g42xxeb_machdep.c revision 1.32 1 /* $NetBSD: g42xxeb_machdep.c,v 1.32 2018/09/21 12:04:08 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2003, 2004, 2005 Genetec Corporation.
5 * All rights reserved.
6 *
7 * Written by Hiroyuki Bessho for Genetec Corporation.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. The name of Genetec Corporation may not be used to endorse or
18 * promote products derived from this software without specific prior
19 * written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 *
33 * Machine dependent functions for kernel setup for Genetec G4250EBX
34 * evaluation board.
35 *
36 * Based on iq80310_machhdep.c
37 */
38 /*
39 * Copyright (c) 2001 Wasabi Systems, Inc.
40 * All rights reserved.
41 *
42 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed for the NetBSD Project by
55 * Wasabi Systems, Inc.
56 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
57 * or promote products derived from this software without specific prior
58 * written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
62 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
63 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
64 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
65 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
66 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
67 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
68 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
69 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
70 * POSSIBILITY OF SUCH DAMAGE.
71 */
72
73 /*
74 * Copyright (c) 1997,1998 Mark Brinicombe.
75 * Copyright (c) 1997,1998 Causality Limited.
76 * All rights reserved.
77 *
78 * Redistribution and use in source and binary forms, with or without
79 * modification, are permitted provided that the following conditions
80 * are met:
81 * 1. Redistributions of source code must retain the above copyright
82 * notice, this list of conditions and the following disclaimer.
83 * 2. Redistributions in binary form must reproduce the above copyright
84 * notice, this list of conditions and the following disclaimer in the
85 * documentation and/or other materials provided with the distribution.
86 * 3. All advertising materials mentioning features or use of this software
87 * must display the following acknowledgement:
88 * This product includes software developed by Mark Brinicombe
89 * for the NetBSD Project.
90 * 4. The name of the company nor the name of the author may be used to
91 * endorse or promote products derived from this software without specific
92 * prior written permission.
93 *
94 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
95 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
96 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
97 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
98 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
99 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
100 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
101 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
102 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
103 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
104 * SUCH DAMAGE.
105 *
106 * Machine dependent functions for kernel setup for Intel IQ80310 evaluation
107 * boards using RedBoot firmware.
108 */
109
110 #include "opt_arm_debug.h"
111 #include "opt_console.h"
112 #include "opt_ddb.h"
113 #include "opt_kgdb.h"
114 #include "opt_pmap_debug.h"
115 #include "opt_md.h"
116 #include "opt_com.h"
117 #include "lcd.h"
118
119 #include <sys/param.h>
120 #include <sys/device.h>
121 #include <sys/systm.h>
122 #include <sys/kernel.h>
123 #include <sys/exec.h>
124 #include <sys/proc.h>
125 #include <sys/msgbuf.h>
126 #include <sys/reboot.h>
127 #include <sys/termios.h>
128 #include <sys/ksyms.h>
129 #include <sys/bus.h>
130 #include <sys/cpu.h>
131
132 #include <uvm/uvm_extern.h>
133
134 #include <sys/conf.h>
135 #include <dev/cons.h>
136 #include <dev/md.h>
137
138 #include <machine/db_machdep.h>
139 #include <ddb/db_sym.h>
140 #include <ddb/db_extern.h>
141 #ifdef KGDB
142 #include <sys/kgdb.h>
143 #endif
144
145 #include <machine/bootconfig.h>
146 #include <arm/locore.h>
147 #include <arm/undefined.h>
148
149 #include <arm/arm32/machdep.h>
150
151 #include <arm/xscale/pxa2x0reg.h>
152 #include <arm/xscale/pxa2x0var.h>
153 #include <arm/xscale/pxa2x0_gpio.h>
154 #include <evbarm/g42xxeb/g42xxeb_reg.h>
155 #include <evbarm/g42xxeb/g42xxeb_var.h>
156
157 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
158 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
159 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
160
161 /*
162 * The range 0xc1000000 - 0xccffffff is available for kernel VM space
163 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
164 */
165 #define KERNEL_VM_SIZE 0x0C000000
166
167 BootConfig bootconfig; /* Boot config storage */
168 char *boot_args = NULL;
169 char *boot_file = NULL;
170
171 vaddr_t physical_start;
172 vaddr_t physical_freestart;
173 vaddr_t physical_freeend;
174 vaddr_t physical_end;
175 u_int free_pages;
176
177 /*int debug_flags;*/
178 #ifndef PMAP_STATIC_L1S
179 int max_processes = 64; /* Default number */
180 #endif /* !PMAP_STATIC_L1S */
181
182 /* Physical and virtual addresses for some global pages */
183 pv_addr_t minidataclean;
184
185 paddr_t msgbufphys;
186
187 #ifdef PMAP_DEBUG
188 extern int pmap_debug_level;
189 #endif
190
191 #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
192 #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
193 #define KERNEL_PT_KERNEL_NUM 4
194 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
195 /* Page tables for mapping kernel VM */
196 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
197 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
198
199 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
200
201 /* Prototypes */
202
203 #if 0
204 void process_kernel_args(char *);
205 #endif
206
207 void consinit(void);
208 void kgdb_port_init(void);
209 void change_clock(uint32_t v);
210
211 bs_protos(bs_notimpl);
212
213 #include "com.h"
214 #if NCOM > 0
215 #include <dev/ic/comreg.h>
216 #include <dev/ic/comvar.h>
217 #endif
218
219 #ifndef CONSPEED
220 #define CONSPEED B115200 /* What RedBoot uses */
221 #endif
222 #ifndef CONMODE
223 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
224 #endif
225
226 int comcnspeed = CONSPEED;
227 int comcnmode = CONMODE;
228
229 static struct pxa2x0_gpioconf boarddep_gpioconf[] = {
230 { 44, GPIO_ALT_FN_1_IN }, /* BTCST */
231 { 45, GPIO_ALT_FN_2_OUT }, /* BTRST */
232
233 { -1 }
234 };
235 static struct pxa2x0_gpioconf *g42xxeb_gpioconf[] = {
236 pxa25x_com_btuart_gpioconf,
237 pxa25x_com_ffuart_gpioconf,
238 #if 0
239 pxa25x_com_stuart_gpioconf,
240 pxa25x_pxaacu_gpioconf,
241 #endif
242 boarddep_gpioconf,
243 NULL
244 };
245
246 /*
247 * void cpu_reboot(int howto, char *bootstr)
248 *
249 * Reboots the system
250 *
251 * Deal with any syncing, unmounting, dumping and shutdown hooks,
252 * then reset the CPU.
253 */
254 void
255 cpu_reboot(int howto, char *bootstr)
256 {
257 #ifdef DIAGNOSTIC
258 /* info */
259 printf("boot: howto=%08x curproc=%p\n", howto, curproc);
260 #endif
261
262 /*
263 * If we are still cold then hit the air brakes
264 * and crash to earth fast
265 */
266 if (cold) {
267 doshutdownhooks();
268 pmf_system_shutdown(boothowto);
269 printf("The operating system has halted.\n");
270 printf("Please press any key to reboot.\n\n");
271 cngetc();
272 printf("rebooting...\n");
273 cpu_reset();
274 /*NOTREACHED*/
275 }
276
277 /* Disable console buffering */
278 /* cnpollc(1);*/
279
280 /*
281 * If RB_NOSYNC was not specified sync the discs.
282 * Note: Unless cold is set to 1 here, syslogd will die during the
283 * unmount. It looks like syslogd is getting woken up only to find
284 * that it cannot page part of the binary in as the filesystem has
285 * been unmounted.
286 */
287 if (!(howto & RB_NOSYNC))
288 bootsync();
289
290 /* Say NO to interrupts */
291 splhigh();
292
293 /* Do a dump if requested. */
294 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
295 dumpsys();
296
297 /* Run any shutdown hooks */
298 doshutdownhooks();
299
300 pmf_system_shutdown(boothowto);
301
302 /* Make sure IRQ's are disabled */
303 IRQdisable;
304
305 if (howto & RB_HALT) {
306 printf("The operating system has halted.\n");
307 printf("Please press any key to reboot.\n\n");
308 cngetc();
309 }
310
311 printf("rebooting...\n");
312 cpu_reset();
313 /*NOTREACHED*/
314 }
315
316 static inline
317 pd_entry_t *
318 read_ttb(void)
319 {
320 long ttb;
321
322 __asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r" (ttb));
323
324
325 return (pd_entry_t *)(ttb & ~((1<<14)-1));
326 }
327
328 /*
329 * Static device mappings. These peripheral registers are mapped at
330 * fixed virtual addresses very early in initarm() so that we can use
331 * them while booting the kernel, and stay at the same address
332 * throughout whole kernel's life time.
333 *
334 * We use this table twice; once with bootstrap page table, and once
335 * with kernel's page table which we build up in initarm().
336 *
337 * Since we map these registers into the bootstrap page table using
338 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
339 * registers segment-aligned and segment-rounded in order to avoid
340 * using the 2nd page tables.
341 */
342
343 #define _A(a) ((a) & ~L1_S_OFFSET)
344 #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
345
346 static const struct pmap_devmap g42xxeb_devmap[] = {
347 {
348 G42XXEB_PLDREG_VBASE,
349 _A(G42XXEB_PLDREG_BASE),
350 _S(G42XXEB_PLDREG_SIZE),
351 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
352 },
353 {
354 G42XXEB_GPIO_VBASE,
355 _A(PXA2X0_GPIO_BASE),
356 _S(PXA250_GPIO_SIZE),
357 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
358 },
359 {
360 G42XXEB_CLKMAN_VBASE,
361 _A(PXA2X0_CLKMAN_BASE),
362 _S(PXA2X0_CLKMAN_SIZE),
363 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
364 },
365 {
366 G42XXEB_INTCTL_VBASE,
367 _A(PXA2X0_INTCTL_BASE),
368 _S(PXA2X0_INTCTL_SIZE),
369 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
370 },
371 {
372 G42XXEB_FFUART_VBASE,
373 _A(PXA2X0_FFUART_BASE),
374 _S(4 * COM_NPORTS),
375 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
376 },
377 {
378 G42XXEB_BTUART_VBASE,
379 _A(PXA2X0_BTUART_BASE),
380 _S(4 * COM_NPORTS),
381 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
382 },
383 {0, 0, 0, 0,}
384 };
385
386 #undef _A
387 #undef _S
388
389
390 /*
391 * u_int initarm(...)
392 *
393 * Initial entry point on startup. This gets called before main() is
394 * entered.
395 * It should be responsible for setting up everything that must be
396 * in place when main is called.
397 * This includes
398 * Taking a copy of the boot configuration structure.
399 * Initialising the physical console so characters can be printed.
400 * Setting up page tables for the kernel
401 * Relocating the kernel to the bottom of physical memory
402 */
403 u_int
404 initarm(void *arg)
405 {
406 extern vaddr_t xscale_cache_clean_addr;
407 int loop;
408 int loop1;
409 u_int l1pagetable;
410 paddr_t memstart;
411 psize_t memsize;
412 int led_data = 1;
413 #ifdef DIAGNOSTIC
414 extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */
415 #endif
416
417 #define LEDSTEP_P() ioreg8_write(G42XXEB_PLDREG_BASE+G42XXEB_LED, led_data++)
418 #define LEDSTEP() pldreg8_write(G42XXEB_LED, led_data++);
419
420 /* use physical address until pagetable is set */
421 LEDSTEP_P();
422
423 /* map some peripheral registers at static I/O area */
424 pmap_devmap_bootstrap((vaddr_t)read_ttb(), g42xxeb_devmap);
425
426 LEDSTEP_P();
427
428 /* start 32.768 kHz OSC */
429 ioreg_write(G42XXEB_CLKMAN_VBASE + 0x08, 2);
430 /* Get ready for splfoo() */
431 pxa2x0_intr_bootstrap(G42XXEB_INTCTL_VBASE);
432
433 LEDSTEP();
434
435 /*
436 * Heads up ... Setup the CPU / MMU / TLB functions
437 */
438 if (set_cpufuncs())
439 panic("cpu not recognized!");
440
441 LEDSTEP();
442
443 /*
444 * Okay, RedBoot has provided us with the following memory map:
445 *
446 * Physical Address Range Description
447 * ----------------------- ----------------------------------
448 * 0x00000000 - 0x01ffffff flash Memory (32MB)
449 * 0x04000000 - 0x05ffffff Application flash Memory (32MB)
450 * 0x08000000 - 0x080000ff I/O baseboard registers
451 * 0x0c000000 - 0x0c0fffff Ethernet Controller
452 * 0x14000000 - 0x17ffffff Expansion Card (64MB)
453 * 0x40000000 - 0x480fffff Processor Registers
454 * 0xa0000000 - 0xa3ffffff SDRAM Bank 0 (64MB)
455 *
456 *
457 * Virtual Address Range X C B Description
458 * ----------------------- - - - ----------------------------------
459 * 0x00000000 - 0x00003fff N Y Y SDRAM
460 * 0x00004000 - 0x01ffffff N Y N ROM
461 * 0x08000000 - 0x080fffff N N N I/O baseboard registers
462 * 0x0a000000 - 0x0a0fffff N N N SRAM
463 * 0x40000000 - 0x480fffff N N N Processor Registers
464 * 0xa0000000 - 0xa000ffff N Y N RedBoot SDRAM
465 * 0xa0017000 - 0xa3ffffff Y Y Y SDRAM
466 * 0xc0000000 - 0xcfffffff Y Y Y Cache Flush Region
467 * (done by this routine)
468 * 0xfd000000 - 0xfd0000ff N N N I/O baseboard registers
469 * 0xfd100000 - 0xfd3fffff N N N Processor Registers.
470 * 0xfd400000 - 0xfd4fffff N N N FF-UART
471 * 0xfd500000 - 0xfd5fffff N N N BT-UART
472 *
473 * RedBoot's first level page table is at 0xa0004000. There
474 * are also 2 second-level tables at 0xa0008000 and
475 * 0xa0008400. We will continue to use them until we switch to
476 * our pagetable by cpu_setttb().
477 */
478
479 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
480
481 LEDSTEP();
482
483 /* setup GPIO for BTUART, in case bootloader doesn't take care of it */
484 pxa2x0_gpio_bootstrap(G42XXEB_GPIO_VBASE);
485 pxa2x0_gpio_config(g42xxeb_gpioconf);
486
487 LEDSTEP();
488
489 consinit();
490 #ifdef KGDB
491 LEDSTEP();
492 kgdb_port_init();
493 #endif
494
495 LEDSTEP();
496
497 /* Talk to the user */
498 printf("\nNetBSD/evbarm (g42xxeb) booting ...\n");
499
500 #if 0
501 /*
502 * Examine the boot args string for options we need to know about
503 * now.
504 */
505 process_kernel_args((char *)nwbootinfo.bt_args);
506 #endif
507
508 memstart = 0xa0000000;
509 memsize = 0x04000000; /* 64MB */
510
511 printf("initarm: Configuring system ...\n");
512
513 /* Fake bootconfig structure for the benefit of pmap.c */
514 /* XXX must make the memory description h/w independent */
515 bootconfig.dramblocks = 1;
516 bootconfig.dram[0].address = memstart;
517 bootconfig.dram[0].pages = memsize / PAGE_SIZE;
518
519 /*
520 * Set up the variables that define the availablilty of
521 * physical memory. For now, we're going to set
522 * physical_freestart to 0xa0200000 (where the kernel
523 * was loaded), and allocate the memory we need downwards.
524 * If we get too close to the L1 table that we set up, we
525 * will panic. We will update physical_freestart and
526 * physical_freeend later to reflect what pmap_bootstrap()
527 * wants to see.
528 *
529 * XXX pmap_bootstrap() needs an enema.
530 */
531 physical_start = bootconfig.dram[0].address;
532 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
533
534 physical_freestart = 0xa0009000UL;
535 physical_freeend = 0xa0200000UL;
536
537 physmem = (physical_end - physical_start) / PAGE_SIZE;
538
539 #ifdef VERBOSE_INIT_ARM
540 /* Tell the user about the memory */
541 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
542 physical_start, physical_end - 1);
543 #endif
544
545 /*
546 * Okay, the kernel starts 2MB in from the bottom of physical
547 * memory. We are going to allocate our bootstrap pages downwards
548 * from there.
549 *
550 * We need to allocate some fixed page tables to get the kernel
551 * going. We allocate one page directory and a number of page
552 * tables and store the physical addresses in the kernel_pt_table
553 * array.
554 *
555 * The kernel page directory must be on a 16K boundary. The page
556 * tables must be on 4K bounaries. What we do is allocate the
557 * page directory on the first 16K boundary that we encounter, and
558 * the page tables on 4K boundaries otherwise. Since we allocate
559 * at least 3 L2 page tables, we are guaranteed to encounter at
560 * least one 16K aligned region.
561 */
562
563 #ifdef VERBOSE_INIT_ARM
564 printf("Allocating page tables\n");
565 #endif
566
567 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
568
569 #ifdef VERBOSE_INIT_ARM
570 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
571 physical_freestart, free_pages, free_pages);
572 #endif
573
574 /* Define a macro to simplify memory allocation */
575 #define valloc_pages(var, np) \
576 alloc_pages((var).pv_pa, (np)); \
577 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
578
579 #define alloc_pages(var, np) \
580 physical_freeend -= ((np) * PAGE_SIZE); \
581 if (physical_freeend < physical_freestart) \
582 panic("initarm: out of memory"); \
583 (var) = physical_freeend; \
584 free_pages -= (np); \
585 memset((char *)(var), 0, ((np) * PAGE_SIZE));
586
587 loop1 = 0;
588 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
589 /* Are we 16KB aligned for an L1 ? */
590 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
591 && kernel_l1pt.pv_pa == 0) {
592 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
593 } else {
594 valloc_pages(kernel_pt_table[loop1],
595 L2_TABLE_SIZE / PAGE_SIZE);
596 ++loop1;
597 }
598 }
599
600 /* This should never be able to happen but better confirm that. */
601 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
602 panic("initarm: Failed to align the kernel page directory");
603
604 LEDSTEP();
605
606 /*
607 * Allocate a page for the system page mapped to V0x00000000
608 * This page will just contain the system vectors and can be
609 * shared by all processes.
610 */
611 alloc_pages(systempage.pv_pa, 1);
612
613 /* Allocate stacks for all modes */
614 valloc_pages(irqstack, IRQ_STACK_SIZE);
615 valloc_pages(abtstack, ABT_STACK_SIZE);
616 valloc_pages(undstack, UND_STACK_SIZE);
617 valloc_pages(kernelstack, UPAGES);
618
619 /* Allocate enough pages for cleaning the Mini-Data cache. */
620 KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
621 valloc_pages(minidataclean, 1);
622
623 #ifdef VERBOSE_INIT_ARM
624 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
625 irqstack.pv_va);
626 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
627 abtstack.pv_va);
628 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
629 undstack.pv_va);
630 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
631 kernelstack.pv_va);
632 #endif
633
634 /*
635 * XXX Defer this to later so that we can reclaim the memory
636 * XXX used by the RedBoot page tables.
637 */
638 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
639
640 /*
641 * Ok we have allocated physical pages for the primary kernel
642 * page tables
643 */
644
645 #ifdef VERBOSE_INIT_ARM
646 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
647 #endif
648
649 /*
650 * Now we start construction of the L1 page table
651 * We start by mapping the L2 page tables into the L1.
652 * This means that we can replace L1 mappings later on if necessary
653 */
654 l1pagetable = kernel_l1pt.pv_pa;
655
656 /* Map the L2 pages tables in the L1 page table */
657 pmap_link_l2pt(l1pagetable, 0x00000000,
658 &kernel_pt_table[KERNEL_PT_SYS]);
659 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
660 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
661 &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
662 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
663 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
664 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
665
666 /* update the top of the kernel VM */
667 pmap_curmaxkvaddr =
668 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
669
670 #ifdef VERBOSE_INIT_ARM
671 printf("Mapping kernel\n");
672 #endif
673
674 /* Now we fill in the L2 pagetable for the kernel static code/data */
675 {
676 extern char etext[], _end[];
677 size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
678 size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
679 u_int logical;
680
681 textsize = (textsize + PGOFSET) & ~PGOFSET;
682 totalsize = (totalsize + PGOFSET) & ~PGOFSET;
683
684 logical = 0x00200000; /* offset of kernel in RAM */
685
686 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
687 physical_start + logical, textsize,
688 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
689 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
690 physical_start + logical, totalsize - textsize,
691 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
692 }
693
694 #ifdef VERBOSE_INIT_ARM
695 printf("Constructing L2 page tables\n");
696 #endif
697
698 /* Map the stack pages */
699 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
700 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
701 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
702 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
703 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
704 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
705 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
706 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
707
708 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
709 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
710
711 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
712 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
713 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
714 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
715 }
716
717 /* Map the Mini-Data cache clean area. */
718 xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
719 minidataclean.pv_pa);
720
721 /* Map the vector page. */
722 #if 1
723 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the
724 * cache-clean code there. */
725 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
726 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
727 #else
728 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
729 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
730 #endif
731
732 /*
733 * map integrated peripherals at same address in l1pagetable
734 * so that we can continue to use console.
735 */
736 pmap_devmap_bootstrap(l1pagetable, g42xxeb_devmap);
737
738 /*
739 * Give the XScale global cache clean code an appropriately
740 * sized chunk of unmapped VA space starting at 0xff000000
741 * (our device mappings end before this address).
742 */
743 xscale_cache_clean_addr = 0xff000000U;
744
745 /*
746 * Now we have the real page tables in place so we can switch to them.
747 * Once this is done we will be running with the REAL kernel page
748 * tables.
749 */
750
751 /*
752 * Update the physical_freestart/physical_freeend/free_pages
753 * variables.
754 */
755 {
756 extern char _end[];
757
758 physical_freestart = physical_start +
759 (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
760 KERNEL_BASE);
761 physical_freeend = physical_end;
762 free_pages =
763 (physical_freeend - physical_freestart) / PAGE_SIZE;
764 }
765
766 /* Switch tables */
767 #ifdef VERBOSE_INIT_ARM
768 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
769 physical_freestart, free_pages, free_pages);
770 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
771 #endif
772 LEDSTEP();
773
774 cpu_setttb(kernel_l1pt.pv_pa, true);
775 cpu_tlb_flushID();
776 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
777 LEDSTEP();
778
779 /*
780 * Moved from cpu_startup() as data_abort_handler() references
781 * this during uvm init
782 */
783 uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
784
785 #ifdef VERBOSE_INIT_ARM
786 printf("bootstrap done.\n");
787 #endif
788
789 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
790
791 /*
792 * Pages were allocated during the secondary bootstrap for the
793 * stacks for different CPU modes.
794 * We must now set the r13 registers in the different CPU modes to
795 * point to these stacks.
796 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
797 * of the stack memory.
798 */
799 #ifdef VERBOSE_INIT_ARM
800 printf("init subsystems: stacks ");
801 #endif
802
803 set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
804 set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
805 set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
806
807 /*
808 * Well we should set a data abort handler.
809 * Once things get going this will change as we will need a proper
810 * handler.
811 * Until then we will use a handler that just panics but tells us
812 * why.
813 * Initialisation of the vectors will just panic on a data abort.
814 * This just fills in a slighly better one.
815 */
816 #ifdef VERBOSE_INIT_ARM
817 printf("vectors ");
818 #endif
819 data_abort_handler_address = (u_int)data_abort_handler;
820 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
821 undefined_handler_address = (u_int)undefinedinstruction_bounce;
822
823 /* Initialise the undefined instruction handlers */
824 #ifdef VERBOSE_INIT_ARM
825 printf("undefined ");
826 #endif
827 undefined_init();
828
829 /* Load memory into UVM. */
830 #ifdef VERBOSE_INIT_ARM
831 printf("page ");
832 #endif
833 uvm_md_init();
834 uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
835 atop(physical_freestart), atop(physical_freeend),
836 VM_FREELIST_DEFAULT);
837
838 /* Boot strap pmap telling it where the kernel page table is */
839 #ifdef VERBOSE_INIT_ARM
840 printf("pmap ");
841 #endif
842 LEDSTEP();
843 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
844 LEDSTEP();
845
846 #ifdef __HAVE_MEMORY_DISK__
847 md_root_setconf(memory_disk, sizeof memory_disk);
848 #endif
849
850 #ifdef BOOTHOWTO
851 boothowto |= BOOTHOWTO;
852 #endif
853
854 {
855 uint8_t sw = pldreg8_read(G42XXEB_DIPSW);
856
857 if (0 == (sw & (1<<0)))
858 boothowto ^= RB_KDB;
859 if (0 == (sw & (1<<1)))
860 boothowto ^= RB_SINGLE;
861 }
862
863 LEDSTEP();
864
865 #ifdef KGDB
866 if (boothowto & RB_KDB) {
867 kgdb_debug_init = 1;
868 kgdb_connect(1);
869 }
870 #endif
871
872 #ifdef DDB
873 db_machine_init();
874
875 /* Firmware doesn't load symbols. */
876 ddb_init(0, NULL, NULL);
877
878 if (boothowto & RB_KDB)
879 Debugger();
880 #endif
881
882 pldreg8_write(G42XXEB_LED, 0);
883
884 /* We return the new stack pointer address */
885 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
886 }
887
888 #if 0
889 void
890 process_kernel_args(char *args)
891 {
892
893 boothowto = 0;
894
895 /* Make a local copy of the bootargs */
896 strncpy(bootargs, args, MAX_BOOT_STRING);
897
898 args = bootargs;
899 boot_file = bootargs;
900
901 /* Skip the kernel image filename */
902 while (*args != ' ' && *args != 0)
903 ++args;
904
905 if (*args != 0)
906 *args++ = 0;
907
908 while (*args == ' ')
909 ++args;
910
911 boot_args = args;
912
913 printf("bootfile: %s\n", boot_file);
914 printf("bootargs: %s\n", boot_args);
915
916 parse_mi_bootargs(boot_args);
917 }
918 #endif
919
920 #ifdef KGDB
921 #ifndef KGDB_DEVNAME
922 #define KGDB_DEVNAME "ffuart"
923 #endif
924 const char kgdb_devname[] = KGDB_DEVNAME;
925
926 #if (NCOM > 0)
927 #ifndef KGDB_DEVMODE
928 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
929 #endif
930 int comkgdbmode = KGDB_DEVMODE;
931 #endif /* NCOM */
932
933 #endif /* KGDB */
934
935
936 void
937 consinit(void)
938 {
939 static int consinit_called = 0;
940 uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN);
941 #if 0
942 char *console = CONSDEVNAME;
943 #endif
944
945 if (consinit_called != 0)
946 return;
947
948 consinit_called = 1;
949
950 #if NCOM > 0
951
952 #ifdef FFUARTCONSOLE
953 #ifdef KGDB
954 if (0 == strcmp(kgdb_devname, "ffuart")){
955 /* port is reserved for kgdb */
956 } else
957 #endif
958 if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE,
959 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
960 #if 0
961 pxa2x0_clkman_config(CKEN_FFUART, 1);
962 #else
963 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN,
964 ckenreg|CKEN_FFUART);
965 #endif
966
967 return;
968 }
969 #endif /* FFUARTCONSOLE */
970
971 #ifdef BTUARTCONSOLE
972 #ifdef KGDB
973 if (0 == strcmp(kgdb_devname, "btuart")) {
974 /* port is reserved for kgdb */
975 } else
976 #endif
977 if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE,
978 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
979 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN,
980 ckenreg|CKEN_BTUART);
981 return;
982 }
983 #endif /* BTUARTCONSOLE */
984
985
986 #endif /* NCOM */
987
988 }
989
990 #ifdef KGDB
991 void
992 kgdb_port_init(void)
993 {
994 #if (NCOM > 0) && defined(COM_PXA2X0)
995 paddr_t paddr = 0;
996 uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN);
997
998 if (0 == strcmp(kgdb_devname, "ffuart")) {
999 paddr = PXA2X0_FFUART_BASE;
1000 ckenreg |= CKEN_FFUART;
1001 }
1002 else if (0 == strcmp(kgdb_devname, "btuart")) {
1003 paddr = PXA2X0_BTUART_BASE;
1004 ckenreg |= CKEN_BTUART;
1005 }
1006
1007 if (paddr &&
1008 0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr,
1009 kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) {
1010
1011 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg);
1012
1013 }
1014
1015 #endif
1016 }
1017 #endif
1018
1019