Home | History | Annotate | Line # | Download | only in g42xxeb
g42xxeb_machdep.c revision 1.43
      1 /*	$NetBSD: g42xxeb_machdep.c,v 1.43 2024/05/13 00:08:06 msaitoh Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2002, 2003, 2004, 2005  Genetec Corporation.
      5  * All rights reserved.
      6  *
      7  * Written by Hiroyuki Bessho for Genetec Corporation.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. The name of Genetec Corporation may not be used to endorse or
     18  *    promote products derived from this software without specific prior
     19  *    written permission.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
     22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  *
     33  * Machine dependent functions for kernel setup for Genetec G4250EBX
     34  * evaluation board.
     35  *
     36  * Based on iq80310_machhdep.c
     37  */
     38 /*
     39  * Copyright (c) 2001 Wasabi Systems, Inc.
     40  * All rights reserved.
     41  *
     42  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed for the NetBSD Project by
     55  *	Wasabi Systems, Inc.
     56  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     57  *    or promote products derived from this software without specific prior
     58  *    written permission.
     59  *
     60  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     61  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     62  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     63  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     64  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     65  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     66  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     67  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     68  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     69  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     70  * POSSIBILITY OF SUCH DAMAGE.
     71  */
     72 
     73 /*
     74  * Copyright (c) 1997,1998 Mark Brinicombe.
     75  * Copyright (c) 1997,1998 Causality Limited.
     76  * All rights reserved.
     77  *
     78  * Redistribution and use in source and binary forms, with or without
     79  * modification, are permitted provided that the following conditions
     80  * are met:
     81  * 1. Redistributions of source code must retain the above copyright
     82  *    notice, this list of conditions and the following disclaimer.
     83  * 2. Redistributions in binary form must reproduce the above copyright
     84  *    notice, this list of conditions and the following disclaimer in the
     85  *    documentation and/or other materials provided with the distribution.
     86  * 3. All advertising materials mentioning features or use of this software
     87  *    must display the following acknowledgement:
     88  *	This product includes software developed by Mark Brinicombe
     89  *	for the NetBSD Project.
     90  * 4. The name of the company nor the name of the author may be used to
     91  *    endorse or promote products derived from this software without specific
     92  *    prior written permission.
     93  *
     94  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     95  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     96  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     97  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     98  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     99  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    100  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    101  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    102  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    103  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    104  * SUCH DAMAGE.
    105  *
    106  * Machine dependent functions for kernel setup for Intel IQ80310 evaluation
    107  * boards using RedBoot firmware.
    108  */
    109 
    110 #include "opt_arm_debug.h"
    111 #include "opt_console.h"
    112 #include "opt_ddb.h"
    113 #include "opt_kgdb.h"
    114 #include "opt_md.h"
    115 #include "opt_com.h"
    116 #include "lcd.h"
    117 
    118 #include <sys/param.h>
    119 #include <sys/device.h>
    120 #include <sys/systm.h>
    121 #include <sys/kernel.h>
    122 #include <sys/exec.h>
    123 #include <sys/proc.h>
    124 #include <sys/msgbuf.h>
    125 #include <sys/reboot.h>
    126 #include <sys/termios.h>
    127 #include <sys/ksyms.h>
    128 #include <sys/bus.h>
    129 #include <sys/cpu.h>
    130 
    131 #include <uvm/uvm_extern.h>
    132 
    133 #include <sys/conf.h>
    134 #include <dev/cons.h>
    135 #include <dev/md.h>
    136 
    137 #include <machine/db_machdep.h>
    138 #include <ddb/db_sym.h>
    139 #include <ddb/db_extern.h>
    140 #ifdef KGDB
    141 #include <sys/kgdb.h>
    142 #endif
    143 
    144 #include <machine/bootconfig.h>
    145 #include <arm/locore.h>
    146 #include <arm/undefined.h>
    147 
    148 #include <arm/arm32/machdep.h>
    149 
    150 #include <arm/xscale/pxa2x0reg.h>
    151 #include <arm/xscale/pxa2x0var.h>
    152 #include <arm/xscale/pxa2x0_gpio.h>
    153 #include <evbarm/g42xxeb/g42xxeb_reg.h>
    154 #include <evbarm/g42xxeb/g42xxeb_var.h>
    155 
    156 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
    157 #define	KERNEL_TEXT_BASE	(KERNEL_BASE + 0x00200000)
    158 #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
    159 
    160 /*
    161  * The range 0xc1000000 - 0xccffffff is available for kernel VM space
    162  * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
    163  */
    164 #define KERNEL_VM_SIZE		0x0C000000
    165 
    166 BootConfig bootconfig;		/* Boot config storage */
    167 char *boot_args = NULL;
    168 char *boot_file = NULL;
    169 
    170 vaddr_t physical_start;
    171 vaddr_t physical_freestart;
    172 vaddr_t physical_freeend;
    173 vaddr_t physical_end;
    174 u_int free_pages;
    175 
    176 /*int debug_flags;*/
    177 #ifndef PMAP_STATIC_L1S
    178 int max_processes = 64;			/* Default number */
    179 #endif	/* !PMAP_STATIC_L1S */
    180 
    181 /* Physical and virtual addresses for some global pages */
    182 pv_addr_t minidataclean;
    183 
    184 paddr_t msgbufphys;
    185 
    186 #define KERNEL_PT_SYS		0	/* Page table for mapping proc0 zero page */
    187 #define KERNEL_PT_KERNEL	1	/* Page table for mapping kernel */
    188 #define	KERNEL_PT_KERNEL_NUM	4
    189 #define KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
    190 				        /* Page tables for mapping kernel VM */
    191 #define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
    192 #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
    193 
    194 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
    195 
    196 /* Prototypes */
    197 
    198 #if 0
    199 void	process_kernel_args(char *);
    200 #endif
    201 
    202 void	consinit(void);
    203 void	kgdb_port_init(void);
    204 void	change_clock(uint32_t v);
    205 
    206 bs_protos(bs_notimpl);
    207 
    208 #include "com.h"
    209 #if NCOM > 0
    210 #include <dev/ic/comreg.h>
    211 #include <dev/ic/comvar.h>
    212 #endif
    213 
    214 #ifndef CONSPEED
    215 #define CONSPEED B115200	/* What RedBoot uses */
    216 #endif
    217 #ifndef CONMODE
    218 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
    219 #endif
    220 
    221 int comcnspeed = CONSPEED;
    222 int comcnmode = CONMODE;
    223 
    224 static struct pxa2x0_gpioconf boarddep_gpioconf[] = {
    225 	{ 44, GPIO_ALT_FN_1_IN },	/* BTCST */
    226 	{ 45, GPIO_ALT_FN_2_OUT },	/* BTRST */
    227 
    228 	{ -1 }
    229 };
    230 static struct pxa2x0_gpioconf *g42xxeb_gpioconf[] = {
    231 	pxa25x_com_btuart_gpioconf,
    232 	pxa25x_com_ffuart_gpioconf,
    233 #if 0
    234 	pxa25x_com_stuart_gpioconf,
    235 	pxa25x_pxaacu_gpioconf,
    236 #endif
    237 	boarddep_gpioconf,
    238 	NULL
    239 };
    240 
    241 /*
    242  * void cpu_reboot(int howto, char *bootstr)
    243  *
    244  * Reboots the system
    245  *
    246  * Deal with any syncing, unmounting, dumping and shutdown hooks,
    247  * then reset the CPU.
    248  */
    249 void
    250 cpu_reboot(int howto, char *bootstr)
    251 {
    252 #ifdef DIAGNOSTIC
    253 	/* info */
    254 	printf("boot: howto=%08x curproc=%p\n", howto, curproc);
    255 #endif
    256 
    257 	/*
    258 	 * If we are still cold then hit the air brakes
    259 	 * and crash to earth fast
    260 	 */
    261 	if (cold) {
    262 		doshutdownhooks();
    263 		pmf_system_shutdown(boothowto);
    264 		printf("The operating system has halted.\n");
    265 		printf("Please press any key to reboot.\n\n");
    266 		cngetc();
    267 		printf("rebooting...\n");
    268 		cpu_reset();
    269 		/*NOTREACHED*/
    270 	}
    271 
    272 	/* Disable console buffering */
    273 /*	cnpollc(1);*/
    274 
    275 	/*
    276 	 * If RB_NOSYNC was not specified sync the discs.
    277 	 * Note: Unless cold is set to 1 here, syslogd will die during the
    278 	 * unmount.  It looks like syslogd is getting woken up only to find
    279 	 * that it cannot page part of the binary in as the filesystem has
    280 	 * been unmounted.
    281 	 */
    282 	if (!(howto & RB_NOSYNC))
    283 		bootsync();
    284 
    285 	/* Say NO to interrupts */
    286 	splhigh();
    287 
    288 	/* Do a dump if requested. */
    289 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
    290 		dumpsys();
    291 
    292 	/* Run any shutdown hooks */
    293 	doshutdownhooks();
    294 
    295 	pmf_system_shutdown(boothowto);
    296 
    297 	/* Make sure IRQ's are disabled */
    298 	IRQdisable;
    299 
    300 	if (howto & RB_HALT) {
    301 		printf("The operating system has halted.\n");
    302 		printf("Please press any key to reboot.\n\n");
    303 		cngetc();
    304 	}
    305 
    306 	printf("rebooting...\n");
    307 	cpu_reset();
    308 	/*NOTREACHED*/
    309 }
    310 
    311 static inline
    312 pd_entry_t *
    313 read_ttb(void)
    314 {
    315   long ttb;
    316 
    317   __asm volatile("mrc	p15, 0, %0, c2, c0, 0" : "=r" (ttb));
    318 
    319 
    320   return (pd_entry_t *)(ttb & ~((1<<14)-1));
    321 }
    322 
    323 /*
    324  * Static device mappings. These peripheral registers are mapped at
    325  * fixed virtual addresses very early in initarm() so that we can use
    326  * them while booting the kernel, and stay at the same address
    327  * throughout whole kernel's life time.
    328  *
    329  * We use this table twice; once with bootstrap page table, and once
    330  * with kernel's page table which we build up in initarm().
    331  *
    332  * Since we map these registers into the bootstrap page table using
    333  * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
    334  * registers segment-aligned and segment-rounded in order to avoid
    335  * using the 2nd page tables.
    336  */
    337 
    338 static const struct pmap_devmap g42xxeb_devmap[] = {
    339     DEVMAP_ENTRY(
    340 	    G42XXEB_PLDREG_VBASE,
    341 	    G42XXEB_PLDREG_BASE,
    342 	    G42XXEB_PLDREG_SIZE
    343     ),
    344     DEVMAP_ENTRY(
    345 	    G42XXEB_GPIO_VBASE,
    346 	    PXA2X0_GPIO_BASE,
    347 	    PXA250_GPIO_SIZE
    348     ),
    349     DEVMAP_ENTRY(
    350 	    G42XXEB_CLKMAN_VBASE,
    351 	    PXA2X0_CLKMAN_BASE,
    352 	    PXA2X0_CLKMAN_SIZE
    353     ),
    354     DEVMAP_ENTRY(
    355 	    G42XXEB_INTCTL_VBASE,
    356 	    PXA2X0_INTCTL_BASE,
    357 	    PXA2X0_INTCTL_SIZE
    358     ),
    359     DEVMAP_ENTRY(
    360 	    G42XXEB_FFUART_VBASE,
    361 	    PXA2X0_FFUART_BASE,
    362 	    4 * COM_NPORTS
    363     ),
    364     DEVMAP_ENTRY(
    365 	    G42XXEB_BTUART_VBASE,
    366 	    PXA2X0_BTUART_BASE,
    367 	    4 * COM_NPORTS
    368     ),
    369     DEVMAP_ENTRY_END
    370 };
    371 
    372 /*
    373  * vaddr_t initarm(...)
    374  *
    375  * Initial entry point on startup. This gets called before main() is
    376  * entered.
    377  * It should be responsible for setting up everything that must be
    378  * in place when main is called.
    379  * This includes
    380  *   Taking a copy of the boot configuration structure.
    381  *   Initialising the physical console so characters can be printed.
    382  *   Setting up page tables for the kernel
    383  *   Relocating the kernel to the bottom of physical memory
    384  */
    385 vaddr_t
    386 initarm(void *arg)
    387 {
    388 	int loop;
    389 	int loop1;
    390 	u_int l1pagetable;
    391 	paddr_t memstart;
    392 	psize_t memsize;
    393 	int led_data = 1;
    394 
    395 #define LEDSTEP_P() ioreg8_write(G42XXEB_PLDREG_BASE+G42XXEB_LED, led_data++)
    396 #define LEDSTEP() pldreg8_write(G42XXEB_LED, led_data++);
    397 
    398 	/* use physical address until pagetable is set */
    399 	LEDSTEP_P();
    400 
    401 	/* map some peripheral registers at static I/O area */
    402 	pmap_devmap_bootstrap((vaddr_t)read_ttb(), g42xxeb_devmap);
    403 
    404 	LEDSTEP_P();
    405 
    406 	/* start 32.768 kHz OSC */
    407 	ioreg_write(G42XXEB_CLKMAN_VBASE + 0x08, 2);
    408 	/* Get ready for splfoo() */
    409 	pxa2x0_intr_bootstrap(G42XXEB_INTCTL_VBASE);
    410 
    411 	LEDSTEP();
    412 
    413 	/*
    414 	 * Heads up ... Setup the CPU / MMU / TLB functions
    415 	 */
    416 	if (set_cpufuncs())
    417 		panic("cpu not recognized!");
    418 
    419 	LEDSTEP();
    420 
    421 	/*
    422 	 * Okay, RedBoot has provided us with the following memory map:
    423 	 *
    424 	 * Physical Address Range     Description
    425 	 * -----------------------    ----------------------------------
    426 	 * 0x00000000 - 0x01ffffff    flash Memory   (32MB)
    427 	 * 0x04000000 - 0x05ffffff    Application flash Memory  (32MB)
    428 	 * 0x08000000 - 0x080000ff    I/O baseboard registers
    429 	 * 0x0c000000 - 0x0c0fffff    Ethernet Controller
    430 	 * 0x14000000 - 0x17ffffff    Expansion Card (64MB)
    431 	 * 0x40000000 - 0x480fffff    Processor Registers
    432 	 * 0xa0000000 - 0xa3ffffff    SDRAM Bank 0 (64MB)
    433 	 *
    434 	 *
    435 	 * Virtual Address Range    X C B  Description
    436 	 * -----------------------  - - -  ----------------------------------
    437 	 * 0x00000000 - 0x00003fff  N Y Y  SDRAM
    438 	 * 0x00004000 - 0x01ffffff  N Y N  ROM
    439 	 * 0x08000000 - 0x080fffff  N N N  I/O baseboard registers
    440 	 * 0x0a000000 - 0x0a0fffff  N N N  SRAM
    441 	 * 0x40000000 - 0x480fffff  N N N  Processor Registers
    442 	 * 0xa0000000 - 0xa000ffff  N Y N  RedBoot SDRAM
    443 	 * 0xa0017000 - 0xa3ffffff  Y Y Y  SDRAM
    444 	 * 0xc0000000 - 0xcfffffff  Y Y Y  Cache Flush Region
    445 	 * (done by this routine)
    446 	 * 0xfd000000 - 0xfd0000ff  N N N  I/O baseboard registers
    447 	 * 0xfd100000 - 0xfd3fffff  N N N  Processor Registers.
    448 	 * 0xfd400000 - 0xfd4fffff  N N N  FF-UART
    449 	 * 0xfd500000 - 0xfd5fffff  N N N  BT-UART
    450 	 *
    451 	 * RedBoot's first level page table is at 0xa0004000.  There
    452 	 * are also 2 second-level tables at 0xa0008000 and
    453 	 * 0xa0008400.  We will continue to use them until we switch to
    454 	 * our pagetable by cpu_setttb().
    455 	 */
    456 
    457 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    458 
    459 	LEDSTEP();
    460 
    461 	/* setup GPIO for BTUART, in case bootloader doesn't take care of it */
    462 	pxa2x0_gpio_bootstrap(G42XXEB_GPIO_VBASE);
    463 	pxa2x0_gpio_config(g42xxeb_gpioconf);
    464 
    465 	LEDSTEP();
    466 
    467 	consinit();
    468 #ifdef KGDB
    469 	LEDSTEP();
    470 	kgdb_port_init();
    471 #endif
    472 
    473 	LEDSTEP();
    474 
    475 	/* Talk to the user */
    476 	printf("\nNetBSD/evbarm (g42xxeb) booting ...\n");
    477 
    478 #if 0
    479 	/*
    480 	 * Examine the boot args string for options we need to know about
    481 	 * now.
    482 	 */
    483 	process_kernel_args((char *)nwbootinfo.bt_args);
    484 #endif
    485 
    486 	memstart = 0xa0000000;
    487 	memsize = 0x04000000;		/* 64MB */
    488 
    489 	printf("initarm: Configuring system ...\n");
    490 
    491 	/* Fake bootconfig structure for the benefit of pmap.c */
    492 	/* XXX must make the memory description h/w independent */
    493 	bootconfig.dramblocks = 1;
    494 	bootconfig.dram[0].address = memstart;
    495 	bootconfig.dram[0].pages = memsize / PAGE_SIZE;
    496 
    497 	/*
    498 	 * Set up the variables that define the availability of
    499 	 * physical memory.  For now, we're going to set
    500 	 * physical_freestart to 0xa0200000 (where the kernel
    501 	 * was loaded), and allocate the memory we need downwards.
    502 	 * If we get too close to the L1 table that we set up, we
    503 	 * will panic.  We will update physical_freestart and
    504 	 * physical_freeend later to reflect what pmap_bootstrap()
    505 	 * wants to see.
    506 	 *
    507 	 * XXX pmap_bootstrap() needs an enema.
    508 	 */
    509 	physical_start = bootconfig.dram[0].address;
    510 	physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
    511 
    512 	physical_freestart = 0xa0009000UL;
    513 	physical_freeend = 0xa0200000UL;
    514 
    515 	physmem = (physical_end - physical_start) / PAGE_SIZE;
    516 
    517 #ifdef VERBOSE_INIT_ARM
    518 	/* Tell the user about the memory */
    519 	printf("physmemory: 0x%"PRIxPSIZE" pages at 0x%08lx -> 0x%08lx\n", physmem,
    520 	    physical_start, physical_end - 1);
    521 #endif
    522 
    523 	/*
    524 	 * Okay, the kernel starts 2MB in from the bottom of physical
    525 	 * memory.  We are going to allocate our bootstrap pages downwards
    526 	 * from there.
    527 	 *
    528 	 * We need to allocate some fixed page tables to get the kernel
    529 	 * going.  We allocate one page directory and a number of page
    530 	 * tables and store the physical addresses in the kernel_pt_table
    531 	 * array.
    532 	 *
    533 	 * The kernel page directory must be on a 16K boundary.  The page
    534 	 * tables must be on 4K boundaries.  What we do is allocate the
    535 	 * page directory on the first 16K boundary that we encounter, and
    536 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    537 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    538 	 * least one 16K aligned region.
    539 	 */
    540 
    541 #ifdef VERBOSE_INIT_ARM
    542 	printf("Allocating page tables\n");
    543 #endif
    544 
    545 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
    546 
    547 #ifdef VERBOSE_INIT_ARM
    548 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
    549 	       physical_freestart, free_pages, free_pages);
    550 #endif
    551 
    552 	/* Define a macro to simplify memory allocation */
    553 #define	valloc_pages(var, np)				\
    554 	alloc_pages((var).pv_pa, (np));			\
    555 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
    556 
    557 #define alloc_pages(var, np)				\
    558 	physical_freeend -= ((np) * PAGE_SIZE);		\
    559 	if (physical_freeend < physical_freestart)	\
    560 		panic("initarm: out of memory");	\
    561 	(var) = physical_freeend;			\
    562 	free_pages -= (np);				\
    563 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
    564 
    565 	loop1 = 0;
    566 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
    567 		/* Are we 16KB aligned for an L1 ? */
    568 		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
    569 		    && kernel_l1pt.pv_pa == 0) {
    570 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
    571 		} else {
    572 			valloc_pages(kernel_pt_table[loop1],
    573 			    L2_TABLE_SIZE / PAGE_SIZE);
    574 			++loop1;
    575 		}
    576 	}
    577 
    578 	/* This should never be able to happen but better confirm that. */
    579 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
    580 		panic("initarm: Failed to align the kernel page directory");
    581 
    582 	LEDSTEP();
    583 
    584 	/*
    585 	 * Allocate a page for the system page mapped to V0x00000000
    586 	 * This page will just contain the system vectors and can be
    587 	 * shared by all processes.
    588 	 */
    589 	alloc_pages(systempage.pv_pa, 1);
    590 
    591 	/* Allocate stacks for all modes */
    592 	valloc_pages(irqstack, IRQ_STACK_SIZE);
    593 	valloc_pages(abtstack, ABT_STACK_SIZE);
    594 	valloc_pages(undstack, UND_STACK_SIZE);
    595 	valloc_pages(kernelstack, UPAGES);
    596 
    597 	/* Allocate enough pages for cleaning the Mini-Data cache. */
    598 	KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
    599 	valloc_pages(minidataclean, 1);
    600 
    601 #ifdef VERBOSE_INIT_ARM
    602 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
    603 	    irqstack.pv_va);
    604 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
    605 	    abtstack.pv_va);
    606 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
    607 	    undstack.pv_va);
    608 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
    609 	    kernelstack.pv_va);
    610 #endif
    611 
    612 	/*
    613 	 * XXX Defer this to later so that we can reclaim the memory
    614 	 * XXX used by the RedBoot page tables.
    615 	 */
    616 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
    617 
    618 	/*
    619 	 * Ok we have allocated physical pages for the primary kernel
    620 	 * page tables
    621 	 */
    622 
    623 #ifdef VERBOSE_INIT_ARM
    624 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    625 #endif
    626 
    627 	/*
    628 	 * Now we start construction of the L1 page table
    629 	 * We start by mapping the L2 page tables into the L1.
    630 	 * This means that we can replace L1 mappings later on if necessary
    631 	 */
    632 	l1pagetable = kernel_l1pt.pv_pa;
    633 
    634 	/* Map the L2 pages tables in the L1 page table */
    635 	pmap_link_l2pt(l1pagetable, 0x00000000,
    636 	    &kernel_pt_table[KERNEL_PT_SYS]);
    637 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
    638 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
    639 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
    640 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
    641 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
    642 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
    643 
    644 	/* update the top of the kernel VM */
    645 	pmap_curmaxkvaddr =
    646 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
    647 
    648 #ifdef VERBOSE_INIT_ARM
    649 	printf("Mapping kernel\n");
    650 #endif
    651 
    652 	/* Now we fill in the L2 pagetable for the kernel static code/data */
    653 	{
    654 		extern char etext[], _end[];
    655 		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
    656 		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
    657 		u_int logical;
    658 
    659 		textsize = (textsize + PGOFSET) & ~PGOFSET;
    660 		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
    661 
    662 		logical = 0x00200000;	/* offset of kernel in RAM */
    663 
    664 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    665 		    physical_start + logical, textsize,
    666 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    667 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    668 		    physical_start + logical, totalsize - textsize,
    669 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    670 	}
    671 
    672 #ifdef VERBOSE_INIT_ARM
    673 	printf("Constructing L2 page tables\n");
    674 #endif
    675 
    676 	/* Map the stack pages */
    677 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
    678 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    679 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
    680 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    681 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
    682 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    683 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
    684 	    UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
    685 
    686 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
    687 	    L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
    688 
    689 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
    690 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
    691 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
    692 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    693 	}
    694 
    695 	/* Map the Mini-Data cache clean area. */
    696 	xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
    697 	    minidataclean.pv_pa);
    698 
    699 	/* Map the vector page. */
    700 #if 1
    701 	/* MULTI-ICE requires that page 0 is NC/NB so that it can download the
    702 	 * cache-clean code there.  */
    703 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
    704 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
    705 #else
    706 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
    707 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    708 #endif
    709 
    710 	/*
    711 	 * map integrated peripherals at same address in l1pagetable
    712 	 * so that we can continue to use console.
    713 	 */
    714 	pmap_devmap_bootstrap(l1pagetable, g42xxeb_devmap);
    715 
    716 	/*
    717 	 * Give the XScale global cache clean code an appropriately
    718 	 * sized chunk of unmapped VA space starting at 0xff000000
    719 	 * (our device mappings end before this address).
    720 	 */
    721 	xscale_cache_clean_addr = 0xff000000U;
    722 
    723 	/*
    724 	 * Now we have the real page tables in place so we can switch to them.
    725 	 * Once this is done we will be running with the REAL kernel page
    726 	 * tables.
    727 	 */
    728 
    729 	/*
    730 	 * Update the physical_freestart/physical_freeend/free_pages
    731 	 * variables.
    732 	 */
    733 	{
    734 		extern char _end[];
    735 
    736 		physical_freestart = physical_start +
    737 		    (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
    738 		     KERNEL_BASE);
    739 		physical_freeend = physical_end;
    740 		free_pages =
    741 		    (physical_freeend - physical_freestart) / PAGE_SIZE;
    742 	}
    743 
    744 	/* Switch tables */
    745 #ifdef VERBOSE_INIT_ARM
    746 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
    747 	       physical_freestart, free_pages, free_pages);
    748 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
    749 #endif
    750 	LEDSTEP();
    751 
    752 	cpu_setttb(kernel_l1pt.pv_pa, true);
    753 	cpu_tlb_flushID();
    754 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
    755 	LEDSTEP();
    756 
    757 	/*
    758 	 * Moved from cpu_startup() as data_abort_handler() references
    759 	 * this during uvm init
    760 	 */
    761 	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
    762 
    763 #ifdef VERBOSE_INIT_ARM
    764 	printf("bootstrap done.\n");
    765 #endif
    766 
    767 	arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
    768 
    769 	/*
    770 	 * Pages were allocated during the secondary bootstrap for the
    771 	 * stacks for different CPU modes.
    772 	 * We must now set the r13 registers in the different CPU modes to
    773 	 * point to these stacks.
    774 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
    775 	 * of the stack memory.
    776 	 */
    777 #ifdef	VERBOSE_INIT_ARM
    778 	printf("init subsystems: stacks ");
    779 #endif
    780 
    781 	set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
    782 	set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
    783 	set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
    784 
    785 	/*
    786 	 * Well we should set a data abort handler.
    787 	 * Once things get going this will change as we will need a proper
    788 	 * handler.
    789 	 * Until then we will use a handler that just panics but tells us
    790 	 * why.
    791 	 * Initialisation of the vectors will just panic on a data abort.
    792 	 * This just fills in a slightly better one.
    793 	 */
    794 #ifdef	VERBOSE_INIT_ARM
    795 	printf("vectors ");
    796 #endif
    797 	data_abort_handler_address = (u_int)data_abort_handler;
    798 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
    799 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
    800 
    801 	/* Initialise the undefined instruction handlers */
    802 #ifdef	VERBOSE_INIT_ARM
    803 	printf("undefined ");
    804 #endif
    805 	undefined_init();
    806 
    807 	/* Load memory into UVM. */
    808 #ifdef	VERBOSE_INIT_ARM
    809 	printf("page ");
    810 #endif
    811 	uvm_md_init();
    812 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
    813 	    atop(physical_freestart), atop(physical_freeend),
    814 	    VM_FREELIST_DEFAULT);
    815 
    816 	/* Boot strap pmap telling it where managed kernel virtual memory is */
    817 #ifdef	VERBOSE_INIT_ARM
    818 	printf("pmap ");
    819 #endif
    820 	LEDSTEP();
    821 	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
    822 	LEDSTEP();
    823 
    824 #ifdef __HAVE_MEMORY_DISK__
    825 	md_root_setconf(memory_disk, sizeof memory_disk);
    826 #endif
    827 
    828 #ifdef BOOTHOWTO
    829 	boothowto |= BOOTHOWTO;
    830 #endif
    831 
    832 	{
    833 		uint8_t sw = pldreg8_read(G42XXEB_DIPSW);
    834 
    835 		if (0 == (sw & (1<<0)))
    836 			boothowto ^= RB_KDB;
    837 		if (0 == (sw & (1<<1)))
    838 			boothowto ^= RB_SINGLE;
    839 	}
    840 
    841 	LEDSTEP();
    842 
    843 #ifdef KGDB
    844 	if (boothowto & RB_KDB) {
    845 		kgdb_debug_init = 1;
    846 		kgdb_connect(1);
    847 	}
    848 #endif
    849 
    850 #ifdef DDB
    851 	db_machine_init();
    852 
    853 	/* Firmware doesn't load symbols. */
    854 	ddb_init(0, NULL, NULL);
    855 
    856 	if (boothowto & RB_KDB)
    857 		Debugger();
    858 #endif
    859 
    860 	pldreg8_write(G42XXEB_LED, 0);
    861 
    862 	/* We return the new stack pointer address */
    863 	return kernelstack.pv_va + USPACE_SVC_STACK_TOP;
    864 }
    865 
    866 #if 0
    867 void
    868 process_kernel_args(char *args)
    869 {
    870 
    871 	boothowto = 0;
    872 
    873 	/* Make a local copy of the bootargs */
    874 	strncpy(bootargs, args, MAX_BOOT_STRING);
    875 
    876 	args = bootargs;
    877 	boot_file = bootargs;
    878 
    879 	/* Skip the kernel image filename */
    880 	while (*args != ' ' && *args != 0)
    881 		++args;
    882 
    883 	if (*args != 0)
    884 		*args++ = 0;
    885 
    886 	while (*args == ' ')
    887 		++args;
    888 
    889 	boot_args = args;
    890 
    891 	printf("bootfile: %s\n", boot_file);
    892 	printf("bootargs: %s\n", boot_args);
    893 
    894 	parse_mi_bootargs(boot_args);
    895 }
    896 #endif
    897 
    898 #ifdef KGDB
    899 #ifndef KGDB_DEVNAME
    900 #define KGDB_DEVNAME "ffuart"
    901 #endif
    902 const char kgdb_devname[] = KGDB_DEVNAME;
    903 
    904 #if (NCOM > 0)
    905 #ifndef KGDB_DEVMODE
    906 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
    907 #endif
    908 int comkgdbmode = KGDB_DEVMODE;
    909 #endif /* NCOM */
    910 
    911 #endif /* KGDB */
    912 
    913 
    914 void
    915 consinit(void)
    916 {
    917 	static int consinit_called = 0;
    918 	uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN);
    919 #if 0
    920 	char *console = CONSDEVNAME;
    921 #endif
    922 
    923 	if (consinit_called != 0)
    924 		return;
    925 
    926 	consinit_called = 1;
    927 
    928 #if NCOM > 0
    929 
    930 #ifdef FFUARTCONSOLE
    931 #ifdef KGDB
    932 	if (0 == strcmp(kgdb_devname, "ffuart")){
    933 		/* port is reserved for kgdb */
    934 	} else
    935 #endif
    936 	if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE,
    937 		comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
    938 #if 0
    939 		pxa2x0_clkman_config(CKEN_FFUART, 1);
    940 #else
    941 		ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN,
    942 		    ckenreg|CKEN_FFUART);
    943 #endif
    944 
    945 		return;
    946 	}
    947 #endif /* FFUARTCONSOLE */
    948 
    949 #ifdef BTUARTCONSOLE
    950 #ifdef KGDB
    951 	if (0 == strcmp(kgdb_devname, "btuart")) {
    952 		/* port is reserved for kgdb */
    953 	} else
    954 #endif
    955 	if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE,
    956 		comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
    957 		ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN,
    958 		    ckenreg|CKEN_BTUART);
    959 		return;
    960 	}
    961 #endif /* BTUARTCONSOLE */
    962 
    963 
    964 #endif /* NCOM */
    965 
    966 }
    967 
    968 #ifdef KGDB
    969 void
    970 kgdb_port_init(void)
    971 {
    972 #if (NCOM > 0) && defined(COM_PXA2X0)
    973 	paddr_t paddr = 0;
    974 	uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN);
    975 
    976 	if (0 == strcmp(kgdb_devname, "ffuart")) {
    977 		paddr = PXA2X0_FFUART_BASE;
    978 		ckenreg |= CKEN_FFUART;
    979 	}
    980 	else if (0 == strcmp(kgdb_devname, "btuart")) {
    981 		paddr = PXA2X0_BTUART_BASE;
    982 		ckenreg |= CKEN_BTUART;
    983 	}
    984 
    985 	if (paddr &&
    986 	    0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr,
    987 		kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) {
    988 
    989 		ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg);
    990 
    991 	}
    992 
    993 #endif
    994 }
    995 #endif
    996 
    997