g42xxeb_machdep.c revision 1.30.16.3 1 /* $NetBSD: g42xxeb_machdep.c,v 1.30.16.3 2020/04/21 18:42:05 martin Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2003, 2004, 2005 Genetec Corporation.
5 * All rights reserved.
6 *
7 * Written by Hiroyuki Bessho for Genetec Corporation.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. The name of Genetec Corporation may not be used to endorse or
18 * promote products derived from this software without specific prior
19 * written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 *
33 * Machine dependent functions for kernel setup for Genetec G4250EBX
34 * evaluation board.
35 *
36 * Based on iq80310_machhdep.c
37 */
38 /*
39 * Copyright (c) 2001 Wasabi Systems, Inc.
40 * All rights reserved.
41 *
42 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed for the NetBSD Project by
55 * Wasabi Systems, Inc.
56 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
57 * or promote products derived from this software without specific prior
58 * written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
62 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
63 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
64 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
65 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
66 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
67 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
68 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
69 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
70 * POSSIBILITY OF SUCH DAMAGE.
71 */
72
73 /*
74 * Copyright (c) 1997,1998 Mark Brinicombe.
75 * Copyright (c) 1997,1998 Causality Limited.
76 * All rights reserved.
77 *
78 * Redistribution and use in source and binary forms, with or without
79 * modification, are permitted provided that the following conditions
80 * are met:
81 * 1. Redistributions of source code must retain the above copyright
82 * notice, this list of conditions and the following disclaimer.
83 * 2. Redistributions in binary form must reproduce the above copyright
84 * notice, this list of conditions and the following disclaimer in the
85 * documentation and/or other materials provided with the distribution.
86 * 3. All advertising materials mentioning features or use of this software
87 * must display the following acknowledgement:
88 * This product includes software developed by Mark Brinicombe
89 * for the NetBSD Project.
90 * 4. The name of the company nor the name of the author may be used to
91 * endorse or promote products derived from this software without specific
92 * prior written permission.
93 *
94 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
95 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
96 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
97 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
98 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
99 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
100 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
101 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
102 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
103 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
104 * SUCH DAMAGE.
105 *
106 * Machine dependent functions for kernel setup for Intel IQ80310 evaluation
107 * boards using RedBoot firmware.
108 */
109
110 #include "opt_arm_debug.h"
111 #include "opt_console.h"
112 #include "opt_ddb.h"
113 #include "opt_kgdb.h"
114 #include "opt_md.h"
115 #include "opt_com.h"
116 #include "lcd.h"
117
118 #include <sys/param.h>
119 #include <sys/device.h>
120 #include <sys/systm.h>
121 #include <sys/kernel.h>
122 #include <sys/exec.h>
123 #include <sys/proc.h>
124 #include <sys/msgbuf.h>
125 #include <sys/reboot.h>
126 #include <sys/termios.h>
127 #include <sys/ksyms.h>
128 #include <sys/bus.h>
129 #include <sys/cpu.h>
130
131 #include <uvm/uvm_extern.h>
132
133 #include <sys/conf.h>
134 #include <dev/cons.h>
135 #include <dev/md.h>
136
137 #include <machine/db_machdep.h>
138 #include <ddb/db_sym.h>
139 #include <ddb/db_extern.h>
140 #ifdef KGDB
141 #include <sys/kgdb.h>
142 #endif
143
144 #include <machine/bootconfig.h>
145 #include <arm/locore.h>
146 #include <arm/undefined.h>
147
148 #include <arm/arm32/machdep.h>
149
150 #include <arm/xscale/pxa2x0reg.h>
151 #include <arm/xscale/pxa2x0var.h>
152 #include <arm/xscale/pxa2x0_gpio.h>
153 #include <evbarm/g42xxeb/g42xxeb_reg.h>
154 #include <evbarm/g42xxeb/g42xxeb_var.h>
155
156 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
157 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
158 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
159
160 /*
161 * The range 0xc1000000 - 0xccffffff is available for kernel VM space
162 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
163 */
164 #define KERNEL_VM_SIZE 0x0C000000
165
166 BootConfig bootconfig; /* Boot config storage */
167 char *boot_args = NULL;
168 char *boot_file = NULL;
169
170 vaddr_t physical_start;
171 vaddr_t physical_freestart;
172 vaddr_t physical_freeend;
173 vaddr_t physical_end;
174 u_int free_pages;
175
176 /*int debug_flags;*/
177 #ifndef PMAP_STATIC_L1S
178 int max_processes = 64; /* Default number */
179 #endif /* !PMAP_STATIC_L1S */
180
181 /* Physical and virtual addresses for some global pages */
182 pv_addr_t minidataclean;
183
184 paddr_t msgbufphys;
185
186 #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
187 #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
188 #define KERNEL_PT_KERNEL_NUM 4
189 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
190 /* Page tables for mapping kernel VM */
191 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
192 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
193
194 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
195
196 /* Prototypes */
197
198 #if 0
199 void process_kernel_args(char *);
200 #endif
201
202 void consinit(void);
203 void kgdb_port_init(void);
204 void change_clock(uint32_t v);
205
206 bs_protos(bs_notimpl);
207
208 #include "com.h"
209 #if NCOM > 0
210 #include <dev/ic/comreg.h>
211 #include <dev/ic/comvar.h>
212 #endif
213
214 #ifndef CONSPEED
215 #define CONSPEED B115200 /* What RedBoot uses */
216 #endif
217 #ifndef CONMODE
218 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
219 #endif
220
221 int comcnspeed = CONSPEED;
222 int comcnmode = CONMODE;
223
224 static struct pxa2x0_gpioconf boarddep_gpioconf[] = {
225 { 44, GPIO_ALT_FN_1_IN }, /* BTCST */
226 { 45, GPIO_ALT_FN_2_OUT }, /* BTRST */
227
228 { -1 }
229 };
230 static struct pxa2x0_gpioconf *g42xxeb_gpioconf[] = {
231 pxa25x_com_btuart_gpioconf,
232 pxa25x_com_ffuart_gpioconf,
233 #if 0
234 pxa25x_com_stuart_gpioconf,
235 pxa25x_pxaacu_gpioconf,
236 #endif
237 boarddep_gpioconf,
238 NULL
239 };
240
241 /*
242 * void cpu_reboot(int howto, char *bootstr)
243 *
244 * Reboots the system
245 *
246 * Deal with any syncing, unmounting, dumping and shutdown hooks,
247 * then reset the CPU.
248 */
249 void
250 cpu_reboot(int howto, char *bootstr)
251 {
252 #ifdef DIAGNOSTIC
253 /* info */
254 printf("boot: howto=%08x curproc=%p\n", howto, curproc);
255 #endif
256
257 /*
258 * If we are still cold then hit the air brakes
259 * and crash to earth fast
260 */
261 if (cold) {
262 doshutdownhooks();
263 pmf_system_shutdown(boothowto);
264 printf("The operating system has halted.\n");
265 printf("Please press any key to reboot.\n\n");
266 cngetc();
267 printf("rebooting...\n");
268 cpu_reset();
269 /*NOTREACHED*/
270 }
271
272 /* Disable console buffering */
273 /* cnpollc(1);*/
274
275 /*
276 * If RB_NOSYNC was not specified sync the discs.
277 * Note: Unless cold is set to 1 here, syslogd will die during the
278 * unmount. It looks like syslogd is getting woken up only to find
279 * that it cannot page part of the binary in as the filesystem has
280 * been unmounted.
281 */
282 if (!(howto & RB_NOSYNC))
283 bootsync();
284
285 /* Say NO to interrupts */
286 splhigh();
287
288 /* Do a dump if requested. */
289 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
290 dumpsys();
291
292 /* Run any shutdown hooks */
293 doshutdownhooks();
294
295 pmf_system_shutdown(boothowto);
296
297 /* Make sure IRQ's are disabled */
298 IRQdisable;
299
300 if (howto & RB_HALT) {
301 printf("The operating system has halted.\n");
302 printf("Please press any key to reboot.\n\n");
303 cngetc();
304 }
305
306 printf("rebooting...\n");
307 cpu_reset();
308 /*NOTREACHED*/
309 }
310
311 static inline
312 pd_entry_t *
313 read_ttb(void)
314 {
315 long ttb;
316
317 __asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r" (ttb));
318
319
320 return (pd_entry_t *)(ttb & ~((1<<14)-1));
321 }
322
323 /*
324 * Static device mappings. These peripheral registers are mapped at
325 * fixed virtual addresses very early in initarm() so that we can use
326 * them while booting the kernel, and stay at the same address
327 * throughout whole kernel's life time.
328 *
329 * We use this table twice; once with bootstrap page table, and once
330 * with kernel's page table which we build up in initarm().
331 *
332 * Since we map these registers into the bootstrap page table using
333 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
334 * registers segment-aligned and segment-rounded in order to avoid
335 * using the 2nd page tables.
336 */
337
338 #define _A(a) ((a) & ~L1_S_OFFSET)
339 #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
340
341 static const struct pmap_devmap g42xxeb_devmap[] = {
342 {
343 G42XXEB_PLDREG_VBASE,
344 _A(G42XXEB_PLDREG_BASE),
345 _S(G42XXEB_PLDREG_SIZE),
346 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
347 },
348 {
349 G42XXEB_GPIO_VBASE,
350 _A(PXA2X0_GPIO_BASE),
351 _S(PXA250_GPIO_SIZE),
352 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
353 },
354 {
355 G42XXEB_CLKMAN_VBASE,
356 _A(PXA2X0_CLKMAN_BASE),
357 _S(PXA2X0_CLKMAN_SIZE),
358 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
359 },
360 {
361 G42XXEB_INTCTL_VBASE,
362 _A(PXA2X0_INTCTL_BASE),
363 _S(PXA2X0_INTCTL_SIZE),
364 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
365 },
366 {
367 G42XXEB_FFUART_VBASE,
368 _A(PXA2X0_FFUART_BASE),
369 _S(4 * COM_NPORTS),
370 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
371 },
372 {
373 G42XXEB_BTUART_VBASE,
374 _A(PXA2X0_BTUART_BASE),
375 _S(4 * COM_NPORTS),
376 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
377 },
378 {0, 0, 0, 0,}
379 };
380
381 #undef _A
382 #undef _S
383
384
385 /*
386 * vaddr_t initarm(...)
387 *
388 * Initial entry point on startup. This gets called before main() is
389 * entered.
390 * It should be responsible for setting up everything that must be
391 * in place when main is called.
392 * This includes
393 * Taking a copy of the boot configuration structure.
394 * Initialising the physical console so characters can be printed.
395 * Setting up page tables for the kernel
396 * Relocating the kernel to the bottom of physical memory
397 */
398 vaddr_t
399 initarm(void *arg)
400 {
401 extern vaddr_t xscale_cache_clean_addr;
402 int loop;
403 int loop1;
404 u_int l1pagetable;
405 paddr_t memstart;
406 psize_t memsize;
407 int led_data = 1;
408 #ifdef DIAGNOSTIC
409 extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */
410 #endif
411
412 #define LEDSTEP_P() ioreg8_write(G42XXEB_PLDREG_BASE+G42XXEB_LED, led_data++)
413 #define LEDSTEP() pldreg8_write(G42XXEB_LED, led_data++);
414
415 /* use physical address until pagetable is set */
416 LEDSTEP_P();
417
418 /* map some peripheral registers at static I/O area */
419 pmap_devmap_bootstrap((vaddr_t)read_ttb(), g42xxeb_devmap);
420
421 LEDSTEP_P();
422
423 /* start 32.768 kHz OSC */
424 ioreg_write(G42XXEB_CLKMAN_VBASE + 0x08, 2);
425 /* Get ready for splfoo() */
426 pxa2x0_intr_bootstrap(G42XXEB_INTCTL_VBASE);
427
428 LEDSTEP();
429
430 /*
431 * Heads up ... Setup the CPU / MMU / TLB functions
432 */
433 if (set_cpufuncs())
434 panic("cpu not recognized!");
435
436 LEDSTEP();
437
438 /*
439 * Okay, RedBoot has provided us with the following memory map:
440 *
441 * Physical Address Range Description
442 * ----------------------- ----------------------------------
443 * 0x00000000 - 0x01ffffff flash Memory (32MB)
444 * 0x04000000 - 0x05ffffff Application flash Memory (32MB)
445 * 0x08000000 - 0x080000ff I/O baseboard registers
446 * 0x0c000000 - 0x0c0fffff Ethernet Controller
447 * 0x14000000 - 0x17ffffff Expansion Card (64MB)
448 * 0x40000000 - 0x480fffff Processor Registers
449 * 0xa0000000 - 0xa3ffffff SDRAM Bank 0 (64MB)
450 *
451 *
452 * Virtual Address Range X C B Description
453 * ----------------------- - - - ----------------------------------
454 * 0x00000000 - 0x00003fff N Y Y SDRAM
455 * 0x00004000 - 0x01ffffff N Y N ROM
456 * 0x08000000 - 0x080fffff N N N I/O baseboard registers
457 * 0x0a000000 - 0x0a0fffff N N N SRAM
458 * 0x40000000 - 0x480fffff N N N Processor Registers
459 * 0xa0000000 - 0xa000ffff N Y N RedBoot SDRAM
460 * 0xa0017000 - 0xa3ffffff Y Y Y SDRAM
461 * 0xc0000000 - 0xcfffffff Y Y Y Cache Flush Region
462 * (done by this routine)
463 * 0xfd000000 - 0xfd0000ff N N N I/O baseboard registers
464 * 0xfd100000 - 0xfd3fffff N N N Processor Registers.
465 * 0xfd400000 - 0xfd4fffff N N N FF-UART
466 * 0xfd500000 - 0xfd5fffff N N N BT-UART
467 *
468 * RedBoot's first level page table is at 0xa0004000. There
469 * are also 2 second-level tables at 0xa0008000 and
470 * 0xa0008400. We will continue to use them until we switch to
471 * our pagetable by cpu_setttb().
472 */
473
474 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
475
476 LEDSTEP();
477
478 /* setup GPIO for BTUART, in case bootloader doesn't take care of it */
479 pxa2x0_gpio_bootstrap(G42XXEB_GPIO_VBASE);
480 pxa2x0_gpio_config(g42xxeb_gpioconf);
481
482 LEDSTEP();
483
484 consinit();
485 #ifdef KGDB
486 LEDSTEP();
487 kgdb_port_init();
488 #endif
489
490 LEDSTEP();
491
492 /* Talk to the user */
493 printf("\nNetBSD/evbarm (g42xxeb) booting ...\n");
494
495 #if 0
496 /*
497 * Examine the boot args string for options we need to know about
498 * now.
499 */
500 process_kernel_args((char *)nwbootinfo.bt_args);
501 #endif
502
503 memstart = 0xa0000000;
504 memsize = 0x04000000; /* 64MB */
505
506 printf("initarm: Configuring system ...\n");
507
508 /* Fake bootconfig structure for the benefit of pmap.c */
509 /* XXX must make the memory description h/w independent */
510 bootconfig.dramblocks = 1;
511 bootconfig.dram[0].address = memstart;
512 bootconfig.dram[0].pages = memsize / PAGE_SIZE;
513
514 /*
515 * Set up the variables that define the availablilty of
516 * physical memory. For now, we're going to set
517 * physical_freestart to 0xa0200000 (where the kernel
518 * was loaded), and allocate the memory we need downwards.
519 * If we get too close to the L1 table that we set up, we
520 * will panic. We will update physical_freestart and
521 * physical_freeend later to reflect what pmap_bootstrap()
522 * wants to see.
523 *
524 * XXX pmap_bootstrap() needs an enema.
525 */
526 physical_start = bootconfig.dram[0].address;
527 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
528
529 physical_freestart = 0xa0009000UL;
530 physical_freeend = 0xa0200000UL;
531
532 physmem = (physical_end - physical_start) / PAGE_SIZE;
533
534 #ifdef VERBOSE_INIT_ARM
535 /* Tell the user about the memory */
536 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
537 physical_start, physical_end - 1);
538 #endif
539
540 /*
541 * Okay, the kernel starts 2MB in from the bottom of physical
542 * memory. We are going to allocate our bootstrap pages downwards
543 * from there.
544 *
545 * We need to allocate some fixed page tables to get the kernel
546 * going. We allocate one page directory and a number of page
547 * tables and store the physical addresses in the kernel_pt_table
548 * array.
549 *
550 * The kernel page directory must be on a 16K boundary. The page
551 * tables must be on 4K bounaries. What we do is allocate the
552 * page directory on the first 16K boundary that we encounter, and
553 * the page tables on 4K boundaries otherwise. Since we allocate
554 * at least 3 L2 page tables, we are guaranteed to encounter at
555 * least one 16K aligned region.
556 */
557
558 #ifdef VERBOSE_INIT_ARM
559 printf("Allocating page tables\n");
560 #endif
561
562 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
563
564 #ifdef VERBOSE_INIT_ARM
565 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
566 physical_freestart, free_pages, free_pages);
567 #endif
568
569 /* Define a macro to simplify memory allocation */
570 #define valloc_pages(var, np) \
571 alloc_pages((var).pv_pa, (np)); \
572 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
573
574 #define alloc_pages(var, np) \
575 physical_freeend -= ((np) * PAGE_SIZE); \
576 if (physical_freeend < physical_freestart) \
577 panic("initarm: out of memory"); \
578 (var) = physical_freeend; \
579 free_pages -= (np); \
580 memset((char *)(var), 0, ((np) * PAGE_SIZE));
581
582 loop1 = 0;
583 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
584 /* Are we 16KB aligned for an L1 ? */
585 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
586 && kernel_l1pt.pv_pa == 0) {
587 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
588 } else {
589 valloc_pages(kernel_pt_table[loop1],
590 L2_TABLE_SIZE / PAGE_SIZE);
591 ++loop1;
592 }
593 }
594
595 /* This should never be able to happen but better confirm that. */
596 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
597 panic("initarm: Failed to align the kernel page directory");
598
599 LEDSTEP();
600
601 /*
602 * Allocate a page for the system page mapped to V0x00000000
603 * This page will just contain the system vectors and can be
604 * shared by all processes.
605 */
606 alloc_pages(systempage.pv_pa, 1);
607
608 /* Allocate stacks for all modes */
609 valloc_pages(irqstack, IRQ_STACK_SIZE);
610 valloc_pages(abtstack, ABT_STACK_SIZE);
611 valloc_pages(undstack, UND_STACK_SIZE);
612 valloc_pages(kernelstack, UPAGES);
613
614 /* Allocate enough pages for cleaning the Mini-Data cache. */
615 KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
616 valloc_pages(minidataclean, 1);
617
618 #ifdef VERBOSE_INIT_ARM
619 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
620 irqstack.pv_va);
621 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
622 abtstack.pv_va);
623 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
624 undstack.pv_va);
625 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
626 kernelstack.pv_va);
627 #endif
628
629 /*
630 * XXX Defer this to later so that we can reclaim the memory
631 * XXX used by the RedBoot page tables.
632 */
633 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
634
635 /*
636 * Ok we have allocated physical pages for the primary kernel
637 * page tables
638 */
639
640 #ifdef VERBOSE_INIT_ARM
641 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
642 #endif
643
644 /*
645 * Now we start construction of the L1 page table
646 * We start by mapping the L2 page tables into the L1.
647 * This means that we can replace L1 mappings later on if necessary
648 */
649 l1pagetable = kernel_l1pt.pv_pa;
650
651 /* Map the L2 pages tables in the L1 page table */
652 pmap_link_l2pt(l1pagetable, 0x00000000,
653 &kernel_pt_table[KERNEL_PT_SYS]);
654 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
655 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
656 &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
657 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
658 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
659 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
660
661 /* update the top of the kernel VM */
662 pmap_curmaxkvaddr =
663 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
664
665 #ifdef VERBOSE_INIT_ARM
666 printf("Mapping kernel\n");
667 #endif
668
669 /* Now we fill in the L2 pagetable for the kernel static code/data */
670 {
671 extern char etext[], _end[];
672 size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
673 size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
674 u_int logical;
675
676 textsize = (textsize + PGOFSET) & ~PGOFSET;
677 totalsize = (totalsize + PGOFSET) & ~PGOFSET;
678
679 logical = 0x00200000; /* offset of kernel in RAM */
680
681 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
682 physical_start + logical, textsize,
683 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
684 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
685 physical_start + logical, totalsize - textsize,
686 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
687 }
688
689 #ifdef VERBOSE_INIT_ARM
690 printf("Constructing L2 page tables\n");
691 #endif
692
693 /* Map the stack pages */
694 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
695 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
696 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
697 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
698 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
699 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
700 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
701 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
702
703 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
704 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
705
706 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
707 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
708 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
709 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
710 }
711
712 /* Map the Mini-Data cache clean area. */
713 xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
714 minidataclean.pv_pa);
715
716 /* Map the vector page. */
717 #if 1
718 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the
719 * cache-clean code there. */
720 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
721 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
722 #else
723 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
724 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
725 #endif
726
727 /*
728 * map integrated peripherals at same address in l1pagetable
729 * so that we can continue to use console.
730 */
731 pmap_devmap_bootstrap(l1pagetable, g42xxeb_devmap);
732
733 /*
734 * Give the XScale global cache clean code an appropriately
735 * sized chunk of unmapped VA space starting at 0xff000000
736 * (our device mappings end before this address).
737 */
738 xscale_cache_clean_addr = 0xff000000U;
739
740 /*
741 * Now we have the real page tables in place so we can switch to them.
742 * Once this is done we will be running with the REAL kernel page
743 * tables.
744 */
745
746 /*
747 * Update the physical_freestart/physical_freeend/free_pages
748 * variables.
749 */
750 {
751 extern char _end[];
752
753 physical_freestart = physical_start +
754 (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
755 KERNEL_BASE);
756 physical_freeend = physical_end;
757 free_pages =
758 (physical_freeend - physical_freestart) / PAGE_SIZE;
759 }
760
761 /* Switch tables */
762 #ifdef VERBOSE_INIT_ARM
763 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
764 physical_freestart, free_pages, free_pages);
765 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
766 #endif
767 LEDSTEP();
768
769 cpu_setttb(kernel_l1pt.pv_pa, true);
770 cpu_tlb_flushID();
771 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
772 LEDSTEP();
773
774 /*
775 * Moved from cpu_startup() as data_abort_handler() references
776 * this during uvm init
777 */
778 uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
779
780 #ifdef VERBOSE_INIT_ARM
781 printf("bootstrap done.\n");
782 #endif
783
784 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
785
786 /*
787 * Pages were allocated during the secondary bootstrap for the
788 * stacks for different CPU modes.
789 * We must now set the r13 registers in the different CPU modes to
790 * point to these stacks.
791 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
792 * of the stack memory.
793 */
794 #ifdef VERBOSE_INIT_ARM
795 printf("init subsystems: stacks ");
796 #endif
797
798 set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
799 set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
800 set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
801
802 /*
803 * Well we should set a data abort handler.
804 * Once things get going this will change as we will need a proper
805 * handler.
806 * Until then we will use a handler that just panics but tells us
807 * why.
808 * Initialisation of the vectors will just panic on a data abort.
809 * This just fills in a slighly better one.
810 */
811 #ifdef VERBOSE_INIT_ARM
812 printf("vectors ");
813 #endif
814 data_abort_handler_address = (u_int)data_abort_handler;
815 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
816 undefined_handler_address = (u_int)undefinedinstruction_bounce;
817
818 /* Initialise the undefined instruction handlers */
819 #ifdef VERBOSE_INIT_ARM
820 printf("undefined ");
821 #endif
822 undefined_init();
823
824 /* Load memory into UVM. */
825 #ifdef VERBOSE_INIT_ARM
826 printf("page ");
827 #endif
828 uvm_md_init();
829 uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
830 atop(physical_freestart), atop(physical_freeend),
831 VM_FREELIST_DEFAULT);
832
833 /* Boot strap pmap telling it where managed kernel virtual memory is */
834 #ifdef VERBOSE_INIT_ARM
835 printf("pmap ");
836 #endif
837 LEDSTEP();
838 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
839 LEDSTEP();
840
841 #ifdef __HAVE_MEMORY_DISK__
842 md_root_setconf(memory_disk, sizeof memory_disk);
843 #endif
844
845 #ifdef BOOTHOWTO
846 boothowto |= BOOTHOWTO;
847 #endif
848
849 {
850 uint8_t sw = pldreg8_read(G42XXEB_DIPSW);
851
852 if (0 == (sw & (1<<0)))
853 boothowto ^= RB_KDB;
854 if (0 == (sw & (1<<1)))
855 boothowto ^= RB_SINGLE;
856 }
857
858 LEDSTEP();
859
860 #ifdef KGDB
861 if (boothowto & RB_KDB) {
862 kgdb_debug_init = 1;
863 kgdb_connect(1);
864 }
865 #endif
866
867 #ifdef DDB
868 db_machine_init();
869
870 /* Firmware doesn't load symbols. */
871 ddb_init(0, NULL, NULL);
872
873 if (boothowto & RB_KDB)
874 Debugger();
875 #endif
876
877 pldreg8_write(G42XXEB_LED, 0);
878
879 /* We return the new stack pointer address */
880 return kernelstack.pv_va + USPACE_SVC_STACK_TOP;
881 }
882
883 #if 0
884 void
885 process_kernel_args(char *args)
886 {
887
888 boothowto = 0;
889
890 /* Make a local copy of the bootargs */
891 strncpy(bootargs, args, MAX_BOOT_STRING);
892
893 args = bootargs;
894 boot_file = bootargs;
895
896 /* Skip the kernel image filename */
897 while (*args != ' ' && *args != 0)
898 ++args;
899
900 if (*args != 0)
901 *args++ = 0;
902
903 while (*args == ' ')
904 ++args;
905
906 boot_args = args;
907
908 printf("bootfile: %s\n", boot_file);
909 printf("bootargs: %s\n", boot_args);
910
911 parse_mi_bootargs(boot_args);
912 }
913 #endif
914
915 #ifdef KGDB
916 #ifndef KGDB_DEVNAME
917 #define KGDB_DEVNAME "ffuart"
918 #endif
919 const char kgdb_devname[] = KGDB_DEVNAME;
920
921 #if (NCOM > 0)
922 #ifndef KGDB_DEVMODE
923 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
924 #endif
925 int comkgdbmode = KGDB_DEVMODE;
926 #endif /* NCOM */
927
928 #endif /* KGDB */
929
930
931 void
932 consinit(void)
933 {
934 static int consinit_called = 0;
935 uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN);
936 #if 0
937 char *console = CONSDEVNAME;
938 #endif
939
940 if (consinit_called != 0)
941 return;
942
943 consinit_called = 1;
944
945 #if NCOM > 0
946
947 #ifdef FFUARTCONSOLE
948 #ifdef KGDB
949 if (0 == strcmp(kgdb_devname, "ffuart")){
950 /* port is reserved for kgdb */
951 } else
952 #endif
953 if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE,
954 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
955 #if 0
956 pxa2x0_clkman_config(CKEN_FFUART, 1);
957 #else
958 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN,
959 ckenreg|CKEN_FFUART);
960 #endif
961
962 return;
963 }
964 #endif /* FFUARTCONSOLE */
965
966 #ifdef BTUARTCONSOLE
967 #ifdef KGDB
968 if (0 == strcmp(kgdb_devname, "btuart")) {
969 /* port is reserved for kgdb */
970 } else
971 #endif
972 if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE,
973 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
974 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN,
975 ckenreg|CKEN_BTUART);
976 return;
977 }
978 #endif /* BTUARTCONSOLE */
979
980
981 #endif /* NCOM */
982
983 }
984
985 #ifdef KGDB
986 void
987 kgdb_port_init(void)
988 {
989 #if (NCOM > 0) && defined(COM_PXA2X0)
990 paddr_t paddr = 0;
991 uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN);
992
993 if (0 == strcmp(kgdb_devname, "ffuart")) {
994 paddr = PXA2X0_FFUART_BASE;
995 ckenreg |= CKEN_FFUART;
996 }
997 else if (0 == strcmp(kgdb_devname, "btuart")) {
998 paddr = PXA2X0_BTUART_BASE;
999 ckenreg |= CKEN_BTUART;
1000 }
1001
1002 if (paddr &&
1003 0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr,
1004 kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) {
1005
1006 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg);
1007
1008 }
1009
1010 #endif
1011 }
1012 #endif
1013
1014