Home | History | Annotate | Line # | Download | only in g42xxeb
g42xxeb_machdep.c revision 1.4.2.1
      1 /*	$NetBSD: g42xxeb_machdep.c,v 1.4.2.1 2006/06/21 14:50:46 yamt Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2002, 2003, 2004, 2005  Genetec Corporation.
      5  * All rights reserved.
      6  *
      7  * Written by Hiroyuki Bessho for Genetec Corporation.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. The name of Genetec Corporation may not be used to endorse or
     18  *    promote products derived from this software without specific prior
     19  *    written permission.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
     22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  *
     33  * Machine dependant functions for kernel setup for Genetec G4250EBX
     34  * evaluation board.
     35  *
     36  * Based on iq80310_machhdep.c
     37  */
     38 /*
     39  * Copyright (c) 2001 Wasabi Systems, Inc.
     40  * All rights reserved.
     41  *
     42  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed for the NetBSD Project by
     55  *	Wasabi Systems, Inc.
     56  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     57  *    or promote products derived from this software without specific prior
     58  *    written permission.
     59  *
     60  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     61  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     62  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     63  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     64  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     65  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     66  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     67  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     68  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     69  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     70  * POSSIBILITY OF SUCH DAMAGE.
     71  */
     72 
     73 /*
     74  * Copyright (c) 1997,1998 Mark Brinicombe.
     75  * Copyright (c) 1997,1998 Causality Limited.
     76  * All rights reserved.
     77  *
     78  * Redistribution and use in source and binary forms, with or without
     79  * modification, are permitted provided that the following conditions
     80  * are met:
     81  * 1. Redistributions of source code must retain the above copyright
     82  *    notice, this list of conditions and the following disclaimer.
     83  * 2. Redistributions in binary form must reproduce the above copyright
     84  *    notice, this list of conditions and the following disclaimer in the
     85  *    documentation and/or other materials provided with the distribution.
     86  * 3. All advertising materials mentioning features or use of this software
     87  *    must display the following acknowledgement:
     88  *	This product includes software developed by Mark Brinicombe
     89  *	for the NetBSD Project.
     90  * 4. The name of the company nor the name of the author may be used to
     91  *    endorse or promote products derived from this software without specific
     92  *    prior written permission.
     93  *
     94  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     95  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     96  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     97  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     98  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     99  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    100  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    101  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    102  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    103  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    104  * SUCH DAMAGE.
    105  *
    106  * Machine dependant functions for kernel setup for Intel IQ80310 evaluation
    107  * boards using RedBoot firmware.
    108  */
    109 
    110 #include "opt_ddb.h"
    111 #include "opt_kgdb.h"
    112 #include "opt_ipkdb.h"
    113 #include "opt_pmap_debug.h"
    114 #include "opt_md.h"
    115 #include "opt_com.h"
    116 #include "md.h"
    117 #include "lcd.h"
    118 
    119 #include <sys/param.h>
    120 #include <sys/device.h>
    121 #include <sys/systm.h>
    122 #include <sys/kernel.h>
    123 #include <sys/exec.h>
    124 #include <sys/proc.h>
    125 #include <sys/msgbuf.h>
    126 #include <sys/reboot.h>
    127 #include <sys/termios.h>
    128 #include <sys/ksyms.h>
    129 
    130 #include <uvm/uvm_extern.h>
    131 
    132 #include <sys/conf.h>
    133 #include <dev/cons.h>
    134 #include <dev/md.h>
    135 
    136 #include <machine/db_machdep.h>
    137 #include <ddb/db_sym.h>
    138 #include <ddb/db_extern.h>
    139 #ifdef KGDB
    140 #include <sys/kgdb.h>
    141 #endif
    142 #ifdef IPKDB
    143 #include <ipkdb/ipkdb.h>		/* for prototypes */
    144 #include <machine/ipkdb.h>
    145 #endif
    146 
    147 #include <machine/bootconfig.h>
    148 #include <machine/bus.h>
    149 #include <machine/cpu.h>
    150 #include <machine/frame.h>
    151 #include <arm/undefined.h>
    152 
    153 #include <arm/arm32/machdep.h>
    154 
    155 #include <arm/xscale/pxa2x0reg.h>
    156 #include <arm/xscale/pxa2x0var.h>
    157 #include <arm/xscale/pxa2x0_gpio.h>
    158 #include <evbarm/g42xxeb/g42xxeb_reg.h>
    159 #include <evbarm/g42xxeb/g42xxeb_var.h>
    160 
    161 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
    162 #define	KERNEL_TEXT_BASE	(KERNEL_BASE + 0x00200000)
    163 #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
    164 
    165 /*
    166  * The range 0xc1000000 - 0xccffffff is available for kernel VM space
    167  * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
    168  */
    169 #define KERNEL_VM_SIZE		0x0C000000
    170 
    171 
    172 /*
    173  * Address to call from cpu_reset() to reset the machine.
    174  * This is machine architecture dependant as it varies depending
    175  * on where the ROM appears when you turn the MMU off.
    176  */
    177 
    178 u_int cpu_reset_address = 0;
    179 
    180 /* Define various stack sizes in pages */
    181 #define IRQ_STACK_SIZE	1
    182 #define ABT_STACK_SIZE	1
    183 #ifdef IPKDB
    184 #define UND_STACK_SIZE	2
    185 #else
    186 #define UND_STACK_SIZE	1
    187 #endif
    188 
    189 BootConfig bootconfig;		/* Boot config storage */
    190 char *boot_args = NULL;
    191 char *boot_file = NULL;
    192 
    193 vm_offset_t physical_start;
    194 vm_offset_t physical_freestart;
    195 vm_offset_t physical_freeend;
    196 vm_offset_t physical_end;
    197 u_int free_pages;
    198 vm_offset_t pagetables_start;
    199 int physmem = 0;
    200 
    201 /*int debug_flags;*/
    202 #ifndef PMAP_STATIC_L1S
    203 int max_processes = 64;			/* Default number */
    204 #endif	/* !PMAP_STATIC_L1S */
    205 
    206 /* Physical and virtual addresses for some global pages */
    207 pv_addr_t systempage;
    208 pv_addr_t irqstack;
    209 pv_addr_t undstack;
    210 pv_addr_t abtstack;
    211 pv_addr_t kernelstack;
    212 pv_addr_t minidataclean;
    213 
    214 vm_offset_t msgbufphys;
    215 
    216 extern u_int data_abort_handler_address;
    217 extern u_int prefetch_abort_handler_address;
    218 extern u_int undefined_handler_address;
    219 
    220 #ifdef PMAP_DEBUG
    221 extern int pmap_debug_level;
    222 #endif
    223 
    224 #define KERNEL_PT_SYS		0	/* Page table for mapping proc0 zero page */
    225 #define KERNEL_PT_KERNEL	1	/* Page table for mapping kernel */
    226 #define	KERNEL_PT_KERNEL_NUM	4
    227 #define KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
    228 				        /* Page tables for mapping kernel VM */
    229 #define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
    230 #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
    231 
    232 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
    233 
    234 struct user *proc0paddr;
    235 
    236 /* Prototypes */
    237 
    238 #if 0
    239 void	process_kernel_args(char *);
    240 void	parse_mi_bootargs(char *args);
    241 #endif
    242 
    243 void	consinit(void);
    244 void	kgdb_port_init(void);
    245 void	change_clock(uint32_t v);
    246 
    247 bs_protos(bs_notimpl);
    248 
    249 #include "com.h"
    250 #if NCOM > 0
    251 #include <dev/ic/comreg.h>
    252 #include <dev/ic/comvar.h>
    253 #endif
    254 
    255 #ifndef CONSPEED
    256 #define CONSPEED B115200	/* What RedBoot uses */
    257 #endif
    258 #ifndef CONMODE
    259 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
    260 #endif
    261 
    262 int comcnspeed = CONSPEED;
    263 int comcnmode = CONMODE;
    264 
    265 /*
    266  * void cpu_reboot(int howto, char *bootstr)
    267  *
    268  * Reboots the system
    269  *
    270  * Deal with any syncing, unmounting, dumping and shutdown hooks,
    271  * then reset the CPU.
    272  */
    273 void
    274 cpu_reboot(int howto, char *bootstr)
    275 {
    276 #ifdef DIAGNOSTIC
    277 	/* info */
    278 	printf("boot: howto=%08x curproc=%p\n", howto, curproc);
    279 #endif
    280 
    281 	/*
    282 	 * If we are still cold then hit the air brakes
    283 	 * and crash to earth fast
    284 	 */
    285 	if (cold) {
    286 		doshutdownhooks();
    287 		printf("The operating system has halted.\n");
    288 		printf("Please press any key to reboot.\n\n");
    289 		cngetc();
    290 		printf("rebooting...\n");
    291 		cpu_reset();
    292 		/*NOTREACHED*/
    293 	}
    294 
    295 	/* Disable console buffering */
    296 /*	cnpollc(1);*/
    297 
    298 	/*
    299 	 * If RB_NOSYNC was not specified sync the discs.
    300 	 * Note: Unless cold is set to 1 here, syslogd will die during the
    301 	 * unmount.  It looks like syslogd is getting woken up only to find
    302 	 * that it cannot page part of the binary in as the filesystem has
    303 	 * been unmounted.
    304 	 */
    305 	if (!(howto & RB_NOSYNC))
    306 		bootsync();
    307 
    308 	/* Say NO to interrupts */
    309 	splhigh();
    310 
    311 	/* Do a dump if requested. */
    312 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
    313 		dumpsys();
    314 
    315 	/* Run any shutdown hooks */
    316 	doshutdownhooks();
    317 
    318 	/* Make sure IRQ's are disabled */
    319 	IRQdisable;
    320 
    321 	if (howto & RB_HALT) {
    322 		printf("The operating system has halted.\n");
    323 		printf("Please press any key to reboot.\n\n");
    324 		cngetc();
    325 	}
    326 
    327 	printf("rebooting...\n");
    328 	cpu_reset();
    329 	/*NOTREACHED*/
    330 }
    331 
    332 static inline
    333 pd_entry_t *
    334 read_ttb(void)
    335 {
    336   long ttb;
    337 
    338   __asm volatile("mrc	p15, 0, %0, c2, c0, 0" : "=r" (ttb));
    339 
    340 
    341   return (pd_entry_t *)(ttb & ~((1<<14)-1));
    342 }
    343 
    344 /*
    345  * Static device mappings. These peripheral registers are mapped at
    346  * fixed virtual addresses very early in initarm() so that we can use
    347  * them while booting the kernel, and stay at the same address
    348  * throughout whole kernel's life time.
    349  *
    350  * We use this table twice; once with bootstrap page table, and once
    351  * with kernel's page table which we build up in initarm().
    352  *
    353  * Since we map these registers into the bootstrap page table using
    354  * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
    355  * registers segment-aligned and segment-rounded in order to avoid
    356  * using the 2nd page tables.
    357  */
    358 
    359 #define	_A(a)	((a) & ~L1_S_OFFSET)
    360 #define	_S(s)	(((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
    361 
    362 static const struct pmap_devmap g42xxeb_devmap[] = {
    363     {
    364 	    G42XXEB_PLDREG_VBASE,
    365 	    _A(G42XXEB_PLDREG_BASE),
    366 	    _S(G42XXEB_PLDREG_SIZE),
    367 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    368     },
    369     {
    370 	    G42XXEB_GPIO_VBASE,
    371 	    _A(PXA2X0_GPIO_BASE),
    372 	    _S(PXA250_GPIO_SIZE),
    373 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    374     },
    375     {
    376 	    G42XXEB_CLKMAN_VBASE,
    377 	    _A(PXA2X0_CLKMAN_BASE),
    378 	    _S(PXA2X0_CLKMAN_SIZE),
    379 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    380     },
    381     {
    382 	    G42XXEB_INTCTL_VBASE,
    383 	    _A(PXA2X0_INTCTL_BASE),
    384 	    _S(PXA2X0_INTCTL_SIZE),
    385 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    386     },
    387     {
    388 	    G42XXEB_FFUART_VBASE,
    389 	    _A(PXA2X0_FFUART_BASE),
    390 	    _S(4 * COM_NPORTS),
    391 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    392     },
    393     {
    394 	    G42XXEB_BTUART_VBASE,
    395 	    _A(PXA2X0_BTUART_BASE),
    396 	    _S(4 * COM_NPORTS),
    397 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    398     },
    399     {0, 0, 0, 0,}
    400 };
    401 
    402 #undef	_A
    403 #undef	_S
    404 
    405 
    406 /*
    407  * u_int initarm(...)
    408  *
    409  * Initial entry point on startup. This gets called before main() is
    410  * entered.
    411  * It should be responsible for setting up everything that must be
    412  * in place when main is called.
    413  * This includes
    414  *   Taking a copy of the boot configuration structure.
    415  *   Initialising the physical console so characters can be printed.
    416  *   Setting up page tables for the kernel
    417  *   Relocating the kernel to the bottom of physical memory
    418  */
    419 u_int
    420 initarm(void *arg)
    421 {
    422 	extern vaddr_t xscale_cache_clean_addr;
    423 	int loop;
    424 	int loop1;
    425 	u_int l1pagetable;
    426 	pv_addr_t kernel_l1pt;
    427 	paddr_t memstart;
    428 	psize_t memsize;
    429 	int led_data = 1;
    430 #ifdef DIAGNOSTIC
    431 	extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */
    432 #endif
    433 
    434 #define LEDSTEP_P() ioreg8_write(G42XXEB_PLDREG_BASE+G42XXEB_LED, led_data++)
    435 #define LEDSTEP() pldreg8_write(G42XXEB_LED, led_data++);
    436 
    437 	/* use physical address until pagetable is set */
    438 	LEDSTEP_P();
    439 
    440 	/* map some peripheral registers at static I/O area */
    441 	pmap_devmap_bootstrap((vaddr_t)read_ttb(), g42xxeb_devmap);
    442 
    443 	LEDSTEP_P();
    444 
    445 	/* start 32.768 kHz OSC */
    446 	ioreg_write(G42XXEB_CLKMAN_VBASE + 0x08, 2);
    447 	/* Get ready for splfoo() */
    448 	pxa2x0_intr_bootstrap(G42XXEB_INTCTL_VBASE);
    449 
    450 	LEDSTEP();
    451 
    452 	/*
    453 	 * Heads up ... Setup the CPU / MMU / TLB functions
    454 	 */
    455 	if (set_cpufuncs())
    456 		panic("cpu not recognized!");
    457 
    458 	LEDSTEP();
    459 
    460 	/*
    461 	 * Okay, RedBoot has provided us with the following memory map:
    462 	 *
    463 	 * Physical Address Range     Description
    464 	 * -----------------------    ----------------------------------
    465 	 * 0x00000000 - 0x01ffffff    flash Memory   (32MB)
    466 	 * 0x04000000 - 0x05ffffff    Application flash Memory  (32MB)
    467 	 * 0x08000000 - 0x080000ff    I/O baseboard registers
    468 	 * 0x0c000000 - 0x0c0fffff    Ethernet Controller
    469 	 * 0x14000000 - 0x17ffffff    Expansion Card (64MB)
    470 	 * 0x40000000 - 0x480fffff    Processor Registers
    471 	 * 0xa0000000 - 0xa3ffffff    SDRAM Bank 0 (64MB)
    472 	 *
    473 	 *
    474 	 * Virtual Address Range    X C B  Description
    475 	 * -----------------------  - - -  ----------------------------------
    476 	 * 0x00000000 - 0x00003fff  N Y Y  SDRAM
    477 	 * 0x00004000 - 0x01ffffff  N Y N  ROM
    478 	 * 0x08000000 - 0x080fffff  N N N  I/O baseboard registers
    479 	 * 0x0a000000 - 0x0a0fffff  N N N  SRAM
    480 	 * 0x40000000 - 0x480fffff  N N N  Processor Registers
    481 	 * 0xa0000000 - 0xa000ffff  N Y N  RedBoot SDRAM
    482 	 * 0xa0017000 - 0xa3ffffff  Y Y Y  SDRAM
    483 	 * 0xc0000000 - 0xcfffffff  Y Y Y  Cache Flush Region
    484 	 * (done by this routine)
    485 	 * 0xfd000000 - 0xfd0000ff  N N N  I/O baseboard registers
    486 	 * 0xfd100000 - 0xfd3fffff  N N N  Processor Registers.
    487 	 * 0xfd400000 - 0xfd4fffff  N N N  FF-UART
    488 	 * 0xfd500000 - 0xfd5fffff  N N N  BT-UART
    489 	 *
    490 	 * RedBoot's first level page table is at 0xa0004000.  There
    491 	 * are also 2 second-level tables at 0xa0008000 and
    492 	 * 0xa0008400.  We will continue to use them until we switch to
    493 	 * our pagetable by setttb().
    494 	 */
    495 
    496 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    497 
    498 	LEDSTEP();
    499 
    500 	/* setup GPIO for BTUART, in case bootloader doesn't take care of it */
    501 	pxa2x0_gpio_bootstrap(G42XXEB_GPIO_VBASE);
    502 	pxa2x0_gpio_set_function(42, GPIO_ALT_FN_1_IN);
    503 	pxa2x0_gpio_set_function(43, GPIO_ALT_FN_2_OUT);
    504 	pxa2x0_gpio_set_function(44, GPIO_ALT_FN_1_IN);
    505 	pxa2x0_gpio_set_function(45, GPIO_ALT_FN_2_OUT);
    506 
    507 	LEDSTEP();
    508 
    509 	consinit();
    510 #ifdef KGDB
    511 	LEDSTEP();
    512 	kgdb_port_init();
    513 #endif
    514 
    515 	LEDSTEP();
    516 
    517 	/* Talk to the user */
    518 	printf("\nNetBSD/evbarm (g42xxeb) booting ...\n");
    519 
    520 #if 0
    521 	/*
    522 	 * Examine the boot args string for options we need to know about
    523 	 * now.
    524 	 */
    525 	process_kernel_args((char *)nwbootinfo.bt_args);
    526 #endif
    527 
    528 	memstart = 0xa0000000;
    529 	memsize = 0x04000000;		/* 64MB */
    530 
    531 	printf("initarm: Configuring system ...\n");
    532 
    533 	/* Fake bootconfig structure for the benefit of pmap.c */
    534 	/* XXX must make the memory description h/w independant */
    535 	bootconfig.dramblocks = 1;
    536 	bootconfig.dram[0].address = memstart;
    537 	bootconfig.dram[0].pages = memsize / PAGE_SIZE;
    538 
    539 	/*
    540 	 * Set up the variables that define the availablilty of
    541 	 * physical memory.  For now, we're going to set
    542 	 * physical_freestart to 0xa0200000 (where the kernel
    543 	 * was loaded), and allocate the memory we need downwards.
    544 	 * If we get too close to the L1 table that we set up, we
    545 	 * will panic.  We will update physical_freestart and
    546 	 * physical_freeend later to reflect what pmap_bootstrap()
    547 	 * wants to see.
    548 	 *
    549 	 * XXX pmap_bootstrap() needs an enema.
    550 	 */
    551 	physical_start = bootconfig.dram[0].address;
    552 	physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
    553 
    554 	physical_freestart = 0xa0009000UL;
    555 	physical_freeend = 0xa0200000UL;
    556 
    557 	physmem = (physical_end - physical_start) / PAGE_SIZE;
    558 
    559 #ifdef VERBOSE_INIT_ARM
    560 	/* Tell the user about the memory */
    561 	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
    562 	    physical_start, physical_end - 1);
    563 #endif
    564 
    565 	/*
    566 	 * Okay, the kernel starts 2MB in from the bottom of physical
    567 	 * memory.  We are going to allocate our bootstrap pages downwards
    568 	 * from there.
    569 	 *
    570 	 * We need to allocate some fixed page tables to get the kernel
    571 	 * going.  We allocate one page directory and a number of page
    572 	 * tables and store the physical addresses in the kernel_pt_table
    573 	 * array.
    574 	 *
    575 	 * The kernel page directory must be on a 16K boundary.  The page
    576 	 * tables must be on 4K bounaries.  What we do is allocate the
    577 	 * page directory on the first 16K boundary that we encounter, and
    578 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    579 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    580 	 * least one 16K aligned region.
    581 	 */
    582 
    583 #ifdef VERBOSE_INIT_ARM
    584 	printf("Allocating page tables\n");
    585 #endif
    586 
    587 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
    588 
    589 #ifdef VERBOSE_INIT_ARM
    590 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
    591 	       physical_freestart, free_pages, free_pages);
    592 #endif
    593 
    594 	/* Define a macro to simplify memory allocation */
    595 #define	valloc_pages(var, np)				\
    596 	alloc_pages((var).pv_pa, (np));			\
    597 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
    598 
    599 #define alloc_pages(var, np)				\
    600 	physical_freeend -= ((np) * PAGE_SIZE);		\
    601 	if (physical_freeend < physical_freestart)	\
    602 		panic("initarm: out of memory");	\
    603 	(var) = physical_freeend;			\
    604 	free_pages -= (np);				\
    605 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
    606 
    607 	loop1 = 0;
    608 	kernel_l1pt.pv_pa = 0;
    609 	kernel_l1pt.pv_va = 0;
    610 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
    611 		/* Are we 16KB aligned for an L1 ? */
    612 		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
    613 		    && kernel_l1pt.pv_pa == 0) {
    614 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
    615 		} else {
    616 			valloc_pages(kernel_pt_table[loop1],
    617 			    L2_TABLE_SIZE / PAGE_SIZE);
    618 			++loop1;
    619 		}
    620 	}
    621 
    622 	/* This should never be able to happen but better confirm that. */
    623 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
    624 		panic("initarm: Failed to align the kernel page directory");
    625 
    626 	LEDSTEP();
    627 
    628 	/*
    629 	 * Allocate a page for the system page mapped to V0x00000000
    630 	 * This page will just contain the system vectors and can be
    631 	 * shared by all processes.
    632 	 */
    633 	alloc_pages(systempage.pv_pa, 1);
    634 
    635 	/* Allocate stacks for all modes */
    636 	valloc_pages(irqstack, IRQ_STACK_SIZE);
    637 	valloc_pages(abtstack, ABT_STACK_SIZE);
    638 	valloc_pages(undstack, UND_STACK_SIZE);
    639 	valloc_pages(kernelstack, UPAGES);
    640 
    641 	/* Allocate enough pages for cleaning the Mini-Data cache. */
    642 	KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
    643 	valloc_pages(minidataclean, 1);
    644 
    645 #ifdef VERBOSE_INIT_ARM
    646 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
    647 	    irqstack.pv_va);
    648 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
    649 	    abtstack.pv_va);
    650 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
    651 	    undstack.pv_va);
    652 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
    653 	    kernelstack.pv_va);
    654 #endif
    655 
    656 	/*
    657 	 * XXX Defer this to later so that we can reclaim the memory
    658 	 * XXX used by the RedBoot page tables.
    659 	 */
    660 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
    661 
    662 	/*
    663 	 * Ok we have allocated physical pages for the primary kernel
    664 	 * page tables
    665 	 */
    666 
    667 #ifdef VERBOSE_INIT_ARM
    668 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    669 #endif
    670 
    671 	/*
    672 	 * Now we start construction of the L1 page table
    673 	 * We start by mapping the L2 page tables into the L1.
    674 	 * This means that we can replace L1 mappings later on if necessary
    675 	 */
    676 	l1pagetable = kernel_l1pt.pv_pa;
    677 
    678 	/* Map the L2 pages tables in the L1 page table */
    679 	pmap_link_l2pt(l1pagetable, 0x00000000,
    680 	    &kernel_pt_table[KERNEL_PT_SYS]);
    681 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
    682 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
    683 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
    684 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
    685 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
    686 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
    687 
    688 	/* update the top of the kernel VM */
    689 	pmap_curmaxkvaddr =
    690 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
    691 
    692 #ifdef VERBOSE_INIT_ARM
    693 	printf("Mapping kernel\n");
    694 #endif
    695 
    696 	/* Now we fill in the L2 pagetable for the kernel static code/data */
    697 	{
    698 		extern char etext[], _end[];
    699 		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
    700 		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
    701 		u_int logical;
    702 
    703 		textsize = (textsize + PGOFSET) & ~PGOFSET;
    704 		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
    705 
    706 		logical = 0x00200000;	/* offset of kernel in RAM */
    707 
    708 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    709 		    physical_start + logical, textsize,
    710 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    711 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    712 		    physical_start + logical, totalsize - textsize,
    713 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    714 	}
    715 
    716 #ifdef VERBOSE_INIT_ARM
    717 	printf("Constructing L2 page tables\n");
    718 #endif
    719 
    720 	/* Map the stack pages */
    721 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
    722 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    723 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
    724 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    725 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
    726 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    727 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
    728 	    UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
    729 
    730 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
    731 	    L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
    732 
    733 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
    734 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
    735 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
    736 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    737 	}
    738 
    739 	/* Map the Mini-Data cache clean area. */
    740 	xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
    741 	    minidataclean.pv_pa);
    742 
    743 	/* Map the vector page. */
    744 #if 1
    745 	/* MULTI-ICE requires that page 0 is NC/NB so that it can download the
    746 	 * cache-clean code there.  */
    747 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
    748 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
    749 #else
    750 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
    751 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    752 #endif
    753 
    754 	/*
    755 	 * map integrated peripherals at same address in l1pagetable
    756 	 * so that we can continue to use console.
    757 	 */
    758 	pmap_devmap_bootstrap(l1pagetable, g42xxeb_devmap);
    759 
    760 	/*
    761 	 * Give the XScale global cache clean code an appropriately
    762 	 * sized chunk of unmapped VA space starting at 0xff000000
    763 	 * (our device mappings end before this address).
    764 	 */
    765 	xscale_cache_clean_addr = 0xff000000U;
    766 
    767 	/*
    768 	 * Now we have the real page tables in place so we can switch to them.
    769 	 * Once this is done we will be running with the REAL kernel page
    770 	 * tables.
    771 	 */
    772 
    773 	/*
    774 	 * Update the physical_freestart/physical_freeend/free_pages
    775 	 * variables.
    776 	 */
    777 	{
    778 		extern char _end[];
    779 
    780 		physical_freestart = physical_start +
    781 		    (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
    782 		     KERNEL_BASE);
    783 		physical_freeend = physical_end;
    784 		free_pages =
    785 		    (physical_freeend - physical_freestart) / PAGE_SIZE;
    786 	}
    787 
    788 	/* Switch tables */
    789 #ifdef VERBOSE_INIT_ARM
    790 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
    791 	       physical_freestart, free_pages, free_pages);
    792 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
    793 #endif
    794 	LEDSTEP();
    795 
    796 	setttb(kernel_l1pt.pv_pa);
    797 	cpu_tlb_flushID();
    798 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
    799 	LEDSTEP();
    800 
    801 	/*
    802 	 * Moved from cpu_startup() as data_abort_handler() references
    803 	 * this during uvm init
    804 	 */
    805 	proc0paddr = (struct user *)kernelstack.pv_va;
    806 	lwp0.l_addr = proc0paddr;
    807 
    808 #ifdef VERBOSE_INIT_ARM
    809 	printf("bootstrap done.\n");
    810 #endif
    811 
    812 	arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
    813 
    814 	/*
    815 	 * Pages were allocated during the secondary bootstrap for the
    816 	 * stacks for different CPU modes.
    817 	 * We must now set the r13 registers in the different CPU modes to
    818 	 * point to these stacks.
    819 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
    820 	 * of the stack memory.
    821 	 */
    822 #ifdef	VERBOSE_INIT_ARM
    823 	printf("init subsystems: stacks ");
    824 #endif
    825 
    826 	set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
    827 	set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
    828 	set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
    829 
    830 	/*
    831 	 * Well we should set a data abort handler.
    832 	 * Once things get going this will change as we will need a proper
    833 	 * handler.
    834 	 * Until then we will use a handler that just panics but tells us
    835 	 * why.
    836 	 * Initialisation of the vectors will just panic on a data abort.
    837 	 * This just fills in a slighly better one.
    838 	 */
    839 #ifdef	VERBOSE_INIT_ARM
    840 	printf("vectors ");
    841 #endif
    842 	data_abort_handler_address = (u_int)data_abort_handler;
    843 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
    844 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
    845 
    846 	/* Initialise the undefined instruction handlers */
    847 #ifdef	VERBOSE_INIT_ARM
    848 	printf("undefined ");
    849 #endif
    850 	undefined_init();
    851 
    852 	/* Load memory into UVM. */
    853 #ifdef	VERBOSE_INIT_ARM
    854 	printf("page ");
    855 #endif
    856 	uvm_setpagesize();	/* initialize PAGE_SIZE-dependent variables */
    857 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
    858 	    atop(physical_freestart), atop(physical_freeend),
    859 	    VM_FREELIST_DEFAULT);
    860 
    861 	/* Boot strap pmap telling it where the kernel page table is */
    862 #ifdef	VERBOSE_INIT_ARM
    863 	printf("pmap ");
    864 #endif
    865 	LEDSTEP();
    866 	pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE,
    867 	    KERNEL_VM_BASE + KERNEL_VM_SIZE);
    868 	LEDSTEP();
    869 
    870 #ifdef __HAVE_MEMORY_DISK__
    871 	md_root_setconf(memory_disk, sizeof memory_disk);
    872 #endif
    873 
    874 #ifdef BOOTHOWTO
    875 	boothowto |= BOOTHOWTO;
    876 #endif
    877 
    878 	{
    879 		uint8_t sw = pldreg8_read(G42XXEB_DIPSW);
    880 
    881 		if (0 == (sw & (1<<0)))
    882 			boothowto ^= RB_KDB;
    883 		if (0 == (sw & (1<<1)))
    884 			boothowto ^= RB_SINGLE;
    885 	}
    886 
    887 	LEDSTEP();
    888 
    889 #ifdef IPKDB
    890 	/* Initialise ipkdb */
    891 	ipkdb_init();
    892 	if (boothowto & RB_KDB)
    893 		ipkdb_connect(0);
    894 #endif
    895 
    896 #ifdef KGDB
    897 	if (boothowto & RB_KDB) {
    898 		kgdb_debug_init = 1;
    899 		kgdb_connect(1);
    900 	}
    901 #endif
    902 
    903 #ifdef DDB
    904 	db_machine_init();
    905 
    906 	/* Firmware doesn't load symbols. */
    907 	ddb_init(0, NULL, NULL);
    908 
    909 	if (boothowto & RB_KDB)
    910 		Debugger();
    911 #endif
    912 
    913 	pldreg8_write(G42XXEB_LED, 0);
    914 
    915 	/* We return the new stack pointer address */
    916 	return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
    917 }
    918 
    919 #if 0
    920 void
    921 process_kernel_args(char *args)
    922 {
    923 
    924 	boothowto = 0;
    925 
    926 	/* Make a local copy of the bootargs */
    927 	strncpy(bootargs, args, MAX_BOOT_STRING);
    928 
    929 	args = bootargs;
    930 	boot_file = bootargs;
    931 
    932 	/* Skip the kernel image filename */
    933 	while (*args != ' ' && *args != 0)
    934 		++args;
    935 
    936 	if (*args != 0)
    937 		*args++ = 0;
    938 
    939 	while (*args == ' ')
    940 		++args;
    941 
    942 	boot_args = args;
    943 
    944 	printf("bootfile: %s\n", boot_file);
    945 	printf("bootargs: %s\n", boot_args);
    946 
    947 	parse_mi_bootargs(boot_args);
    948 }
    949 #endif
    950 
    951 #ifdef KGDB
    952 #ifndef KGDB_DEVNAME
    953 #define KGDB_DEVNAME "ffuart"
    954 #endif
    955 const char kgdb_devname[] = KGDB_DEVNAME;
    956 
    957 #if (NCOM > 0)
    958 #ifndef KGDB_DEVMODE
    959 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
    960 #endif
    961 int comkgdbmode = KGDB_DEVMODE;
    962 #endif /* NCOM */
    963 
    964 #endif /* KGDB */
    965 
    966 
    967 void
    968 consinit(void)
    969 {
    970 	static int consinit_called = 0;
    971 	uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN);
    972 #if 0
    973 	char *console = CONSDEVNAME;
    974 #endif
    975 
    976 	if (consinit_called != 0)
    977 		return;
    978 
    979 	consinit_called = 1;
    980 
    981 #if NCOM > 0
    982 
    983 #ifdef FFUARTCONSOLE
    984 #ifdef KGDB
    985 	if (0 == strcmp(kgdb_devname, "ffuart")){
    986 		/* port is reserved for kgdb */
    987 	} else
    988 #endif
    989 	if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE,
    990 		comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
    991 #if 0
    992 		pxa2x0_clkman_config(CKEN_FFUART, 1);
    993 #else
    994 		ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN,
    995 		    ckenreg|CKEN_FFUART);
    996 #endif
    997 
    998 		return;
    999 	}
   1000 #endif /* FFUARTCONSOLE */
   1001 
   1002 #ifdef BTUARTCONSOLE
   1003 #ifdef KGDB
   1004 	if (0 == strcmp(kgdb_devname, "btuart")) {
   1005 		/* port is reserved for kgdb */
   1006 	} else
   1007 #endif
   1008 	if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE,
   1009 		comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
   1010 		ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN,
   1011 		    ckenreg|CKEN_BTUART);
   1012 		return;
   1013 	}
   1014 #endif /* BTUARTCONSOLE */
   1015 
   1016 
   1017 #endif /* NCOM */
   1018 
   1019 }
   1020 
   1021 #ifdef KGDB
   1022 void
   1023 kgdb_port_init(void)
   1024 {
   1025 #if (NCOM > 0) && defined(COM_PXA2X0)
   1026 	paddr_t paddr = 0;
   1027 	uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN);
   1028 
   1029 	if (0 == strcmp(kgdb_devname, "ffuart")) {
   1030 		paddr = PXA2X0_FFUART_BASE;
   1031 		ckenreg |= CKEN_FFUART;
   1032 	}
   1033 	else if (0 == strcmp(kgdb_devname, "btuart")) {
   1034 		paddr = PXA2X0_BTUART_BASE;
   1035 		ckenreg |= CKEN_BTUART;
   1036 	}
   1037 
   1038 	if (paddr &&
   1039 	    0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr,
   1040 		kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) {
   1041 
   1042 		ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg);
   1043 
   1044 	}
   1045 
   1046 #endif
   1047 }
   1048 #endif
   1049 
   1050