UL;
558
559 physmem = (physical_end - physical_start) / PAGE_SIZE;
560
561 #ifdef VERBOSE_INIT_ARM
562 /* Tell the user about the memory */
563 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
564 physical_start, physical_end - 1);
565 #endif
566
567 /*
568 * Okay, the kernel starts 2MB in from the bottom of physical
569 * memory. We are going to allocate our bootstrap pages downwards
570 * from there.
571 *
572 * We need to allocate some fixed page tables to get the kernel
573 * going. We allocate one page directory and a number of page
574 * tables and store the physical addresses in the kernel_pt_table
575 * array.
576 *
577 * The kernel page directory must be on a 16K boundary. The page
578 * tables must be on 4K bounaries. What we do is allocate the
579 * page directory on the first 16K boundary that we encounter, and
580 * the page tables on 4K boundaries otherwise. Since we allocate
581 * at least 3 L2 page tables, we are guaranteed to encounter at
582 * least one 16K aligned region.
583 */
584
585 #ifdef VERBOSE_INIT_ARM
586 printf("Allocating page tables\n");
587 #endif
588
589 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
590
591 #ifdef VERBOSE_INIT_ARM
592 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
593 physical_freestart, free_pages, free_pages);
594 #endif
595
596 /* Define a macro to simplify memory allocation */
597 #define valloc_pages(var, np) \
598 alloc_pages((var).pv_pa, (np)); \
599 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
600
601 #define alloc_pages(var, np) \
602 physical_freeend -= ((np) * PAGE_SIZE); \
603 if (physical_freeend < physical_freestart) \
604 panic("initarm: out of memory"); \
605 (var) = physical_freeend; \
606 free_pages -= (np); \
607 memset((char *)(var), 0, ((np) * PAGE_SIZE));
608
609 loop1 = 0;
610 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
611 /* Are we 16KB aligned for an L1 ? */
612 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
613 && kernel_l1pt.pv_pa == 0) {
614 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
615 } else {
616 valloc_pages(kernel_pt_table[loop1],
617 L2_TABLE_SIZE / PAGE_SIZE);
618 ++loop1;
619 }
620 }
621
622 /* This should never be able to happen but better confirm that. */
623 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
624 panic("initarm: Failed to align the kernel page directory");
625
626 LEDSTEP();
627
628 /*
629 * Allocate a page for the system page mapped to V0x00000000
630 * This page will just contain the system vectors and can be
631 * shared by all processes.
632 */
633 alloc_pages(systempage.pv_pa, 1);
634
635 /* Allocate stacks for all modes */
636 valloc_pages(irqstack, IRQ_STACK_SIZE);
637 valloc_pages(abtstack, ABT_STACK_SIZE);
638 valloc_pages(undstack, UND_STACK_SIZE);
639 valloc_pages(kernelstack, UPAGES);
640
641 /* Allocate enough pages for cleaning the Mini-Data cache. */
642 KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
643 valloc_pages(minidataclean, 1);
644
645 #ifdef VERBOSE_INIT_ARM
646 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
647 irqstack.pv_va);
648 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
649 abtstack.pv_va);
650 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
651 undstack.pv_va);
652 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
653 kernelstack.pv_va);
654 #endif
655
656 /*
657 * XXX Defer this to later so that we can reclaim the memory
658 * XXX used by the RedBoot page tables.
659 */
660 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
661
662 /*
663 * Ok we have allocated physical pages for the primary kernel
664 * page tables
665 */
666
667 #ifdef VERBOSE_INIT_ARM
668 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
669 #endif
670
671 /*
672 * Now we start construction of the L1 page table
673 * We start by mapping the L2 page tables into the L1.
674 * This means that we can replace L1 mappings later on if necessary
675 */
676 l1pagetable = kernel_l1pt.pv_pa;
677
678 /* Map the L2 pages tables in the L1 page table */
679 pmap_link_l2pt(l1pagetable, 0x00000000,
680 &kernel_pt_table[KERNEL_PT_SYS]);
681 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
682 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
683 &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
684 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
685 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
686 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
687
688 /* update the top of the kernel VM */
689 pmap_curmaxkvaddr =
690 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
691
692 #ifdef VERBOSE_INIT_ARM
693 printf("Mapping kernel\n");
694 #endif
695
696 /* Now we fill in the L2 pagetable for the kernel static code/data */
697 {
698 extern char etext[], _end[];
699 size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
700 size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
701 u_int logical;
702
703 textsize = (textsize + PGOFSET) & ~PGOFSET;
704 totalsize = (totalsize + PGOFSET) & ~PGOFSET;
705
706 logical = 0x00200000; /* offset of kernel in RAM */
707
708 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
709 physical_start + logical, textsize,
710 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
711 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
712 physical_start + logical, totalsize - textsize,
713 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
714 }
715
716 #ifdef VERBOSE_INIT_ARM
717 printf("Constructing L2 page tables\n");
718 #endif
719
720 /* Map the stack pages */
721 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
722 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
723 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
724 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
725 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
726 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
727 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
728 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
729
730 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
731 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
732
733 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
734 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
735 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
736 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
737 }
738
739 /* Map the Mini-Data cache clean area. */
740 xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
741 minidataclean.pv_pa);
742
743 /* Map the vector page. */
744 #if 1
745 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the
746 * cache-clean code there. */
747 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
748 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
749 #else
750 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
751 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
752 #endif
753
754 /*
755 * map integrated peripherals at same address in l1pagetable
756 * so that we can continue to use console.
757 */
758 pmap_devmap_bootstrap(l1pagetable, g42xxeb_devmap);
759
760 /*
761 * Give the XScale global cache clean code an appropriately
762 * sized chunk of unmapped VA space starting at 0xff000000
763 * (our device mappings end before this address).
764 */
765 xscale_cache_clean_addr = 0xff000000U;
766
767 /*
768 * Now we have the real page tables in place so we can switch to them.
769 * Once this is done we will be running with the REAL kernel page
770 * tables.
771 */
772
773 /*
774 * Update the physical_freestart/physical_freeend/free_pages
775 * variables.
776 */
777 {
778 extern char _end[];
779
780 physical_freestart = physical_start +
781 (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
782 KERNEL_BASE);
783 physical_freeend = physical_end;
784 free_pages =
785 (physical_freeend - physical_freestart) / PAGE_SIZE;
786 }
787
788 /* Switch tables */
789 #ifdef VERBOSE_INIT_ARM
790 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
791 physical_freestart, free_pages, free_pages);
792 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
793 #endif
794 LEDSTEP();
795
796 setttb(kernel_l1pt.pv_pa);
797 cpu_tlb_flushID();
798 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
799 LEDSTEP();
800
801 /*
802 * Moved from cpu_startup() as data_abort_handler() references
803 * this during uvm init
804 */
805 proc0paddr = (struct user *)kernelstack.pv_va;
806 lwp0.l_addr = proc0paddr;
807
808 #ifdef VERBOSE_INIT_ARM
809 printf("bootstrap done.\n");
810 #endif
811
812 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
813
814 /*
815 * Pages were allocated during the secondary bootstrap for the
816 * stacks for different CPU modes.
817 * We must now set the r13 registers in the different CPU modes to
818 * point to these stacks.
819 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
820 * of the stack memory.
821 */
822 #ifdef VERBOSE_INIT_ARM
823 printf("init subsystems: stacks ");
824 #endif
825
826 set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
827 set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
828 set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
829
830 /*
831 * Well we should set a data abort handler.
832 * Once things get going this will change as we will need a proper
833 * handler.
834 * Until then we will use a handler that just panics but tells us
835 * why.
836 * Initialisation of the vectors will just panic on a data abort.
837 * This just fills in a slighly better one.
838 */
839 #ifdef VERBOSE_INIT_ARM
840 printf("vectors ");
841 #endif
842 data_abort_handler_address = (u_int)data_abort_handler;
843 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
844 undefined_handler_address = (u_int)undefinedinstruction_bounce;
845
846 /* Initialise the undefined instruction handlers */
847 #ifdef VERBOSE_INIT_ARM
848 printf("undefined ");
849 #endif
850 undefined_init();
851
852 /* Load memory into UVM. */
853 #ifdef VERBOSE_INIT_ARM
854 printf("page ");
855 #endif
856 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
857 uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
858 atop(physical_freestart), atop(physical_freeend),
859 VM_FREELIST_DEFAULT);
860
861 /* Boot strap pmap telling it where the kernel page table is */
862 #ifdef VERBOSE_INIT_ARM
863 printf("pmap ");
864 #endif
865 LEDSTEP();
866 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
867 LEDSTEP();
868
869 #ifdef __HAVE_MEMORY_DISK__
870 md_root_setconf(memory_disk, sizeof memory_disk);
871 #endif
872
873 #ifdef BOOTHOWTO
874 boothowto |= BOOTHOWTO;
875 #endif
876
877 {
878 uint8_t sw = pldreg8_read(G42XXEB_DIPSW);
879
880 if (0 == (sw & (1<<0)))
881 boothowto ^= RB_KDB;
882 if (0 == (sw & (1<<1)))
883 boothowto ^= RB_SINGLE;
884 }
885
886 LEDSTEP();
887
888 #ifdef KGDB
889 if (boothowto & RB_KDB) {
890 kgdb_debug_init = 1;
891 kgdb_connect(1);
892 }
893 #endif
894
895 #ifdef DDB
896 db_machine_init();
897
898 /* Firmware doesn't load symbols. */
899 ddb_init(0, NULL, NULL);
900
901 if (boothowto & RB_KDB)
902 Debugger();
903 #endif
904
905 pldreg8_write(G42XXEB_LED, 0);
906
907 /* We return the new stack pointer address */
908 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
909 }
910
911 #if 0
912 void
913 process_kernel_args(char *args)
914 {
915
916 boothowto = 0;
917
918 /* Make a local copy of the bootargs */
919 strncpy(bootargs, args, MAX_BOOT_STRING);
920
921 args = bootargs;
922 boot_file = bootargs;
923
924 /* Skip the kernel image filename */
925 while (*args != ' ' && *args != 0)
926 ++args;
927
928 if (*args != 0)
929 *args++ = 0;
930
931 while (*args == ' ')
932 ++args;
933
934 boot_args = args;
935
936 printf("bootfile: %s\n", boot_file);
937 printf("bootargs: %s\n", boot_args);
938
939 parse_mi_bootargs(boot_args);
940 }
941 #endif
942
943 #ifdef KGDB
944 #ifndef KGDB_DEVNAME
945 #define KGDB_DEVNAME "ffuart"
946 #endif
947 const char kgdb_devname[] = KGDB_DEVNAME;
948
949 #if (NCOM > 0)
950 #ifndef KGDB_DEVMODE
951 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
952 #endif
953 int comkgdbmode = KGDB_DEVMODE;
954 #endif /* NCOM */
955
956 #endif /* KGDB */
957
958
959 void
960 consinit(void)
961 {
962 static int consinit_called = 0;
963 uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN);
964 #if 0
965 char *console = CONSDEVNAME;
966 #endif
967
968 if (consinit_called != 0)
969 return;
970
971 consinit_called = 1;
972
973 #if NCOM > 0
974
975 #ifdef FFUARTCONSOLE
976 #ifdef KGDB
977 if (0 == strcmp(kgdb_devname, "ffuart")){
978 /* port is reserved for kgdb */
979 } else
980 #endif
981 if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE,
982 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
983 #if 0
984 pxa2x0_clkman_config(CKEN_FFUART, 1);
985 #else
986 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN,
987 ckenreg|CKEN_FFUART);
988 #endif
989
990 return;
991 }
992 #endif /* FFUARTCONSOLE */
993
994 #ifdef BTUARTCONSOLE
995 #ifdef KGDB
996 if (0 == strcmp(kgdb_devname, "btuart")) {
997 /* port is reserved for kgdb */
998 } else
999 #endif
1000 if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE,
1001 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
1002 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN,
1003 ckenreg|CKEN_BTUART);
1004 return;
1005 }
1006 #endif /* BTUARTCONSOLE */
1007
1008
1009 #endif /* NCOM */
1010
1011 }
1012
1013 #ifdef KGDB
1014 void
1015 kgdb_port_init(void)
1016 {
1017 #if (NCOM > 0) && defined(COM_PXA2X0)
1018 paddr_t paddr = 0;
1019 uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN);
1020
1021 if (0 == strcmp(kgdb_devname, "ffuart")) {
1022 paddr = PXA2X0_FFUART_BASE;
1023 ckenreg |= CKEN_FFUART;
1024 }
1025 else if (0 == strcmp(kgdb_devname, "btuart")) {
1026 paddr = PXA2X0_BTUART_BASE;
1027 ckenreg |= CKEN_BTUART;
1028 }
1029
1030 if (paddr &&
1031 0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr,
1032 kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) {
1033
1034 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg);
1035
1036 }
1037
1038 #endif
1039 }
1040 #endif
1041
1042