gemini_machdep.c revision 1.11.8.2 1 /* $NetBSD: gemini_machdep.c,v 1.11.8.2 2009/05/04 08:10:58 yamt Exp $ */
2
3 /* adapted from:
4 * NetBSD: sdp24xx_machdep.c,v 1.4 2008/08/27 11:03:10 matt Exp
5 */
6
7 /*
8 * Machine dependent functions for kernel setup for TI OSK5912 board.
9 * Based on lubbock_machdep.c which in turn was based on iq80310_machhdep.c
10 *
11 * Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
12 * Written by Hiroyuki Bessho for Genetec Corporation.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. The name of Genetec Corporation may not be used to endorse or
23 * promote products derived from this software without specific prior
24 * written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 *
38 * Copyright (c) 2001 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 *
71 * Copyright (c) 1997,1998 Mark Brinicombe.
72 * Copyright (c) 1997,1998 Causality Limited.
73 * All rights reserved.
74 *
75 * Redistribution and use in source and binary forms, with or without
76 * modification, are permitted provided that the following conditions
77 * are met:
78 * 1. Redistributions of source code must retain the above copyright
79 * notice, this list of conditions and the following disclaimer.
80 * 2. Redistributions in binary form must reproduce the above copyright
81 * notice, this list of conditions and the following disclaimer in the
82 * documentation and/or other materials provided with the distribution.
83 * 3. All advertising materials mentioning features or use of this software
84 * must display the following acknowledgement:
85 * This product includes software developed by Mark Brinicombe
86 * for the NetBSD Project.
87 * 4. The name of the company nor the name of the author may be used to
88 * endorse or promote products derived from this software without specific
89 * prior written permission.
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
92 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
93 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
94 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
95 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
96 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
97 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
98 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
99 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
100 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
101 * SUCH DAMAGE.
102 *
103 * Copyright (c) 2007 Microsoft
104 * All rights reserved.
105 *
106 * Redistribution and use in source and binary forms, with or without
107 * modification, are permitted provided that the following conditions
108 * are met:
109 * 1. Redistributions of source code must retain the above copyright
110 * notice, this list of conditions and the following disclaimer.
111 * 2. Redistributions in binary form must reproduce the above copyright
112 * notice, this list of conditions and the following disclaimer in the
113 * documentation and/or other materials provided with the distribution.
114 * 3. All advertising materials mentioning features or use of this software
115 * must display the following acknowledgement:
116 * This product includes software developed by Microsoft
117 *
118 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
119 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
120 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
121 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
122 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
123 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
124 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
125 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
126 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
127 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
128 * SUCH DAMAGE.
129 */
130
131 #include <sys/cdefs.h>
132 __KERNEL_RCSID(0, "$NetBSD: gemini_machdep.c,v 1.11.8.2 2009/05/04 08:10:58 yamt Exp $");
133
134 #include "opt_machdep.h"
135 #include "opt_ddb.h"
136 #include "opt_kgdb.h"
137 #include "opt_ipkdb.h"
138 #include "opt_md.h"
139 #include "opt_com.h"
140 #include "opt_gemini.h"
141 #include "geminiwdt.h"
142 #include "geminiipm.h"
143 #include "md.h"
144
145 #include <sys/param.h>
146 #include <sys/device.h>
147 #include <sys/systm.h>
148 #include <sys/kernel.h>
149 #include <sys/exec.h>
150 #include <sys/proc.h>
151 #include <sys/msgbuf.h>
152 #include <sys/reboot.h>
153 #include <sys/termios.h>
154 #include <sys/ksyms.h>
155
156 #include <uvm/uvm_extern.h>
157
158 #include <sys/conf.h>
159 #include <dev/cons.h>
160 #include <dev/md.h>
161
162 #include <machine/db_machdep.h>
163 #include <ddb/db_sym.h>
164 #include <ddb/db_extern.h>
165 #ifdef KGDB
166 #include <sys/kgdb.h>
167 #endif
168
169 #include <machine/bootconfig.h>
170 #include <machine/bus.h>
171 #include <machine/cpu.h>
172 #include <machine/frame.h>
173 #include <arm/armreg.h>
174 #include <arm/undefined.h>
175
176 #include <arm/arm32/machdep.h>
177
178 #include <arm/gemini/gemini_reg.h>
179 #include <arm/gemini/gemini_var.h>
180 #include <arm/gemini/gemini_wdtvar.h>
181 #include <arm/gemini/gemini_com.h>
182 #include <arm/gemini/lpc_com.h>
183
184 #include <evbarm/gemini/gemini.h>
185
186 #if defined(VERBOSE_INIT_ARM)
187 # define GEMINI_PUTCHAR(c) gemini_putchar(c)
188 # define GEMINI_PUTHEX(n) gemini_puthex(n)
189 #else /* VERBOSE_INIT_ARM */
190 # define GEMINI_PUTCHAR(c)
191 # define GEMINI_PUTHEX(n)
192 #endif /* VERBOSE_INIT_ARM */
193
194 /*
195 * Address to call from cpu_reset() to reset the machine.
196 * This is machine architecture dependant as it varies depending
197 * on where the ROM appears when you turn the MMU off.
198 */
199
200 u_int cpu_reset_address = 0;
201
202 /* Define various stack sizes in pages */
203 #define IRQ_STACK_SIZE 1
204 #define FIQ_STACK_SIZE 1
205 #define ABT_STACK_SIZE 1
206 #ifdef IPKDB
207 #define UND_STACK_SIZE 2
208 #else
209 #define UND_STACK_SIZE 1
210 #endif
211
212 BootConfig bootconfig; /* Boot config storage */
213 char *boot_args = NULL;
214 char *boot_file = NULL;
215
216 /* Physical address of the beginning of SDRAM. */
217 paddr_t physical_start;
218 /* Physical address of the first byte after the end of SDRAM. */
219 paddr_t physical_end;
220 /* Number of pages of memory. */
221 int physmem = 0;
222
223 /* Same things, but for the free (unused by the kernel) memory. */
224 static paddr_t physical_freestart, physical_freeend;
225 static u_int free_pages;
226
227 /* Physical and virtual addresses for some global pages */
228 pv_addr_t fiqstack;
229 pv_addr_t irqstack;
230 pv_addr_t undstack;
231 pv_addr_t abtstack;
232 pv_addr_t kernelstack; /* stack for SVC mode */
233
234 /* Physical address of the message buffer. */
235 paddr_t msgbufphys;
236
237 extern u_int data_abort_handler_address;
238 extern u_int prefetch_abort_handler_address;
239 extern u_int undefined_handler_address;
240 extern char KERNEL_BASE_phys[];
241 extern char KERNEL_BASE_virt[];
242 extern char etext[], __data_start[], _edata[], __bss_start[], __bss_end__[];
243 extern char _end[];
244
245 #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
246 #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
247 #define KERNEL_PT_KERNEL_NUM 4
248 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
249 /* Page tables for mapping kernel VM */
250 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
251 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
252
253 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
254
255
256 #if (NGEMINIIPM > 0)
257 pv_addr_t ipmq_pt; /* L2 Page table for mapping IPM queues */
258 #if defined(DEBUG) || 1
259 unsigned long gemini_ipmq_pbase = GEMINI_IPMQ_PBASE;
260 unsigned long gemini_ipmq_vbase = GEMINI_IPMQ_VBASE;
261 #endif /* DEBUG */
262 #endif /* NGEMINIIPM > 0 */
263
264
265 extern struct user *proc0paddr;
266
267 /*
268 * Macros to translate between physical and virtual for a subset of the
269 * kernel address space. *Not* for general use.
270 */
271 #define KERNEL_BASE_PHYS ((paddr_t)&KERNEL_BASE_phys)
272
273 #define KERN_VTOPHYS(va) \
274 ((paddr_t)((vaddr_t)va - KERNEL_BASE + GEMINI_DRAM_BASE))
275 #define KERN_PHYSTOV(pa) \
276 ((vaddr_t)((paddr_t)pa - GEMINI_DRAM_BASE + KERNEL_BASE))
277
278 /* Prototypes */
279
280 void gemini_intr_init(bus_space_tag_t);
281 void consinit(void);
282 #ifdef KGDB
283 static void kgdb_port_init(void);
284 #endif
285
286 static void setup_real_page_tables(void);
287 static void init_clocks(void);
288
289 bs_protos(bs_notimpl);
290
291 #include "com.h"
292 #if NCOM > 0
293 #include <dev/ic/comreg.h>
294 #include <dev/ic/comvar.h>
295 #endif
296
297
298 static void gemini_global_reset(void) __attribute__ ((noreturn));
299 static void gemini_cpu1_start(void);
300 static void gemini_memchk(void);
301
302 static void
303 gemini_global_reset(void)
304 {
305 #if defined(GEMINI_MASTER) || defined(GEMINI_SINGLE)
306 volatile uint32_t *rp;
307 uint32_t r;
308
309 rp = (volatile uint32_t *)
310 (GEMINI_GLOBAL_VBASE + GEMINI_GLOBAL_RESET_CTL);
311 r = *rp;
312 r |= GLOBAL_RESET_GLOBAL;
313 *rp = r;
314 #endif
315 for(;;);
316 /* NOTREACHED */
317 }
318
319 static void
320 gemini_cpu1_start(void)
321 {
322 #ifdef GEMINI_MASTER
323 volatile uint32_t *rp;
324 uint32_t r;
325
326 rp = (volatile uint32_t *)
327 (GEMINI_GLOBAL_VBASE + GEMINI_GLOBAL_RESET_CTL);
328 r = *rp;
329 r &= ~GLOBAL_RESET_CPU1;
330 *rp = r;
331 #endif
332 }
333
334 static void
335 gemini_memchk(void)
336 {
337 volatile uint32_t *rp;
338 uint32_t r;
339 uint32_t base;
340 uint32_t size;
341
342 rp = (volatile uint32_t *)
343 (GEMINI_DRAMC_VBASE + GEMINI_DRAMC_RMCR);
344 r = *rp;
345 base = (r & DRAMC_RMCR_RMBAR) >> DRAMC_RMCR_RMBAR_SHFT;
346 size = (r & DRAMC_RMCR_RMSZR) >> DRAMC_RMCR_RMSZR_SHFT;
347 #if defined(GEMINI_SINGLE)
348 if (r != 0)
349 panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
350 __FUNCTION__, r, MEMSIZE);
351 #elif defined(GEMINI_MASTER)
352 if (base != MEMSIZE)
353 panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
354 __FUNCTION__, r, MEMSIZE);
355 #elif defined(GEMINI_SLAVE)
356 if (size != MEMSIZE)
357 panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
358 __FUNCTION__, r, MEMSIZE);
359 #endif
360 #if defined(VERBOSE_INIT_ARM) || 1
361 printf("DRAM Remap: base=%dMB, size=%dMB\n", base, size);
362 #endif
363 }
364
365 /*
366 * void cpu_reboot(int howto, char *bootstr)
367 *
368 * Reboots the system
369 *
370 * Deal with any syncing, unmounting, dumping and shutdown hooks,
371 * then reset the CPU.
372 */
373 void
374 cpu_reboot(int howto, char *bootstr)
375 {
376 extern struct geminitmr_softc *ref_sc;
377
378 #ifdef DIAGNOSTIC
379 /* info */
380 printf("boot: howto=%08x curproc=%p\n", howto, curproc);
381 #endif
382
383 /*
384 * If we are still cold then hit the air brakes
385 * and crash to earth fast
386 */
387 if (cold) {
388 doshutdownhooks();
389 pmf_system_shutdown(boothowto);
390 printf("The operating system has halted.\n");
391 printf("Please press any key to reboot.\n\n");
392 cngetc();
393 printf("rebooting...\n");
394 if (ref_sc != NULL)
395 delay(2000); /* cnflush(); */
396 gemini_global_reset();
397 /*NOTREACHED*/
398 }
399
400 /* Disable console buffering */
401 cnpollc(1);
402
403 /*
404 * If RB_NOSYNC was not specified sync the discs.
405 * Note: Unless cold is set to 1 here, syslogd will die during the
406 * unmount. It looks like syslogd is getting woken up only to find
407 * that it cannot page part of the binary in as the filesystem has
408 * been unmounted.
409 */
410 if (!(howto & RB_NOSYNC))
411 bootsync();
412
413 /* Say NO to interrupts */
414 splhigh();
415
416 /* Do a dump if requested. */
417 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
418 dumpsys();
419
420 /* Run any shutdown hooks */
421 doshutdownhooks();
422
423 pmf_system_shutdown(boothowto);
424
425 /* Make sure IRQ's are disabled */
426 IRQdisable;
427
428 if (howto & RB_HALT) {
429 printf("The operating system has halted.\n");
430 printf("Please press any key to reboot.\n\n");
431 cngetc();
432 }
433
434 printf("rebooting...\n");
435 if (ref_sc != NULL)
436 delay(2000); /* cnflush(); */
437 gemini_global_reset();
438 /*NOTREACHED*/
439 }
440
441 /*
442 * Static device mappings. These peripheral registers are mapped at
443 * fixed virtual addresses very early in initarm() so that we can use
444 * them while booting the kernel, and stay at the same address
445 * throughout whole kernel's life time.
446 *
447 * We use this table twice; once with bootstrap page table, and once
448 * with kernel's page table which we build up in initarm().
449 *
450 * Since we map these registers into the bootstrap page table using
451 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
452 * registers segment-aligned and segment-rounded in order to avoid
453 * using the 2nd page tables.
454 */
455
456 #define _A(a) ((a) & ~L1_S_OFFSET)
457 #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
458
459 static const struct pmap_devmap devmap[] = {
460 /* Global regs */
461 {
462 .pd_va = _A(GEMINI_GLOBAL_VBASE),
463 .pd_pa = _A(GEMINI_GLOBAL_BASE),
464 .pd_size = _S(L1_S_SIZE),
465 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
466 .pd_cache = PTE_NOCACHE
467 },
468
469 /* Watchdog */
470 {
471 .pd_va = _A(GEMINI_WATCHDOG_VBASE),
472 .pd_pa = _A(GEMINI_WATCHDOG_BASE),
473 .pd_size = _S(L1_S_SIZE),
474 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
475 .pd_cache = PTE_NOCACHE
476 },
477
478 /* UART */
479 {
480 .pd_va = _A(GEMINI_UART_VBASE),
481 .pd_pa = _A(GEMINI_UART_BASE),
482 .pd_size = _S(L1_S_SIZE),
483 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
484 .pd_cache = PTE_NOCACHE
485 },
486
487 /* LPCHC */
488 {
489 .pd_va = _A(GEMINI_LPCHC_VBASE),
490 .pd_pa = _A(GEMINI_LPCHC_BASE),
491 .pd_size = _S(L1_S_SIZE),
492 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
493 .pd_cache = PTE_NOCACHE
494 },
495
496 /* LPCIO */
497 {
498 .pd_va = _A(GEMINI_LPCIO_VBASE),
499 .pd_pa = _A(GEMINI_LPCIO_BASE),
500 .pd_size = _S(L1_S_SIZE),
501 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
502 .pd_cache = PTE_NOCACHE
503 },
504
505 /* Timers */
506 {
507 .pd_va = _A(GEMINI_TIMER_VBASE),
508 .pd_pa = _A(GEMINI_TIMER_BASE),
509 .pd_size = _S(L1_S_SIZE),
510 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
511 .pd_cache = PTE_NOCACHE
512 },
513
514 /* DRAM Controller */
515 {
516 .pd_va = _A(GEMINI_DRAMC_VBASE),
517 .pd_pa = _A(GEMINI_DRAMC_BASE),
518 .pd_size = _S(L1_S_SIZE),
519 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
520 .pd_cache = PTE_NOCACHE
521 },
522
523 #if defined(MEMORY_DISK_DYNAMIC)
524 /* Ramdisk */
525 {
526 .pd_va = _A(GEMINI_RAMDISK_VBASE),
527 .pd_pa = _A(GEMINI_RAMDISK_PBASE),
528 .pd_size = _S(GEMINI_RAMDISK_SIZE),
529 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
530 .pd_cache = PTE_NOCACHE
531 },
532 #endif
533
534 {0} /* list terminator */
535 };
536
537 #undef _A
538 #undef _S
539
540 #ifdef DDB
541 static void gemini_db_trap(int where)
542 {
543 #if NGEMINIWDT > 0
544 static int oldwatchdogstate;
545
546 if (where) {
547 oldwatchdogstate = geminiwdt_enable(0);
548 } else {
549 geminiwdt_enable(oldwatchdogstate);
550 }
551 #endif
552 }
553 #endif
554
555 #if defined(VERBOSE_INIT_ARM) || 1
556 void gemini_putchar(char c);
557 void
558 gemini_putchar(char c)
559 {
560 unsigned char *com0addr = (unsigned char *)GEMINI_UART_VBASE;
561 int timo = 150000;
562
563 while ((com0addr[COM_REG_LSR * 4] & LSR_TXRDY) == 0)
564 if (--timo == 0)
565 break;
566
567 com0addr[COM_REG_TXDATA] = c;
568
569 while ((com0addr[COM_REG_LSR * 4] & LSR_TSRE) == 0)
570 if (--timo == 0)
571 break;
572 }
573
574 void gemini_puthex(unsigned int);
575 void
576 gemini_puthex(unsigned int val)
577 {
578 char hexc[] = "0123456789abcdef";
579
580 gemini_putchar('0');
581 gemini_putchar('x');
582 gemini_putchar(hexc[(val >> 28) & 0xf]);
583 gemini_putchar(hexc[(val >> 24) & 0xf]);
584 gemini_putchar(hexc[(val >> 20) & 0xf]);
585 gemini_putchar(hexc[(val >> 16) & 0xf]);
586 gemini_putchar(hexc[(val >> 12) & 0xf]);
587 gemini_putchar(hexc[(val >> 8) & 0xf]);
588 gemini_putchar(hexc[(val >> 4) & 0xf]);
589 gemini_putchar(hexc[(val >> 0) & 0xf]);
590 }
591 #endif /* VERBOSE_INIT_ARM */
592
593 /*
594 * u_int initarm(...)
595 *
596 * Initial entry point on startup. This gets called before main() is
597 * entered.
598 * It should be responsible for setting up everything that must be
599 * in place when main is called.
600 * This includes
601 * Taking a copy of the boot configuration structure.
602 * Initialising the physical console so characters can be printed.
603 * Setting up page tables for the kernel
604 * Relocating the kernel to the bottom of physical memory
605 */
606 u_int
607 initarm(void *arg)
608 {
609 GEMINI_PUTCHAR('0');
610
611 /*
612 * start cpu#1 now
613 */
614 gemini_cpu1_start();
615
616 /*
617 * When we enter here, we are using a temporary first level
618 * translation table with section entries in it to cover the OBIO
619 * peripherals and SDRAM. The temporary first level translation table
620 * is at the end of SDRAM.
621 */
622
623 /* Heads up ... Setup the CPU / MMU / TLB functions. */
624 GEMINI_PUTCHAR('1');
625 if (set_cpufuncs())
626 panic("cpu not recognized!");
627
628 GEMINI_PUTCHAR('2');
629 init_clocks();
630 GEMINI_PUTCHAR('3');
631
632 /* The console is going to try to map things. Give pmap a devmap. */
633 pmap_devmap_register(devmap);
634 GEMINI_PUTCHAR('4');
635 consinit();
636 GEMINI_PUTCHAR('5');
637 #ifdef KGDB
638 kgdb_port_init();
639 #endif
640
641 /* Talk to the user */
642 printf("\nNetBSD/evbarm (gemini) booting ...\n");
643
644 #ifdef BOOT_ARGS
645 char mi_bootargs[] = BOOT_ARGS;
646 parse_mi_bootargs(mi_bootargs);
647 #endif
648
649 #ifdef VERBOSE_INIT_ARM
650 printf("initarm: Configuring system ...\n");
651 #endif
652
653 /*
654 * Set up the variables that define the availability of physical
655 * memory.
656 */
657 gemini_memchk();
658 physical_start = GEMINI_DRAM_BASE;
659 #define MEMSIZE_BYTES (MEMSIZE * 1024 * 1024)
660 physical_end = (physical_start & ~(0x400000-1)) + MEMSIZE_BYTES;
661 physmem = (physical_end - physical_start) / PAGE_SIZE;
662
663 /* Fake bootconfig structure for the benefit of pmap.c. */
664 bootconfig.dramblocks = 1;
665 bootconfig.dram[0].address = physical_start;
666 bootconfig.dram[0].pages = physmem;
667
668 /*
669 * Our kernel is at the beginning of memory, so set our free space to
670 * all the memory after the kernel.
671 */
672 physical_freestart = KERN_VTOPHYS(round_page((vaddr_t) _end));
673 physical_freeend = physical_end;
674 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
675
676 /*
677 * This is going to do all the hard work of setting up the first and
678 * and second level page tables. Pages of memory will be allocated
679 * and mapped for other structures that are required for system
680 * operation. When it returns, physical_freestart and free_pages will
681 * have been updated to reflect the allocations that were made. In
682 * addition, kernel_l1pt, kernel_pt_table[], systempage, irqstack,
683 * abtstack, undstack, kernelstack, msgbufphys will be set to point to
684 * the memory that was allocated for them.
685 */
686 setup_real_page_tables();
687
688 /*
689 * Moved from cpu_startup() as data_abort_handler() references
690 * this during uvm init.
691 */
692 proc0paddr = (struct user *)kernelstack.pv_va;
693 lwp0.l_addr = proc0paddr;
694
695 #ifdef VERBOSE_INIT_ARM
696 printf("bootstrap done.\n");
697 #endif
698
699 arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
700
701 /*
702 * Pages were allocated during the secondary bootstrap for the
703 * stacks for different CPU modes.
704 * We must now set the r13 registers in the different CPU modes to
705 * point to these stacks.
706 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
707 * of the stack memory.
708 */
709 #ifdef VERBOSE_INIT_ARM
710 printf("init subsystems: stacks ");
711 #endif
712
713 set_stackptr(PSR_FIQ32_MODE, fiqstack.pv_va + FIQ_STACK_SIZE * PAGE_SIZE);
714 set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
715 set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
716 set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
717
718 /*
719 * Well we should set a data abort handler.
720 * Once things get going this will change as we will need a proper
721 * handler.
722 * Until then we will use a handler that just panics but tells us
723 * why.
724 * Initialisation of the vectors will just panic on a data abort.
725 * This just fills in a slightly better one.
726 */
727 #ifdef VERBOSE_INIT_ARM
728 printf("vectors ");
729 #endif
730 data_abort_handler_address = (u_int)data_abort_handler;
731 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
732 undefined_handler_address = (u_int)undefinedinstruction_bounce;
733
734 /* Initialise the undefined instruction handlers */
735 #ifdef VERBOSE_INIT_ARM
736 printf("undefined ");
737 #endif
738 undefined_init();
739
740 /* Load memory into UVM. */
741 #ifdef VERBOSE_INIT_ARM
742 printf("page ");
743 #endif
744 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
745
746 #if (GEMINI_RAM_RESV_PBASE != 0)
747 uvm_page_physload(atop(physical_freestart), atop(GEMINI_RAM_RESV_PBASE),
748 atop(physical_freestart), atop(GEMINI_RAM_RESV_PBASE),
749 VM_FREELIST_DEFAULT);
750 uvm_page_physload(atop(GEMINI_RAM_RESV_PEND), atop(physical_freeend),
751 atop(GEMINI_RAM_RESV_PEND), atop(physical_freeend),
752 VM_FREELIST_DEFAULT);
753 #else
754 uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
755 atop(physical_freestart), atop(physical_freeend),
756 VM_FREELIST_DEFAULT);
757 #endif
758 uvm_page_physload(atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys),
759 atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys),
760 VM_FREELIST_DEFAULT);
761
762 /* Boot strap pmap telling it where the kernel page table is */
763 #ifdef VERBOSE_INIT_ARM
764 printf("pmap ");
765 #endif
766 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
767
768 #ifdef VERBOSE_INIT_ARM
769 printf("done.\n");
770 #endif
771
772 #ifdef IPKDB
773 /* Initialise ipkdb */
774 ipkdb_init();
775 if (boothowto & RB_KDB)
776 ipkdb_connect(0);
777 #endif
778
779 #if defined(MEMORY_DISK_DYNAMIC)
780 md_root_setconf((char *)GEMINI_RAMDISK_VBASE, GEMINI_RAMDISK_SIZE);
781 #endif
782
783 #ifdef KGDB
784 if (boothowto & RB_KDB) {
785 kgdb_debug_init = 1;
786 kgdb_connect(1);
787 }
788 #endif
789
790 #ifdef DDB
791 db_trap_callback = gemini_db_trap;
792 db_machine_init();
793
794 /* Firmware doesn't load symbols. */
795 ddb_init(0, NULL, NULL);
796
797 if (boothowto & RB_KDB)
798 Debugger();
799 #endif
800 printf("initarm done.\n");
801
802 /* We return the new stack pointer address */
803 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
804 }
805
806 static void
807 init_clocks(void)
808 {
809 }
810
811 #ifndef CONSADDR
812 #error Specify the address of the console UART with the CONSADDR option.
813 #endif
814 #ifndef CONSPEED
815 #define CONSPEED 19200
816 #endif
817 #ifndef CONMODE
818 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
819 #endif
820
821 static const bus_addr_t consaddr = CONSADDR;
822 static const int conspeed = CONSPEED;
823 static const int conmode = CONMODE;
824
825 #if CONSADDR==0x42000000
826 /*
827 * console initialization for obio com console
828 */
829 void
830 consinit(void)
831 {
832 static int consinit_called = 0;
833
834 if (consinit_called != 0)
835 return;
836 consinit_called = 1;
837
838 if (comcnattach(&gemini_a4x_bs_tag, consaddr, conspeed,
839 GEMINI_COM_FREQ, COM_TYPE_16550_NOERS, conmode))
840 panic("Serial console can not be initialized.");
841 }
842
843 #elif CONSADDR==0x478003f8
844 # include <arm/gemini/gemini_lpcvar.h>
845 /*
846 * console initialization for lpc com console
847 */
848 void
849 consinit(void)
850 {
851 static int consinit_called = 0;
852 bus_space_tag_t iot = &gemini_bs_tag;
853 bus_space_handle_t lpchc_ioh;
854 bus_space_handle_t lpcio_ioh;
855 bus_size_t sz = L1_S_SIZE;
856 gemini_lpc_softc_t lpcsoftc;
857 gemini_lpc_bus_ops_t *ops;
858 void *lpctag = &lpcsoftc;
859 uint32_t r;
860 extern gemini_lpc_bus_ops_t gemini_lpc_bus_ops;
861
862 ops = &gemini_lpc_bus_ops;
863
864 if (consinit_called != 0)
865 return;
866 consinit_called = 1;
867
868 if (bus_space_map(iot, GEMINI_LPCHC_BASE, sz, 0, &lpchc_ioh))
869 panic("consinit: LPCHC can not be mapped.");
870
871 if (bus_space_map(iot, GEMINI_LPCIO_BASE, sz, 0, &lpcio_ioh))
872 panic("consinit: LPCIO can not be mapped.");
873
874 /* enable the LPC bus */
875 r = bus_space_read_4(iot, lpchc_ioh, GEMINI_LPCHC_CSR);
876 r |= LPCHC_CSR_BEN;
877 bus_space_write_4(iot, lpchc_ioh, GEMINI_LPCHC_CSR, r);
878
879 memset(&lpcsoftc, 0, sizeof(lpcsoftc));
880 lpcsoftc.sc_iot = iot;
881 lpcsoftc.sc_ioh = lpcio_ioh;
882
883 /* activate Serial Port 1 */
884 (*ops->lpc_pnp_enter)(lpctag);
885 (*ops->lpc_pnp_write)(lpctag, 1, 0x30, 0x01);
886 (*ops->lpc_pnp_exit)(lpctag);
887
888 if (comcnattach(iot, consaddr, conspeed,
889 IT8712F_COM_FREQ, COM_TYPE_NORMAL, conmode)) {
890 panic("Serial console can not be initialized.");
891 }
892
893 bus_space_unmap(iot, lpcio_ioh, sz);
894 bus_space_unmap(iot, lpchc_ioh, sz);
895 }
896 #else
897 # error unknown console
898 #endif
899
900 #ifdef KGDB
901 #ifndef KGDB_DEVADDR
902 #error Specify the address of the kgdb UART with the KGDB_DEVADDR option.
903 #endif
904 #ifndef KGDB_DEVRATE
905 #define KGDB_DEVRATE 19200
906 #endif
907
908 #ifndef KGDB_DEVMODE
909 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
910 #endif
911 static const vaddr_t comkgdbaddr = KGDB_DEVADDR;
912 static const int comkgdbspeed = KGDB_DEVRATE;
913 static const int comkgdbmode = KGDB_DEVMODE;
914
915 void
916 static kgdb_port_init(void)
917 {
918 static int kgdbsinit_called = 0;
919
920 if (kgdbsinit_called != 0)
921 return;
922
923 kgdbsinit_called = 1;
924
925 bus_space_handle_t bh;
926 if (bus_space_map(&gemini_a4x_bs_tag, comkgdbaddr,
927 GEMINI_UART_SIZE, 0, &bh))
928 panic("kgdb port can not be mapped.");
929
930 if (com_kgdb_attach(&gemini_a4x_bs_tag, comkgdbaddr, comkgdbspeed,
931 GEMINI_UART_SIZE, COM_TYPE_16550_NOERS, comkgdbmode))
932 panic("KGDB uart can not be initialized.");
933
934 bus_space_unmap(&gemini_a4x_bs_tag, bh, GEMINI_UART_SIZE);
935 }
936 #endif
937
938 static void
939 setup_real_page_tables(void)
940 {
941 /*
942 * We need to allocate some fixed page tables to get the kernel going.
943 *
944 * We are going to allocate our bootstrap pages from the beginning of
945 * the free space that we just calculated. We allocate one page
946 * directory and a number of page tables and store the physical
947 * addresses in the kernel_pt_table array.
948 *
949 * The kernel page directory must be on a 16K boundary. The page
950 * tables must be on 4K boundaries. What we do is allocate the
951 * page directory on the first 16K boundary that we encounter, and
952 * the page tables on 4K boundaries otherwise. Since we allocate
953 * at least 3 L2 page tables, we are guaranteed to encounter at
954 * least one 16K aligned region.
955 */
956
957 #ifdef VERBOSE_INIT_ARM
958 printf("Allocating page tables\n");
959 #endif
960
961 /*
962 * Define a macro to simplify memory allocation. As we allocate the
963 * memory, make sure that we don't walk over our temporary first level
964 * translation table.
965 */
966 #define valloc_pages(var, np) \
967 (var).pv_pa = physical_freestart; \
968 physical_freestart += ((np) * PAGE_SIZE); \
969 if (physical_freestart > (physical_freeend - L1_TABLE_SIZE)) \
970 panic("initarm: out of memory"); \
971 free_pages -= (np); \
972 (var).pv_va = KERN_PHYSTOV((var).pv_pa); \
973 memset((char *)(var).pv_va, 0, ((np) * PAGE_SIZE));
974
975 int loop, pt_index;
976
977 pt_index = 0;
978 kernel_l1pt.pv_pa = 0;
979 kernel_l1pt.pv_va = 0;
980 #ifdef VERBOSE_INIT_ARM
981 printf("%s: physical_freestart %#lx\n", __func__, physical_freestart);
982 #endif
983 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
984 /* Are we 16KB aligned for an L1 ? */
985 if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0
986 && kernel_l1pt.pv_pa == 0) {
987 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
988 } else {
989 valloc_pages(kernel_pt_table[pt_index],
990 L2_TABLE_SIZE / PAGE_SIZE);
991 ++pt_index;
992 }
993 }
994
995 #if (NGEMINIIPM > 0)
996 valloc_pages(ipmq_pt, L2_TABLE_SIZE / PAGE_SIZE);
997 #endif
998
999 #ifdef VERBOSE_INIT_ARM
1000 pt_index=0;
1001 printf("%s: kernel_l1pt: %#lx:%#lx\n",
1002 __func__, kernel_l1pt.pv_va, kernel_l1pt.pv_pa);
1003 printf("%s: kernel_pt_table:\n", __func__);
1004 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
1005 printf("\t%#lx:%#lx\n", kernel_pt_table[pt_index].pv_va,
1006 kernel_pt_table[pt_index].pv_pa);
1007 ++pt_index;
1008 }
1009 #if (NGEMINIIPM > 0)
1010 printf("%s: ipmq_pt:\n", __func__);
1011 printf("\t%#lx:%#lx\n", ipmq_pt.pv_va, ipmq_pt.pv_pa);
1012 #endif
1013 #endif
1014
1015 /* This should never be able to happen but better confirm that. */
1016 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
1017 panic("initarm: Failed to align the kernel page directory");
1018
1019 /*
1020 * Allocate a page for the system page mapped to V0x00000000
1021 * This page will just contain the system vectors and can be
1022 * shared by all processes.
1023 */
1024 valloc_pages(systempage, 1);
1025 systempage.pv_va = ARM_VECTORS_HIGH;
1026
1027 /* Allocate stacks for all modes */
1028 valloc_pages(fiqstack, FIQ_STACK_SIZE);
1029 valloc_pages(irqstack, IRQ_STACK_SIZE);
1030 valloc_pages(abtstack, ABT_STACK_SIZE);
1031 valloc_pages(undstack, UND_STACK_SIZE);
1032 valloc_pages(kernelstack, UPAGES);
1033
1034 /* Allocate the message buffer. */
1035 pv_addr_t msgbuf;
1036 int msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
1037 valloc_pages(msgbuf, msgbuf_pgs);
1038 msgbufphys = msgbuf.pv_pa;
1039
1040 /*
1041 * Ok we have allocated physical pages for the primary kernel
1042 * page tables
1043 */
1044
1045 #ifdef VERBOSE_INIT_ARM
1046 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
1047 #endif
1048
1049 /*
1050 * Now we start construction of the L1 page table
1051 * We start by mapping the L2 page tables into the L1.
1052 * This means that we can replace L1 mappings later on if necessary
1053 */
1054 vaddr_t l1_va = kernel_l1pt.pv_va;
1055 paddr_t l1_pa = kernel_l1pt.pv_pa;
1056
1057 /* Map the L2 pages tables in the L1 page table */
1058 pmap_link_l2pt(l1_va, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
1059 &kernel_pt_table[KERNEL_PT_SYS]);
1060 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
1061 pmap_link_l2pt(l1_va, KERNEL_BASE + loop * 0x00400000,
1062 &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
1063 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
1064 pmap_link_l2pt(l1_va, KERNEL_VM_BASE + loop * 0x00400000,
1065 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
1066
1067 /* update the top of the kernel VM */
1068 pmap_curmaxkvaddr =
1069 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
1070
1071 #if (NGEMINIIPM > 0)
1072 printf("%s:%d: pmap_link_l2pt ipmq_pt\n", __FUNCTION__, __LINE__);
1073 pmap_link_l2pt(l1_va, GEMINI_IPMQ_VBASE, &ipmq_pt);
1074 #endif
1075
1076 #ifdef VERBOSE_INIT_ARM
1077 printf("Mapping kernel\n");
1078 #endif
1079
1080 /* Now we fill in the L2 pagetable for the kernel static code/data */
1081 #define round_L_page(x) (((x) + L2_L_OFFSET) & L2_L_FRAME)
1082 size_t textsize = round_L_page(etext - KERNEL_BASE_virt);
1083 size_t totalsize = round_L_page(_end - KERNEL_BASE_virt);
1084 /* offset of kernel in RAM */
1085 u_int offset = (u_int)KERNEL_BASE_virt - KERNEL_BASE;
1086
1087 #ifdef DDB
1088 /* Map text section read-write. */
1089 offset += pmap_map_chunk(l1_va,
1090 (vaddr_t)KERNEL_BASE + offset,
1091 physical_start + offset, textsize,
1092 VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE,
1093 PTE_CACHE);
1094 #else
1095 /* Map text section read-only. */
1096 offset += pmap_map_chunk(l1_va,
1097 (vaddr_t)KERNEL_BASE + offset,
1098 physical_start + offset, textsize,
1099 VM_PROT_READ|VM_PROT_EXECUTE, PTE_CACHE);
1100 #endif
1101 /* Map data and bss sections read-write. */
1102 offset += pmap_map_chunk(l1_va,
1103 (vaddr_t)KERNEL_BASE + offset,
1104 physical_start + offset, totalsize - textsize,
1105 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1106
1107 #ifdef VERBOSE_INIT_ARM
1108 printf("Constructing L2 page tables\n");
1109 #endif
1110
1111 /* Map the stack pages */
1112 pmap_map_chunk(l1_va, fiqstack.pv_va, fiqstack.pv_pa,
1113 FIQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1114 pmap_map_chunk(l1_va, irqstack.pv_va, irqstack.pv_pa,
1115 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1116 pmap_map_chunk(l1_va, abtstack.pv_va, abtstack.pv_pa,
1117 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1118 pmap_map_chunk(l1_va, undstack.pv_va, undstack.pv_pa,
1119 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1120 pmap_map_chunk(l1_va, kernelstack.pv_va, kernelstack.pv_pa,
1121 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
1122
1123 pmap_map_chunk(l1_va, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
1124 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
1125
1126 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
1127 pmap_map_chunk(l1_va, kernel_pt_table[loop].pv_va,
1128 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
1129 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
1130 }
1131
1132 /* Map the vector page. */
1133 pmap_map_entry(l1_va, ARM_VECTORS_HIGH, systempage.pv_pa,
1134 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1135
1136 #if (NGEMINIIPM > 0)
1137 /* Map the IPM queue l2pt */
1138 pmap_map_chunk(l1_va, ipmq_pt.pv_va, ipmq_pt.pv_pa,
1139 L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
1140
1141 /* Map the IPM queue pages */
1142 pmap_map_chunk(l1_va, GEMINI_IPMQ_VBASE, GEMINI_IPMQ_PBASE,
1143 GEMINI_IPMQ_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1144
1145 #ifdef GEMINI_SLAVE
1146 /*
1147 * Map all memory, incluuding that owned by other core
1148 * take into account the RAM remap, so view in this region
1149 * is consistent with MASTER
1150 */
1151 pmap_map_chunk(l1_va,
1152 GEMINI_ALLMEM_VBASE,
1153 GEMINI_ALLMEM_PBASE + ((GEMINI_ALLMEM_SIZE - MEMSIZE) * 1024 * 1024),
1154 (GEMINI_ALLMEM_SIZE - MEMSIZE) * 1024 * 1024,
1155 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1156 pmap_map_chunk(l1_va,
1157 GEMINI_ALLMEM_VBASE + GEMINI_BUSBASE * 1024 * 1024,
1158 GEMINI_ALLMEM_PBASE,
1159 (MEMSIZE * 1024 * 1024),
1160 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1161 #else
1162 /* Map all memory, incluuding that owned by other core */
1163 pmap_map_chunk(l1_va, GEMINI_ALLMEM_VBASE, GEMINI_ALLMEM_PBASE,
1164 GEMINI_ALLMEM_SIZE * 1024 * 1024, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1165 #endif /* GEMINI_SLAVE */
1166 #endif /* NGEMINIIPM */
1167
1168 /*
1169 * Map integrated peripherals at same address in first level page
1170 * table so that we can continue to use console.
1171 */
1172 pmap_devmap_bootstrap(l1_va, devmap);
1173
1174
1175 #ifdef VERBOSE_INIT_ARM
1176 /* Tell the user about where all the bits and pieces live. */
1177 printf("%22s Physical Virtual Num\n", " ");
1178 printf("%22s Starting Ending Starting Ending Pages\n", " ");
1179
1180 static const char mem_fmt[] =
1181 "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %d\n";
1182 static const char mem_fmt_nov[] =
1183 "%20s: 0x%08lx 0x%08lx %d\n";
1184
1185 printf(mem_fmt, "SDRAM", physical_start, physical_end-1,
1186 KERN_PHYSTOV(physical_start), KERN_PHYSTOV(physical_end-1),
1187 physmem);
1188 printf(mem_fmt, "text section",
1189 KERN_VTOPHYS(KERNEL_BASE_virt), KERN_VTOPHYS(etext-1),
1190 (vaddr_t)KERNEL_BASE_virt, (vaddr_t)etext-1,
1191 (int)(textsize / PAGE_SIZE));
1192 printf(mem_fmt, "data section",
1193 KERN_VTOPHYS(__data_start), KERN_VTOPHYS(_edata),
1194 (vaddr_t)__data_start, (vaddr_t)_edata,
1195 (int)((round_page((vaddr_t)_edata)
1196 - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
1197 printf(mem_fmt, "bss section",
1198 KERN_VTOPHYS(__bss_start), KERN_VTOPHYS(__bss_end__),
1199 (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
1200 (int)((round_page((vaddr_t)__bss_end__)
1201 - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
1202 printf(mem_fmt, "L1 page directory",
1203 kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
1204 kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
1205 L1_TABLE_SIZE / PAGE_SIZE);
1206 printf(mem_fmt, "Exception Vectors",
1207 systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
1208 (vaddr_t)ARM_VECTORS_HIGH, (vaddr_t)ARM_VECTORS_HIGH + PAGE_SIZE - 1,
1209 1);
1210 printf(mem_fmt, "FIQ stack",
1211 fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
1212 fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
1213 FIQ_STACK_SIZE);
1214 printf(mem_fmt, "IRQ stack",
1215 irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
1216 irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
1217 IRQ_STACK_SIZE);
1218 printf(mem_fmt, "ABT stack",
1219 abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
1220 abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
1221 ABT_STACK_SIZE);
1222 printf(mem_fmt, "UND stack",
1223 undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
1224 undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
1225 UND_STACK_SIZE);
1226 printf(mem_fmt, "SVC stack",
1227 kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
1228 kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
1229 UPAGES);
1230 printf(mem_fmt_nov, "Message Buffer",
1231 msgbufphys, msgbufphys + msgbuf_pgs * PAGE_SIZE - 1, msgbuf_pgs);
1232 printf(mem_fmt, "Free Memory", physical_freestart, physical_freeend-1,
1233 KERN_PHYSTOV(physical_freestart), KERN_PHYSTOV(physical_freeend-1),
1234 free_pages);
1235 #endif
1236
1237 /*
1238 * Now we have the real page tables in place so we can switch to them.
1239 * Once this is done we will be running with the REAL kernel page
1240 * tables.
1241 */
1242
1243 /* Switch tables */
1244 #ifdef VERBOSE_INIT_ARM
1245 printf("switching to new L1 page table @%#lx...", l1_pa);
1246 #endif
1247
1248 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
1249 setttb(l1_pa);
1250 cpu_tlb_flushID();
1251 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
1252
1253 #ifdef VERBOSE_INIT_ARM
1254 printf("OK.\n");
1255 #endif
1256 }
1257