g42xxeb_machdep.c revision 1.27 1 /* $NetBSD: g42xxeb_machdep.c,v 1.27 2012/09/22 00:33:38 matt Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2003, 2004, 2005 Genetec Corporation.
5 * All rights reserved.
6 *
7 * Written by Hiroyuki Bessho for Genetec Corporation.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. The name of Genetec Corporation may not be used to endorse or
18 * promote products derived from this software without specific prior
19 * written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 *
33 * Machine dependent functions for kernel setup for Genetec G4250EBX
34 * evaluation board.
35 *
36 * Based on iq80310_machhdep.c
37 */
38 /*
39 * Copyright (c) 2001 Wasabi Systems, Inc.
40 * All rights reserved.
41 *
42 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed for the NetBSD Project by
55 * Wasabi Systems, Inc.
56 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
57 * or promote products derived from this software without specific prior
58 * written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
62 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
63 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
64 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
65 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
66 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
67 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
68 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
69 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
70 * POSSIBILITY OF SUCH DAMAGE.
71 */
72
73 /*
74 * Copyright (c) 1997,1998 Mark Brinicombe.
75 * Copyright (c) 1997,1998 Causality Limited.
76 * All rights reserved.
77 *
78 * Redistribution and use in source and binary forms, with or without
79 * modification, are permitted provided that the following conditions
80 * are met:
81 * 1. Redistributions of source code must retain the above copyright
82 * notice, this list of conditions and the following disclaimer.
83 * 2. Redistributions in binary form must reproduce the above copyright
84 * notice, this list of conditions and the following disclaimer in the
85 * documentation and/or other materials provided with the distribution.
86 * 3. All advertising materials mentioning features or use of this software
87 * must display the following acknowledgement:
88 * This product includes software developed by Mark Brinicombe
89 * for the NetBSD Project.
90 * 4. The name of the company nor the name of the author may be used to
91 * endorse or promote products derived from this software without specific
92 * prior written permission.
93 *
94 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
95 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
96 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
97 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
98 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
99 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
100 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
101 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
102 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
103 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
104 * SUCH DAMAGE.
105 *
106 * Machine dependent functions for kernel setup for Intel IQ80310 evaluation
107 * boards using RedBoot firmware.
108 */
109
110 #include "opt_ddb.h"
111 #include "opt_kgdb.h"
112 #include "opt_pmap_debug.h"
113 #include "opt_md.h"
114 #include "opt_com.h"
115 #include "lcd.h"
116
117 #include <sys/param.h>
118 #include <sys/device.h>
119 #include <sys/systm.h>
120 #include <sys/kernel.h>
121 #include <sys/exec.h>
122 #include <sys/proc.h>
123 #include <sys/msgbuf.h>
124 #include <sys/reboot.h>
125 #include <sys/termios.h>
126 #include <sys/ksyms.h>
127
128 #include <uvm/uvm_extern.h>
129
130 #include <sys/conf.h>
131 #include <dev/cons.h>
132 #include <dev/md.h>
133
134 #include <machine/db_machdep.h>
135 #include <ddb/db_sym.h>
136 #include <ddb/db_extern.h>
137 #ifdef KGDB
138 #include <sys/kgdb.h>
139 #endif
140
141 #include <machine/bootconfig.h>
142 #include <sys/bus.h>
143 #include <machine/cpu.h>
144 #include <machine/frame.h>
145 #include <arm/undefined.h>
146
147 #include <arm/arm32/machdep.h>
148
149 #include <arm/xscale/pxa2x0reg.h>
150 #include <arm/xscale/pxa2x0var.h>
151 #include <arm/xscale/pxa2x0_gpio.h>
152 #include <evbarm/g42xxeb/g42xxeb_reg.h>
153 #include <evbarm/g42xxeb/g42xxeb_var.h>
154
155 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
156 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
157 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
158
159 /*
160 * The range 0xc1000000 - 0xccffffff is available for kernel VM space
161 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
162 */
163 #define KERNEL_VM_SIZE 0x0C000000
164
165 BootConfig bootconfig; /* Boot config storage */
166 char *boot_args = NULL;
167 char *boot_file = NULL;
168
169 vm_offset_t physical_start;
170 vm_offset_t physical_freestart;
171 vm_offset_t physical_freeend;
172 vm_offset_t physical_end;
173 u_int free_pages;
174
175 /*int debug_flags;*/
176 #ifndef PMAP_STATIC_L1S
177 int max_processes = 64; /* Default number */
178 #endif /* !PMAP_STATIC_L1S */
179
180 /* Physical and virtual addresses for some global pages */
181 pv_addr_t minidataclean;
182
183 vm_offset_t msgbufphys;
184
185 #ifdef PMAP_DEBUG
186 extern int pmap_debug_level;
187 #endif
188
189 #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
190 #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
191 #define KERNEL_PT_KERNEL_NUM 4
192 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
193 /* Page tables for mapping kernel VM */
194 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
195 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
196
197 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
198
199 /* Prototypes */
200
201 #if 0
202 void process_kernel_args(char *);
203 #endif
204
205 void consinit(void);
206 void kgdb_port_init(void);
207 void change_clock(uint32_t v);
208
209 bs_protos(bs_notimpl);
210
211 #include "com.h"
212 #if NCOM > 0
213 #include <dev/ic/comreg.h>
214 #include <dev/ic/comvar.h>
215 #endif
216
217 #ifndef CONSPEED
218 #define CONSPEED B115200 /* What RedBoot uses */
219 #endif
220 #ifndef CONMODE
221 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
222 #endif
223
224 int comcnspeed = CONSPEED;
225 int comcnmode = CONMODE;
226
227 static struct pxa2x0_gpioconf boarddep_gpioconf[] = {
228 { 44, GPIO_ALT_FN_1_IN }, /* BTCST */
229 { 45, GPIO_ALT_FN_2_OUT }, /* BTRST */
230
231 { -1 }
232 };
233 static struct pxa2x0_gpioconf *g42xxeb_gpioconf[] = {
234 pxa25x_com_btuart_gpioconf,
235 pxa25x_com_ffuart_gpioconf,
236 #if 0
237 pxa25x_com_stuart_gpioconf,
238 pxa25x_pxaacu_gpioconf,
239 #endif
240 boarddep_gpioconf,
241 NULL
242 };
243
244 /*
245 * void cpu_reboot(int howto, char *bootstr)
246 *
247 * Reboots the system
248 *
249 * Deal with any syncing, unmounting, dumping and shutdown hooks,
250 * then reset the CPU.
251 */
252 void
253 cpu_reboot(int howto, char *bootstr)
254 {
255 #ifdef DIAGNOSTIC
256 /* info */
257 printf("boot: howto=%08x curproc=%p\n", howto, curproc);
258 #endif
259
260 /*
261 * If we are still cold then hit the air brakes
262 * and crash to earth fast
263 */
264 if (cold) {
265 doshutdownhooks();
266 pmf_system_shutdown(boothowto);
267 printf("The operating system has halted.\n");
268 printf("Please press any key to reboot.\n\n");
269 cngetc();
270 printf("rebooting...\n");
271 cpu_reset();
272 /*NOTREACHED*/
273 }
274
275 /* Disable console buffering */
276 /* cnpollc(1);*/
277
278 /*
279 * If RB_NOSYNC was not specified sync the discs.
280 * Note: Unless cold is set to 1 here, syslogd will die during the
281 * unmount. It looks like syslogd is getting woken up only to find
282 * that it cannot page part of the binary in as the filesystem has
283 * been unmounted.
284 */
285 if (!(howto & RB_NOSYNC))
286 bootsync();
287
288 /* Say NO to interrupts */
289 splhigh();
290
291 /* Do a dump if requested. */
292 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
293 dumpsys();
294
295 /* Run any shutdown hooks */
296 doshutdownhooks();
297
298 pmf_system_shutdown(boothowto);
299
300 /* Make sure IRQ's are disabled */
301 IRQdisable;
302
303 if (howto & RB_HALT) {
304 printf("The operating system has halted.\n");
305 printf("Please press any key to reboot.\n\n");
306 cngetc();
307 }
308
309 printf("rebooting...\n");
310 cpu_reset();
311 /*NOTREACHED*/
312 }
313
314 static inline
315 pd_entry_t *
316 read_ttb(void)
317 {
318 long ttb;
319
320 __asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r" (ttb));
321
322
323 return (pd_entry_t *)(ttb & ~((1<<14)-1));
324 }
325
326 /*
327 * Static device mappings. These peripheral registers are mapped at
328 * fixed virtual addresses very early in initarm() so that we can use
329 * them while booting the kernel, and stay at the same address
330 * throughout whole kernel's life time.
331 *
332 * We use this table twice; once with bootstrap page table, and once
333 * with kernel's page table which we build up in initarm().
334 *
335 * Since we map these registers into the bootstrap page table using
336 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
337 * registers segment-aligned and segment-rounded in order to avoid
338 * using the 2nd page tables.
339 */
340
341 #define _A(a) ((a) & ~L1_S_OFFSET)
342 #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
343
344 static const struct pmap_devmap g42xxeb_devmap[] = {
345 {
346 G42XXEB_PLDREG_VBASE,
347 _A(G42XXEB_PLDREG_BASE),
348 _S(G42XXEB_PLDREG_SIZE),
349 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
350 },
351 {
352 G42XXEB_GPIO_VBASE,
353 _A(PXA2X0_GPIO_BASE),
354 _S(PXA250_GPIO_SIZE),
355 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
356 },
357 {
358 G42XXEB_CLKMAN_VBASE,
359 _A(PXA2X0_CLKMAN_BASE),
360 _S(PXA2X0_CLKMAN_SIZE),
361 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
362 },
363 {
364 G42XXEB_INTCTL_VBASE,
365 _A(PXA2X0_INTCTL_BASE),
366 _S(PXA2X0_INTCTL_SIZE),
367 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
368 },
369 {
370 G42XXEB_FFUART_VBASE,
371 _A(PXA2X0_FFUART_BASE),
372 _S(4 * COM_NPORTS),
373 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
374 },
375 {
376 G42XXEB_BTUART_VBASE,
377 _A(PXA2X0_BTUART_BASE),
378 _S(4 * COM_NPORTS),
379 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
380 },
381 {0, 0, 0, 0,}
382 };
383
384 #undef _A
385 #undef _S
386
387
388 /*
389 * u_int initarm(...)
390 *
391 * Initial entry point on startup. This gets called before main() is
392 * entered.
393 * It should be responsible for setting up everything that must be
394 * in place when main is called.
395 * This includes
396 * Taking a copy of the boot configuration structure.
397 * Initialising the physical console so characters can be printed.
398 * Setting up page tables for the kernel
399 * Relocating the kernel to the bottom of physical memory
400 */
401 u_int
402 initarm(void *arg)
403 {
404 extern vaddr_t xscale_cache_clean_addr;
405 int loop;
406 int loop1;
407 u_int l1pagetable;
408 paddr_t memstart;
409 psize_t memsize;
410 int led_data = 1;
411 #ifdef DIAGNOSTIC
412 extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */
413 #endif
414
415 #define LEDSTEP_P() ioreg8_write(G42XXEB_PLDREG_BASE+G42XXEB_LED, led_data++)
416 #define LEDSTEP() pldreg8_write(G42XXEB_LED, led_data++);
417
418 /* use physical address until pagetable is set */
419 LEDSTEP_P();
420
421 /* map some peripheral registers at static I/O area */
422 pmap_devmap_bootstrap((vaddr_t)read_ttb(), g42xxeb_devmap);
423
424 LEDSTEP_P();
425
426 /* start 32.768 kHz OSC */
427 ioreg_write(G42XXEB_CLKMAN_VBASE + 0x08, 2);
428 /* Get ready for splfoo() */
429 pxa2x0_intr_bootstrap(G42XXEB_INTCTL_VBASE);
430
431 LEDSTEP();
432
433 /*
434 * Heads up ... Setup the CPU / MMU / TLB functions
435 */
436 if (set_cpufuncs())
437 panic("cpu not recognized!");
438
439 LEDSTEP();
440
441 /*
442 * Okay, RedBoot has provided us with the following memory map:
443 *
444 * Physical Address Range Description
445 * ----------------------- ----------------------------------
446 * 0x00000000 - 0x01ffffff flash Memory (32MB)
447 * 0x04000000 - 0x05ffffff Application flash Memory (32MB)
448 * 0x08000000 - 0x080000ff I/O baseboard registers
449 * 0x0c000000 - 0x0c0fffff Ethernet Controller
450 * 0x14000000 - 0x17ffffff Expansion Card (64MB)
451 * 0x40000000 - 0x480fffff Processor Registers
452 * 0xa0000000 - 0xa3ffffff SDRAM Bank 0 (64MB)
453 *
454 *
455 * Virtual Address Range X C B Description
456 * ----------------------- - - - ----------------------------------
457 * 0x00000000 - 0x00003fff N Y Y SDRAM
458 * 0x00004000 - 0x01ffffff N Y N ROM
459 * 0x08000000 - 0x080fffff N N N I/O baseboard registers
460 * 0x0a000000 - 0x0a0fffff N N N SRAM
461 * 0x40000000 - 0x480fffff N N N Processor Registers
462 * 0xa0000000 - 0xa000ffff N Y N RedBoot SDRAM
463 * 0xa0017000 - 0xa3ffffff Y Y Y SDRAM
464 * 0xc0000000 - 0xcfffffff Y Y Y Cache Flush Region
465 * (done by this routine)
466 * 0xfd000000 - 0xfd0000ff N N N I/O baseboard registers
467 * 0xfd100000 - 0xfd3fffff N N N Processor Registers.
468 * 0xfd400000 - 0xfd4fffff N N N FF-UART
469 * 0xfd500000 - 0xfd5fffff N N N BT-UART
470 *
471 * RedBoot's first level page table is at 0xa0004000. There
472 * are also 2 second-level tables at 0xa0008000 and
473 * 0xa0008400. We will continue to use them until we switch to
474 * our pagetable by cpu_setttb().
475 */
476
477 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
478
479 LEDSTEP();
480
481 /* setup GPIO for BTUART, in case bootloader doesn't take care of it */
482 pxa2x0_gpio_bootstrap(G42XXEB_GPIO_VBASE);
483 pxa2x0_gpio_config(g42xxeb_gpioconf);
484
485 LEDSTEP();
486
487 consinit();
488 #ifdef KGDB
489 LEDSTEP();
490 kgdb_port_init();
491 #endif
492
493 LEDSTEP();
494
495 /* Talk to the user */
496 printf("\nNetBSD/evbarm (g42xxeb) booting ...\n");
497
498 #if 0
499 /*
500 * Examine the boot args string for options we need to know about
501 * now.
502 */
503 process_kernel_args((char *)nwbootinfo.bt_args);
504 #endif
505
506 memstart = 0xa0000000;
507 memsize = 0x04000000; /* 64MB */
508
509 printf("initarm: Configuring system ...\n");
510
511 /* Fake bootconfig structure for the benefit of pmap.c */
512 /* XXX must make the memory description h/w independent */
513 bootconfig.dramblocks = 1;
514 bootconfig.dram[0].address = memstart;
515 bootconfig.dram[0].pages = memsize / PAGE_SIZE;
516
517 /*
518 * Set up the variables that define the availablilty of
519 * physical memory. For now, we're going to set
520 * physical_freestart to 0xa0200000 (where the kernel
521 * was loaded), and allocate the memory we need downwards.
522 * If we get too close to the L1 table that we set up, we
523 * will panic. We will update physical_freestart and
524 * physical_freeend later to reflect what pmap_bootstrap()
525 * wants to see.
526 *
527 * XXX pmap_bootstrap() needs an enema.
528 */
529 physical_start = bootconfig.dram[0].address;
530 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
531
532 physical_freestart = 0xa0009000UL;
533 physical_freeend = 0xa0200000UL;
534
535 physmem = (physical_end - physical_start) / PAGE_SIZE;
536
537 #ifdef VERBOSE_INIT_ARM
538 /* Tell the user about the memory */
539 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
540 physical_start, physical_end - 1);
541 #endif
542
543 /*
544 * Okay, the kernel starts 2MB in from the bottom of physical
545 * memory. We are going to allocate our bootstrap pages downwards
546 * from there.
547 *
548 * We need to allocate some fixed page tables to get the kernel
549 * going. We allocate one page directory and a number of page
550 * tables and store the physical addresses in the kernel_pt_table
551 * array.
552 *
553 * The kernel page directory must be on a 16K boundary. The page
554 * tables must be on 4K bounaries. What we do is allocate the
555 * page directory on the first 16K boundary that we encounter, and
556 * the page tables on 4K boundaries otherwise. Since we allocate
557 * at least 3 L2 page tables, we are guaranteed to encounter at
558 * least one 16K aligned region.
559 */
560
561 #ifdef VERBOSE_INIT_ARM
562 printf("Allocating page tables\n");
563 #endif
564
565 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
566
567 #ifdef VERBOSE_INIT_ARM
568 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
569 physical_freestart, free_pages, free_pages);
570 #endif
571
572 /* Define a macro to simplify memory allocation */
573 #define valloc_pages(var, np) \
574 alloc_pages((var).pv_pa, (np)); \
575 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
576
577 #define alloc_pages(var, np) \
578 physical_freeend -= ((np) * PAGE_SIZE); \
579 if (physical_freeend < physical_freestart) \
580 panic("initarm: out of memory"); \
581 (var) = physical_freeend; \
582 free_pages -= (np); \
583 memset((char *)(var), 0, ((np) * PAGE_SIZE));
584
585 loop1 = 0;
586 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
587 /* Are we 16KB aligned for an L1 ? */
588 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
589 && kernel_l1pt.pv_pa == 0) {
590 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
591 } else {
592 valloc_pages(kernel_pt_table[loop1],
593 L2_TABLE_SIZE / PAGE_SIZE);
594 ++loop1;
595 }
596 }
597
598 /* This should never be able to happen but better confirm that. */
599 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
600 panic("initarm: Failed to align the kernel page directory");
601
602 LEDSTEP();
603
604 /*
605 * Allocate a page for the system page mapped to V0x00000000
606 * This page will just contain the system vectors and can be
607 * shared by all processes.
608 */
609 alloc_pages(systempage.pv_pa, 1);
610
611 /* Allocate stacks for all modes */
612 valloc_pages(irqstack, IRQ_STACK_SIZE);
613 valloc_pages(abtstack, ABT_STACK_SIZE);
614 valloc_pages(undstack, UND_STACK_SIZE);
615 valloc_pages(kernelstack, UPAGES);
616
617 /* Allocate enough pages for cleaning the Mini-Data cache. */
618 KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
619 valloc_pages(minidataclean, 1);
620
621 #ifdef VERBOSE_INIT_ARM
622 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
623 irqstack.pv_va);
624 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
625 abtstack.pv_va);
626 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
627 undstack.pv_va);
628 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
629 kernelstack.pv_va);
630 #endif
631
632 /*
633 * XXX Defer this to later so that we can reclaim the memory
634 * XXX used by the RedBoot page tables.
635 */
636 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
637
638 /*
639 * Ok we have allocated physical pages for the primary kernel
640 * page tables
641 */
642
643 #ifdef VERBOSE_INIT_ARM
644 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
645 #endif
646
647 /*
648 * Now we start construction of the L1 page table
649 * We start by mapping the L2 page tables into the L1.
650 * This means that we can replace L1 mappings later on if necessary
651 */
652 l1pagetable = kernel_l1pt.pv_pa;
653
654 /* Map the L2 pages tables in the L1 page table */
655 pmap_link_l2pt(l1pagetable, 0x00000000,
656 &kernel_pt_table[KERNEL_PT_SYS]);
657 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
658 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
659 &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
660 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
661 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
662 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
663
664 /* update the top of the kernel VM */
665 pmap_curmaxkvaddr =
666 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
667
668 #ifdef VERBOSE_INIT_ARM
669 printf("Mapping kernel\n");
670 #endif
671
672 /* Now we fill in the L2 pagetable for the kernel static code/data */
673 {
674 extern char etext[], _end[];
675 size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
676 size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
677 u_int logical;
678
679 textsize = (textsize + PGOFSET) & ~PGOFSET;
680 totalsize = (totalsize + PGOFSET) & ~PGOFSET;
681
682 logical = 0x00200000; /* offset of kernel in RAM */
683
684 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
685 physical_start + logical, textsize,
686 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
687 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
688 physical_start + logical, totalsize - textsize,
689 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
690 }
691
692 #ifdef VERBOSE_INIT_ARM
693 printf("Constructing L2 page tables\n");
694 #endif
695
696 /* Map the stack pages */
697 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
698 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
699 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
700 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
701 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
702 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
703 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
704 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
705
706 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
707 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
708
709 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
710 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
711 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
712 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
713 }
714
715 /* Map the Mini-Data cache clean area. */
716 xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
717 minidataclean.pv_pa);
718
719 /* Map the vector page. */
720 #if 1
721 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the
722 * cache-clean code there. */
723 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
724 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
725 #else
726 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
727 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
728 #endif
729
730 /*
731 * map integrated peripherals at same address in l1pagetable
732 * so that we can continue to use console.
733 */
734 pmap_devmap_bootstrap(l1pagetable, g42xxeb_devmap);
735
736 /*
737 * Give the XScale global cache clean code an appropriately
738 * sized chunk of unmapped VA space starting at 0xff000000
739 * (our device mappings end before this address).
740 */
741 xscale_cache_clean_addr = 0xff000000U;
742
743 /*
744 * Now we have the real page tables in place so we can switch to them.
745 * Once this is done we will be running with the REAL kernel page
746 * tables.
747 */
748
749 /*
750 * Update the physical_freestart/physical_freeend/free_pages
751 * variables.
752 */
753 {
754 extern char _end[];
755
756 physical_freestart = physical_start +
757 (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
758 KERNEL_BASE);
759 physical_freeend = physical_end;
760 free_pages =
761 (physical_freeend - physical_freestart) / PAGE_SIZE;
762 }
763
764 /* Switch tables */
765 #ifdef VERBOSE_INIT_ARM
766 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
767 physical_freestart, free_pages, free_pages);
768 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
769 #endif
770 LEDSTEP();
771
772 cpu_setttb(kernel_l1pt.pv_pa, true);
773 cpu_tlb_flushID();
774 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
775 LEDSTEP();
776
777 /*
778 * Moved from cpu_startup() as data_abort_handler() references
779 * this during uvm init
780 */
781 uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
782
783 #ifdef VERBOSE_INIT_ARM
784 printf("bootstrap done.\n");
785 #endif
786
787 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
788
789 /*
790 * Pages were allocated during the secondary bootstrap for the
791 * stacks for different CPU modes.
792 * We must now set the r13 registers in the different CPU modes to
793 * point to these stacks.
794 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
795 * of the stack memory.
796 */
797 #ifdef VERBOSE_INIT_ARM
798 printf("init subsystems: stacks ");
799 #endif
800
801 set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
802 set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
803 set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
804
805 /*
806 * Well we should set a data abort handler.
807 * Once things get going this will change as we will need a proper
808 * handler.
809 * Until then we will use a handler that just panics but tells us
810 * why.
811 * Initialisation of the vectors will just panic on a data abort.
812 * This just fills in a slighly better one.
813 */
814 #ifdef VERBOSE_INIT_ARM
815 printf("vectors ");
816 #endif
817 data_abort_handler_address = (u_int)data_abort_handler;
818 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
819 undefined_handler_address = (u_int)undefinedinstruction_bounce;
820
821 /* Initialise the undefined instruction handlers */
822 #ifdef VERBOSE_INIT_ARM
823 printf("undefined ");
824 #endif
825 undefined_init();
826
827 /* Load memory into UVM. */
828 #ifdef VERBOSE_INIT_ARM
829 printf("page ");
830 #endif
831 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
832 uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
833 atop(physical_freestart), atop(physical_freeend),
834 VM_FREELIST_DEFAULT);
835
836 /* Boot strap pmap telling it where the kernel page table is */
837 #ifdef VERBOSE_INIT_ARM
838 printf("pmap ");
839 #endif
840 LEDSTEP();
841 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
842 LEDSTEP();
843
844 #ifdef __HAVE_MEMORY_DISK__
845 md_root_setconf(memory_disk, sizeof memory_disk);
846 #endif
847
848 #ifdef BOOTHOWTO
849 boothowto |= BOOTHOWTO;
850 #endif
851
852 {
853 uint8_t sw = pldreg8_read(G42XXEB_DIPSW);
854
855 if (0 == (sw & (1<<0)))
856 boothowto ^= RB_KDB;
857 if (0 == (sw & (1<<1)))
858 boothowto ^= RB_SINGLE;
859 }
860
861 LEDSTEP();
862
863 #ifdef KGDB
864 if (boothowto & RB_KDB) {
865 kgdb_debug_init = 1;
866 kgdb_connect(1);
867 }
868 #endif
869
870 #ifdef DDB
871 db_machine_init();
872
873 /* Firmware doesn't load symbols. */
874 ddb_init(0, NULL, NULL);
875
876 if (boothowto & RB_KDB)
877 Debugger();
878 #endif
879
880 pldreg8_write(G42XXEB_LED, 0);
881
882 /* We return the new stack pointer address */
883 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
884 }
885
886 #if 0
887 void
888 process_kernel_args(char *args)
889 {
890
891 boothowto = 0;
892
893 /* Make a local copy of the bootargs */
894 strncpy(bootargs, args, MAX_BOOT_STRING);
895
896 args = bootargs;
897 boot_file = bootargs;
898
899 /* Skip the kernel image filename */
900 while (*args != ' ' && *args != 0)
901 ++args;
902
903 if (*args != 0)
904 *args++ = 0;
905
906 while (*args == ' ')
907 ++args;
908
909 boot_args = args;
910
911 printf("bootfile: %s\n", boot_file);
912 printf("bootargs: %s\n", boot_args);
913
914 parse_mi_bootargs(boot_args);
915 }
916 #endif
917
918 #ifdef KGDB
919 #ifndef KGDB_DEVNAME
920 #define KGDB_DEVNAME "ffuart"
921 #endif
922 const char kgdb_devname[] = KGDB_DEVNAME;
923
924 #if (NCOM > 0)
925 #ifndef KGDB_DEVMODE
926 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
927 #endif
928 int comkgdbmode = KGDB_DEVMODE;
929 #endif /* NCOM */
930
931 #endif /* KGDB */
932
933
934 void
935 consinit(void)
936 {
937 static int consinit_called = 0;
938 uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN);
939 #if 0
940 char *console = CONSDEVNAME;
941 #endif
942
943 if (consinit_called != 0)
944 return;
945
946 consinit_called = 1;
947
948 #if NCOM > 0
949
950 #ifdef FFUARTCONSOLE
951 #ifdef KGDB
952 if (0 == strcmp(kgdb_devname, "ffuart")){
953 /* port is reserved for kgdb */
954 } else
955 #endif
956 if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE,
957 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
958 #if 0
959 pxa2x0_clkman_config(CKEN_FFUART, 1);
960 #else
961 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN,
962 ckenreg|CKEN_FFUART);
963 #endif
964
965 return;
966 }
967 #endif /* FFUARTCONSOLE */
968
969 #ifdef BTUARTCONSOLE
970 #ifdef KGDB
971 if (0 == strcmp(kgdb_devname, "btuart")) {
972 /* port is reserved for kgdb */
973 } else
974 #endif
975 if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE,
976 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
977 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN,
978 ckenreg|CKEN_BTUART);
979 return;
980 }
981 #endif /* BTUARTCONSOLE */
982
983
984 #endif /* NCOM */
985
986 }
987
988 #ifdef KGDB
989 void
990 kgdb_port_init(void)
991 {
992 #if (NCOM > 0) && defined(COM_PXA2X0)
993 paddr_t paddr = 0;
994 uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN);
995
996 if (0 == strcmp(kgdb_devname, "ffuart")) {
997 paddr = PXA2X0_FFUART_BASE;
998 ckenreg |= CKEN_FFUART;
999 }
1000 else if (0 == strcmp(kgdb_devname, "btuart")) {
1001 paddr = PXA2X0_BTUART_BASE;
1002 ckenreg |= CKEN_BTUART;
1003 }
1004
1005 if (paddr &&
1006 0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr,
1007 kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) {
1008
1009 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg);
1010
1011 }
1012
1013 #endif
1014 }
1015 #endif
1016
1017