g42xxeb_machdep.c revision 1.2 1 /* $NetBSD: g42xxeb_machdep.c,v 1.2 2005/03/17 16:22:57 bsh Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2003, 2004, 2005 Genetec Corporation.
5 * All rights reserved.
6 *
7 * Written by Hiroyuki Bessho for Genetec Corporation.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. The name of Genetec Corporation may not be used to endorse or
18 * promote products derived from this software without specific prior
19 * written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 *
33 * Machine dependant functions for kernel setup for Genetec G4250EBX
34 * evaluation board.
35 *
36 * Based on iq80310_machhdep.c
37 */
38 /*
39 * Copyright (c) 2001 Wasabi Systems, Inc.
40 * All rights reserved.
41 *
42 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed for the NetBSD Project by
55 * Wasabi Systems, Inc.
56 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
57 * or promote products derived from this software without specific prior
58 * written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
62 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
63 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
64 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
65 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
66 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
67 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
68 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
69 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
70 * POSSIBILITY OF SUCH DAMAGE.
71 */
72
73 /*
74 * Copyright (c) 1997,1998 Mark Brinicombe.
75 * Copyright (c) 1997,1998 Causality Limited.
76 * All rights reserved.
77 *
78 * Redistribution and use in source and binary forms, with or without
79 * modification, are permitted provided that the following conditions
80 * are met:
81 * 1. Redistributions of source code must retain the above copyright
82 * notice, this list of conditions and the following disclaimer.
83 * 2. Redistributions in binary form must reproduce the above copyright
84 * notice, this list of conditions and the following disclaimer in the
85 * documentation and/or other materials provided with the distribution.
86 * 3. All advertising materials mentioning features or use of this software
87 * must display the following acknowledgement:
88 * This product includes software developed by Mark Brinicombe
89 * for the NetBSD Project.
90 * 4. The name of the company nor the name of the author may be used to
91 * endorse or promote products derived from this software without specific
92 * prior written permission.
93 *
94 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
95 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
96 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
97 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
98 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
99 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
100 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
101 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
102 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
103 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
104 * SUCH DAMAGE.
105 *
106 * Machine dependant functions for kernel setup for Intel IQ80310 evaluation
107 * boards using RedBoot firmware.
108 */
109
110 #include "opt_ddb.h"
111 #include "opt_kgdb.h"
112 #include "opt_ipkdb.h"
113 #include "opt_pmap_debug.h"
114 #include "opt_md.h"
115 #include "opt_com.h"
116 #include "md.h"
117 #include "lcd.h"
118
119 #include <sys/param.h>
120 #include <sys/device.h>
121 #include <sys/systm.h>
122 #include <sys/kernel.h>
123 #include <sys/exec.h>
124 #include <sys/proc.h>
125 #include <sys/msgbuf.h>
126 #include <sys/reboot.h>
127 #include <sys/termios.h>
128 #include <sys/ksyms.h>
129
130 #include <uvm/uvm_extern.h>
131
132 #include <sys/conf.h>
133 #include <dev/cons.h>
134 #include <dev/md.h>
135
136 #include <machine/db_machdep.h>
137 #include <ddb/db_sym.h>
138 #include <ddb/db_extern.h>
139 #ifdef KGDB
140 #include <sys/kgdb.h>
141 #endif
142 #ifdef IPKDB
143 #include <ipkdb/ipkdb.h> /* for prototypes */
144 #include <machine/ipkdb.h>
145 #endif
146
147 #include <machine/bootconfig.h>
148 #include <machine/bus.h>
149 #include <machine/cpu.h>
150 #include <machine/frame.h>
151 #include <arm/undefined.h>
152
153 #include <arm/arm32/machdep.h>
154
155 #include <arm/xscale/pxa2x0reg.h>
156 #include <arm/xscale/pxa2x0var.h>
157 #include <arm/xscale/pxa2x0_gpio.h>
158 #include <evbarm/g42xxeb/g42xxeb_reg.h>
159 #include <evbarm/g42xxeb/g42xxeb_var.h>
160
161 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
162 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
163 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
164
165 /*
166 * The range 0xc1000000 - 0xccffffff is available for kernel VM space
167 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
168 */
169 #define KERNEL_VM_SIZE 0x0C000000
170
171
172 /*
173 * Address to call from cpu_reset() to reset the machine.
174 * This is machine architecture dependant as it varies depending
175 * on where the ROM appears when you turn the MMU off.
176 */
177
178 u_int cpu_reset_address = 0;
179
180 /* Define various stack sizes in pages */
181 #define IRQ_STACK_SIZE 1
182 #define ABT_STACK_SIZE 1
183 #ifdef IPKDB
184 #define UND_STACK_SIZE 2
185 #else
186 #define UND_STACK_SIZE 1
187 #endif
188
189 BootConfig bootconfig; /* Boot config storage */
190 char *boot_args = NULL;
191 char *boot_file = NULL;
192
193 vm_offset_t physical_start;
194 vm_offset_t physical_freestart;
195 vm_offset_t physical_freeend;
196 vm_offset_t physical_end;
197 u_int free_pages;
198 vm_offset_t pagetables_start;
199 int physmem = 0;
200
201 /*int debug_flags;*/
202 #ifndef PMAP_STATIC_L1S
203 int max_processes = 64; /* Default number */
204 #endif /* !PMAP_STATIC_L1S */
205
206 /* Physical and virtual addresses for some global pages */
207 pv_addr_t systempage;
208 pv_addr_t irqstack;
209 pv_addr_t undstack;
210 pv_addr_t abtstack;
211 pv_addr_t kernelstack;
212 pv_addr_t minidataclean;
213
214 vm_offset_t msgbufphys;
215
216 extern u_int data_abort_handler_address;
217 extern u_int prefetch_abort_handler_address;
218 extern u_int undefined_handler_address;
219
220 #ifdef PMAP_DEBUG
221 extern int pmap_debug_level;
222 #endif
223
224 #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
225 #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
226 #define KERNEL_PT_KERNEL_NUM 4
227 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
228 /* Page tables for mapping kernel VM */
229 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
230 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
231
232 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
233
234 struct user *proc0paddr;
235
236 /* Prototypes */
237
238 #if 0
239 void process_kernel_args(char *);
240 void parse_mi_bootargs(char *args);
241 #endif
242
243 void consinit(void);
244 void kgdb_port_init(void);
245 void change_clock(uint32_t v);
246
247 bs_protos(bs_notimpl);
248
249 #include "com.h"
250 #if NCOM > 0
251 #include <dev/ic/comreg.h>
252 #include <dev/ic/comvar.h>
253 #endif
254
255 #ifndef CONSPEED
256 #define CONSPEED B115200 /* What RedBoot uses */
257 #endif
258 #ifndef CONMODE
259 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
260 #endif
261
262 int comcnspeed = CONSPEED;
263 int comcnmode = CONMODE;
264
265 /*
266 * void cpu_reboot(int howto, char *bootstr)
267 *
268 * Reboots the system
269 *
270 * Deal with any syncing, unmounting, dumping and shutdown hooks,
271 * then reset the CPU.
272 */
273 void
274 cpu_reboot(int howto, char *bootstr)
275 {
276 #ifdef DIAGNOSTIC
277 /* info */
278 printf("boot: howto=%08x curproc=%p\n", howto, curproc);
279 #endif
280
281 /*
282 * If we are still cold then hit the air brakes
283 * and crash to earth fast
284 */
285 if (cold) {
286 doshutdownhooks();
287 printf("The operating system has halted.\n");
288 printf("Please press any key to reboot.\n\n");
289 cngetc();
290 printf("rebooting...\n");
291 cpu_reset();
292 /*NOTREACHED*/
293 }
294
295 /* Disable console buffering */
296 /* cnpollc(1);*/
297
298 /*
299 * If RB_NOSYNC was not specified sync the discs.
300 * Note: Unless cold is set to 1 here, syslogd will die during the
301 * unmount. It looks like syslogd is getting woken up only to find
302 * that it cannot page part of the binary in as the filesystem has
303 * been unmounted.
304 */
305 if (!(howto & RB_NOSYNC))
306 bootsync();
307
308 /* Say NO to interrupts */
309 splhigh();
310
311 /* Do a dump if requested. */
312 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
313 dumpsys();
314
315 /* Run any shutdown hooks */
316 doshutdownhooks();
317
318 /* Make sure IRQ's are disabled */
319 IRQdisable;
320
321 if (howto & RB_HALT) {
322 printf("The operating system has halted.\n");
323 printf("Please press any key to reboot.\n\n");
324 cngetc();
325 }
326
327 printf("rebooting...\n");
328 cpu_reset();
329 /*NOTREACHED*/
330 }
331
332 static __inline
333 pd_entry_t *
334 read_ttb(void)
335 {
336 long ttb;
337
338 __asm __volatile("mrc p15, 0, %0, c2, c0, 0" : "=r" (ttb));
339
340
341 return (pd_entry_t *)(ttb & ~((1<<14)-1));
342 }
343
344 /*
345 * Static device mappings. These peripheral registers are mapped at
346 * fixed virtual addresses very early in initarm() so that we can use
347 * them while booting the kernel, and stay at the same address
348 * throughout whole kernel's life time.
349 *
350 * We use this table twice; once with bootstrap page table, and once
351 * with kernel's page table which we build up in initarm().
352 *
353 * Since we map these registers into the bootstrap page table using
354 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
355 * registers segment-aligned and segment-rounded in order to avoid
356 * using the 2nd page tables.
357 */
358
359 #define _A(a) ((a) & ~L1_S_OFFSET)
360 #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
361
362 static const struct pmap_devmap g42xxeb_devmap[] = {
363 {
364 G42XXEB_PLDREG_VBASE,
365 _A(G42XXEB_PLDREG_BASE),
366 _S(G42XXEB_PLDREG_SIZE),
367 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
368 },
369 {
370 G42XXEB_GPIO_VBASE,
371 _A(PXA2X0_GPIO_BASE),
372 _S(PXA2X0_GPIO_SIZE),
373 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
374 },
375 {
376 G42XXEB_CLKMAN_VBASE,
377 _A(PXA2X0_CLKMAN_BASE),
378 _S(PXA2X0_CLKMAN_SIZE),
379 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
380 },
381 {
382 G42XXEB_INTCTL_VBASE,
383 _A(PXA2X0_INTCTL_BASE),
384 _S(PXA2X0_INTCTL_SIZE),
385 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
386 },
387 {
388 G42XXEB_FFUART_VBASE,
389 _A(PXA2X0_FFUART_BASE),
390 _S(4 * COM_NPORTS),
391 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
392 },
393 {
394 G42XXEB_BTUART_VBASE,
395 _A(PXA2X0_BTUART_BASE),
396 _S(4 * COM_NPORTS),
397 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
398 },
399 {0, 0, 0, 0,}
400 };
401
402 #undef _A
403 #undef _S
404
405
406 /*
407 * u_int initarm(...)
408 *
409 * Initial entry point on startup. This gets called before main() is
410 * entered.
411 * It should be responsible for setting up everything that must be
412 * in place when main is called.
413 * This includes
414 * Taking a copy of the boot configuration structure.
415 * Initialising the physical console so characters can be printed.
416 * Setting up page tables for the kernel
417 * Relocating the kernel to the bottom of physical memory
418 */
419 u_int
420 initarm(void *arg)
421 {
422 extern vaddr_t xscale_cache_clean_addr;
423 int loop;
424 int loop1;
425 u_int l1pagetable;
426 pv_addr_t kernel_l1pt;
427 paddr_t memstart;
428 psize_t memsize;
429 int led_data = 1;
430 #ifdef DIAGNOSTIC
431 extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */
432 #endif
433
434 #define LEDSTEP_P() ioreg8_write(G42XXEB_PLDREG_BASE+G42XXEB_LED, led_data++)
435 #define LEDSTEP() pldreg8_write(G42XXEB_LED, led_data++);
436
437 /* use physical address until pagetable is set */
438 LEDSTEP_P();
439
440 /* map some peripheral registers at static I/O area */
441 pmap_devmap_bootstrap((vaddr_t)read_ttb(), g42xxeb_devmap);
442
443 LEDSTEP_P();
444
445 /* start 32.768KHz OSC */
446 ioreg_write(G42XXEB_CLKMAN_VBASE + 0x08, 2);
447 /* Get ready for splfoo() */
448 pxa2x0_intr_bootstrap(G42XXEB_INTCTL_VBASE);
449
450 LEDSTEP();
451
452 /*
453 * Heads up ... Setup the CPU / MMU / TLB functions
454 */
455 if (set_cpufuncs())
456 panic("cpu not recognized!");
457
458 LEDSTEP();
459
460 /*
461 * Okay, RedBoot has provided us with the following memory map:
462 *
463 * Physical Address Range Description
464 * ----------------------- ----------------------------------
465 * 0x00000000 - 0x01ffffff flash Memory (32MB)
466 * 0x04000000 - 0x05ffffff Application flash Memory (32MB)
467 * 0x08000000 - 0x080000ff I/O baseboard registers
468 * 0x0c000000 - 0x0c0fffff Ethernet Controller
469 * 0x14000000 - 0x17ffffff Expansion Card (64MB)
470 * 0x40000000 - 0x480fffff Processor Registers
471 * 0xa0000000 - 0xa3ffffff SDRAM Bank 0 (64MB)
472 *
473 *
474 * Virtual Address Range X C B Description
475 * ----------------------- - - - ----------------------------------
476 * 0x00000000 - 0x00003fff N Y Y SDRAM
477 * 0x00004000 - 0x01ffffff N Y N ROM
478 * 0x08000000 - 0x080fffff N N N I/O baseboard registers
479 * 0x0a000000 - 0x0a0fffff N N N SRAM
480 * 0x40000000 - 0x480fffff N N N Processor Registers
481 * 0xa0000000 - 0xa000ffff N Y N RedBoot SDRAM
482 * 0xa0017000 - 0xa3ffffff Y Y Y SDRAM
483 * 0xc0000000 - 0xcfffffff Y Y Y Cache Flush Region
484 * (done by this routine)
485 * 0xfd000000 - 0xfd0000ff N N N I/O baseboard registers
486 * 0xfd100000 - 0xfd3fffff N N N Processor Registers.
487 * 0xfd400000 - 0xfd4fffff N N N FF-UART
488 * 0xfd500000 - 0xfd5fffff N N N BT-UART
489 *
490 * The first level page table is at 0xa0004000. There are also
491 * 2 second-level tables at 0xa0008000 and 0xa0008400.
492 *
493 */
494
495 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
496
497 LEDSTEP();
498
499 /* setup GPIO for BTUART, in case bootloader doesn't take care of it */
500 pxa2x0_gpio_bootstrap(G42XXEB_GPIO_VBASE);
501 pxa2x0_gpio_set_function(42, GPIO_ALT_FN_1_IN);
502 pxa2x0_gpio_set_function(43, GPIO_ALT_FN_2_OUT);
503 pxa2x0_gpio_set_function(44, GPIO_ALT_FN_1_IN);
504 pxa2x0_gpio_set_function(45, GPIO_ALT_FN_2_OUT);
505
506 LEDSTEP();
507
508 consinit();
509 #ifdef KGDB
510 LEDSTEP();
511 kgdb_port_init();
512 #endif
513
514 LEDSTEP();
515
516 /* Talk to the user */
517 printf("\nNetBSD/evbarm (g42xxeb) booting ...\n");
518
519 #if 0
520 /*
521 * Examine the boot args string for options we need to know about
522 * now.
523 */
524 process_kernel_args((char *)nwbootinfo.bt_args);
525 #endif
526
527 memstart = 0xa0000000;
528 memsize = 0x04000000; /* 64MB */
529
530 printf("initarm: Configuring system ...\n");
531
532 /* Fake bootconfig structure for the benefit of pmap.c */
533 /* XXX must make the memory description h/w independant */
534 bootconfig.dramblocks = 1;
535 bootconfig.dram[0].address = memstart;
536 bootconfig.dram[0].pages = memsize / PAGE_SIZE;
537
538 /*
539 * Set up the variables that define the availablilty of
540 * physical memory. For now, we're going to set
541 * physical_freestart to 0xa0200000 (where the kernel
542 * was loaded), and allocate the memory we need downwards.
543 * If we get too close to the L1 table that we set up, we
544 * will panic. We will update physical_freestart and
545 * physical_freeend later to reflect what pmap_bootstrap()
546 * wants to see.
547 *
548 * XXX pmap_bootstrap() needs an enema.
549 */
550 physical_start = bootconfig.dram[0].address;
551 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
552
553 physical_freestart = 0xa0009000UL;
554 physical_freeend = 0xa0200000UL;
555
556 physmem = (physical_end - physical_start) / PAGE_SIZE;
557
558 #ifdef VERBOSE_INIT_ARM
559 /* Tell the user about the memory */
560 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
561 physical_start, physical_end - 1);
562 #endif
563
564 /*
565 * Okay, the kernel starts 2MB in from the bottom of physical
566 * memory. We are going to allocate our bootstrap pages downwards
567 * from there.
568 *
569 * We need to allocate some fixed page tables to get the kernel
570 * going. We allocate one page directory and a number of page
571 * tables and store the physical addresses in the kernel_pt_table
572 * array.
573 *
574 * The kernel page directory must be on a 16K boundary. The page
575 * tables must be on 4K bounaries. What we do is allocate the
576 * page directory on the first 16K boundary that we encounter, and
577 * the page tables on 4K boundaries otherwise. Since we allocate
578 * at least 3 L2 page tables, we are guaranteed to encounter at
579 * least one 16K aligned region.
580 */
581
582 #ifdef VERBOSE_INIT_ARM
583 printf("Allocating page tables\n");
584 #endif
585
586 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
587
588 #ifdef VERBOSE_INIT_ARM
589 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
590 physical_freestart, free_pages, free_pages);
591 #endif
592
593 /* Define a macro to simplify memory allocation */
594 #define valloc_pages(var, np) \
595 alloc_pages((var).pv_pa, (np)); \
596 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
597
598 #define alloc_pages(var, np) \
599 physical_freeend -= ((np) * PAGE_SIZE); \
600 if (physical_freeend < physical_freestart) \
601 panic("initarm: out of memory"); \
602 (var) = physical_freeend; \
603 free_pages -= (np); \
604 memset((char *)(var), 0, ((np) * PAGE_SIZE));
605
606 loop1 = 0;
607 kernel_l1pt.pv_pa = 0;
608 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
609 /* Are we 16KB aligned for an L1 ? */
610 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
611 && kernel_l1pt.pv_pa == 0) {
612 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
613 } else {
614 valloc_pages(kernel_pt_table[loop1],
615 L2_TABLE_SIZE / PAGE_SIZE);
616 ++loop1;
617 }
618 }
619
620 /* This should never be able to happen but better confirm that. */
621 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
622 panic("initarm: Failed to align the kernel page directory");
623
624 LEDSTEP();
625
626 /*
627 * Allocate a page for the system page mapped to V0x00000000
628 * This page will just contain the system vectors and can be
629 * shared by all processes.
630 */
631 alloc_pages(systempage.pv_pa, 1);
632
633 /* Allocate stacks for all modes */
634 valloc_pages(irqstack, IRQ_STACK_SIZE);
635 valloc_pages(abtstack, ABT_STACK_SIZE);
636 valloc_pages(undstack, UND_STACK_SIZE);
637 valloc_pages(kernelstack, UPAGES);
638
639 /* Allocate enough pages for cleaning the Mini-Data cache. */
640 KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
641 valloc_pages(minidataclean, 1);
642
643 #ifdef VERBOSE_INIT_ARM
644 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
645 irqstack.pv_va);
646 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
647 abtstack.pv_va);
648 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
649 undstack.pv_va);
650 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
651 kernelstack.pv_va);
652 #endif
653
654 /*
655 * XXX Defer this to later so that we can reclaim the memory
656 * XXX used by the RedBoot page tables.
657 */
658 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
659
660 /*
661 * Ok we have allocated physical pages for the primary kernel
662 * page tables
663 */
664
665 #ifdef VERBOSE_INIT_ARM
666 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
667 #endif
668
669 /*
670 * Now we start construction of the L1 page table
671 * We start by mapping the L2 page tables into the L1.
672 * This means that we can replace L1 mappings later on if necessary
673 */
674 l1pagetable = kernel_l1pt.pv_pa;
675
676 /* Map the L2 pages tables in the L1 page table */
677 pmap_link_l2pt(l1pagetable, 0x00000000,
678 &kernel_pt_table[KERNEL_PT_SYS]);
679 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
680 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
681 &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
682 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
683 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
684 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
685
686 /* update the top of the kernel VM */
687 pmap_curmaxkvaddr =
688 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
689
690 #ifdef VERBOSE_INIT_ARM
691 printf("Mapping kernel\n");
692 #endif
693
694 /* Now we fill in the L2 pagetable for the kernel static code/data */
695 {
696 extern char etext[], _end[];
697 size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
698 size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
699 u_int logical;
700
701 textsize = (textsize + PGOFSET) & ~PGOFSET;
702 totalsize = (totalsize + PGOFSET) & ~PGOFSET;
703
704 logical = 0x00200000; /* offset of kernel in RAM */
705
706 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
707 physical_start + logical, textsize,
708 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
709 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
710 physical_start + logical, totalsize - textsize,
711 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
712 }
713
714 #ifdef VERBOSE_INIT_ARM
715 printf("Constructing L2 page tables\n");
716 #endif
717
718 /* Map the stack pages */
719 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
720 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
721 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
722 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
723 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
724 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
725 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
726 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
727
728 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
729 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
730
731 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
732 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
733 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
734 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
735 }
736
737 /* Map the Mini-Data cache clean area. */
738 xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
739 minidataclean.pv_pa);
740
741 /* Map the vector page. */
742 #if 1
743 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the
744 * cache-clean code there. */
745 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
746 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
747 #else
748 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
749 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
750 #endif
751
752 /*
753 * map integrated peripherals at same address in l1pagetable
754 * so that we can continue to use console.
755 */
756 pmap_devmap_bootstrap(l1pagetable, g42xxeb_devmap);
757
758 /*
759 * Give the XScale global cache clean code an appropriately
760 * sized chunk of unmapped VA space starting at 0xff000000
761 * (our device mappings end before this address).
762 */
763 xscale_cache_clean_addr = 0xff000000U;
764
765 /*
766 * Now we have the real page tables in place so we can switch to them.
767 * Once this is done we will be running with the REAL kernel page
768 * tables.
769 */
770
771 /*
772 * Update the physical_freestart/physical_freeend/free_pages
773 * variables.
774 */
775 {
776 extern char _end[];
777
778 physical_freestart = physical_start +
779 (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
780 KERNEL_BASE);
781 physical_freeend = physical_end;
782 free_pages =
783 (physical_freeend - physical_freestart) / PAGE_SIZE;
784 }
785
786 /* Switch tables */
787 #ifdef VERBOSE_INIT_ARM
788 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
789 physical_freestart, free_pages, free_pages);
790 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
791 #endif
792 LEDSTEP();
793
794 setttb(kernel_l1pt.pv_pa);
795 cpu_tlb_flushID();
796 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
797 LEDSTEP();
798
799 /*
800 * Moved from cpu_startup() as data_abort_handler() references
801 * this during uvm init
802 */
803 proc0paddr = (struct user *)kernelstack.pv_va;
804 lwp0.l_addr = proc0paddr;
805
806 #ifdef VERBOSE_INIT_ARM
807 printf("bootstrap done.\n");
808 #endif
809
810 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
811
812 /*
813 * Pages were allocated during the secondary bootstrap for the
814 * stacks for different CPU modes.
815 * We must now set the r13 registers in the different CPU modes to
816 * point to these stacks.
817 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
818 * of the stack memory.
819 */
820 #ifdef VERBOSE_INIT_ARM
821 printf("init subsystems: stacks ");
822 #endif
823
824 set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
825 set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
826 set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
827
828 /*
829 * Well we should set a data abort handler.
830 * Once things get going this will change as we will need a proper
831 * handler.
832 * Until then we will use a handler that just panics but tells us
833 * why.
834 * Initialisation of the vectors will just panic on a data abort.
835 * This just fills in a slighly better one.
836 */
837 #ifdef VERBOSE_INIT_ARM
838 printf("vectors ");
839 #endif
840 data_abort_handler_address = (u_int)data_abort_handler;
841 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
842 undefined_handler_address = (u_int)undefinedinstruction_bounce;
843
844 /* Initialise the undefined instruction handlers */
845 #ifdef VERBOSE_INIT_ARM
846 printf("undefined ");
847 #endif
848 undefined_init();
849
850 /* Load memory into UVM. */
851 #ifdef VERBOSE_INIT_ARM
852 printf("page ");
853 #endif
854 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
855 uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
856 atop(physical_freestart), atop(physical_freeend),
857 VM_FREELIST_DEFAULT);
858
859 /* Boot strap pmap telling it where the kernel page table is */
860 #ifdef VERBOSE_INIT_ARM
861 printf("pmap ");
862 #endif
863 LEDSTEP();
864 pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE,
865 KERNEL_VM_BASE + KERNEL_VM_SIZE);
866 LEDSTEP();
867
868 #ifdef __HAVE_MEMORY_DISK__
869 md_root_setconf(memory_disk, sizeof memory_disk);
870 #endif
871
872 #ifdef BOOTHOWTO
873 boothowto |= BOOTHOWTO;
874 #endif
875
876 {
877 uint8_t sw = pldreg8_read(G42XXEB_DIPSW);
878
879 if (0 == (sw & (1<<0)))
880 boothowto ^= RB_KDB;
881 if (0 == (sw & (1<<1)))
882 boothowto ^= RB_SINGLE;
883 }
884
885 LEDSTEP();
886
887 #ifdef IPKDB
888 /* Initialise ipkdb */
889 ipkdb_init();
890 if (boothowto & RB_KDB)
891 ipkdb_connect(0);
892 #endif
893
894 #ifdef KGDB
895 if (boothowto & RB_KDB) {
896 kgdb_debug_init = 1;
897 kgdb_connect(1);
898 }
899 #endif
900
901 #ifdef DDB
902 db_machine_init();
903
904 /* Firmware doesn't load symbols. */
905 ddb_init(0, NULL, NULL);
906
907 if (boothowto & RB_KDB)
908 Debugger();
909 #endif
910
911 pldreg8_write(G42XXEB_LED, 0);
912
913 /* We return the new stack pointer address */
914 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
915 }
916
917 #if 0
918 void
919 process_kernel_args(char *args)
920 {
921
922 boothowto = 0;
923
924 /* Make a local copy of the bootargs */
925 strncpy(bootargs, args, MAX_BOOT_STRING);
926
927 args = bootargs;
928 boot_file = bootargs;
929
930 /* Skip the kernel image filename */
931 while (*args != ' ' && *args != 0)
932 ++args;
933
934 if (*args != 0)
935 *args++ = 0;
936
937 while (*args == ' ')
938 ++args;
939
940 boot_args = args;
941
942 printf("bootfile: %s\n", boot_file);
943 printf("bootargs: %s\n", boot_args);
944
945 parse_mi_bootargs(boot_args);
946 }
947 #endif
948
949 #ifdef KGDB
950 #ifndef KGDB_DEVNAME
951 #define KGDB_DEVNAME "ffuart"
952 #endif
953 const char kgdb_devname[] = KGDB_DEVNAME;
954
955 #if (NCOM > 0)
956 #ifndef KGDB_DEVMODE
957 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
958 #endif
959 int comkgdbmode = KGDB_DEVMODE;
960 #endif /* NCOM */
961
962 #endif /* KGDB */
963
964
965 void
966 consinit(void)
967 {
968 static int consinit_called = 0;
969 uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN);
970 #if 0
971 char *console = CONSDEVNAME;
972 #endif
973
974 if (consinit_called != 0)
975 return;
976
977 consinit_called = 1;
978
979 #if NCOM > 0
980
981 #ifdef FFUARTCONSOLE
982 #ifdef KGDB
983 if (0 == strcmp(kgdb_devname, "ffuart")){
984 /* port is reserved for kgdb */
985 } else
986 #endif
987 if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE,
988 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
989 #if 0
990 pxa2x0_clkman_config(CKEN_FFUART, 1);
991 #else
992 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN,
993 ckenreg|CKEN_FFUART);
994 #endif
995
996 return;
997 }
998 #endif /* FFUARTCONSOLE */
999
1000 #ifdef BTUARTCONSOLE
1001 #ifdef KGDB
1002 if (0 == strcmp(kgdb_devname, "btuart")) {
1003 /* port is reserved for kgdb */
1004 } else
1005 #endif
1006 if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE,
1007 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
1008 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN,
1009 ckenreg|CKEN_BTUART);
1010 return;
1011 }
1012 #endif /* BTUARTCONSOLE */
1013
1014
1015 #endif /* NCOM */
1016
1017 }
1018
1019 #ifdef KGDB
1020 void
1021 kgdb_port_init(void)
1022 {
1023 #if (NCOM > 0) && defined(COM_PXA2X0)
1024 paddr_t paddr = 0;
1025 uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN);
1026
1027 if (0 == strcmp(kgdb_devname, "ffuart")) {
1028 paddr = PXA2X0_FFUART_BASE;
1029 ckenreg |= CKEN_FFUART;
1030 }
1031 else if (0 == strcmp(kgdb_devname, "btuart")) {
1032 paddr = PXA2X0_BTUART_BASE;
1033 ckenreg |= CKEN_BTUART;
1034 }
1035
1036 if (paddr &&
1037 0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr,
1038 kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) {
1039
1040 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg);
1041
1042 }
1043
1044 #endif
1045 }
1046 #endif
1047
1048