g42xxeb_machdep.c revision 1.24 1 /* $NetBSD: g42xxeb_machdep.c,v 1.24 2011/07/01 20:38:17 dyoung Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2003, 2004, 2005 Genetec Corporation.
5 * All rights reserved.
6 *
7 * Written by Hiroyuki Bessho for Genetec Corporation.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. The name of Genetec Corporation may not be used to endorse or
18 * promote products derived from this software without specific prior
19 * written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 *
33 * Machine dependent functions for kernel setup for Genetec G4250EBX
34 * evaluation board.
35 *
36 * Based on iq80310_machhdep.c
37 */
38 /*
39 * Copyright (c) 2001 Wasabi Systems, Inc.
40 * All rights reserved.
41 *
42 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed for the NetBSD Project by
55 * Wasabi Systems, Inc.
56 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
57 * or promote products derived from this software without specific prior
58 * written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
62 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
63 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
64 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
65 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
66 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
67 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
68 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
69 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
70 * POSSIBILITY OF SUCH DAMAGE.
71 */
72
73 /*
74 * Copyright (c) 1997,1998 Mark Brinicombe.
75 * Copyright (c) 1997,1998 Causality Limited.
76 * All rights reserved.
77 *
78 * Redistribution and use in source and binary forms, with or without
79 * modification, are permitted provided that the following conditions
80 * are met:
81 * 1. Redistributions of source code must retain the above copyright
82 * notice, this list of conditions and the following disclaimer.
83 * 2. Redistributions in binary form must reproduce the above copyright
84 * notice, this list of conditions and the following disclaimer in the
85 * documentation and/or other materials provided with the distribution.
86 * 3. All advertising materials mentioning features or use of this software
87 * must display the following acknowledgement:
88 * This product includes software developed by Mark Brinicombe
89 * for the NetBSD Project.
90 * 4. The name of the company nor the name of the author may be used to
91 * endorse or promote products derived from this software without specific
92 * prior written permission.
93 *
94 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
95 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
96 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
97 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
98 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
99 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
100 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
101 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
102 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
103 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
104 * SUCH DAMAGE.
105 *
106 * Machine dependent functions for kernel setup for Intel IQ80310 evaluation
107 * boards using RedBoot firmware.
108 */
109
110 #include "opt_ddb.h"
111 #include "opt_kgdb.h"
112 #include "opt_pmap_debug.h"
113 #include "opt_md.h"
114 #include "opt_com.h"
115 #include "lcd.h"
116
117 #include <sys/param.h>
118 #include <sys/device.h>
119 #include <sys/systm.h>
120 #include <sys/kernel.h>
121 #include <sys/exec.h>
122 #include <sys/proc.h>
123 #include <sys/msgbuf.h>
124 #include <sys/reboot.h>
125 #include <sys/termios.h>
126 #include <sys/ksyms.h>
127
128 #include <uvm/uvm_extern.h>
129
130 #include <sys/conf.h>
131 #include <dev/cons.h>
132 #include <dev/md.h>
133
134 #include <machine/db_machdep.h>
135 #include <ddb/db_sym.h>
136 #include <ddb/db_extern.h>
137 #ifdef KGDB
138 #include <sys/kgdb.h>
139 #endif
140
141 #include <machine/bootconfig.h>
142 #include <sys/bus.h>
143 #include <machine/cpu.h>
144 #include <machine/frame.h>
145 #include <arm/undefined.h>
146
147 #include <arm/arm32/machdep.h>
148
149 #include <arm/xscale/pxa2x0reg.h>
150 #include <arm/xscale/pxa2x0var.h>
151 #include <arm/xscale/pxa2x0_gpio.h>
152 #include <evbarm/g42xxeb/g42xxeb_reg.h>
153 #include <evbarm/g42xxeb/g42xxeb_var.h>
154
155 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
156 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
157 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
158
159 /*
160 * The range 0xc1000000 - 0xccffffff is available for kernel VM space
161 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
162 */
163 #define KERNEL_VM_SIZE 0x0C000000
164
165
166 /*
167 * Address to call from cpu_reset() to reset the machine.
168 * This is machine architecture dependent as it varies depending
169 * on where the ROM appears when you turn the MMU off.
170 */
171
172 u_int cpu_reset_address = 0;
173
174 /* Define various stack sizes in pages */
175 #define IRQ_STACK_SIZE 1
176 #define ABT_STACK_SIZE 1
177 #define UND_STACK_SIZE 1
178
179 BootConfig bootconfig; /* Boot config storage */
180 char *boot_args = NULL;
181 char *boot_file = NULL;
182
183 vm_offset_t physical_start;
184 vm_offset_t physical_freestart;
185 vm_offset_t physical_freeend;
186 vm_offset_t physical_end;
187 u_int free_pages;
188
189 /*int debug_flags;*/
190 #ifndef PMAP_STATIC_L1S
191 int max_processes = 64; /* Default number */
192 #endif /* !PMAP_STATIC_L1S */
193
194 /* Physical and virtual addresses for some global pages */
195 pv_addr_t irqstack;
196 pv_addr_t undstack;
197 pv_addr_t abtstack;
198 pv_addr_t kernelstack;
199 pv_addr_t minidataclean;
200
201 vm_offset_t msgbufphys;
202
203 extern u_int data_abort_handler_address;
204 extern u_int prefetch_abort_handler_address;
205 extern u_int undefined_handler_address;
206
207 #ifdef PMAP_DEBUG
208 extern int pmap_debug_level;
209 #endif
210
211 #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
212 #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
213 #define KERNEL_PT_KERNEL_NUM 4
214 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
215 /* Page tables for mapping kernel VM */
216 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
217 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
218
219 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
220
221 /* Prototypes */
222
223 #if 0
224 void process_kernel_args(char *);
225 #endif
226
227 void consinit(void);
228 void kgdb_port_init(void);
229 void change_clock(uint32_t v);
230
231 bs_protos(bs_notimpl);
232
233 #include "com.h"
234 #if NCOM > 0
235 #include <dev/ic/comreg.h>
236 #include <dev/ic/comvar.h>
237 #endif
238
239 #ifndef CONSPEED
240 #define CONSPEED B115200 /* What RedBoot uses */
241 #endif
242 #ifndef CONMODE
243 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
244 #endif
245
246 int comcnspeed = CONSPEED;
247 int comcnmode = CONMODE;
248
249 static struct pxa2x0_gpioconf boarddep_gpioconf[] = {
250 { 44, GPIO_ALT_FN_1_IN }, /* BTCST */
251 { 45, GPIO_ALT_FN_2_OUT }, /* BTRST */
252
253 { -1 }
254 };
255 static struct pxa2x0_gpioconf *g42xxeb_gpioconf[] = {
256 pxa25x_com_btuart_gpioconf,
257 pxa25x_com_ffuart_gpioconf,
258 #if 0
259 pxa25x_com_stuart_gpioconf,
260 pxa25x_pxaacu_gpioconf,
261 #endif
262 boarddep_gpioconf,
263 NULL
264 };
265
266 /*
267 * void cpu_reboot(int howto, char *bootstr)
268 *
269 * Reboots the system
270 *
271 * Deal with any syncing, unmounting, dumping and shutdown hooks,
272 * then reset the CPU.
273 */
274 void
275 cpu_reboot(int howto, char *bootstr)
276 {
277 #ifdef DIAGNOSTIC
278 /* info */
279 printf("boot: howto=%08x curproc=%p\n", howto, curproc);
280 #endif
281
282 /*
283 * If we are still cold then hit the air brakes
284 * and crash to earth fast
285 */
286 if (cold) {
287 doshutdownhooks();
288 pmf_system_shutdown(boothowto);
289 printf("The operating system has halted.\n");
290 printf("Please press any key to reboot.\n\n");
291 cngetc();
292 printf("rebooting...\n");
293 cpu_reset();
294 /*NOTREACHED*/
295 }
296
297 /* Disable console buffering */
298 /* cnpollc(1);*/
299
300 /*
301 * If RB_NOSYNC was not specified sync the discs.
302 * Note: Unless cold is set to 1 here, syslogd will die during the
303 * unmount. It looks like syslogd is getting woken up only to find
304 * that it cannot page part of the binary in as the filesystem has
305 * been unmounted.
306 */
307 if (!(howto & RB_NOSYNC))
308 bootsync();
309
310 /* Say NO to interrupts */
311 splhigh();
312
313 /* Do a dump if requested. */
314 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
315 dumpsys();
316
317 /* Run any shutdown hooks */
318 doshutdownhooks();
319
320 pmf_system_shutdown(boothowto);
321
322 /* Make sure IRQ's are disabled */
323 IRQdisable;
324
325 if (howto & RB_HALT) {
326 printf("The operating system has halted.\n");
327 printf("Please press any key to reboot.\n\n");
328 cngetc();
329 }
330
331 printf("rebooting...\n");
332 cpu_reset();
333 /*NOTREACHED*/
334 }
335
336 static inline
337 pd_entry_t *
338 read_ttb(void)
339 {
340 long ttb;
341
342 __asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r" (ttb));
343
344
345 return (pd_entry_t *)(ttb & ~((1<<14)-1));
346 }
347
348 /*
349 * Static device mappings. These peripheral registers are mapped at
350 * fixed virtual addresses very early in initarm() so that we can use
351 * them while booting the kernel, and stay at the same address
352 * throughout whole kernel's life time.
353 *
354 * We use this table twice; once with bootstrap page table, and once
355 * with kernel's page table which we build up in initarm().
356 *
357 * Since we map these registers into the bootstrap page table using
358 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
359 * registers segment-aligned and segment-rounded in order to avoid
360 * using the 2nd page tables.
361 */
362
363 #define _A(a) ((a) & ~L1_S_OFFSET)
364 #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
365
366 static const struct pmap_devmap g42xxeb_devmap[] = {
367 {
368 G42XXEB_PLDREG_VBASE,
369 _A(G42XXEB_PLDREG_BASE),
370 _S(G42XXEB_PLDREG_SIZE),
371 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
372 },
373 {
374 G42XXEB_GPIO_VBASE,
375 _A(PXA2X0_GPIO_BASE),
376 _S(PXA250_GPIO_SIZE),
377 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
378 },
379 {
380 G42XXEB_CLKMAN_VBASE,
381 _A(PXA2X0_CLKMAN_BASE),
382 _S(PXA2X0_CLKMAN_SIZE),
383 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
384 },
385 {
386 G42XXEB_INTCTL_VBASE,
387 _A(PXA2X0_INTCTL_BASE),
388 _S(PXA2X0_INTCTL_SIZE),
389 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
390 },
391 {
392 G42XXEB_FFUART_VBASE,
393 _A(PXA2X0_FFUART_BASE),
394 _S(4 * COM_NPORTS),
395 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
396 },
397 {
398 G42XXEB_BTUART_VBASE,
399 _A(PXA2X0_BTUART_BASE),
400 _S(4 * COM_NPORTS),
401 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
402 },
403 {0, 0, 0, 0,}
404 };
405
406 #undef _A
407 #undef _S
408
409
410 /*
411 * u_int initarm(...)
412 *
413 * Initial entry point on startup. This gets called before main() is
414 * entered.
415 * It should be responsible for setting up everything that must be
416 * in place when main is called.
417 * This includes
418 * Taking a copy of the boot configuration structure.
419 * Initialising the physical console so characters can be printed.
420 * Setting up page tables for the kernel
421 * Relocating the kernel to the bottom of physical memory
422 */
423 u_int
424 initarm(void *arg)
425 {
426 extern vaddr_t xscale_cache_clean_addr;
427 int loop;
428 int loop1;
429 u_int l1pagetable;
430 paddr_t memstart;
431 psize_t memsize;
432 int led_data = 1;
433 #ifdef DIAGNOSTIC
434 extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */
435 #endif
436
437 #define LEDSTEP_P() ioreg8_write(G42XXEB_PLDREG_BASE+G42XXEB_LED, led_data++)
438 #define LEDSTEP() pldreg8_write(G42XXEB_LED, led_data++);
439
440 /* use physical address until pagetable is set */
441 LEDSTEP_P();
442
443 /* map some peripheral registers at static I/O area */
444 pmap_devmap_bootstrap((vaddr_t)read_ttb(), g42xxeb_devmap);
445
446 LEDSTEP_P();
447
448 /* start 32.768 kHz OSC */
449 ioreg_write(G42XXEB_CLKMAN_VBASE + 0x08, 2);
450 /* Get ready for splfoo() */
451 pxa2x0_intr_bootstrap(G42XXEB_INTCTL_VBASE);
452
453 LEDSTEP();
454
455 /*
456 * Heads up ... Setup the CPU / MMU / TLB functions
457 */
458 if (set_cpufuncs())
459 panic("cpu not recognized!");
460
461 LEDSTEP();
462
463 /*
464 * Okay, RedBoot has provided us with the following memory map:
465 *
466 * Physical Address Range Description
467 * ----------------------- ----------------------------------
468 * 0x00000000 - 0x01ffffff flash Memory (32MB)
469 * 0x04000000 - 0x05ffffff Application flash Memory (32MB)
470 * 0x08000000 - 0x080000ff I/O baseboard registers
471 * 0x0c000000 - 0x0c0fffff Ethernet Controller
472 * 0x14000000 - 0x17ffffff Expansion Card (64MB)
473 * 0x40000000 - 0x480fffff Processor Registers
474 * 0xa0000000 - 0xa3ffffff SDRAM Bank 0 (64MB)
475 *
476 *
477 * Virtual Address Range X C B Description
478 * ----------------------- - - - ----------------------------------
479 * 0x00000000 - 0x00003fff N Y Y SDRAM
480 * 0x00004000 - 0x01ffffff N Y N ROM
481 * 0x08000000 - 0x080fffff N N N I/O baseboard registers
482 * 0x0a000000 - 0x0a0fffff N N N SRAM
483 * 0x40000000 - 0x480fffff N N N Processor Registers
484 * 0xa0000000 - 0xa000ffff N Y N RedBoot SDRAM
485 * 0xa0017000 - 0xa3ffffff Y Y Y SDRAM
486 * 0xc0000000 - 0xcfffffff Y Y Y Cache Flush Region
487 * (done by this routine)
488 * 0xfd000000 - 0xfd0000ff N N N I/O baseboard registers
489 * 0xfd100000 - 0xfd3fffff N N N Processor Registers.
490 * 0xfd400000 - 0xfd4fffff N N N FF-UART
491 * 0xfd500000 - 0xfd5fffff N N N BT-UART
492 *
493 * RedBoot's first level page table is at 0xa0004000. There
494 * are also 2 second-level tables at 0xa0008000 and
495 * 0xa0008400. We will continue to use them until we switch to
496 * our pagetable by cpu_setttb().
497 */
498
499 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
500
501 LEDSTEP();
502
503 /* setup GPIO for BTUART, in case bootloader doesn't take care of it */
504 pxa2x0_gpio_bootstrap(G42XXEB_GPIO_VBASE);
505 pxa2x0_gpio_config(g42xxeb_gpioconf);
506
507 LEDSTEP();
508
509 consinit();
510 #ifdef KGDB
511 LEDSTEP();
512 kgdb_port_init();
513 #endif
514
515 LEDSTEP();
516
517 /* Talk to the user */
518 printf("\nNetBSD/evbarm (g42xxeb) booting ...\n");
519
520 #if 0
521 /*
522 * Examine the boot args string for options we need to know about
523 * now.
524 */
525 process_kernel_args((char *)nwbootinfo.bt_args);
526 #endif
527
528 memstart = 0xa0000000;
529 memsize = 0x04000000; /* 64MB */
530
531 printf("initarm: Configuring system ...\n");
532
533 /* Fake bootconfig structure for the benefit of pmap.c */
534 /* XXX must make the memory description h/w independent */
535 bootconfig.dramblocks = 1;
536 bootconfig.dram[0].address = memstart;
537 bootconfig.dram[0].pages = memsize / PAGE_SIZE;
538
539 /*
540 * Set up the variables that define the availablilty of
541 * physical memory. For now, we're going to set
542 * physical_freestart to 0xa0200000 (where the kernel
543 * was loaded), and allocate the memory we need downwards.
544 * If we get too close to the L1 table that we set up, we
545 * will panic. We will update physical_freestart and
546 * physical_freeend later to reflect what pmap_bootstrap()
547 * wants to see.
548 *
549 * XXX pmap_bootstrap() needs an enema.
550 */
551 physical_start = bootconfig.dram[0].address;
552 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
553
554 physical_freestart = 0xa0009000UL;
555 physical_freeend = 0xa0200000UL;
556
557 physmem = (physical_end - physical_start) / PAGE_SIZE;
558
559 #ifdef VERBOSE_INIT_ARM
560 /* Tell the user about the memory */
561 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
562 physical_start, physical_end - 1);
563 #endif
564
565 /*
566 * Okay, the kernel starts 2MB in from the bottom of physical
567 * memory. We are going to allocate our bootstrap pages downwards
568 * from there.
569 *
570 * We need to allocate some fixed page tables to get the kernel
571 * going. We allocate one page directory and a number of page
572 * tables and store the physical addresses in the kernel_pt_table
573 * array.
574 *
575 * The kernel page directory must be on a 16K boundary. The page
576 * tables must be on 4K bounaries. What we do is allocate the
577 * page directory on the first 16K boundary that we encounter, and
578 * the page tables on 4K boundaries otherwise. Since we allocate
579 * at least 3 L2 page tables, we are guaranteed to encounter at
580 * least one 16K aligned region.
581 */
582
583 #ifdef VERBOSE_INIT_ARM
584 printf("Allocating page tables\n");
585 #endif
586
587 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
588
589 #ifdef VERBOSE_INIT_ARM
590 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
591 physical_freestart, free_pages, free_pages);
592 #endif
593
594 /* Define a macro to simplify memory allocation */
595 #define valloc_pages(var, np) \
596 alloc_pages((var).pv_pa, (np)); \
597 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
598
599 #define alloc_pages(var, np) \
600 physical_freeend -= ((np) * PAGE_SIZE); \
601 if (physical_freeend < physical_freestart) \
602 panic("initarm: out of memory"); \
603 (var) = physical_freeend; \
604 free_pages -= (np); \
605 memset((char *)(var), 0, ((np) * PAGE_SIZE));
606
607 loop1 = 0;
608 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
609 /* Are we 16KB aligned for an L1 ? */
610 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
611 && kernel_l1pt.pv_pa == 0) {
612 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
613 } else {
614 valloc_pages(kernel_pt_table[loop1],
615 L2_TABLE_SIZE / PAGE_SIZE);
616 ++loop1;
617 }
618 }
619
620 /* This should never be able to happen but better confirm that. */
621 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
622 panic("initarm: Failed to align the kernel page directory");
623
624 LEDSTEP();
625
626 /*
627 * Allocate a page for the system page mapped to V0x00000000
628 * This page will just contain the system vectors and can be
629 * shared by all processes.
630 */
631 alloc_pages(systempage.pv_pa, 1);
632
633 /* Allocate stacks for all modes */
634 valloc_pages(irqstack, IRQ_STACK_SIZE);
635 valloc_pages(abtstack, ABT_STACK_SIZE);
636 valloc_pages(undstack, UND_STACK_SIZE);
637 valloc_pages(kernelstack, UPAGES);
638
639 /* Allocate enough pages for cleaning the Mini-Data cache. */
640 KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
641 valloc_pages(minidataclean, 1);
642
643 #ifdef VERBOSE_INIT_ARM
644 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
645 irqstack.pv_va);
646 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
647 abtstack.pv_va);
648 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
649 undstack.pv_va);
650 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
651 kernelstack.pv_va);
652 #endif
653
654 /*
655 * XXX Defer this to later so that we can reclaim the memory
656 * XXX used by the RedBoot page tables.
657 */
658 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
659
660 /*
661 * Ok we have allocated physical pages for the primary kernel
662 * page tables
663 */
664
665 #ifdef VERBOSE_INIT_ARM
666 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
667 #endif
668
669 /*
670 * Now we start construction of the L1 page table
671 * We start by mapping the L2 page tables into the L1.
672 * This means that we can replace L1 mappings later on if necessary
673 */
674 l1pagetable = kernel_l1pt.pv_pa;
675
676 /* Map the L2 pages tables in the L1 page table */
677 pmap_link_l2pt(l1pagetable, 0x00000000,
678 &kernel_pt_table[KERNEL_PT_SYS]);
679 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
680 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
681 &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
682 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
683 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
684 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
685
686 /* update the top of the kernel VM */
687 pmap_curmaxkvaddr =
688 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
689
690 #ifdef VERBOSE_INIT_ARM
691 printf("Mapping kernel\n");
692 #endif
693
694 /* Now we fill in the L2 pagetable for the kernel static code/data */
695 {
696 extern char etext[], _end[];
697 size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
698 size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
699 u_int logical;
700
701 textsize = (textsize + PGOFSET) & ~PGOFSET;
702 totalsize = (totalsize + PGOFSET) & ~PGOFSET;
703
704 logical = 0x00200000; /* offset of kernel in RAM */
705
706 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
707 physical_start + logical, textsize,
708 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
709 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
710 physical_start + logical, totalsize - textsize,
711 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
712 }
713
714 #ifdef VERBOSE_INIT_ARM
715 printf("Constructing L2 page tables\n");
716 #endif
717
718 /* Map the stack pages */
719 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
720 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
721 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
722 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
723 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
724 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
725 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
726 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
727
728 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
729 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
730
731 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
732 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
733 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
734 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
735 }
736
737 /* Map the Mini-Data cache clean area. */
738 xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
739 minidataclean.pv_pa);
740
741 /* Map the vector page. */
742 #if 1
743 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the
744 * cache-clean code there. */
745 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
746 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
747 #else
748 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
749 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
750 #endif
751
752 /*
753 * map integrated peripherals at same address in l1pagetable
754 * so that we can continue to use console.
755 */
756 pmap_devmap_bootstrap(l1pagetable, g42xxeb_devmap);
757
758 /*
759 * Give the XScale global cache clean code an appropriately
760 * sized chunk of unmapped VA space starting at 0xff000000
761 * (our device mappings end before this address).
762 */
763 xscale_cache_clean_addr = 0xff000000U;
764
765 /*
766 * Now we have the real page tables in place so we can switch to them.
767 * Once this is done we will be running with the REAL kernel page
768 * tables.
769 */
770
771 /*
772 * Update the physical_freestart/physical_freeend/free_pages
773 * variables.
774 */
775 {
776 extern char _end[];
777
778 physical_freestart = physical_start +
779 (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
780 KERNEL_BASE);
781 physical_freeend = physical_end;
782 free_pages =
783 (physical_freeend - physical_freestart) / PAGE_SIZE;
784 }
785
786 /* Switch tables */
787 #ifdef VERBOSE_INIT_ARM
788 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
789 physical_freestart, free_pages, free_pages);
790 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
791 #endif
792 LEDSTEP();
793
794 cpu_setttb(kernel_l1pt.pv_pa);
795 cpu_tlb_flushID();
796 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
797 LEDSTEP();
798
799 /*
800 * Moved from cpu_startup() as data_abort_handler() references
801 * this during uvm init
802 */
803 uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
804
805 #ifdef VERBOSE_INIT_ARM
806 printf("bootstrap done.\n");
807 #endif
808
809 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
810
811 /*
812 * Pages were allocated during the secondary bootstrap for the
813 * stacks for different CPU modes.
814 * We must now set the r13 registers in the different CPU modes to
815 * point to these stacks.
816 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
817 * of the stack memory.
818 */
819 #ifdef VERBOSE_INIT_ARM
820 printf("init subsystems: stacks ");
821 #endif
822
823 set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
824 set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
825 set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
826
827 /*
828 * Well we should set a data abort handler.
829 * Once things get going this will change as we will need a proper
830 * handler.
831 * Until then we will use a handler that just panics but tells us
832 * why.
833 * Initialisation of the vectors will just panic on a data abort.
834 * This just fills in a slighly better one.
835 */
836 #ifdef VERBOSE_INIT_ARM
837 printf("vectors ");
838 #endif
839 data_abort_handler_address = (u_int)data_abort_handler;
840 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
841 undefined_handler_address = (u_int)undefinedinstruction_bounce;
842
843 /* Initialise the undefined instruction handlers */
844 #ifdef VERBOSE_INIT_ARM
845 printf("undefined ");
846 #endif
847 undefined_init();
848
849 /* Load memory into UVM. */
850 #ifdef VERBOSE_INIT_ARM
851 printf("page ");
852 #endif
853 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
854 uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
855 atop(physical_freestart), atop(physical_freeend),
856 VM_FREELIST_DEFAULT);
857
858 /* Boot strap pmap telling it where the kernel page table is */
859 #ifdef VERBOSE_INIT_ARM
860 printf("pmap ");
861 #endif
862 LEDSTEP();
863 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
864 LEDSTEP();
865
866 #ifdef __HAVE_MEMORY_DISK__
867 md_root_setconf(memory_disk, sizeof memory_disk);
868 #endif
869
870 #ifdef BOOTHOWTO
871 boothowto |= BOOTHOWTO;
872 #endif
873
874 {
875 uint8_t sw = pldreg8_read(G42XXEB_DIPSW);
876
877 if (0 == (sw & (1<<0)))
878 boothowto ^= RB_KDB;
879 if (0 == (sw & (1<<1)))
880 boothowto ^= RB_SINGLE;
881 }
882
883 LEDSTEP();
884
885 #ifdef KGDB
886 if (boothowto & RB_KDB) {
887 kgdb_debug_init = 1;
888 kgdb_connect(1);
889 }
890 #endif
891
892 #ifdef DDB
893 db_machine_init();
894
895 /* Firmware doesn't load symbols. */
896 ddb_init(0, NULL, NULL);
897
898 if (boothowto & RB_KDB)
899 Debugger();
900 #endif
901
902 pldreg8_write(G42XXEB_LED, 0);
903
904 /* We return the new stack pointer address */
905 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
906 }
907
908 #if 0
909 void
910 process_kernel_args(char *args)
911 {
912
913 boothowto = 0;
914
915 /* Make a local copy of the bootargs */
916 strncpy(bootargs, args, MAX_BOOT_STRING);
917
918 args = bootargs;
919 boot_file = bootargs;
920
921 /* Skip the kernel image filename */
922 while (*args != ' ' && *args != 0)
923 ++args;
924
925 if (*args != 0)
926 *args++ = 0;
927
928 while (*args == ' ')
929 ++args;
930
931 boot_args = args;
932
933 printf("bootfile: %s\n", boot_file);
934 printf("bootargs: %s\n", boot_args);
935
936 parse_mi_bootargs(boot_args);
937 }
938 #endif
939
940 #ifdef KGDB
941 #ifndef KGDB_DEVNAME
942 #define KGDB_DEVNAME "ffuart"
943 #endif
944 const char kgdb_devname[] = KGDB_DEVNAME;
945
946 #if (NCOM > 0)
947 #ifndef KGDB_DEVMODE
948 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
949 #endif
950 int comkgdbmode = KGDB_DEVMODE;
951 #endif /* NCOM */
952
953 #endif /* KGDB */
954
955
956 void
957 consinit(void)
958 {
959 static int consinit_called = 0;
960 uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN);
961 #if 0
962 char *console = CONSDEVNAME;
963 #endif
964
965 if (consinit_called != 0)
966 return;
967
968 consinit_called = 1;
969
970 #if NCOM > 0
971
972 #ifdef FFUARTCONSOLE
973 #ifdef KGDB
974 if (0 == strcmp(kgdb_devname, "ffuart")){
975 /* port is reserved for kgdb */
976 } else
977 #endif
978 if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE,
979 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
980 #if 0
981 pxa2x0_clkman_config(CKEN_FFUART, 1);
982 #else
983 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN,
984 ckenreg|CKEN_FFUART);
985 #endif
986
987 return;
988 }
989 #endif /* FFUARTCONSOLE */
990
991 #ifdef BTUARTCONSOLE
992 #ifdef KGDB
993 if (0 == strcmp(kgdb_devname, "btuart")) {
994 /* port is reserved for kgdb */
995 } else
996 #endif
997 if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE,
998 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
999 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN,
1000 ckenreg|CKEN_BTUART);
1001 return;
1002 }
1003 #endif /* BTUARTCONSOLE */
1004
1005
1006 #endif /* NCOM */
1007
1008 }
1009
1010 #ifdef KGDB
1011 void
1012 kgdb_port_init(void)
1013 {
1014 #if (NCOM > 0) && defined(COM_PXA2X0)
1015 paddr_t paddr = 0;
1016 uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN);
1017
1018 if (0 == strcmp(kgdb_devname, "ffuart")) {
1019 paddr = PXA2X0_FFUART_BASE;
1020 ckenreg |= CKEN_FFUART;
1021 }
1022 else if (0 == strcmp(kgdb_devname, "btuart")) {
1023 paddr = PXA2X0_BTUART_BASE;
1024 ckenreg |= CKEN_BTUART;
1025 }
1026
1027 if (paddr &&
1028 0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr,
1029 kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) {
1030
1031 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg);
1032
1033 }
1034
1035 #endif
1036 }
1037 #endif
1038
1039