gemini_machdep.c revision 1.33 1 1.33 skrll /* $NetBSD: gemini_machdep.c,v 1.33 2020/11/28 14:02:30 skrll Exp $ */
2 1.1 matt
3 1.1 matt /* adapted from:
4 1.1 matt * NetBSD: sdp24xx_machdep.c,v 1.4 2008/08/27 11:03:10 matt Exp
5 1.1 matt */
6 1.1 matt
7 1.1 matt /*
8 1.1 matt * Machine dependent functions for kernel setup for TI OSK5912 board.
9 1.1 matt * Based on lubbock_machdep.c which in turn was based on iq80310_machhdep.c
10 1.1 matt *
11 1.1 matt * Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
12 1.1 matt * Written by Hiroyuki Bessho for Genetec Corporation.
13 1.1 matt *
14 1.1 matt * Redistribution and use in source and binary forms, with or without
15 1.1 matt * modification, are permitted provided that the following conditions
16 1.1 matt * are met:
17 1.1 matt * 1. Redistributions of source code must retain the above copyright
18 1.1 matt * notice, this list of conditions and the following disclaimer.
19 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
20 1.1 matt * notice, this list of conditions and the following disclaimer in the
21 1.1 matt * documentation and/or other materials provided with the distribution.
22 1.1 matt * 3. The name of Genetec Corporation may not be used to endorse or
23 1.1 matt * promote products derived from this software without specific prior
24 1.1 matt * written permission.
25 1.1 matt *
26 1.1 matt * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
27 1.1 matt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
30 1.1 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 matt * POSSIBILITY OF SUCH DAMAGE.
37 1.1 matt *
38 1.1 matt * Copyright (c) 2001 Wasabi Systems, Inc.
39 1.1 matt * All rights reserved.
40 1.1 matt *
41 1.1 matt * Written by Jason R. Thorpe for Wasabi Systems, Inc.
42 1.1 matt *
43 1.1 matt * Redistribution and use in source and binary forms, with or without
44 1.1 matt * modification, are permitted provided that the following conditions
45 1.1 matt * are met:
46 1.1 matt * 1. Redistributions of source code must retain the above copyright
47 1.1 matt * notice, this list of conditions and the following disclaimer.
48 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 matt * notice, this list of conditions and the following disclaimer in the
50 1.1 matt * documentation and/or other materials provided with the distribution.
51 1.1 matt * 3. All advertising materials mentioning features or use of this software
52 1.1 matt * must display the following acknowledgement:
53 1.1 matt * This product includes software developed for the NetBSD Project by
54 1.1 matt * Wasabi Systems, Inc.
55 1.1 matt * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 1.1 matt * or promote products derived from this software without specific prior
57 1.1 matt * written permission.
58 1.1 matt *
59 1.1 matt * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 1.1 matt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 1.1 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 1.1 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 1.1 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 1.1 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 1.1 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 1.1 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 1.1 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 1.1 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 1.1 matt * POSSIBILITY OF SUCH DAMAGE.
70 1.1 matt *
71 1.1 matt * Copyright (c) 1997,1998 Mark Brinicombe.
72 1.1 matt * Copyright (c) 1997,1998 Causality Limited.
73 1.1 matt * All rights reserved.
74 1.1 matt *
75 1.1 matt * Redistribution and use in source and binary forms, with or without
76 1.1 matt * modification, are permitted provided that the following conditions
77 1.1 matt * are met:
78 1.1 matt * 1. Redistributions of source code must retain the above copyright
79 1.1 matt * notice, this list of conditions and the following disclaimer.
80 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
81 1.1 matt * notice, this list of conditions and the following disclaimer in the
82 1.1 matt * documentation and/or other materials provided with the distribution.
83 1.1 matt * 3. All advertising materials mentioning features or use of this software
84 1.1 matt * must display the following acknowledgement:
85 1.1 matt * This product includes software developed by Mark Brinicombe
86 1.1 matt * for the NetBSD Project.
87 1.1 matt * 4. The name of the company nor the name of the author may be used to
88 1.1 matt * endorse or promote products derived from this software without specific
89 1.1 matt * prior written permission.
90 1.1 matt *
91 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
92 1.1 matt * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
93 1.1 matt * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
94 1.1 matt * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
95 1.1 matt * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
96 1.1 matt * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
97 1.1 matt * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
98 1.1 matt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
99 1.1 matt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
100 1.1 matt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
101 1.1 matt * SUCH DAMAGE.
102 1.1 matt *
103 1.1 matt * Copyright (c) 2007 Microsoft
104 1.1 matt * All rights reserved.
105 1.1 matt *
106 1.1 matt * Redistribution and use in source and binary forms, with or without
107 1.1 matt * modification, are permitted provided that the following conditions
108 1.1 matt * are met:
109 1.1 matt * 1. Redistributions of source code must retain the above copyright
110 1.1 matt * notice, this list of conditions and the following disclaimer.
111 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
112 1.1 matt * notice, this list of conditions and the following disclaimer in the
113 1.1 matt * documentation and/or other materials provided with the distribution.
114 1.1 matt * 3. All advertising materials mentioning features or use of this software
115 1.1 matt * must display the following acknowledgement:
116 1.1 matt * This product includes software developed by Microsoft
117 1.1 matt *
118 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
119 1.1 matt * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
120 1.1 matt * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
121 1.1 matt * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
122 1.1 matt * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
123 1.1 matt * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
124 1.1 matt * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
125 1.1 matt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
126 1.1 matt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
127 1.1 matt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
128 1.1 matt * SUCH DAMAGE.
129 1.1 matt */
130 1.1 matt
131 1.1 matt #include <sys/cdefs.h>
132 1.33 skrll __KERNEL_RCSID(0, "$NetBSD: gemini_machdep.c,v 1.33 2020/11/28 14:02:30 skrll Exp $");
133 1.1 matt
134 1.26 skrll #include "opt_arm_debug.h"
135 1.28 skrll #include "opt_console.h"
136 1.1 matt #include "opt_machdep.h"
137 1.1 matt #include "opt_ddb.h"
138 1.1 matt #include "opt_kgdb.h"
139 1.1 matt #include "opt_md.h"
140 1.1 matt #include "opt_com.h"
141 1.1 matt #include "opt_gemini.h"
142 1.1 matt #include "geminiwdt.h"
143 1.11 cliff #include "geminiipm.h"
144 1.1 matt
145 1.1 matt #include <sys/param.h>
146 1.1 matt #include <sys/device.h>
147 1.1 matt #include <sys/systm.h>
148 1.1 matt #include <sys/kernel.h>
149 1.1 matt #include <sys/exec.h>
150 1.1 matt #include <sys/proc.h>
151 1.1 matt #include <sys/msgbuf.h>
152 1.1 matt #include <sys/reboot.h>
153 1.1 matt #include <sys/termios.h>
154 1.1 matt #include <sys/ksyms.h>
155 1.22 matt #include <sys/bus.h>
156 1.22 matt #include <sys/cpu.h>
157 1.22 matt #include <sys/conf.h>
158 1.1 matt
159 1.1 matt #include <uvm/uvm_extern.h>
160 1.1 matt
161 1.1 matt #include <dev/cons.h>
162 1.1 matt #include <dev/md.h>
163 1.1 matt
164 1.1 matt #include <machine/db_machdep.h>
165 1.1 matt #include <ddb/db_sym.h>
166 1.1 matt #include <ddb/db_extern.h>
167 1.1 matt #ifdef KGDB
168 1.1 matt #include <sys/kgdb.h>
169 1.1 matt #endif
170 1.1 matt
171 1.22 matt #include <arm/locore.h>
172 1.1 matt #include <arm/undefined.h>
173 1.1 matt
174 1.1 matt #include <arm/arm32/machdep.h>
175 1.1 matt
176 1.22 matt #include <machine/bootconfig.h>
177 1.22 matt
178 1.1 matt #include <arm/gemini/gemini_reg.h>
179 1.1 matt #include <arm/gemini/gemini_var.h>
180 1.1 matt #include <arm/gemini/gemini_wdtvar.h>
181 1.1 matt #include <arm/gemini/gemini_com.h>
182 1.6 cliff #include <arm/gemini/lpc_com.h>
183 1.1 matt
184 1.1 matt #include <evbarm/gemini/gemini.h>
185 1.1 matt
186 1.6 cliff #if defined(VERBOSE_INIT_ARM)
187 1.5 cliff # define GEMINI_PUTCHAR(c) gemini_putchar(c)
188 1.5 cliff # define GEMINI_PUTHEX(n) gemini_puthex(n)
189 1.5 cliff #else /* VERBOSE_INIT_ARM */
190 1.5 cliff # define GEMINI_PUTCHAR(c)
191 1.5 cliff # define GEMINI_PUTHEX(n)
192 1.5 cliff #endif /* VERBOSE_INIT_ARM */
193 1.5 cliff
194 1.1 matt BootConfig bootconfig; /* Boot config storage */
195 1.1 matt char *boot_args = NULL;
196 1.1 matt char *boot_file = NULL;
197 1.1 matt
198 1.1 matt /* Physical address of the beginning of SDRAM. */
199 1.1 matt paddr_t physical_start;
200 1.1 matt /* Physical address of the first byte after the end of SDRAM. */
201 1.1 matt paddr_t physical_end;
202 1.1 matt
203 1.1 matt /* Same things, but for the free (unused by the kernel) memory. */
204 1.1 matt static paddr_t physical_freestart, physical_freeend;
205 1.1 matt static u_int free_pages;
206 1.1 matt
207 1.1 matt /* Physical address of the message buffer. */
208 1.1 matt paddr_t msgbufphys;
209 1.1 matt
210 1.1 matt extern char KERNEL_BASE_phys[];
211 1.1 matt extern char KERNEL_BASE_virt[];
212 1.1 matt extern char etext[], __data_start[], _edata[], __bss_start[], __bss_end__[];
213 1.1 matt extern char _end[];
214 1.1 matt
215 1.1 matt #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
216 1.1 matt #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
217 1.1 matt #define KERNEL_PT_KERNEL_NUM 4
218 1.1 matt #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
219 1.1 matt /* Page tables for mapping kernel VM */
220 1.1 matt #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
221 1.1 matt #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
222 1.1 matt
223 1.1 matt pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
224 1.1 matt
225 1.11 cliff
226 1.11 cliff #if (NGEMINIIPM > 0)
227 1.11 cliff pv_addr_t ipmq_pt; /* L2 Page table for mapping IPM queues */
228 1.11 cliff #if defined(DEBUG) || 1
229 1.11 cliff unsigned long gemini_ipmq_pbase = GEMINI_IPMQ_PBASE;
230 1.11 cliff unsigned long gemini_ipmq_vbase = GEMINI_IPMQ_VBASE;
231 1.11 cliff #endif /* DEBUG */
232 1.11 cliff #endif /* NGEMINIIPM > 0 */
233 1.11 cliff
234 1.11 cliff
235 1.1 matt /*
236 1.1 matt * Macros to translate between physical and virtual for a subset of the
237 1.1 matt * kernel address space. *Not* for general use.
238 1.1 matt */
239 1.1 matt #define KERNEL_BASE_PHYS ((paddr_t)&KERNEL_BASE_phys)
240 1.1 matt
241 1.27 skrll u_long kern_vtopdiff;
242 1.1 matt
243 1.1 matt /* Prototypes */
244 1.1 matt
245 1.1 matt void gemini_intr_init(bus_space_tag_t);
246 1.1 matt void consinit(void);
247 1.1 matt #ifdef KGDB
248 1.1 matt static void kgdb_port_init(void);
249 1.1 matt #endif
250 1.1 matt
251 1.1 matt static void setup_real_page_tables(void);
252 1.1 matt static void init_clocks(void);
253 1.1 matt
254 1.1 matt bs_protos(bs_notimpl);
255 1.1 matt
256 1.1 matt #include "com.h"
257 1.1 matt #if NCOM > 0
258 1.1 matt #include <dev/ic/comreg.h>
259 1.1 matt #include <dev/ic/comvar.h>
260 1.1 matt #endif
261 1.1 matt
262 1.3 cliff
263 1.3 cliff static void gemini_global_reset(void) __attribute__ ((noreturn));
264 1.8 cliff static void gemini_cpu1_start(void);
265 1.9 cliff static void gemini_memchk(void);
266 1.3 cliff
267 1.3 cliff static void
268 1.3 cliff gemini_global_reset(void)
269 1.3 cliff {
270 1.8 cliff #if defined(GEMINI_MASTER) || defined(GEMINI_SINGLE)
271 1.3 cliff volatile uint32_t *rp;
272 1.3 cliff uint32_t r;
273 1.3 cliff
274 1.3 cliff rp = (volatile uint32_t *)
275 1.3 cliff (GEMINI_GLOBAL_VBASE + GEMINI_GLOBAL_RESET_CTL);
276 1.3 cliff r = *rp;
277 1.3 cliff r |= GLOBAL_RESET_GLOBAL;
278 1.3 cliff *rp = r;
279 1.8 cliff #endif
280 1.3 cliff for(;;);
281 1.3 cliff /* NOTREACHED */
282 1.3 cliff }
283 1.3 cliff
284 1.8 cliff static void
285 1.8 cliff gemini_cpu1_start(void)
286 1.8 cliff {
287 1.8 cliff #ifdef GEMINI_MASTER
288 1.8 cliff volatile uint32_t *rp;
289 1.8 cliff uint32_t r;
290 1.8 cliff
291 1.8 cliff rp = (volatile uint32_t *)
292 1.8 cliff (GEMINI_GLOBAL_VBASE + GEMINI_GLOBAL_RESET_CTL);
293 1.8 cliff r = *rp;
294 1.8 cliff r &= ~GLOBAL_RESET_CPU1;
295 1.8 cliff *rp = r;
296 1.8 cliff #endif
297 1.8 cliff }
298 1.8 cliff
299 1.9 cliff static void
300 1.9 cliff gemini_memchk(void)
301 1.9 cliff {
302 1.9 cliff volatile uint32_t *rp;
303 1.9 cliff uint32_t r;
304 1.9 cliff uint32_t base;
305 1.9 cliff uint32_t size;
306 1.9 cliff
307 1.9 cliff rp = (volatile uint32_t *)
308 1.9 cliff (GEMINI_DRAMC_VBASE + GEMINI_DRAMC_RMCR);
309 1.9 cliff r = *rp;
310 1.9 cliff base = (r & DRAMC_RMCR_RMBAR) >> DRAMC_RMCR_RMBAR_SHFT;
311 1.9 cliff size = (r & DRAMC_RMCR_RMSZR) >> DRAMC_RMCR_RMSZR_SHFT;
312 1.10 cliff #if defined(GEMINI_SINGLE)
313 1.10 cliff if (r != 0)
314 1.10 cliff panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
315 1.10 cliff __FUNCTION__, r, MEMSIZE);
316 1.10 cliff #elif defined(GEMINI_MASTER)
317 1.9 cliff if (base != MEMSIZE)
318 1.9 cliff panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
319 1.9 cliff __FUNCTION__, r, MEMSIZE);
320 1.10 cliff #elif defined(GEMINI_SLAVE)
321 1.9 cliff if (size != MEMSIZE)
322 1.9 cliff panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
323 1.9 cliff __FUNCTION__, r, MEMSIZE);
324 1.9 cliff #endif
325 1.9 cliff #if defined(VERBOSE_INIT_ARM) || 1
326 1.9 cliff printf("DRAM Remap: base=%dMB, size=%dMB\n", base, size);
327 1.9 cliff #endif
328 1.9 cliff }
329 1.9 cliff
330 1.1 matt /*
331 1.1 matt * void cpu_reboot(int howto, char *bootstr)
332 1.1 matt *
333 1.1 matt * Reboots the system
334 1.1 matt *
335 1.1 matt * Deal with any syncing, unmounting, dumping and shutdown hooks,
336 1.1 matt * then reset the CPU.
337 1.1 matt */
338 1.1 matt void
339 1.1 matt cpu_reboot(int howto, char *bootstr)
340 1.1 matt {
341 1.5 cliff extern struct geminitmr_softc *ref_sc;
342 1.5 cliff
343 1.1 matt #ifdef DIAGNOSTIC
344 1.1 matt /* info */
345 1.1 matt printf("boot: howto=%08x curproc=%p\n", howto, curproc);
346 1.1 matt #endif
347 1.1 matt
348 1.1 matt /*
349 1.1 matt * If we are still cold then hit the air brakes
350 1.1 matt * and crash to earth fast
351 1.1 matt */
352 1.1 matt if (cold) {
353 1.1 matt doshutdownhooks();
354 1.7 dyoung pmf_system_shutdown(boothowto);
355 1.1 matt printf("The operating system has halted.\n");
356 1.1 matt printf("Please press any key to reboot.\n\n");
357 1.1 matt cngetc();
358 1.1 matt printf("rebooting...\n");
359 1.5 cliff if (ref_sc != NULL)
360 1.5 cliff delay(2000); /* cnflush(); */
361 1.3 cliff gemini_global_reset();
362 1.1 matt /*NOTREACHED*/
363 1.1 matt }
364 1.1 matt
365 1.1 matt /* Disable console buffering */
366 1.8 cliff cnpollc(1);
367 1.1 matt
368 1.1 matt /*
369 1.1 matt * If RB_NOSYNC was not specified sync the discs.
370 1.1 matt * Note: Unless cold is set to 1 here, syslogd will die during the
371 1.1 matt * unmount. It looks like syslogd is getting woken up only to find
372 1.1 matt * that it cannot page part of the binary in as the filesystem has
373 1.1 matt * been unmounted.
374 1.1 matt */
375 1.1 matt if (!(howto & RB_NOSYNC))
376 1.1 matt bootsync();
377 1.1 matt
378 1.1 matt /* Say NO to interrupts */
379 1.1 matt splhigh();
380 1.1 matt
381 1.1 matt /* Do a dump if requested. */
382 1.1 matt if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
383 1.1 matt dumpsys();
384 1.1 matt
385 1.1 matt /* Run any shutdown hooks */
386 1.1 matt doshutdownhooks();
387 1.1 matt
388 1.7 dyoung pmf_system_shutdown(boothowto);
389 1.7 dyoung
390 1.1 matt /* Make sure IRQ's are disabled */
391 1.1 matt IRQdisable;
392 1.1 matt
393 1.1 matt if (howto & RB_HALT) {
394 1.1 matt printf("The operating system has halted.\n");
395 1.1 matt printf("Please press any key to reboot.\n\n");
396 1.1 matt cngetc();
397 1.1 matt }
398 1.1 matt
399 1.1 matt printf("rebooting...\n");
400 1.5 cliff if (ref_sc != NULL)
401 1.5 cliff delay(2000); /* cnflush(); */
402 1.3 cliff gemini_global_reset();
403 1.1 matt /*NOTREACHED*/
404 1.1 matt }
405 1.1 matt
406 1.1 matt /*
407 1.1 matt * Static device mappings. These peripheral registers are mapped at
408 1.1 matt * fixed virtual addresses very early in initarm() so that we can use
409 1.1 matt * them while booting the kernel, and stay at the same address
410 1.1 matt * throughout whole kernel's life time.
411 1.1 matt *
412 1.1 matt * We use this table twice; once with bootstrap page table, and once
413 1.1 matt * with kernel's page table which we build up in initarm().
414 1.1 matt *
415 1.1 matt * Since we map these registers into the bootstrap page table using
416 1.1 matt * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
417 1.1 matt * registers segment-aligned and segment-rounded in order to avoid
418 1.1 matt * using the 2nd page tables.
419 1.1 matt */
420 1.1 matt
421 1.1 matt #define _A(a) ((a) & ~L1_S_OFFSET)
422 1.1 matt #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
423 1.1 matt
424 1.1 matt static const struct pmap_devmap devmap[] = {
425 1.3 cliff /* Global regs */
426 1.3 cliff {
427 1.3 cliff .pd_va = _A(GEMINI_GLOBAL_VBASE),
428 1.3 cliff .pd_pa = _A(GEMINI_GLOBAL_BASE),
429 1.3 cliff .pd_size = _S(L1_S_SIZE),
430 1.3 cliff .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
431 1.3 cliff .pd_cache = PTE_NOCACHE
432 1.3 cliff },
433 1.3 cliff
434 1.1 matt /* Watchdog */
435 1.1 matt {
436 1.1 matt .pd_va = _A(GEMINI_WATCHDOG_VBASE),
437 1.1 matt .pd_pa = _A(GEMINI_WATCHDOG_BASE),
438 1.1 matt .pd_size = _S(L1_S_SIZE),
439 1.1 matt .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
440 1.1 matt .pd_cache = PTE_NOCACHE
441 1.1 matt },
442 1.1 matt
443 1.1 matt /* UART */
444 1.1 matt {
445 1.6 cliff .pd_va = _A(GEMINI_UART_VBASE),
446 1.6 cliff .pd_pa = _A(GEMINI_UART_BASE),
447 1.1 matt .pd_size = _S(L1_S_SIZE),
448 1.1 matt .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
449 1.1 matt .pd_cache = PTE_NOCACHE
450 1.1 matt },
451 1.1 matt
452 1.5 cliff /* LPCHC */
453 1.5 cliff {
454 1.5 cliff .pd_va = _A(GEMINI_LPCHC_VBASE),
455 1.5 cliff .pd_pa = _A(GEMINI_LPCHC_BASE),
456 1.5 cliff .pd_size = _S(L1_S_SIZE),
457 1.5 cliff .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
458 1.5 cliff .pd_cache = PTE_NOCACHE
459 1.5 cliff },
460 1.5 cliff
461 1.5 cliff /* LPCIO */
462 1.5 cliff {
463 1.5 cliff .pd_va = _A(GEMINI_LPCIO_VBASE),
464 1.5 cliff .pd_pa = _A(GEMINI_LPCIO_BASE),
465 1.5 cliff .pd_size = _S(L1_S_SIZE),
466 1.5 cliff .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
467 1.5 cliff .pd_cache = PTE_NOCACHE
468 1.5 cliff },
469 1.5 cliff
470 1.1 matt /* Timers */
471 1.1 matt {
472 1.1 matt .pd_va = _A(GEMINI_TIMER_VBASE),
473 1.1 matt .pd_pa = _A(GEMINI_TIMER_BASE),
474 1.1 matt .pd_size = _S(L1_S_SIZE),
475 1.1 matt .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
476 1.1 matt .pd_cache = PTE_NOCACHE
477 1.1 matt },
478 1.1 matt
479 1.9 cliff /* DRAM Controller */
480 1.9 cliff {
481 1.9 cliff .pd_va = _A(GEMINI_DRAMC_VBASE),
482 1.9 cliff .pd_pa = _A(GEMINI_DRAMC_BASE),
483 1.9 cliff .pd_size = _S(L1_S_SIZE),
484 1.9 cliff .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
485 1.9 cliff .pd_cache = PTE_NOCACHE
486 1.9 cliff },
487 1.9 cliff
488 1.32 skrll #if defined(MEMORY_DISK_DYNAMIC)
489 1.5 cliff /* Ramdisk */
490 1.5 cliff {
491 1.5 cliff .pd_va = _A(GEMINI_RAMDISK_VBASE),
492 1.5 cliff .pd_pa = _A(GEMINI_RAMDISK_PBASE),
493 1.5 cliff .pd_size = _S(GEMINI_RAMDISK_SIZE),
494 1.5 cliff .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
495 1.5 cliff .pd_cache = PTE_NOCACHE
496 1.32 skrll },
497 1.5 cliff #endif
498 1.5 cliff
499 1.1 matt {0} /* list terminator */
500 1.1 matt };
501 1.1 matt
502 1.1 matt #undef _A
503 1.1 matt #undef _S
504 1.1 matt
505 1.1 matt #ifdef DDB
506 1.1 matt static void gemini_db_trap(int where)
507 1.1 matt {
508 1.1 matt #if NGEMINIWDT > 0
509 1.1 matt static int oldwatchdogstate;
510 1.1 matt
511 1.1 matt if (where) {
512 1.1 matt oldwatchdogstate = geminiwdt_enable(0);
513 1.1 matt } else {
514 1.1 matt geminiwdt_enable(oldwatchdogstate);
515 1.1 matt }
516 1.1 matt #endif
517 1.1 matt }
518 1.1 matt #endif
519 1.1 matt
520 1.6 cliff #if defined(VERBOSE_INIT_ARM) || 1
521 1.1 matt void gemini_putchar(char c);
522 1.1 matt void
523 1.1 matt gemini_putchar(char c)
524 1.1 matt {
525 1.6 cliff unsigned char *com0addr = (unsigned char *)GEMINI_UART_VBASE;
526 1.1 matt int timo = 150000;
527 1.1 matt
528 1.1 matt while ((com0addr[COM_REG_LSR * 4] & LSR_TXRDY) == 0)
529 1.1 matt if (--timo == 0)
530 1.1 matt break;
531 1.1 matt
532 1.1 matt com0addr[COM_REG_TXDATA] = c;
533 1.1 matt
534 1.1 matt while ((com0addr[COM_REG_LSR * 4] & LSR_TSRE) == 0)
535 1.1 matt if (--timo == 0)
536 1.1 matt break;
537 1.1 matt }
538 1.1 matt
539 1.1 matt void gemini_puthex(unsigned int);
540 1.1 matt void
541 1.1 matt gemini_puthex(unsigned int val)
542 1.1 matt {
543 1.1 matt char hexc[] = "0123456789abcdef";
544 1.1 matt
545 1.1 matt gemini_putchar('0');
546 1.1 matt gemini_putchar('x');
547 1.1 matt gemini_putchar(hexc[(val >> 28) & 0xf]);
548 1.1 matt gemini_putchar(hexc[(val >> 24) & 0xf]);
549 1.1 matt gemini_putchar(hexc[(val >> 20) & 0xf]);
550 1.1 matt gemini_putchar(hexc[(val >> 16) & 0xf]);
551 1.1 matt gemini_putchar(hexc[(val >> 12) & 0xf]);
552 1.1 matt gemini_putchar(hexc[(val >> 8) & 0xf]);
553 1.1 matt gemini_putchar(hexc[(val >> 4) & 0xf]);
554 1.1 matt gemini_putchar(hexc[(val >> 0) & 0xf]);
555 1.1 matt }
556 1.5 cliff #endif /* VERBOSE_INIT_ARM */
557 1.1 matt
558 1.1 matt /*
559 1.31 skrll * vaddr_t initarm(...)
560 1.1 matt *
561 1.1 matt * Initial entry point on startup. This gets called before main() is
562 1.1 matt * entered.
563 1.1 matt * It should be responsible for setting up everything that must be
564 1.1 matt * in place when main is called.
565 1.1 matt * This includes
566 1.1 matt * Taking a copy of the boot configuration structure.
567 1.1 matt * Initialising the physical console so characters can be printed.
568 1.1 matt * Setting up page tables for the kernel
569 1.1 matt * Relocating the kernel to the bottom of physical memory
570 1.1 matt */
571 1.31 skrll vaddr_t
572 1.1 matt initarm(void *arg)
573 1.1 matt {
574 1.5 cliff GEMINI_PUTCHAR('0');
575 1.3 cliff
576 1.1 matt /*
577 1.8 cliff * start cpu#1 now
578 1.8 cliff */
579 1.8 cliff gemini_cpu1_start();
580 1.8 cliff
581 1.8 cliff /*
582 1.1 matt * When we enter here, we are using a temporary first level
583 1.1 matt * translation table with section entries in it to cover the OBIO
584 1.1 matt * peripherals and SDRAM. The temporary first level translation table
585 1.1 matt * is at the end of SDRAM.
586 1.1 matt */
587 1.1 matt
588 1.1 matt /* Heads up ... Setup the CPU / MMU / TLB functions. */
589 1.5 cliff GEMINI_PUTCHAR('1');
590 1.1 matt if (set_cpufuncs())
591 1.1 matt panic("cpu not recognized!");
592 1.1 matt
593 1.5 cliff GEMINI_PUTCHAR('2');
594 1.1 matt init_clocks();
595 1.5 cliff GEMINI_PUTCHAR('3');
596 1.1 matt
597 1.1 matt /* The console is going to try to map things. Give pmap a devmap. */
598 1.1 matt pmap_devmap_register(devmap);
599 1.5 cliff GEMINI_PUTCHAR('4');
600 1.1 matt consinit();
601 1.5 cliff GEMINI_PUTCHAR('5');
602 1.1 matt #ifdef KGDB
603 1.1 matt kgdb_port_init();
604 1.1 matt #endif
605 1.1 matt
606 1.1 matt /* Talk to the user */
607 1.1 matt printf("\nNetBSD/evbarm (gemini) booting ...\n");
608 1.1 matt
609 1.1 matt #ifdef BOOT_ARGS
610 1.1 matt char mi_bootargs[] = BOOT_ARGS;
611 1.1 matt parse_mi_bootargs(mi_bootargs);
612 1.1 matt #endif
613 1.1 matt
614 1.1 matt #ifdef VERBOSE_INIT_ARM
615 1.1 matt printf("initarm: Configuring system ...\n");
616 1.1 matt #endif
617 1.1 matt
618 1.1 matt /*
619 1.1 matt * Set up the variables that define the availability of physical
620 1.1 matt * memory.
621 1.1 matt */
622 1.9 cliff gemini_memchk();
623 1.1 matt physical_start = GEMINI_DRAM_BASE;
624 1.1 matt #define MEMSIZE_BYTES (MEMSIZE * 1024 * 1024)
625 1.1 matt physical_end = (physical_start & ~(0x400000-1)) + MEMSIZE_BYTES;
626 1.1 matt physmem = (physical_end - physical_start) / PAGE_SIZE;
627 1.1 matt
628 1.1 matt /* Fake bootconfig structure for the benefit of pmap.c. */
629 1.1 matt bootconfig.dramblocks = 1;
630 1.1 matt bootconfig.dram[0].address = physical_start;
631 1.1 matt bootconfig.dram[0].pages = physmem;
632 1.1 matt
633 1.33 skrll kern_vtopdiff = KERNEL_BASE - GEMINI_DRAM_BASE;
634 1.27 skrll
635 1.1 matt /*
636 1.1 matt * Our kernel is at the beginning of memory, so set our free space to
637 1.1 matt * all the memory after the kernel.
638 1.1 matt */
639 1.1 matt physical_freestart = KERN_VTOPHYS(round_page((vaddr_t) _end));
640 1.1 matt physical_freeend = physical_end;
641 1.1 matt free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
642 1.1 matt
643 1.1 matt /*
644 1.1 matt * This is going to do all the hard work of setting up the first and
645 1.1 matt * and second level page tables. Pages of memory will be allocated
646 1.1 matt * and mapped for other structures that are required for system
647 1.1 matt * operation. When it returns, physical_freestart and free_pages will
648 1.1 matt * have been updated to reflect the allocations that were made. In
649 1.1 matt * addition, kernel_l1pt, kernel_pt_table[], systempage, irqstack,
650 1.1 matt * abtstack, undstack, kernelstack, msgbufphys will be set to point to
651 1.1 matt * the memory that was allocated for them.
652 1.1 matt */
653 1.1 matt setup_real_page_tables();
654 1.1 matt
655 1.1 matt /*
656 1.1 matt * Moved from cpu_startup() as data_abort_handler() references
657 1.1 matt * this during uvm init.
658 1.1 matt */
659 1.14 rmind uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
660 1.1 matt
661 1.1 matt #ifdef VERBOSE_INIT_ARM
662 1.1 matt printf("bootstrap done.\n");
663 1.1 matt #endif
664 1.1 matt
665 1.1 matt arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
666 1.1 matt
667 1.1 matt /*
668 1.1 matt * Pages were allocated during the secondary bootstrap for the
669 1.1 matt * stacks for different CPU modes.
670 1.1 matt * We must now set the r13 registers in the different CPU modes to
671 1.1 matt * point to these stacks.
672 1.1 matt * Since the ARM stacks use STMFD etc. we must set r13 to the top end
673 1.1 matt * of the stack memory.
674 1.1 matt */
675 1.1 matt #ifdef VERBOSE_INIT_ARM
676 1.1 matt printf("init subsystems: stacks ");
677 1.1 matt #endif
678 1.1 matt
679 1.1 matt set_stackptr(PSR_FIQ32_MODE, fiqstack.pv_va + FIQ_STACK_SIZE * PAGE_SIZE);
680 1.1 matt set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
681 1.1 matt set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
682 1.1 matt set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
683 1.1 matt
684 1.1 matt /*
685 1.1 matt * Well we should set a data abort handler.
686 1.1 matt * Once things get going this will change as we will need a proper
687 1.1 matt * handler.
688 1.1 matt * Until then we will use a handler that just panics but tells us
689 1.1 matt * why.
690 1.1 matt * Initialisation of the vectors will just panic on a data abort.
691 1.1 matt * This just fills in a slightly better one.
692 1.1 matt */
693 1.1 matt #ifdef VERBOSE_INIT_ARM
694 1.1 matt printf("vectors ");
695 1.1 matt #endif
696 1.1 matt data_abort_handler_address = (u_int)data_abort_handler;
697 1.1 matt prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
698 1.1 matt undefined_handler_address = (u_int)undefinedinstruction_bounce;
699 1.1 matt
700 1.1 matt /* Initialise the undefined instruction handlers */
701 1.1 matt #ifdef VERBOSE_INIT_ARM
702 1.1 matt printf("undefined ");
703 1.1 matt #endif
704 1.1 matt undefined_init();
705 1.1 matt
706 1.1 matt /* Load memory into UVM. */
707 1.1 matt #ifdef VERBOSE_INIT_ARM
708 1.1 matt printf("page ");
709 1.1 matt #endif
710 1.23 cherry uvm_md_init();
711 1.5 cliff
712 1.11 cliff #if (GEMINI_RAM_RESV_PBASE != 0)
713 1.11 cliff uvm_page_physload(atop(physical_freestart), atop(GEMINI_RAM_RESV_PBASE),
714 1.11 cliff atop(physical_freestart), atop(GEMINI_RAM_RESV_PBASE),
715 1.5 cliff VM_FREELIST_DEFAULT);
716 1.11 cliff uvm_page_physload(atop(GEMINI_RAM_RESV_PEND), atop(physical_freeend),
717 1.11 cliff atop(GEMINI_RAM_RESV_PEND), atop(physical_freeend),
718 1.5 cliff VM_FREELIST_DEFAULT);
719 1.5 cliff #else
720 1.1 matt uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
721 1.1 matt atop(physical_freestart), atop(physical_freeend),
722 1.1 matt VM_FREELIST_DEFAULT);
723 1.5 cliff #endif
724 1.2 cliff uvm_page_physload(atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys),
725 1.2 cliff atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys),
726 1.2 cliff VM_FREELIST_DEFAULT);
727 1.1 matt
728 1.29 skrll /* Boot strap pmap telling it where managed kernel virtual memory is */
729 1.1 matt #ifdef VERBOSE_INIT_ARM
730 1.1 matt printf("pmap ");
731 1.1 matt #endif
732 1.1 matt pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
733 1.1 matt
734 1.1 matt #ifdef VERBOSE_INIT_ARM
735 1.1 matt printf("done.\n");
736 1.1 matt #endif
737 1.1 matt
738 1.5 cliff #if defined(MEMORY_DISK_DYNAMIC)
739 1.5 cliff md_root_setconf((char *)GEMINI_RAMDISK_VBASE, GEMINI_RAMDISK_SIZE);
740 1.5 cliff #endif
741 1.5 cliff
742 1.1 matt #ifdef KGDB
743 1.1 matt if (boothowto & RB_KDB) {
744 1.1 matt kgdb_debug_init = 1;
745 1.1 matt kgdb_connect(1);
746 1.1 matt }
747 1.1 matt #endif
748 1.1 matt
749 1.1 matt #ifdef DDB
750 1.1 matt db_trap_callback = gemini_db_trap;
751 1.1 matt db_machine_init();
752 1.1 matt
753 1.1 matt /* Firmware doesn't load symbols. */
754 1.1 matt ddb_init(0, NULL, NULL);
755 1.1 matt
756 1.1 matt if (boothowto & RB_KDB)
757 1.1 matt Debugger();
758 1.1 matt #endif
759 1.1 matt printf("initarm done.\n");
760 1.1 matt
761 1.1 matt /* We return the new stack pointer address */
762 1.30 skrll return kernelstack.pv_va + USPACE_SVC_STACK_TOP;
763 1.1 matt }
764 1.1 matt
765 1.1 matt static void
766 1.1 matt init_clocks(void)
767 1.1 matt {
768 1.1 matt }
769 1.1 matt
770 1.1 matt #ifndef CONSADDR
771 1.1 matt #error Specify the address of the console UART with the CONSADDR option.
772 1.1 matt #endif
773 1.1 matt #ifndef CONSPEED
774 1.1 matt #define CONSPEED 19200
775 1.1 matt #endif
776 1.1 matt #ifndef CONMODE
777 1.1 matt #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
778 1.1 matt #endif
779 1.1 matt
780 1.1 matt static const bus_addr_t consaddr = CONSADDR;
781 1.1 matt static const int conspeed = CONSPEED;
782 1.1 matt static const int conmode = CONMODE;
783 1.1 matt
784 1.6 cliff #if CONSADDR==0x42000000
785 1.6 cliff /*
786 1.6 cliff * console initialization for obio com console
787 1.6 cliff */
788 1.1 matt void
789 1.1 matt consinit(void)
790 1.1 matt {
791 1.1 matt static int consinit_called = 0;
792 1.1 matt
793 1.1 matt if (consinit_called != 0)
794 1.1 matt return;
795 1.1 matt consinit_called = 1;
796 1.1 matt
797 1.1 matt if (comcnattach(&gemini_a4x_bs_tag, consaddr, conspeed,
798 1.1 matt GEMINI_COM_FREQ, COM_TYPE_16550_NOERS, conmode))
799 1.1 matt panic("Serial console can not be initialized.");
800 1.6 cliff }
801 1.6 cliff
802 1.32 skrll #elif CONSADDR==0x478003f8
803 1.6 cliff # include <arm/gemini/gemini_lpcvar.h>
804 1.6 cliff /*
805 1.6 cliff * console initialization for lpc com console
806 1.6 cliff */
807 1.6 cliff void
808 1.6 cliff consinit(void)
809 1.6 cliff {
810 1.6 cliff static int consinit_called = 0;
811 1.6 cliff bus_space_tag_t iot = &gemini_bs_tag;
812 1.6 cliff bus_space_handle_t lpchc_ioh;
813 1.6 cliff bus_space_handle_t lpcio_ioh;
814 1.6 cliff bus_size_t sz = L1_S_SIZE;
815 1.6 cliff gemini_lpc_softc_t lpcsoftc;
816 1.6 cliff gemini_lpc_bus_ops_t *ops;
817 1.6 cliff void *lpctag = &lpcsoftc;
818 1.6 cliff uint32_t r;
819 1.6 cliff extern gemini_lpc_bus_ops_t gemini_lpc_bus_ops;
820 1.6 cliff
821 1.6 cliff ops = &gemini_lpc_bus_ops;
822 1.6 cliff
823 1.6 cliff if (consinit_called != 0)
824 1.6 cliff return;
825 1.6 cliff consinit_called = 1;
826 1.6 cliff
827 1.6 cliff if (bus_space_map(iot, GEMINI_LPCHC_BASE, sz, 0, &lpchc_ioh))
828 1.6 cliff panic("consinit: LPCHC can not be mapped.");
829 1.6 cliff
830 1.6 cliff if (bus_space_map(iot, GEMINI_LPCIO_BASE, sz, 0, &lpcio_ioh))
831 1.6 cliff panic("consinit: LPCIO can not be mapped.");
832 1.6 cliff
833 1.6 cliff /* enable the LPC bus */
834 1.6 cliff r = bus_space_read_4(iot, lpchc_ioh, GEMINI_LPCHC_CSR);
835 1.6 cliff r |= LPCHC_CSR_BEN;
836 1.6 cliff bus_space_write_4(iot, lpchc_ioh, GEMINI_LPCHC_CSR, r);
837 1.6 cliff
838 1.6 cliff memset(&lpcsoftc, 0, sizeof(lpcsoftc));
839 1.6 cliff lpcsoftc.sc_iot = iot;
840 1.6 cliff lpcsoftc.sc_ioh = lpcio_ioh;
841 1.6 cliff
842 1.6 cliff /* activate Serial Port 1 */
843 1.6 cliff (*ops->lpc_pnp_enter)(lpctag);
844 1.6 cliff (*ops->lpc_pnp_write)(lpctag, 1, 0x30, 0x01);
845 1.6 cliff (*ops->lpc_pnp_exit)(lpctag);
846 1.6 cliff
847 1.6 cliff if (comcnattach(iot, consaddr, conspeed,
848 1.6 cliff IT8712F_COM_FREQ, COM_TYPE_NORMAL, conmode)) {
849 1.6 cliff panic("Serial console can not be initialized.");
850 1.6 cliff }
851 1.1 matt
852 1.6 cliff bus_space_unmap(iot, lpcio_ioh, sz);
853 1.6 cliff bus_space_unmap(iot, lpchc_ioh, sz);
854 1.1 matt }
855 1.6 cliff #else
856 1.6 cliff # error unknown console
857 1.6 cliff #endif
858 1.1 matt
859 1.1 matt #ifdef KGDB
860 1.1 matt #ifndef KGDB_DEVADDR
861 1.1 matt #error Specify the address of the kgdb UART with the KGDB_DEVADDR option.
862 1.1 matt #endif
863 1.1 matt #ifndef KGDB_DEVRATE
864 1.1 matt #define KGDB_DEVRATE 19200
865 1.1 matt #endif
866 1.1 matt
867 1.1 matt #ifndef KGDB_DEVMODE
868 1.1 matt #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
869 1.1 matt #endif
870 1.1 matt static const vaddr_t comkgdbaddr = KGDB_DEVADDR;
871 1.1 matt static const int comkgdbspeed = KGDB_DEVRATE;
872 1.1 matt static const int comkgdbmode = KGDB_DEVMODE;
873 1.1 matt
874 1.1 matt void
875 1.1 matt static kgdb_port_init(void)
876 1.1 matt {
877 1.1 matt static int kgdbsinit_called = 0;
878 1.1 matt
879 1.1 matt if (kgdbsinit_called != 0)
880 1.1 matt return;
881 1.1 matt
882 1.1 matt kgdbsinit_called = 1;
883 1.1 matt
884 1.1 matt bus_space_handle_t bh;
885 1.1 matt if (bus_space_map(&gemini_a4x_bs_tag, comkgdbaddr,
886 1.1 matt GEMINI_UART_SIZE, 0, &bh))
887 1.1 matt panic("kgdb port can not be mapped.");
888 1.1 matt
889 1.1 matt if (com_kgdb_attach(&gemini_a4x_bs_tag, comkgdbaddr, comkgdbspeed,
890 1.1 matt GEMINI_UART_SIZE, COM_TYPE_16550_NOERS, comkgdbmode))
891 1.1 matt panic("KGDB uart can not be initialized.");
892 1.1 matt
893 1.1 matt bus_space_unmap(&gemini_a4x_bs_tag, bh, GEMINI_UART_SIZE);
894 1.1 matt }
895 1.1 matt #endif
896 1.1 matt
897 1.1 matt static void
898 1.1 matt setup_real_page_tables(void)
899 1.1 matt {
900 1.1 matt /*
901 1.1 matt * We need to allocate some fixed page tables to get the kernel going.
902 1.1 matt *
903 1.1 matt * We are going to allocate our bootstrap pages from the beginning of
904 1.1 matt * the free space that we just calculated. We allocate one page
905 1.1 matt * directory and a number of page tables and store the physical
906 1.1 matt * addresses in the kernel_pt_table array.
907 1.1 matt *
908 1.1 matt * The kernel page directory must be on a 16K boundary. The page
909 1.1 matt * tables must be on 4K boundaries. What we do is allocate the
910 1.1 matt * page directory on the first 16K boundary that we encounter, and
911 1.1 matt * the page tables on 4K boundaries otherwise. Since we allocate
912 1.1 matt * at least 3 L2 page tables, we are guaranteed to encounter at
913 1.1 matt * least one 16K aligned region.
914 1.1 matt */
915 1.1 matt
916 1.1 matt #ifdef VERBOSE_INIT_ARM
917 1.1 matt printf("Allocating page tables\n");
918 1.1 matt #endif
919 1.1 matt
920 1.1 matt /*
921 1.1 matt * Define a macro to simplify memory allocation. As we allocate the
922 1.1 matt * memory, make sure that we don't walk over our temporary first level
923 1.1 matt * translation table.
924 1.1 matt */
925 1.1 matt #define valloc_pages(var, np) \
926 1.1 matt (var).pv_pa = physical_freestart; \
927 1.1 matt physical_freestart += ((np) * PAGE_SIZE); \
928 1.1 matt if (physical_freestart > (physical_freeend - L1_TABLE_SIZE)) \
929 1.1 matt panic("initarm: out of memory"); \
930 1.1 matt free_pages -= (np); \
931 1.1 matt (var).pv_va = KERN_PHYSTOV((var).pv_pa); \
932 1.1 matt memset((char *)(var).pv_va, 0, ((np) * PAGE_SIZE));
933 1.1 matt
934 1.1 matt int loop, pt_index;
935 1.1 matt
936 1.1 matt pt_index = 0;
937 1.1 matt kernel_l1pt.pv_pa = 0;
938 1.1 matt kernel_l1pt.pv_va = 0;
939 1.5 cliff #ifdef VERBOSE_INIT_ARM
940 1.5 cliff printf("%s: physical_freestart %#lx\n", __func__, physical_freestart);
941 1.5 cliff #endif
942 1.1 matt for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
943 1.1 matt /* Are we 16KB aligned for an L1 ? */
944 1.1 matt if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0
945 1.1 matt && kernel_l1pt.pv_pa == 0) {
946 1.1 matt valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
947 1.1 matt } else {
948 1.1 matt valloc_pages(kernel_pt_table[pt_index],
949 1.1 matt L2_TABLE_SIZE / PAGE_SIZE);
950 1.1 matt ++pt_index;
951 1.1 matt }
952 1.1 matt }
953 1.5 cliff
954 1.11 cliff #if (NGEMINIIPM > 0)
955 1.11 cliff valloc_pages(ipmq_pt, L2_TABLE_SIZE / PAGE_SIZE);
956 1.11 cliff #endif
957 1.11 cliff
958 1.5 cliff #ifdef VERBOSE_INIT_ARM
959 1.5 cliff pt_index=0;
960 1.5 cliff printf("%s: kernel_l1pt: %#lx:%#lx\n",
961 1.5 cliff __func__, kernel_l1pt.pv_va, kernel_l1pt.pv_pa);
962 1.5 cliff printf("%s: kernel_pt_table:\n", __func__);
963 1.5 cliff for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
964 1.5 cliff printf("\t%#lx:%#lx\n", kernel_pt_table[pt_index].pv_va,
965 1.5 cliff kernel_pt_table[pt_index].pv_pa);
966 1.5 cliff ++pt_index;
967 1.5 cliff }
968 1.11 cliff #if (NGEMINIIPM > 0)
969 1.11 cliff printf("%s: ipmq_pt:\n", __func__);
970 1.11 cliff printf("\t%#lx:%#lx\n", ipmq_pt.pv_va, ipmq_pt.pv_pa);
971 1.11 cliff #endif
972 1.5 cliff #endif
973 1.1 matt
974 1.1 matt /* This should never be able to happen but better confirm that. */
975 1.1 matt if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
976 1.1 matt panic("initarm: Failed to align the kernel page directory");
977 1.1 matt
978 1.1 matt /*
979 1.1 matt * Allocate a page for the system page mapped to V0x00000000
980 1.1 matt * This page will just contain the system vectors and can be
981 1.1 matt * shared by all processes.
982 1.1 matt */
983 1.1 matt valloc_pages(systempage, 1);
984 1.1 matt systempage.pv_va = ARM_VECTORS_HIGH;
985 1.1 matt
986 1.1 matt /* Allocate stacks for all modes */
987 1.1 matt valloc_pages(fiqstack, FIQ_STACK_SIZE);
988 1.1 matt valloc_pages(irqstack, IRQ_STACK_SIZE);
989 1.1 matt valloc_pages(abtstack, ABT_STACK_SIZE);
990 1.1 matt valloc_pages(undstack, UND_STACK_SIZE);
991 1.1 matt valloc_pages(kernelstack, UPAGES);
992 1.1 matt
993 1.1 matt /* Allocate the message buffer. */
994 1.1 matt pv_addr_t msgbuf;
995 1.1 matt int msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
996 1.1 matt valloc_pages(msgbuf, msgbuf_pgs);
997 1.1 matt msgbufphys = msgbuf.pv_pa;
998 1.1 matt
999 1.1 matt /*
1000 1.1 matt * Ok we have allocated physical pages for the primary kernel
1001 1.1 matt * page tables
1002 1.1 matt */
1003 1.1 matt
1004 1.1 matt #ifdef VERBOSE_INIT_ARM
1005 1.1 matt printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
1006 1.1 matt #endif
1007 1.1 matt
1008 1.1 matt /*
1009 1.1 matt * Now we start construction of the L1 page table
1010 1.1 matt * We start by mapping the L2 page tables into the L1.
1011 1.1 matt * This means that we can replace L1 mappings later on if necessary
1012 1.1 matt */
1013 1.1 matt vaddr_t l1_va = kernel_l1pt.pv_va;
1014 1.1 matt paddr_t l1_pa = kernel_l1pt.pv_pa;
1015 1.1 matt
1016 1.1 matt /* Map the L2 pages tables in the L1 page table */
1017 1.1 matt pmap_link_l2pt(l1_va, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
1018 1.1 matt &kernel_pt_table[KERNEL_PT_SYS]);
1019 1.1 matt for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
1020 1.1 matt pmap_link_l2pt(l1_va, KERNEL_BASE + loop * 0x00400000,
1021 1.1 matt &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
1022 1.1 matt for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
1023 1.1 matt pmap_link_l2pt(l1_va, KERNEL_VM_BASE + loop * 0x00400000,
1024 1.1 matt &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
1025 1.1 matt
1026 1.1 matt /* update the top of the kernel VM */
1027 1.1 matt pmap_curmaxkvaddr =
1028 1.1 matt KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
1029 1.1 matt
1030 1.11 cliff #if (NGEMINIIPM > 0)
1031 1.11 cliff printf("%s:%d: pmap_link_l2pt ipmq_pt\n", __FUNCTION__, __LINE__);
1032 1.11 cliff pmap_link_l2pt(l1_va, GEMINI_IPMQ_VBASE, &ipmq_pt);
1033 1.11 cliff #endif
1034 1.11 cliff
1035 1.1 matt #ifdef VERBOSE_INIT_ARM
1036 1.1 matt printf("Mapping kernel\n");
1037 1.1 matt #endif
1038 1.1 matt
1039 1.1 matt /* Now we fill in the L2 pagetable for the kernel static code/data */
1040 1.1 matt #define round_L_page(x) (((x) + L2_L_OFFSET) & L2_L_FRAME)
1041 1.1 matt size_t textsize = round_L_page(etext - KERNEL_BASE_virt);
1042 1.1 matt size_t totalsize = round_L_page(_end - KERNEL_BASE_virt);
1043 1.1 matt /* offset of kernel in RAM */
1044 1.1 matt u_int offset = (u_int)KERNEL_BASE_virt - KERNEL_BASE;
1045 1.1 matt
1046 1.9 cliff #ifdef DDB
1047 1.9 cliff /* Map text section read-write. */
1048 1.9 cliff offset += pmap_map_chunk(l1_va,
1049 1.9 cliff (vaddr_t)KERNEL_BASE + offset,
1050 1.9 cliff physical_start + offset, textsize,
1051 1.9 cliff VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE,
1052 1.9 cliff PTE_CACHE);
1053 1.9 cliff #else
1054 1.1 matt /* Map text section read-only. */
1055 1.1 matt offset += pmap_map_chunk(l1_va,
1056 1.1 matt (vaddr_t)KERNEL_BASE + offset,
1057 1.1 matt physical_start + offset, textsize,
1058 1.1 matt VM_PROT_READ|VM_PROT_EXECUTE, PTE_CACHE);
1059 1.9 cliff #endif
1060 1.1 matt /* Map data and bss sections read-write. */
1061 1.1 matt offset += pmap_map_chunk(l1_va,
1062 1.1 matt (vaddr_t)KERNEL_BASE + offset,
1063 1.1 matt physical_start + offset, totalsize - textsize,
1064 1.1 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1065 1.1 matt
1066 1.1 matt #ifdef VERBOSE_INIT_ARM
1067 1.1 matt printf("Constructing L2 page tables\n");
1068 1.1 matt #endif
1069 1.1 matt
1070 1.1 matt /* Map the stack pages */
1071 1.1 matt pmap_map_chunk(l1_va, fiqstack.pv_va, fiqstack.pv_pa,
1072 1.1 matt FIQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1073 1.1 matt pmap_map_chunk(l1_va, irqstack.pv_va, irqstack.pv_pa,
1074 1.1 matt IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1075 1.1 matt pmap_map_chunk(l1_va, abtstack.pv_va, abtstack.pv_pa,
1076 1.1 matt ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1077 1.1 matt pmap_map_chunk(l1_va, undstack.pv_va, undstack.pv_pa,
1078 1.1 matt UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1079 1.1 matt pmap_map_chunk(l1_va, kernelstack.pv_va, kernelstack.pv_pa,
1080 1.1 matt UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
1081 1.1 matt
1082 1.1 matt pmap_map_chunk(l1_va, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
1083 1.1 matt L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
1084 1.1 matt
1085 1.1 matt for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
1086 1.1 matt pmap_map_chunk(l1_va, kernel_pt_table[loop].pv_va,
1087 1.1 matt kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
1088 1.1 matt VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
1089 1.1 matt }
1090 1.1 matt
1091 1.1 matt /* Map the vector page. */
1092 1.1 matt pmap_map_entry(l1_va, ARM_VECTORS_HIGH, systempage.pv_pa,
1093 1.1 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1094 1.1 matt
1095 1.11 cliff #if (NGEMINIIPM > 0)
1096 1.11 cliff /* Map the IPM queue l2pt */
1097 1.11 cliff pmap_map_chunk(l1_va, ipmq_pt.pv_va, ipmq_pt.pv_pa,
1098 1.11 cliff L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
1099 1.11 cliff
1100 1.11 cliff /* Map the IPM queue pages */
1101 1.11 cliff pmap_map_chunk(l1_va, GEMINI_IPMQ_VBASE, GEMINI_IPMQ_PBASE,
1102 1.11 cliff GEMINI_IPMQ_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1103 1.11 cliff
1104 1.11 cliff #ifdef GEMINI_SLAVE
1105 1.11 cliff /*
1106 1.11 cliff * Map all memory, incluuding that owned by other core
1107 1.11 cliff * take into account the RAM remap, so view in this region
1108 1.11 cliff * is consistent with MASTER
1109 1.11 cliff */
1110 1.11 cliff pmap_map_chunk(l1_va,
1111 1.11 cliff GEMINI_ALLMEM_VBASE,
1112 1.11 cliff GEMINI_ALLMEM_PBASE + ((GEMINI_ALLMEM_SIZE - MEMSIZE) * 1024 * 1024),
1113 1.11 cliff (GEMINI_ALLMEM_SIZE - MEMSIZE) * 1024 * 1024,
1114 1.11 cliff VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1115 1.11 cliff pmap_map_chunk(l1_va,
1116 1.11 cliff GEMINI_ALLMEM_VBASE + GEMINI_BUSBASE * 1024 * 1024,
1117 1.11 cliff GEMINI_ALLMEM_PBASE,
1118 1.11 cliff (MEMSIZE * 1024 * 1024),
1119 1.11 cliff VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1120 1.11 cliff #else
1121 1.11 cliff /* Map all memory, incluuding that owned by other core */
1122 1.11 cliff pmap_map_chunk(l1_va, GEMINI_ALLMEM_VBASE, GEMINI_ALLMEM_PBASE,
1123 1.11 cliff GEMINI_ALLMEM_SIZE * 1024 * 1024, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1124 1.11 cliff #endif /* GEMINI_SLAVE */
1125 1.11 cliff #endif /* NGEMINIIPM */
1126 1.11 cliff
1127 1.1 matt /*
1128 1.1 matt * Map integrated peripherals at same address in first level page
1129 1.1 matt * table so that we can continue to use console.
1130 1.1 matt */
1131 1.1 matt pmap_devmap_bootstrap(l1_va, devmap);
1132 1.1 matt
1133 1.1 matt
1134 1.1 matt #ifdef VERBOSE_INIT_ARM
1135 1.1 matt /* Tell the user about where all the bits and pieces live. */
1136 1.1 matt printf("%22s Physical Virtual Num\n", " ");
1137 1.1 matt printf("%22s Starting Ending Starting Ending Pages\n", " ");
1138 1.1 matt
1139 1.1 matt static const char mem_fmt[] =
1140 1.1 matt "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %d\n";
1141 1.1 matt static const char mem_fmt_nov[] =
1142 1.1 matt "%20s: 0x%08lx 0x%08lx %d\n";
1143 1.1 matt
1144 1.1 matt printf(mem_fmt, "SDRAM", physical_start, physical_end-1,
1145 1.1 matt KERN_PHYSTOV(physical_start), KERN_PHYSTOV(physical_end-1),
1146 1.24 rin (int)physmem);
1147 1.1 matt printf(mem_fmt, "text section",
1148 1.27 skrll KERN_VTOPHYS((vaddr_t)KERNEL_BASE_virt), KERN_VTOPHYS((vaddr_t)etext-1),
1149 1.1 matt (vaddr_t)KERNEL_BASE_virt, (vaddr_t)etext-1,
1150 1.1 matt (int)(textsize / PAGE_SIZE));
1151 1.1 matt printf(mem_fmt, "data section",
1152 1.27 skrll KERN_VTOPHYS((vaddr_t)__data_start), KERN_VTOPHYS((vaddr_t)_edata),
1153 1.1 matt (vaddr_t)__data_start, (vaddr_t)_edata,
1154 1.1 matt (int)((round_page((vaddr_t)_edata)
1155 1.1 matt - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
1156 1.1 matt printf(mem_fmt, "bss section",
1157 1.27 skrll KERN_VTOPHYS((vaddr_t)__bss_start), KERN_VTOPHYS((vaddr_t)__bss_end__),
1158 1.1 matt (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
1159 1.1 matt (int)((round_page((vaddr_t)__bss_end__)
1160 1.1 matt - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
1161 1.1 matt printf(mem_fmt, "L1 page directory",
1162 1.1 matt kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
1163 1.1 matt kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
1164 1.1 matt L1_TABLE_SIZE / PAGE_SIZE);
1165 1.1 matt printf(mem_fmt, "Exception Vectors",
1166 1.1 matt systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
1167 1.1 matt (vaddr_t)ARM_VECTORS_HIGH, (vaddr_t)ARM_VECTORS_HIGH + PAGE_SIZE - 1,
1168 1.1 matt 1);
1169 1.1 matt printf(mem_fmt, "FIQ stack",
1170 1.1 matt fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
1171 1.1 matt fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
1172 1.1 matt FIQ_STACK_SIZE);
1173 1.1 matt printf(mem_fmt, "IRQ stack",
1174 1.1 matt irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
1175 1.1 matt irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
1176 1.1 matt IRQ_STACK_SIZE);
1177 1.1 matt printf(mem_fmt, "ABT stack",
1178 1.1 matt abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
1179 1.1 matt abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
1180 1.1 matt ABT_STACK_SIZE);
1181 1.1 matt printf(mem_fmt, "UND stack",
1182 1.1 matt undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
1183 1.1 matt undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
1184 1.1 matt UND_STACK_SIZE);
1185 1.1 matt printf(mem_fmt, "SVC stack",
1186 1.1 matt kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
1187 1.1 matt kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
1188 1.1 matt UPAGES);
1189 1.1 matt printf(mem_fmt_nov, "Message Buffer",
1190 1.1 matt msgbufphys, msgbufphys + msgbuf_pgs * PAGE_SIZE - 1, msgbuf_pgs);
1191 1.1 matt printf(mem_fmt, "Free Memory", physical_freestart, physical_freeend-1,
1192 1.1 matt KERN_PHYSTOV(physical_freestart), KERN_PHYSTOV(physical_freeend-1),
1193 1.1 matt free_pages);
1194 1.1 matt #endif
1195 1.1 matt
1196 1.1 matt /*
1197 1.1 matt * Now we have the real page tables in place so we can switch to them.
1198 1.1 matt * Once this is done we will be running with the REAL kernel page
1199 1.1 matt * tables.
1200 1.1 matt */
1201 1.1 matt
1202 1.1 matt /* Switch tables */
1203 1.1 matt #ifdef VERBOSE_INIT_ARM
1204 1.1 matt printf("switching to new L1 page table @%#lx...", l1_pa);
1205 1.1 matt #endif
1206 1.1 matt
1207 1.1 matt cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
1208 1.21 matt cpu_setttb(l1_pa, true);
1209 1.1 matt cpu_tlb_flushID();
1210 1.1 matt cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
1211 1.1 matt
1212 1.1 matt #ifdef VERBOSE_INIT_ARM
1213 1.1 matt printf("OK.\n");
1214 1.1 matt #endif
1215 1.1 matt }
1216