Home | History | Annotate | Line # | Download | only in g42xxeb
g42xxeb_machdep.c revision 1.24
      1 /*	$NetBSD: g42xxeb_machdep.c,v 1.24 2011/07/01 20:38:17 dyoung Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2002, 2003, 2004, 2005  Genetec Corporation.
      5  * All rights reserved.
      6  *
      7  * Written by Hiroyuki Bessho for Genetec Corporation.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. The name of Genetec Corporation may not be used to endorse or
     18  *    promote products derived from this software without specific prior
     19  *    written permission.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
     22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  *
     33  * Machine dependent functions for kernel setup for Genetec G4250EBX
     34  * evaluation board.
     35  *
     36  * Based on iq80310_machhdep.c
     37  */
     38 /*
     39  * Copyright (c) 2001 Wasabi Systems, Inc.
     40  * All rights reserved.
     41  *
     42  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed for the NetBSD Project by
     55  *	Wasabi Systems, Inc.
     56  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     57  *    or promote products derived from this software without specific prior
     58  *    written permission.
     59  *
     60  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     61  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     62  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     63  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     64  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     65  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     66  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     67  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     68  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     69  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     70  * POSSIBILITY OF SUCH DAMAGE.
     71  */
     72 
     73 /*
     74  * Copyright (c) 1997,1998 Mark Brinicombe.
     75  * Copyright (c) 1997,1998 Causality Limited.
     76  * All rights reserved.
     77  *
     78  * Redistribution and use in source and binary forms, with or without
     79  * modification, are permitted provided that the following conditions
     80  * are met:
     81  * 1. Redistributions of source code must retain the above copyright
     82  *    notice, this list of conditions and the following disclaimer.
     83  * 2. Redistributions in binary form must reproduce the above copyright
     84  *    notice, this list of conditions and the following disclaimer in the
     85  *    documentation and/or other materials provided with the distribution.
     86  * 3. All advertising materials mentioning features or use of this software
     87  *    must display the following acknowledgement:
     88  *	This product includes software developed by Mark Brinicombe
     89  *	for the NetBSD Project.
     90  * 4. The name of the company nor the name of the author may be used to
     91  *    endorse or promote products derived from this software without specific
     92  *    prior written permission.
     93  *
     94  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     95  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     96  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     97  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     98  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     99  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    100  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    101  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    102  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    103  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    104  * SUCH DAMAGE.
    105  *
    106  * Machine dependent functions for kernel setup for Intel IQ80310 evaluation
    107  * boards using RedBoot firmware.
    108  */
    109 
    110 #include "opt_ddb.h"
    111 #include "opt_kgdb.h"
    112 #include "opt_pmap_debug.h"
    113 #include "opt_md.h"
    114 #include "opt_com.h"
    115 #include "lcd.h"
    116 
    117 #include <sys/param.h>
    118 #include <sys/device.h>
    119 #include <sys/systm.h>
    120 #include <sys/kernel.h>
    121 #include <sys/exec.h>
    122 #include <sys/proc.h>
    123 #include <sys/msgbuf.h>
    124 #include <sys/reboot.h>
    125 #include <sys/termios.h>
    126 #include <sys/ksyms.h>
    127 
    128 #include <uvm/uvm_extern.h>
    129 
    130 #include <sys/conf.h>
    131 #include <dev/cons.h>
    132 #include <dev/md.h>
    133 
    134 #include <machine/db_machdep.h>
    135 #include <ddb/db_sym.h>
    136 #include <ddb/db_extern.h>
    137 #ifdef KGDB
    138 #include <sys/kgdb.h>
    139 #endif
    140 
    141 #include <machine/bootconfig.h>
    142 #include <sys/bus.h>
    143 #include <machine/cpu.h>
    144 #include <machine/frame.h>
    145 #include <arm/undefined.h>
    146 
    147 #include <arm/arm32/machdep.h>
    148 
    149 #include <arm/xscale/pxa2x0reg.h>
    150 #include <arm/xscale/pxa2x0var.h>
    151 #include <arm/xscale/pxa2x0_gpio.h>
    152 #include <evbarm/g42xxeb/g42xxeb_reg.h>
    153 #include <evbarm/g42xxeb/g42xxeb_var.h>
    154 
    155 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
    156 #define	KERNEL_TEXT_BASE	(KERNEL_BASE + 0x00200000)
    157 #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
    158 
    159 /*
    160  * The range 0xc1000000 - 0xccffffff is available for kernel VM space
    161  * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
    162  */
    163 #define KERNEL_VM_SIZE		0x0C000000
    164 
    165 
    166 /*
    167  * Address to call from cpu_reset() to reset the machine.
    168  * This is machine architecture dependent as it varies depending
    169  * on where the ROM appears when you turn the MMU off.
    170  */
    171 
    172 u_int cpu_reset_address = 0;
    173 
    174 /* Define various stack sizes in pages */
    175 #define IRQ_STACK_SIZE	1
    176 #define ABT_STACK_SIZE	1
    177 #define UND_STACK_SIZE	1
    178 
    179 BootConfig bootconfig;		/* Boot config storage */
    180 char *boot_args = NULL;
    181 char *boot_file = NULL;
    182 
    183 vm_offset_t physical_start;
    184 vm_offset_t physical_freestart;
    185 vm_offset_t physical_freeend;
    186 vm_offset_t physical_end;
    187 u_int free_pages;
    188 
    189 /*int debug_flags;*/
    190 #ifndef PMAP_STATIC_L1S
    191 int max_processes = 64;			/* Default number */
    192 #endif	/* !PMAP_STATIC_L1S */
    193 
    194 /* Physical and virtual addresses for some global pages */
    195 pv_addr_t irqstack;
    196 pv_addr_t undstack;
    197 pv_addr_t abtstack;
    198 pv_addr_t kernelstack;
    199 pv_addr_t minidataclean;
    200 
    201 vm_offset_t msgbufphys;
    202 
    203 extern u_int data_abort_handler_address;
    204 extern u_int prefetch_abort_handler_address;
    205 extern u_int undefined_handler_address;
    206 
    207 #ifdef PMAP_DEBUG
    208 extern int pmap_debug_level;
    209 #endif
    210 
    211 #define KERNEL_PT_SYS		0	/* Page table for mapping proc0 zero page */
    212 #define KERNEL_PT_KERNEL	1	/* Page table for mapping kernel */
    213 #define	KERNEL_PT_KERNEL_NUM	4
    214 #define KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
    215 				        /* Page tables for mapping kernel VM */
    216 #define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
    217 #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
    218 
    219 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
    220 
    221 /* Prototypes */
    222 
    223 #if 0
    224 void	process_kernel_args(char *);
    225 #endif
    226 
    227 void	consinit(void);
    228 void	kgdb_port_init(void);
    229 void	change_clock(uint32_t v);
    230 
    231 bs_protos(bs_notimpl);
    232 
    233 #include "com.h"
    234 #if NCOM > 0
    235 #include <dev/ic/comreg.h>
    236 #include <dev/ic/comvar.h>
    237 #endif
    238 
    239 #ifndef CONSPEED
    240 #define CONSPEED B115200	/* What RedBoot uses */
    241 #endif
    242 #ifndef CONMODE
    243 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
    244 #endif
    245 
    246 int comcnspeed = CONSPEED;
    247 int comcnmode = CONMODE;
    248 
    249 static struct pxa2x0_gpioconf boarddep_gpioconf[] = {
    250 	{ 44, GPIO_ALT_FN_1_IN },	/* BTCST */
    251 	{ 45, GPIO_ALT_FN_2_OUT },	/* BTRST */
    252 
    253 	{ -1 }
    254 };
    255 static struct pxa2x0_gpioconf *g42xxeb_gpioconf[] = {
    256 	pxa25x_com_btuart_gpioconf,
    257 	pxa25x_com_ffuart_gpioconf,
    258 #if 0
    259 	pxa25x_com_stuart_gpioconf,
    260 	pxa25x_pxaacu_gpioconf,
    261 #endif
    262 	boarddep_gpioconf,
    263 	NULL
    264 };
    265 
    266 /*
    267  * void cpu_reboot(int howto, char *bootstr)
    268  *
    269  * Reboots the system
    270  *
    271  * Deal with any syncing, unmounting, dumping and shutdown hooks,
    272  * then reset the CPU.
    273  */
    274 void
    275 cpu_reboot(int howto, char *bootstr)
    276 {
    277 #ifdef DIAGNOSTIC
    278 	/* info */
    279 	printf("boot: howto=%08x curproc=%p\n", howto, curproc);
    280 #endif
    281 
    282 	/*
    283 	 * If we are still cold then hit the air brakes
    284 	 * and crash to earth fast
    285 	 */
    286 	if (cold) {
    287 		doshutdownhooks();
    288 		pmf_system_shutdown(boothowto);
    289 		printf("The operating system has halted.\n");
    290 		printf("Please press any key to reboot.\n\n");
    291 		cngetc();
    292 		printf("rebooting...\n");
    293 		cpu_reset();
    294 		/*NOTREACHED*/
    295 	}
    296 
    297 	/* Disable console buffering */
    298 /*	cnpollc(1);*/
    299 
    300 	/*
    301 	 * If RB_NOSYNC was not specified sync the discs.
    302 	 * Note: Unless cold is set to 1 here, syslogd will die during the
    303 	 * unmount.  It looks like syslogd is getting woken up only to find
    304 	 * that it cannot page part of the binary in as the filesystem has
    305 	 * been unmounted.
    306 	 */
    307 	if (!(howto & RB_NOSYNC))
    308 		bootsync();
    309 
    310 	/* Say NO to interrupts */
    311 	splhigh();
    312 
    313 	/* Do a dump if requested. */
    314 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
    315 		dumpsys();
    316 
    317 	/* Run any shutdown hooks */
    318 	doshutdownhooks();
    319 
    320 	pmf_system_shutdown(boothowto);
    321 
    322 	/* Make sure IRQ's are disabled */
    323 	IRQdisable;
    324 
    325 	if (howto & RB_HALT) {
    326 		printf("The operating system has halted.\n");
    327 		printf("Please press any key to reboot.\n\n");
    328 		cngetc();
    329 	}
    330 
    331 	printf("rebooting...\n");
    332 	cpu_reset();
    333 	/*NOTREACHED*/
    334 }
    335 
    336 static inline
    337 pd_entry_t *
    338 read_ttb(void)
    339 {
    340   long ttb;
    341 
    342   __asm volatile("mrc	p15, 0, %0, c2, c0, 0" : "=r" (ttb));
    343 
    344 
    345   return (pd_entry_t *)(ttb & ~((1<<14)-1));
    346 }
    347 
    348 /*
    349  * Static device mappings. These peripheral registers are mapped at
    350  * fixed virtual addresses very early in initarm() so that we can use
    351  * them while booting the kernel, and stay at the same address
    352  * throughout whole kernel's life time.
    353  *
    354  * We use this table twice; once with bootstrap page table, and once
    355  * with kernel's page table which we build up in initarm().
    356  *
    357  * Since we map these registers into the bootstrap page table using
    358  * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
    359  * registers segment-aligned and segment-rounded in order to avoid
    360  * using the 2nd page tables.
    361  */
    362 
    363 #define	_A(a)	((a) & ~L1_S_OFFSET)
    364 #define	_S(s)	(((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
    365 
    366 static const struct pmap_devmap g42xxeb_devmap[] = {
    367     {
    368 	    G42XXEB_PLDREG_VBASE,
    369 	    _A(G42XXEB_PLDREG_BASE),
    370 	    _S(G42XXEB_PLDREG_SIZE),
    371 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    372     },
    373     {
    374 	    G42XXEB_GPIO_VBASE,
    375 	    _A(PXA2X0_GPIO_BASE),
    376 	    _S(PXA250_GPIO_SIZE),
    377 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    378     },
    379     {
    380 	    G42XXEB_CLKMAN_VBASE,
    381 	    _A(PXA2X0_CLKMAN_BASE),
    382 	    _S(PXA2X0_CLKMAN_SIZE),
    383 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    384     },
    385     {
    386 	    G42XXEB_INTCTL_VBASE,
    387 	    _A(PXA2X0_INTCTL_BASE),
    388 	    _S(PXA2X0_INTCTL_SIZE),
    389 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    390     },
    391     {
    392 	    G42XXEB_FFUART_VBASE,
    393 	    _A(PXA2X0_FFUART_BASE),
    394 	    _S(4 * COM_NPORTS),
    395 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    396     },
    397     {
    398 	    G42XXEB_BTUART_VBASE,
    399 	    _A(PXA2X0_BTUART_BASE),
    400 	    _S(4 * COM_NPORTS),
    401 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    402     },
    403     {0, 0, 0, 0,}
    404 };
    405 
    406 #undef	_A
    407 #undef	_S
    408 
    409 
    410 /*
    411  * u_int initarm(...)
    412  *
    413  * Initial entry point on startup. This gets called before main() is
    414  * entered.
    415  * It should be responsible for setting up everything that must be
    416  * in place when main is called.
    417  * This includes
    418  *   Taking a copy of the boot configuration structure.
    419  *   Initialising the physical console so characters can be printed.
    420  *   Setting up page tables for the kernel
    421  *   Relocating the kernel to the bottom of physical memory
    422  */
    423 u_int
    424 initarm(void *arg)
    425 {
    426 	extern vaddr_t xscale_cache_clean_addr;
    427 	int loop;
    428 	int loop1;
    429 	u_int l1pagetable;
    430 	paddr_t memstart;
    431 	psize_t memsize;
    432 	int led_data = 1;
    433 #ifdef DIAGNOSTIC
    434 	extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */
    435 #endif
    436 
    437 #define LEDSTEP_P() ioreg8_write(G42XXEB_PLDREG_BASE+G42XXEB_LED, led_data++)
    438 #define LEDSTEP() pldreg8_write(G42XXEB_LED, led_data++);
    439 
    440 	/* use physical address until pagetable is set */
    441 	LEDSTEP_P();
    442 
    443 	/* map some peripheral registers at static I/O area */
    444 	pmap_devmap_bootstrap((vaddr_t)read_ttb(), g42xxeb_devmap);
    445 
    446 	LEDSTEP_P();
    447 
    448 	/* start 32.768 kHz OSC */
    449 	ioreg_write(G42XXEB_CLKMAN_VBASE + 0x08, 2);
    450 	/* Get ready for splfoo() */
    451 	pxa2x0_intr_bootstrap(G42XXEB_INTCTL_VBASE);
    452 
    453 	LEDSTEP();
    454 
    455 	/*
    456 	 * Heads up ... Setup the CPU / MMU / TLB functions
    457 	 */
    458 	if (set_cpufuncs())
    459 		panic("cpu not recognized!");
    460 
    461 	LEDSTEP();
    462 
    463 	/*
    464 	 * Okay, RedBoot has provided us with the following memory map:
    465 	 *
    466 	 * Physical Address Range     Description
    467 	 * -----------------------    ----------------------------------
    468 	 * 0x00000000 - 0x01ffffff    flash Memory   (32MB)
    469 	 * 0x04000000 - 0x05ffffff    Application flash Memory  (32MB)
    470 	 * 0x08000000 - 0x080000ff    I/O baseboard registers
    471 	 * 0x0c000000 - 0x0c0fffff    Ethernet Controller
    472 	 * 0x14000000 - 0x17ffffff    Expansion Card (64MB)
    473 	 * 0x40000000 - 0x480fffff    Processor Registers
    474 	 * 0xa0000000 - 0xa3ffffff    SDRAM Bank 0 (64MB)
    475 	 *
    476 	 *
    477 	 * Virtual Address Range    X C B  Description
    478 	 * -----------------------  - - -  ----------------------------------
    479 	 * 0x00000000 - 0x00003fff  N Y Y  SDRAM
    480 	 * 0x00004000 - 0x01ffffff  N Y N  ROM
    481 	 * 0x08000000 - 0x080fffff  N N N  I/O baseboard registers
    482 	 * 0x0a000000 - 0x0a0fffff  N N N  SRAM
    483 	 * 0x40000000 - 0x480fffff  N N N  Processor Registers
    484 	 * 0xa0000000 - 0xa000ffff  N Y N  RedBoot SDRAM
    485 	 * 0xa0017000 - 0xa3ffffff  Y Y Y  SDRAM
    486 	 * 0xc0000000 - 0xcfffffff  Y Y Y  Cache Flush Region
    487 	 * (done by this routine)
    488 	 * 0xfd000000 - 0xfd0000ff  N N N  I/O baseboard registers
    489 	 * 0xfd100000 - 0xfd3fffff  N N N  Processor Registers.
    490 	 * 0xfd400000 - 0xfd4fffff  N N N  FF-UART
    491 	 * 0xfd500000 - 0xfd5fffff  N N N  BT-UART
    492 	 *
    493 	 * RedBoot's first level page table is at 0xa0004000.  There
    494 	 * are also 2 second-level tables at 0xa0008000 and
    495 	 * 0xa0008400.  We will continue to use them until we switch to
    496 	 * our pagetable by cpu_setttb().
    497 	 */
    498 
    499 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    500 
    501 	LEDSTEP();
    502 
    503 	/* setup GPIO for BTUART, in case bootloader doesn't take care of it */
    504 	pxa2x0_gpio_bootstrap(G42XXEB_GPIO_VBASE);
    505 	pxa2x0_gpio_config(g42xxeb_gpioconf);
    506 
    507 	LEDSTEP();
    508 
    509 	consinit();
    510 #ifdef KGDB
    511 	LEDSTEP();
    512 	kgdb_port_init();
    513 #endif
    514 
    515 	LEDSTEP();
    516 
    517 	/* Talk to the user */
    518 	printf("\nNetBSD/evbarm (g42xxeb) booting ...\n");
    519 
    520 #if 0
    521 	/*
    522 	 * Examine the boot args string for options we need to know about
    523 	 * now.
    524 	 */
    525 	process_kernel_args((char *)nwbootinfo.bt_args);
    526 #endif
    527 
    528 	memstart = 0xa0000000;
    529 	memsize = 0x04000000;		/* 64MB */
    530 
    531 	printf("initarm: Configuring system ...\n");
    532 
    533 	/* Fake bootconfig structure for the benefit of pmap.c */
    534 	/* XXX must make the memory description h/w independent */
    535 	bootconfig.dramblocks = 1;
    536 	bootconfig.dram[0].address = memstart;
    537 	bootconfig.dram[0].pages = memsize / PAGE_SIZE;
    538 
    539 	/*
    540 	 * Set up the variables that define the availablilty of
    541 	 * physical memory.  For now, we're going to set
    542 	 * physical_freestart to 0xa0200000 (where the kernel
    543 	 * was loaded), and allocate the memory we need downwards.
    544 	 * If we get too close to the L1 table that we set up, we
    545 	 * will panic.  We will update physical_freestart and
    546 	 * physical_freeend later to reflect what pmap_bootstrap()
    547 	 * wants to see.
    548 	 *
    549 	 * XXX pmap_bootstrap() needs an enema.
    550 	 */
    551 	physical_start = bootconfig.dram[0].address;
    552 	physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
    553 
    554 	physical_freestart = 0xa0009000UL;
    555 	physical_freeend = 0xa0200000UL;
    556 
    557 	physmem = (physical_end - physical_start) / PAGE_SIZE;
    558 
    559 #ifdef VERBOSE_INIT_ARM
    560 	/* Tell the user about the memory */
    561 	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
    562 	    physical_start, physical_end - 1);
    563 #endif
    564 
    565 	/*
    566 	 * Okay, the kernel starts 2MB in from the bottom of physical
    567 	 * memory.  We are going to allocate our bootstrap pages downwards
    568 	 * from there.
    569 	 *
    570 	 * We need to allocate some fixed page tables to get the kernel
    571 	 * going.  We allocate one page directory and a number of page
    572 	 * tables and store the physical addresses in the kernel_pt_table
    573 	 * array.
    574 	 *
    575 	 * The kernel page directory must be on a 16K boundary.  The page
    576 	 * tables must be on 4K bounaries.  What we do is allocate the
    577 	 * page directory on the first 16K boundary that we encounter, and
    578 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    579 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    580 	 * least one 16K aligned region.
    581 	 */
    582 
    583 #ifdef VERBOSE_INIT_ARM
    584 	printf("Allocating page tables\n");
    585 #endif
    586 
    587 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
    588 
    589 #ifdef VERBOSE_INIT_ARM
    590 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
    591 	       physical_freestart, free_pages, free_pages);
    592 #endif
    593 
    594 	/* Define a macro to simplify memory allocation */
    595 #define	valloc_pages(var, np)				\
    596 	alloc_pages((var).pv_pa, (np));			\
    597 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
    598 
    599 #define alloc_pages(var, np)				\
    600 	physical_freeend -= ((np) * PAGE_SIZE);		\
    601 	if (physical_freeend < physical_freestart)	\
    602 		panic("initarm: out of memory");	\
    603 	(var) = physical_freeend;			\
    604 	free_pages -= (np);				\
    605 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
    606 
    607 	loop1 = 0;
    608 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
    609 		/* Are we 16KB aligned for an L1 ? */
    610 		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
    611 		    && kernel_l1pt.pv_pa == 0) {
    612 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
    613 		} else {
    614 			valloc_pages(kernel_pt_table[loop1],
    615 			    L2_TABLE_SIZE / PAGE_SIZE);
    616 			++loop1;
    617 		}
    618 	}
    619 
    620 	/* This should never be able to happen but better confirm that. */
    621 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
    622 		panic("initarm: Failed to align the kernel page directory");
    623 
    624 	LEDSTEP();
    625 
    626 	/*
    627 	 * Allocate a page for the system page mapped to V0x00000000
    628 	 * This page will just contain the system vectors and can be
    629 	 * shared by all processes.
    630 	 */
    631 	alloc_pages(systempage.pv_pa, 1);
    632 
    633 	/* Allocate stacks for all modes */
    634 	valloc_pages(irqstack, IRQ_STACK_SIZE);
    635 	valloc_pages(abtstack, ABT_STACK_SIZE);
    636 	valloc_pages(undstack, UND_STACK_SIZE);
    637 	valloc_pages(kernelstack, UPAGES);
    638 
    639 	/* Allocate enough pages for cleaning the Mini-Data cache. */
    640 	KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
    641 	valloc_pages(minidataclean, 1);
    642 
    643 #ifdef VERBOSE_INIT_ARM
    644 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
    645 	    irqstack.pv_va);
    646 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
    647 	    abtstack.pv_va);
    648 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
    649 	    undstack.pv_va);
    650 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
    651 	    kernelstack.pv_va);
    652 #endif
    653 
    654 	/*
    655 	 * XXX Defer this to later so that we can reclaim the memory
    656 	 * XXX used by the RedBoot page tables.
    657 	 */
    658 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
    659 
    660 	/*
    661 	 * Ok we have allocated physical pages for the primary kernel
    662 	 * page tables
    663 	 */
    664 
    665 #ifdef VERBOSE_INIT_ARM
    666 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    667 #endif
    668 
    669 	/*
    670 	 * Now we start construction of the L1 page table
    671 	 * We start by mapping the L2 page tables into the L1.
    672 	 * This means that we can replace L1 mappings later on if necessary
    673 	 */
    674 	l1pagetable = kernel_l1pt.pv_pa;
    675 
    676 	/* Map the L2 pages tables in the L1 page table */
    677 	pmap_link_l2pt(l1pagetable, 0x00000000,
    678 	    &kernel_pt_table[KERNEL_PT_SYS]);
    679 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
    680 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
    681 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
    682 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
    683 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
    684 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
    685 
    686 	/* update the top of the kernel VM */
    687 	pmap_curmaxkvaddr =
    688 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
    689 
    690 #ifdef VERBOSE_INIT_ARM
    691 	printf("Mapping kernel\n");
    692 #endif
    693 
    694 	/* Now we fill in the L2 pagetable for the kernel static code/data */
    695 	{
    696 		extern char etext[], _end[];
    697 		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
    698 		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
    699 		u_int logical;
    700 
    701 		textsize = (textsize + PGOFSET) & ~PGOFSET;
    702 		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
    703 
    704 		logical = 0x00200000;	/* offset of kernel in RAM */
    705 
    706 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    707 		    physical_start + logical, textsize,
    708 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    709 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    710 		    physical_start + logical, totalsize - textsize,
    711 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    712 	}
    713 
    714 #ifdef VERBOSE_INIT_ARM
    715 	printf("Constructing L2 page tables\n");
    716 #endif
    717 
    718 	/* Map the stack pages */
    719 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
    720 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    721 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
    722 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    723 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
    724 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    725 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
    726 	    UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
    727 
    728 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
    729 	    L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
    730 
    731 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
    732 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
    733 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
    734 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    735 	}
    736 
    737 	/* Map the Mini-Data cache clean area. */
    738 	xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
    739 	    minidataclean.pv_pa);
    740 
    741 	/* Map the vector page. */
    742 #if 1
    743 	/* MULTI-ICE requires that page 0 is NC/NB so that it can download the
    744 	 * cache-clean code there.  */
    745 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
    746 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
    747 #else
    748 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
    749 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    750 #endif
    751 
    752 	/*
    753 	 * map integrated peripherals at same address in l1pagetable
    754 	 * so that we can continue to use console.
    755 	 */
    756 	pmap_devmap_bootstrap(l1pagetable, g42xxeb_devmap);
    757 
    758 	/*
    759 	 * Give the XScale global cache clean code an appropriately
    760 	 * sized chunk of unmapped VA space starting at 0xff000000
    761 	 * (our device mappings end before this address).
    762 	 */
    763 	xscale_cache_clean_addr = 0xff000000U;
    764 
    765 	/*
    766 	 * Now we have the real page tables in place so we can switch to them.
    767 	 * Once this is done we will be running with the REAL kernel page
    768 	 * tables.
    769 	 */
    770 
    771 	/*
    772 	 * Update the physical_freestart/physical_freeend/free_pages
    773 	 * variables.
    774 	 */
    775 	{
    776 		extern char _end[];
    777 
    778 		physical_freestart = physical_start +
    779 		    (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
    780 		     KERNEL_BASE);
    781 		physical_freeend = physical_end;
    782 		free_pages =
    783 		    (physical_freeend - physical_freestart) / PAGE_SIZE;
    784 	}
    785 
    786 	/* Switch tables */
    787 #ifdef VERBOSE_INIT_ARM
    788 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
    789 	       physical_freestart, free_pages, free_pages);
    790 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
    791 #endif
    792 	LEDSTEP();
    793 
    794 	cpu_setttb(kernel_l1pt.pv_pa);
    795 	cpu_tlb_flushID();
    796 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
    797 	LEDSTEP();
    798 
    799 	/*
    800 	 * Moved from cpu_startup() as data_abort_handler() references
    801 	 * this during uvm init
    802 	 */
    803 	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
    804 
    805 #ifdef VERBOSE_INIT_ARM
    806 	printf("bootstrap done.\n");
    807 #endif
    808 
    809 	arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
    810 
    811 	/*
    812 	 * Pages were allocated during the secondary bootstrap for the
    813 	 * stacks for different CPU modes.
    814 	 * We must now set the r13 registers in the different CPU modes to
    815 	 * point to these stacks.
    816 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
    817 	 * of the stack memory.
    818 	 */
    819 #ifdef	VERBOSE_INIT_ARM
    820 	printf("init subsystems: stacks ");
    821 #endif
    822 
    823 	set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
    824 	set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
    825 	set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
    826 
    827 	/*
    828 	 * Well we should set a data abort handler.
    829 	 * Once things get going this will change as we will need a proper
    830 	 * handler.
    831 	 * Until then we will use a handler that just panics but tells us
    832 	 * why.
    833 	 * Initialisation of the vectors will just panic on a data abort.
    834 	 * This just fills in a slighly better one.
    835 	 */
    836 #ifdef	VERBOSE_INIT_ARM
    837 	printf("vectors ");
    838 #endif
    839 	data_abort_handler_address = (u_int)data_abort_handler;
    840 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
    841 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
    842 
    843 	/* Initialise the undefined instruction handlers */
    844 #ifdef	VERBOSE_INIT_ARM
    845 	printf("undefined ");
    846 #endif
    847 	undefined_init();
    848 
    849 	/* Load memory into UVM. */
    850 #ifdef	VERBOSE_INIT_ARM
    851 	printf("page ");
    852 #endif
    853 	uvm_setpagesize();	/* initialize PAGE_SIZE-dependent variables */
    854 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
    855 	    atop(physical_freestart), atop(physical_freeend),
    856 	    VM_FREELIST_DEFAULT);
    857 
    858 	/* Boot strap pmap telling it where the kernel page table is */
    859 #ifdef	VERBOSE_INIT_ARM
    860 	printf("pmap ");
    861 #endif
    862 	LEDSTEP();
    863 	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
    864 	LEDSTEP();
    865 
    866 #ifdef __HAVE_MEMORY_DISK__
    867 	md_root_setconf(memory_disk, sizeof memory_disk);
    868 #endif
    869 
    870 #ifdef BOOTHOWTO
    871 	boothowto |= BOOTHOWTO;
    872 #endif
    873 
    874 	{
    875 		uint8_t sw = pldreg8_read(G42XXEB_DIPSW);
    876 
    877 		if (0 == (sw & (1<<0)))
    878 			boothowto ^= RB_KDB;
    879 		if (0 == (sw & (1<<1)))
    880 			boothowto ^= RB_SINGLE;
    881 	}
    882 
    883 	LEDSTEP();
    884 
    885 #ifdef KGDB
    886 	if (boothowto & RB_KDB) {
    887 		kgdb_debug_init = 1;
    888 		kgdb_connect(1);
    889 	}
    890 #endif
    891 
    892 #ifdef DDB
    893 	db_machine_init();
    894 
    895 	/* Firmware doesn't load symbols. */
    896 	ddb_init(0, NULL, NULL);
    897 
    898 	if (boothowto & RB_KDB)
    899 		Debugger();
    900 #endif
    901 
    902 	pldreg8_write(G42XXEB_LED, 0);
    903 
    904 	/* We return the new stack pointer address */
    905 	return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
    906 }
    907 
    908 #if 0
    909 void
    910 process_kernel_args(char *args)
    911 {
    912 
    913 	boothowto = 0;
    914 
    915 	/* Make a local copy of the bootargs */
    916 	strncpy(bootargs, args, MAX_BOOT_STRING);
    917 
    918 	args = bootargs;
    919 	boot_file = bootargs;
    920 
    921 	/* Skip the kernel image filename */
    922 	while (*args != ' ' && *args != 0)
    923 		++args;
    924 
    925 	if (*args != 0)
    926 		*args++ = 0;
    927 
    928 	while (*args == ' ')
    929 		++args;
    930 
    931 	boot_args = args;
    932 
    933 	printf("bootfile: %s\n", boot_file);
    934 	printf("bootargs: %s\n", boot_args);
    935 
    936 	parse_mi_bootargs(boot_args);
    937 }
    938 #endif
    939 
    940 #ifdef KGDB
    941 #ifndef KGDB_DEVNAME
    942 #define KGDB_DEVNAME "ffuart"
    943 #endif
    944 const char kgdb_devname[] = KGDB_DEVNAME;
    945 
    946 #if (NCOM > 0)
    947 #ifndef KGDB_DEVMODE
    948 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
    949 #endif
    950 int comkgdbmode = KGDB_DEVMODE;
    951 #endif /* NCOM */
    952 
    953 #endif /* KGDB */
    954 
    955 
    956 void
    957 consinit(void)
    958 {
    959 	static int consinit_called = 0;
    960 	uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN);
    961 #if 0
    962 	char *console = CONSDEVNAME;
    963 #endif
    964 
    965 	if (consinit_called != 0)
    966 		return;
    967 
    968 	consinit_called = 1;
    969 
    970 #if NCOM > 0
    971 
    972 #ifdef FFUARTCONSOLE
    973 #ifdef KGDB
    974 	if (0 == strcmp(kgdb_devname, "ffuart")){
    975 		/* port is reserved for kgdb */
    976 	} else
    977 #endif
    978 	if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE,
    979 		comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
    980 #if 0
    981 		pxa2x0_clkman_config(CKEN_FFUART, 1);
    982 #else
    983 		ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN,
    984 		    ckenreg|CKEN_FFUART);
    985 #endif
    986 
    987 		return;
    988 	}
    989 #endif /* FFUARTCONSOLE */
    990 
    991 #ifdef BTUARTCONSOLE
    992 #ifdef KGDB
    993 	if (0 == strcmp(kgdb_devname, "btuart")) {
    994 		/* port is reserved for kgdb */
    995 	} else
    996 #endif
    997 	if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE,
    998 		comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
    999 		ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN,
   1000 		    ckenreg|CKEN_BTUART);
   1001 		return;
   1002 	}
   1003 #endif /* BTUARTCONSOLE */
   1004 
   1005 
   1006 #endif /* NCOM */
   1007 
   1008 }
   1009 
   1010 #ifdef KGDB
   1011 void
   1012 kgdb_port_init(void)
   1013 {
   1014 #if (NCOM > 0) && defined(COM_PXA2X0)
   1015 	paddr_t paddr = 0;
   1016 	uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN);
   1017 
   1018 	if (0 == strcmp(kgdb_devname, "ffuart")) {
   1019 		paddr = PXA2X0_FFUART_BASE;
   1020 		ckenreg |= CKEN_FFUART;
   1021 	}
   1022 	else if (0 == strcmp(kgdb_devname, "btuart")) {
   1023 		paddr = PXA2X0_BTUART_BASE;
   1024 		ckenreg |= CKEN_BTUART;
   1025 	}
   1026 
   1027 	if (paddr &&
   1028 	    0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr,
   1029 		kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) {
   1030 
   1031 		ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg);
   1032 
   1033 	}
   1034 
   1035 #endif
   1036 }
   1037 #endif
   1038 
   1039