Home | History | Annotate | Line # | Download | only in g42xxeb
g42xxeb_machdep.c revision 1.27
      1 /*	$NetBSD: g42xxeb_machdep.c,v 1.27 2012/09/22 00:33:38 matt Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2002, 2003, 2004, 2005  Genetec Corporation.
      5  * All rights reserved.
      6  *
      7  * Written by Hiroyuki Bessho for Genetec Corporation.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. The name of Genetec Corporation may not be used to endorse or
     18  *    promote products derived from this software without specific prior
     19  *    written permission.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
     22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  *
     33  * Machine dependent functions for kernel setup for Genetec G4250EBX
     34  * evaluation board.
     35  *
     36  * Based on iq80310_machhdep.c
     37  */
     38 /*
     39  * Copyright (c) 2001 Wasabi Systems, Inc.
     40  * All rights reserved.
     41  *
     42  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed for the NetBSD Project by
     55  *	Wasabi Systems, Inc.
     56  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     57  *    or promote products derived from this software without specific prior
     58  *    written permission.
     59  *
     60  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     61  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     62  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     63  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     64  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     65  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     66  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     67  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     68  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     69  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     70  * POSSIBILITY OF SUCH DAMAGE.
     71  */
     72 
     73 /*
     74  * Copyright (c) 1997,1998 Mark Brinicombe.
     75  * Copyright (c) 1997,1998 Causality Limited.
     76  * All rights reserved.
     77  *
     78  * Redistribution and use in source and binary forms, with or without
     79  * modification, are permitted provided that the following conditions
     80  * are met:
     81  * 1. Redistributions of source code must retain the above copyright
     82  *    notice, this list of conditions and the following disclaimer.
     83  * 2. Redistributions in binary form must reproduce the above copyright
     84  *    notice, this list of conditions and the following disclaimer in the
     85  *    documentation and/or other materials provided with the distribution.
     86  * 3. All advertising materials mentioning features or use of this software
     87  *    must display the following acknowledgement:
     88  *	This product includes software developed by Mark Brinicombe
     89  *	for the NetBSD Project.
     90  * 4. The name of the company nor the name of the author may be used to
     91  *    endorse or promote products derived from this software without specific
     92  *    prior written permission.
     93  *
     94  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     95  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     96  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     97  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     98  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     99  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    100  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    101  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    102  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    103  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    104  * SUCH DAMAGE.
    105  *
    106  * Machine dependent functions for kernel setup for Intel IQ80310 evaluation
    107  * boards using RedBoot firmware.
    108  */
    109 
    110 #include "opt_ddb.h"
    111 #include "opt_kgdb.h"
    112 #include "opt_pmap_debug.h"
    113 #include "opt_md.h"
    114 #include "opt_com.h"
    115 #include "lcd.h"
    116 
    117 #include <sys/param.h>
    118 #include <sys/device.h>
    119 #include <sys/systm.h>
    120 #include <sys/kernel.h>
    121 #include <sys/exec.h>
    122 #include <sys/proc.h>
    123 #include <sys/msgbuf.h>
    124 #include <sys/reboot.h>
    125 #include <sys/termios.h>
    126 #include <sys/ksyms.h>
    127 
    128 #include <uvm/uvm_extern.h>
    129 
    130 #include <sys/conf.h>
    131 #include <dev/cons.h>
    132 #include <dev/md.h>
    133 
    134 #include <machine/db_machdep.h>
    135 #include <ddb/db_sym.h>
    136 #include <ddb/db_extern.h>
    137 #ifdef KGDB
    138 #include <sys/kgdb.h>
    139 #endif
    140 
    141 #include <machine/bootconfig.h>
    142 #include <sys/bus.h>
    143 #include <machine/cpu.h>
    144 #include <machine/frame.h>
    145 #include <arm/undefined.h>
    146 
    147 #include <arm/arm32/machdep.h>
    148 
    149 #include <arm/xscale/pxa2x0reg.h>
    150 #include <arm/xscale/pxa2x0var.h>
    151 #include <arm/xscale/pxa2x0_gpio.h>
    152 #include <evbarm/g42xxeb/g42xxeb_reg.h>
    153 #include <evbarm/g42xxeb/g42xxeb_var.h>
    154 
    155 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
    156 #define	KERNEL_TEXT_BASE	(KERNEL_BASE + 0x00200000)
    157 #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
    158 
    159 /*
    160  * The range 0xc1000000 - 0xccffffff is available for kernel VM space
    161  * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
    162  */
    163 #define KERNEL_VM_SIZE		0x0C000000
    164 
    165 BootConfig bootconfig;		/* Boot config storage */
    166 char *boot_args = NULL;
    167 char *boot_file = NULL;
    168 
    169 vm_offset_t physical_start;
    170 vm_offset_t physical_freestart;
    171 vm_offset_t physical_freeend;
    172 vm_offset_t physical_end;
    173 u_int free_pages;
    174 
    175 /*int debug_flags;*/
    176 #ifndef PMAP_STATIC_L1S
    177 int max_processes = 64;			/* Default number */
    178 #endif	/* !PMAP_STATIC_L1S */
    179 
    180 /* Physical and virtual addresses for some global pages */
    181 pv_addr_t minidataclean;
    182 
    183 vm_offset_t msgbufphys;
    184 
    185 #ifdef PMAP_DEBUG
    186 extern int pmap_debug_level;
    187 #endif
    188 
    189 #define KERNEL_PT_SYS		0	/* Page table for mapping proc0 zero page */
    190 #define KERNEL_PT_KERNEL	1	/* Page table for mapping kernel */
    191 #define	KERNEL_PT_KERNEL_NUM	4
    192 #define KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
    193 				        /* Page tables for mapping kernel VM */
    194 #define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
    195 #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
    196 
    197 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
    198 
    199 /* Prototypes */
    200 
    201 #if 0
    202 void	process_kernel_args(char *);
    203 #endif
    204 
    205 void	consinit(void);
    206 void	kgdb_port_init(void);
    207 void	change_clock(uint32_t v);
    208 
    209 bs_protos(bs_notimpl);
    210 
    211 #include "com.h"
    212 #if NCOM > 0
    213 #include <dev/ic/comreg.h>
    214 #include <dev/ic/comvar.h>
    215 #endif
    216 
    217 #ifndef CONSPEED
    218 #define CONSPEED B115200	/* What RedBoot uses */
    219 #endif
    220 #ifndef CONMODE
    221 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
    222 #endif
    223 
    224 int comcnspeed = CONSPEED;
    225 int comcnmode = CONMODE;
    226 
    227 static struct pxa2x0_gpioconf boarddep_gpioconf[] = {
    228 	{ 44, GPIO_ALT_FN_1_IN },	/* BTCST */
    229 	{ 45, GPIO_ALT_FN_2_OUT },	/* BTRST */
    230 
    231 	{ -1 }
    232 };
    233 static struct pxa2x0_gpioconf *g42xxeb_gpioconf[] = {
    234 	pxa25x_com_btuart_gpioconf,
    235 	pxa25x_com_ffuart_gpioconf,
    236 #if 0
    237 	pxa25x_com_stuart_gpioconf,
    238 	pxa25x_pxaacu_gpioconf,
    239 #endif
    240 	boarddep_gpioconf,
    241 	NULL
    242 };
    243 
    244 /*
    245  * void cpu_reboot(int howto, char *bootstr)
    246  *
    247  * Reboots the system
    248  *
    249  * Deal with any syncing, unmounting, dumping and shutdown hooks,
    250  * then reset the CPU.
    251  */
    252 void
    253 cpu_reboot(int howto, char *bootstr)
    254 {
    255 #ifdef DIAGNOSTIC
    256 	/* info */
    257 	printf("boot: howto=%08x curproc=%p\n", howto, curproc);
    258 #endif
    259 
    260 	/*
    261 	 * If we are still cold then hit the air brakes
    262 	 * and crash to earth fast
    263 	 */
    264 	if (cold) {
    265 		doshutdownhooks();
    266 		pmf_system_shutdown(boothowto);
    267 		printf("The operating system has halted.\n");
    268 		printf("Please press any key to reboot.\n\n");
    269 		cngetc();
    270 		printf("rebooting...\n");
    271 		cpu_reset();
    272 		/*NOTREACHED*/
    273 	}
    274 
    275 	/* Disable console buffering */
    276 /*	cnpollc(1);*/
    277 
    278 	/*
    279 	 * If RB_NOSYNC was not specified sync the discs.
    280 	 * Note: Unless cold is set to 1 here, syslogd will die during the
    281 	 * unmount.  It looks like syslogd is getting woken up only to find
    282 	 * that it cannot page part of the binary in as the filesystem has
    283 	 * been unmounted.
    284 	 */
    285 	if (!(howto & RB_NOSYNC))
    286 		bootsync();
    287 
    288 	/* Say NO to interrupts */
    289 	splhigh();
    290 
    291 	/* Do a dump if requested. */
    292 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
    293 		dumpsys();
    294 
    295 	/* Run any shutdown hooks */
    296 	doshutdownhooks();
    297 
    298 	pmf_system_shutdown(boothowto);
    299 
    300 	/* Make sure IRQ's are disabled */
    301 	IRQdisable;
    302 
    303 	if (howto & RB_HALT) {
    304 		printf("The operating system has halted.\n");
    305 		printf("Please press any key to reboot.\n\n");
    306 		cngetc();
    307 	}
    308 
    309 	printf("rebooting...\n");
    310 	cpu_reset();
    311 	/*NOTREACHED*/
    312 }
    313 
    314 static inline
    315 pd_entry_t *
    316 read_ttb(void)
    317 {
    318   long ttb;
    319 
    320   __asm volatile("mrc	p15, 0, %0, c2, c0, 0" : "=r" (ttb));
    321 
    322 
    323   return (pd_entry_t *)(ttb & ~((1<<14)-1));
    324 }
    325 
    326 /*
    327  * Static device mappings. These peripheral registers are mapped at
    328  * fixed virtual addresses very early in initarm() so that we can use
    329  * them while booting the kernel, and stay at the same address
    330  * throughout whole kernel's life time.
    331  *
    332  * We use this table twice; once with bootstrap page table, and once
    333  * with kernel's page table which we build up in initarm().
    334  *
    335  * Since we map these registers into the bootstrap page table using
    336  * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
    337  * registers segment-aligned and segment-rounded in order to avoid
    338  * using the 2nd page tables.
    339  */
    340 
    341 #define	_A(a)	((a) & ~L1_S_OFFSET)
    342 #define	_S(s)	(((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
    343 
    344 static const struct pmap_devmap g42xxeb_devmap[] = {
    345     {
    346 	    G42XXEB_PLDREG_VBASE,
    347 	    _A(G42XXEB_PLDREG_BASE),
    348 	    _S(G42XXEB_PLDREG_SIZE),
    349 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    350     },
    351     {
    352 	    G42XXEB_GPIO_VBASE,
    353 	    _A(PXA2X0_GPIO_BASE),
    354 	    _S(PXA250_GPIO_SIZE),
    355 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    356     },
    357     {
    358 	    G42XXEB_CLKMAN_VBASE,
    359 	    _A(PXA2X0_CLKMAN_BASE),
    360 	    _S(PXA2X0_CLKMAN_SIZE),
    361 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    362     },
    363     {
    364 	    G42XXEB_INTCTL_VBASE,
    365 	    _A(PXA2X0_INTCTL_BASE),
    366 	    _S(PXA2X0_INTCTL_SIZE),
    367 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    368     },
    369     {
    370 	    G42XXEB_FFUART_VBASE,
    371 	    _A(PXA2X0_FFUART_BASE),
    372 	    _S(4 * COM_NPORTS),
    373 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    374     },
    375     {
    376 	    G42XXEB_BTUART_VBASE,
    377 	    _A(PXA2X0_BTUART_BASE),
    378 	    _S(4 * COM_NPORTS),
    379 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    380     },
    381     {0, 0, 0, 0,}
    382 };
    383 
    384 #undef	_A
    385 #undef	_S
    386 
    387 
    388 /*
    389  * u_int initarm(...)
    390  *
    391  * Initial entry point on startup. This gets called before main() is
    392  * entered.
    393  * It should be responsible for setting up everything that must be
    394  * in place when main is called.
    395  * This includes
    396  *   Taking a copy of the boot configuration structure.
    397  *   Initialising the physical console so characters can be printed.
    398  *   Setting up page tables for the kernel
    399  *   Relocating the kernel to the bottom of physical memory
    400  */
    401 u_int
    402 initarm(void *arg)
    403 {
    404 	extern vaddr_t xscale_cache_clean_addr;
    405 	int loop;
    406 	int loop1;
    407 	u_int l1pagetable;
    408 	paddr_t memstart;
    409 	psize_t memsize;
    410 	int led_data = 1;
    411 #ifdef DIAGNOSTIC
    412 	extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */
    413 #endif
    414 
    415 #define LEDSTEP_P() ioreg8_write(G42XXEB_PLDREG_BASE+G42XXEB_LED, led_data++)
    416 #define LEDSTEP() pldreg8_write(G42XXEB_LED, led_data++);
    417 
    418 	/* use physical address until pagetable is set */
    419 	LEDSTEP_P();
    420 
    421 	/* map some peripheral registers at static I/O area */
    422 	pmap_devmap_bootstrap((vaddr_t)read_ttb(), g42xxeb_devmap);
    423 
    424 	LEDSTEP_P();
    425 
    426 	/* start 32.768 kHz OSC */
    427 	ioreg_write(G42XXEB_CLKMAN_VBASE + 0x08, 2);
    428 	/* Get ready for splfoo() */
    429 	pxa2x0_intr_bootstrap(G42XXEB_INTCTL_VBASE);
    430 
    431 	LEDSTEP();
    432 
    433 	/*
    434 	 * Heads up ... Setup the CPU / MMU / TLB functions
    435 	 */
    436 	if (set_cpufuncs())
    437 		panic("cpu not recognized!");
    438 
    439 	LEDSTEP();
    440 
    441 	/*
    442 	 * Okay, RedBoot has provided us with the following memory map:
    443 	 *
    444 	 * Physical Address Range     Description
    445 	 * -----------------------    ----------------------------------
    446 	 * 0x00000000 - 0x01ffffff    flash Memory   (32MB)
    447 	 * 0x04000000 - 0x05ffffff    Application flash Memory  (32MB)
    448 	 * 0x08000000 - 0x080000ff    I/O baseboard registers
    449 	 * 0x0c000000 - 0x0c0fffff    Ethernet Controller
    450 	 * 0x14000000 - 0x17ffffff    Expansion Card (64MB)
    451 	 * 0x40000000 - 0x480fffff    Processor Registers
    452 	 * 0xa0000000 - 0xa3ffffff    SDRAM Bank 0 (64MB)
    453 	 *
    454 	 *
    455 	 * Virtual Address Range    X C B  Description
    456 	 * -----------------------  - - -  ----------------------------------
    457 	 * 0x00000000 - 0x00003fff  N Y Y  SDRAM
    458 	 * 0x00004000 - 0x01ffffff  N Y N  ROM
    459 	 * 0x08000000 - 0x080fffff  N N N  I/O baseboard registers
    460 	 * 0x0a000000 - 0x0a0fffff  N N N  SRAM
    461 	 * 0x40000000 - 0x480fffff  N N N  Processor Registers
    462 	 * 0xa0000000 - 0xa000ffff  N Y N  RedBoot SDRAM
    463 	 * 0xa0017000 - 0xa3ffffff  Y Y Y  SDRAM
    464 	 * 0xc0000000 - 0xcfffffff  Y Y Y  Cache Flush Region
    465 	 * (done by this routine)
    466 	 * 0xfd000000 - 0xfd0000ff  N N N  I/O baseboard registers
    467 	 * 0xfd100000 - 0xfd3fffff  N N N  Processor Registers.
    468 	 * 0xfd400000 - 0xfd4fffff  N N N  FF-UART
    469 	 * 0xfd500000 - 0xfd5fffff  N N N  BT-UART
    470 	 *
    471 	 * RedBoot's first level page table is at 0xa0004000.  There
    472 	 * are also 2 second-level tables at 0xa0008000 and
    473 	 * 0xa0008400.  We will continue to use them until we switch to
    474 	 * our pagetable by cpu_setttb().
    475 	 */
    476 
    477 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    478 
    479 	LEDSTEP();
    480 
    481 	/* setup GPIO for BTUART, in case bootloader doesn't take care of it */
    482 	pxa2x0_gpio_bootstrap(G42XXEB_GPIO_VBASE);
    483 	pxa2x0_gpio_config(g42xxeb_gpioconf);
    484 
    485 	LEDSTEP();
    486 
    487 	consinit();
    488 #ifdef KGDB
    489 	LEDSTEP();
    490 	kgdb_port_init();
    491 #endif
    492 
    493 	LEDSTEP();
    494 
    495 	/* Talk to the user */
    496 	printf("\nNetBSD/evbarm (g42xxeb) booting ...\n");
    497 
    498 #if 0
    499 	/*
    500 	 * Examine the boot args string for options we need to know about
    501 	 * now.
    502 	 */
    503 	process_kernel_args((char *)nwbootinfo.bt_args);
    504 #endif
    505 
    506 	memstart = 0xa0000000;
    507 	memsize = 0x04000000;		/* 64MB */
    508 
    509 	printf("initarm: Configuring system ...\n");
    510 
    511 	/* Fake bootconfig structure for the benefit of pmap.c */
    512 	/* XXX must make the memory description h/w independent */
    513 	bootconfig.dramblocks = 1;
    514 	bootconfig.dram[0].address = memstart;
    515 	bootconfig.dram[0].pages = memsize / PAGE_SIZE;
    516 
    517 	/*
    518 	 * Set up the variables that define the availablilty of
    519 	 * physical memory.  For now, we're going to set
    520 	 * physical_freestart to 0xa0200000 (where the kernel
    521 	 * was loaded), and allocate the memory we need downwards.
    522 	 * If we get too close to the L1 table that we set up, we
    523 	 * will panic.  We will update physical_freestart and
    524 	 * physical_freeend later to reflect what pmap_bootstrap()
    525 	 * wants to see.
    526 	 *
    527 	 * XXX pmap_bootstrap() needs an enema.
    528 	 */
    529 	physical_start = bootconfig.dram[0].address;
    530 	physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
    531 
    532 	physical_freestart = 0xa0009000UL;
    533 	physical_freeend = 0xa0200000UL;
    534 
    535 	physmem = (physical_end - physical_start) / PAGE_SIZE;
    536 
    537 #ifdef VERBOSE_INIT_ARM
    538 	/* Tell the user about the memory */
    539 	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
    540 	    physical_start, physical_end - 1);
    541 #endif
    542 
    543 	/*
    544 	 * Okay, the kernel starts 2MB in from the bottom of physical
    545 	 * memory.  We are going to allocate our bootstrap pages downwards
    546 	 * from there.
    547 	 *
    548 	 * We need to allocate some fixed page tables to get the kernel
    549 	 * going.  We allocate one page directory and a number of page
    550 	 * tables and store the physical addresses in the kernel_pt_table
    551 	 * array.
    552 	 *
    553 	 * The kernel page directory must be on a 16K boundary.  The page
    554 	 * tables must be on 4K bounaries.  What we do is allocate the
    555 	 * page directory on the first 16K boundary that we encounter, and
    556 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    557 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    558 	 * least one 16K aligned region.
    559 	 */
    560 
    561 #ifdef VERBOSE_INIT_ARM
    562 	printf("Allocating page tables\n");
    563 #endif
    564 
    565 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
    566 
    567 #ifdef VERBOSE_INIT_ARM
    568 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
    569 	       physical_freestart, free_pages, free_pages);
    570 #endif
    571 
    572 	/* Define a macro to simplify memory allocation */
    573 #define	valloc_pages(var, np)				\
    574 	alloc_pages((var).pv_pa, (np));			\
    575 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
    576 
    577 #define alloc_pages(var, np)				\
    578 	physical_freeend -= ((np) * PAGE_SIZE);		\
    579 	if (physical_freeend < physical_freestart)	\
    580 		panic("initarm: out of memory");	\
    581 	(var) = physical_freeend;			\
    582 	free_pages -= (np);				\
    583 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
    584 
    585 	loop1 = 0;
    586 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
    587 		/* Are we 16KB aligned for an L1 ? */
    588 		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
    589 		    && kernel_l1pt.pv_pa == 0) {
    590 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
    591 		} else {
    592 			valloc_pages(kernel_pt_table[loop1],
    593 			    L2_TABLE_SIZE / PAGE_SIZE);
    594 			++loop1;
    595 		}
    596 	}
    597 
    598 	/* This should never be able to happen but better confirm that. */
    599 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
    600 		panic("initarm: Failed to align the kernel page directory");
    601 
    602 	LEDSTEP();
    603 
    604 	/*
    605 	 * Allocate a page for the system page mapped to V0x00000000
    606 	 * This page will just contain the system vectors and can be
    607 	 * shared by all processes.
    608 	 */
    609 	alloc_pages(systempage.pv_pa, 1);
    610 
    611 	/* Allocate stacks for all modes */
    612 	valloc_pages(irqstack, IRQ_STACK_SIZE);
    613 	valloc_pages(abtstack, ABT_STACK_SIZE);
    614 	valloc_pages(undstack, UND_STACK_SIZE);
    615 	valloc_pages(kernelstack, UPAGES);
    616 
    617 	/* Allocate enough pages for cleaning the Mini-Data cache. */
    618 	KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
    619 	valloc_pages(minidataclean, 1);
    620 
    621 #ifdef VERBOSE_INIT_ARM
    622 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
    623 	    irqstack.pv_va);
    624 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
    625 	    abtstack.pv_va);
    626 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
    627 	    undstack.pv_va);
    628 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
    629 	    kernelstack.pv_va);
    630 #endif
    631 
    632 	/*
    633 	 * XXX Defer this to later so that we can reclaim the memory
    634 	 * XXX used by the RedBoot page tables.
    635 	 */
    636 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
    637 
    638 	/*
    639 	 * Ok we have allocated physical pages for the primary kernel
    640 	 * page tables
    641 	 */
    642 
    643 #ifdef VERBOSE_INIT_ARM
    644 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    645 #endif
    646 
    647 	/*
    648 	 * Now we start construction of the L1 page table
    649 	 * We start by mapping the L2 page tables into the L1.
    650 	 * This means that we can replace L1 mappings later on if necessary
    651 	 */
    652 	l1pagetable = kernel_l1pt.pv_pa;
    653 
    654 	/* Map the L2 pages tables in the L1 page table */
    655 	pmap_link_l2pt(l1pagetable, 0x00000000,
    656 	    &kernel_pt_table[KERNEL_PT_SYS]);
    657 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
    658 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
    659 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
    660 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
    661 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
    662 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
    663 
    664 	/* update the top of the kernel VM */
    665 	pmap_curmaxkvaddr =
    666 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
    667 
    668 #ifdef VERBOSE_INIT_ARM
    669 	printf("Mapping kernel\n");
    670 #endif
    671 
    672 	/* Now we fill in the L2 pagetable for the kernel static code/data */
    673 	{
    674 		extern char etext[], _end[];
    675 		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
    676 		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
    677 		u_int logical;
    678 
    679 		textsize = (textsize + PGOFSET) & ~PGOFSET;
    680 		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
    681 
    682 		logical = 0x00200000;	/* offset of kernel in RAM */
    683 
    684 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    685 		    physical_start + logical, textsize,
    686 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    687 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    688 		    physical_start + logical, totalsize - textsize,
    689 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    690 	}
    691 
    692 #ifdef VERBOSE_INIT_ARM
    693 	printf("Constructing L2 page tables\n");
    694 #endif
    695 
    696 	/* Map the stack pages */
    697 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
    698 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    699 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
    700 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    701 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
    702 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    703 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
    704 	    UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
    705 
    706 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
    707 	    L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
    708 
    709 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
    710 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
    711 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
    712 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    713 	}
    714 
    715 	/* Map the Mini-Data cache clean area. */
    716 	xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
    717 	    minidataclean.pv_pa);
    718 
    719 	/* Map the vector page. */
    720 #if 1
    721 	/* MULTI-ICE requires that page 0 is NC/NB so that it can download the
    722 	 * cache-clean code there.  */
    723 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
    724 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
    725 #else
    726 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
    727 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    728 #endif
    729 
    730 	/*
    731 	 * map integrated peripherals at same address in l1pagetable
    732 	 * so that we can continue to use console.
    733 	 */
    734 	pmap_devmap_bootstrap(l1pagetable, g42xxeb_devmap);
    735 
    736 	/*
    737 	 * Give the XScale global cache clean code an appropriately
    738 	 * sized chunk of unmapped VA space starting at 0xff000000
    739 	 * (our device mappings end before this address).
    740 	 */
    741 	xscale_cache_clean_addr = 0xff000000U;
    742 
    743 	/*
    744 	 * Now we have the real page tables in place so we can switch to them.
    745 	 * Once this is done we will be running with the REAL kernel page
    746 	 * tables.
    747 	 */
    748 
    749 	/*
    750 	 * Update the physical_freestart/physical_freeend/free_pages
    751 	 * variables.
    752 	 */
    753 	{
    754 		extern char _end[];
    755 
    756 		physical_freestart = physical_start +
    757 		    (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
    758 		     KERNEL_BASE);
    759 		physical_freeend = physical_end;
    760 		free_pages =
    761 		    (physical_freeend - physical_freestart) / PAGE_SIZE;
    762 	}
    763 
    764 	/* Switch tables */
    765 #ifdef VERBOSE_INIT_ARM
    766 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
    767 	       physical_freestart, free_pages, free_pages);
    768 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
    769 #endif
    770 	LEDSTEP();
    771 
    772 	cpu_setttb(kernel_l1pt.pv_pa, true);
    773 	cpu_tlb_flushID();
    774 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
    775 	LEDSTEP();
    776 
    777 	/*
    778 	 * Moved from cpu_startup() as data_abort_handler() references
    779 	 * this during uvm init
    780 	 */
    781 	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
    782 
    783 #ifdef VERBOSE_INIT_ARM
    784 	printf("bootstrap done.\n");
    785 #endif
    786 
    787 	arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
    788 
    789 	/*
    790 	 * Pages were allocated during the secondary bootstrap for the
    791 	 * stacks for different CPU modes.
    792 	 * We must now set the r13 registers in the different CPU modes to
    793 	 * point to these stacks.
    794 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
    795 	 * of the stack memory.
    796 	 */
    797 #ifdef	VERBOSE_INIT_ARM
    798 	printf("init subsystems: stacks ");
    799 #endif
    800 
    801 	set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
    802 	set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
    803 	set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
    804 
    805 	/*
    806 	 * Well we should set a data abort handler.
    807 	 * Once things get going this will change as we will need a proper
    808 	 * handler.
    809 	 * Until then we will use a handler that just panics but tells us
    810 	 * why.
    811 	 * Initialisation of the vectors will just panic on a data abort.
    812 	 * This just fills in a slighly better one.
    813 	 */
    814 #ifdef	VERBOSE_INIT_ARM
    815 	printf("vectors ");
    816 #endif
    817 	data_abort_handler_address = (u_int)data_abort_handler;
    818 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
    819 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
    820 
    821 	/* Initialise the undefined instruction handlers */
    822 #ifdef	VERBOSE_INIT_ARM
    823 	printf("undefined ");
    824 #endif
    825 	undefined_init();
    826 
    827 	/* Load memory into UVM. */
    828 #ifdef	VERBOSE_INIT_ARM
    829 	printf("page ");
    830 #endif
    831 	uvm_setpagesize();	/* initialize PAGE_SIZE-dependent variables */
    832 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
    833 	    atop(physical_freestart), atop(physical_freeend),
    834 	    VM_FREELIST_DEFAULT);
    835 
    836 	/* Boot strap pmap telling it where the kernel page table is */
    837 #ifdef	VERBOSE_INIT_ARM
    838 	printf("pmap ");
    839 #endif
    840 	LEDSTEP();
    841 	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
    842 	LEDSTEP();
    843 
    844 #ifdef __HAVE_MEMORY_DISK__
    845 	md_root_setconf(memory_disk, sizeof memory_disk);
    846 #endif
    847 
    848 #ifdef BOOTHOWTO
    849 	boothowto |= BOOTHOWTO;
    850 #endif
    851 
    852 	{
    853 		uint8_t sw = pldreg8_read(G42XXEB_DIPSW);
    854 
    855 		if (0 == (sw & (1<<0)))
    856 			boothowto ^= RB_KDB;
    857 		if (0 == (sw & (1<<1)))
    858 			boothowto ^= RB_SINGLE;
    859 	}
    860 
    861 	LEDSTEP();
    862 
    863 #ifdef KGDB
    864 	if (boothowto & RB_KDB) {
    865 		kgdb_debug_init = 1;
    866 		kgdb_connect(1);
    867 	}
    868 #endif
    869 
    870 #ifdef DDB
    871 	db_machine_init();
    872 
    873 	/* Firmware doesn't load symbols. */
    874 	ddb_init(0, NULL, NULL);
    875 
    876 	if (boothowto & RB_KDB)
    877 		Debugger();
    878 #endif
    879 
    880 	pldreg8_write(G42XXEB_LED, 0);
    881 
    882 	/* We return the new stack pointer address */
    883 	return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
    884 }
    885 
    886 #if 0
    887 void
    888 process_kernel_args(char *args)
    889 {
    890 
    891 	boothowto = 0;
    892 
    893 	/* Make a local copy of the bootargs */
    894 	strncpy(bootargs, args, MAX_BOOT_STRING);
    895 
    896 	args = bootargs;
    897 	boot_file = bootargs;
    898 
    899 	/* Skip the kernel image filename */
    900 	while (*args != ' ' && *args != 0)
    901 		++args;
    902 
    903 	if (*args != 0)
    904 		*args++ = 0;
    905 
    906 	while (*args == ' ')
    907 		++args;
    908 
    909 	boot_args = args;
    910 
    911 	printf("bootfile: %s\n", boot_file);
    912 	printf("bootargs: %s\n", boot_args);
    913 
    914 	parse_mi_bootargs(boot_args);
    915 }
    916 #endif
    917 
    918 #ifdef KGDB
    919 #ifndef KGDB_DEVNAME
    920 #define KGDB_DEVNAME "ffuart"
    921 #endif
    922 const char kgdb_devname[] = KGDB_DEVNAME;
    923 
    924 #if (NCOM > 0)
    925 #ifndef KGDB_DEVMODE
    926 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
    927 #endif
    928 int comkgdbmode = KGDB_DEVMODE;
    929 #endif /* NCOM */
    930 
    931 #endif /* KGDB */
    932 
    933 
    934 void
    935 consinit(void)
    936 {
    937 	static int consinit_called = 0;
    938 	uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN);
    939 #if 0
    940 	char *console = CONSDEVNAME;
    941 #endif
    942 
    943 	if (consinit_called != 0)
    944 		return;
    945 
    946 	consinit_called = 1;
    947 
    948 #if NCOM > 0
    949 
    950 #ifdef FFUARTCONSOLE
    951 #ifdef KGDB
    952 	if (0 == strcmp(kgdb_devname, "ffuart")){
    953 		/* port is reserved for kgdb */
    954 	} else
    955 #endif
    956 	if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE,
    957 		comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
    958 #if 0
    959 		pxa2x0_clkman_config(CKEN_FFUART, 1);
    960 #else
    961 		ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN,
    962 		    ckenreg|CKEN_FFUART);
    963 #endif
    964 
    965 		return;
    966 	}
    967 #endif /* FFUARTCONSOLE */
    968 
    969 #ifdef BTUARTCONSOLE
    970 #ifdef KGDB
    971 	if (0 == strcmp(kgdb_devname, "btuart")) {
    972 		/* port is reserved for kgdb */
    973 	} else
    974 #endif
    975 	if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE,
    976 		comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
    977 		ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN,
    978 		    ckenreg|CKEN_BTUART);
    979 		return;
    980 	}
    981 #endif /* BTUARTCONSOLE */
    982 
    983 
    984 #endif /* NCOM */
    985 
    986 }
    987 
    988 #ifdef KGDB
    989 void
    990 kgdb_port_init(void)
    991 {
    992 #if (NCOM > 0) && defined(COM_PXA2X0)
    993 	paddr_t paddr = 0;
    994 	uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN);
    995 
    996 	if (0 == strcmp(kgdb_devname, "ffuart")) {
    997 		paddr = PXA2X0_FFUART_BASE;
    998 		ckenreg |= CKEN_FFUART;
    999 	}
   1000 	else if (0 == strcmp(kgdb_devname, "btuart")) {
   1001 		paddr = PXA2X0_BTUART_BASE;
   1002 		ckenreg |= CKEN_BTUART;
   1003 	}
   1004 
   1005 	if (paddr &&
   1006 	    0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr,
   1007 		kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) {
   1008 
   1009 		ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg);
   1010 
   1011 	}
   1012 
   1013 #endif
   1014 }
   1015 #endif
   1016 
   1017