Home | History | Annotate | Line # | Download | only in gemini
gemini_machdep.c revision 1.15.4.1
      1 /*	$NetBSD: gemini_machdep.c,v 1.15.4.1 2011/03/05 20:50:05 rmind Exp $	*/
      2 
      3 /* adapted from:
      4  *	NetBSD: sdp24xx_machdep.c,v 1.4 2008/08/27 11:03:10 matt Exp
      5  */
      6 
      7 /*
      8  * Machine dependent functions for kernel setup for TI OSK5912 board.
      9  * Based on lubbock_machdep.c which in turn was based on iq80310_machhdep.c
     10  *
     11  * Copyright (c) 2002, 2003, 2005  Genetec Corporation.  All rights reserved.
     12  * Written by Hiroyuki Bessho for Genetec Corporation.
     13  *
     14  * Redistribution and use in source and binary forms, with or without
     15  * modification, are permitted provided that the following conditions
     16  * are met:
     17  * 1. Redistributions of source code must retain the above copyright
     18  *    notice, this list of conditions and the following disclaimer.
     19  * 2. Redistributions in binary form must reproduce the above copyright
     20  *    notice, this list of conditions and the following disclaimer in the
     21  *    documentation and/or other materials provided with the distribution.
     22  * 3. The name of Genetec Corporation may not be used to endorse or
     23  *    promote products derived from this software without specific prior
     24  *    written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
     27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  *
     38  * Copyright (c) 2001 Wasabi Systems, Inc.
     39  * All rights reserved.
     40  *
     41  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed for the NetBSD Project by
     54  *	Wasabi Systems, Inc.
     55  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     56  *    or promote products derived from this software without specific prior
     57  *    written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     61  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     62  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     69  * POSSIBILITY OF SUCH DAMAGE.
     70  *
     71  * Copyright (c) 1997,1998 Mark Brinicombe.
     72  * Copyright (c) 1997,1998 Causality Limited.
     73  * All rights reserved.
     74  *
     75  * Redistribution and use in source and binary forms, with or without
     76  * modification, are permitted provided that the following conditions
     77  * are met:
     78  * 1. Redistributions of source code must retain the above copyright
     79  *    notice, this list of conditions and the following disclaimer.
     80  * 2. Redistributions in binary form must reproduce the above copyright
     81  *    notice, this list of conditions and the following disclaimer in the
     82  *    documentation and/or other materials provided with the distribution.
     83  * 3. All advertising materials mentioning features or use of this software
     84  *    must display the following acknowledgement:
     85  *	This product includes software developed by Mark Brinicombe
     86  *	for the NetBSD Project.
     87  * 4. The name of the company nor the name of the author may be used to
     88  *    endorse or promote products derived from this software without specific
     89  *    prior written permission.
     90  *
     91  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     92  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     93  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     94  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     95  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     96  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     97  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     98  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     99  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    100  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    101  * SUCH DAMAGE.
    102  *
    103  * Copyright (c) 2007 Microsoft
    104  * All rights reserved.
    105  *
    106  * Redistribution and use in source and binary forms, with or without
    107  * modification, are permitted provided that the following conditions
    108  * are met:
    109  * 1. Redistributions of source code must retain the above copyright
    110  *    notice, this list of conditions and the following disclaimer.
    111  * 2. Redistributions in binary form must reproduce the above copyright
    112  *    notice, this list of conditions and the following disclaimer in the
    113  *    documentation and/or other materials provided with the distribution.
    114  * 3. All advertising materials mentioning features or use of this software
    115  *    must display the following acknowledgement:
    116  *	This product includes software developed by Microsoft
    117  *
    118  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
    119  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
    120  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    121  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
    122  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
    123  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    124  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    125  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    126  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    127  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    128  * SUCH DAMAGE.
    129  */
    130 
    131 #include <sys/cdefs.h>
    132 __KERNEL_RCSID(0, "$NetBSD: gemini_machdep.c,v 1.15.4.1 2011/03/05 20:50:05 rmind Exp $");
    133 
    134 #include "opt_machdep.h"
    135 #include "opt_ddb.h"
    136 #include "opt_kgdb.h"
    137 #include "opt_ipkdb.h"
    138 #include "opt_md.h"
    139 #include "opt_com.h"
    140 #include "opt_gemini.h"
    141 #include "geminiwdt.h"
    142 #include "geminiipm.h"
    143 
    144 #include <sys/param.h>
    145 #include <sys/device.h>
    146 #include <sys/systm.h>
    147 #include <sys/kernel.h>
    148 #include <sys/exec.h>
    149 #include <sys/proc.h>
    150 #include <sys/msgbuf.h>
    151 #include <sys/reboot.h>
    152 #include <sys/termios.h>
    153 #include <sys/ksyms.h>
    154 
    155 #include <uvm/uvm_extern.h>
    156 
    157 #include <sys/conf.h>
    158 #include <dev/cons.h>
    159 #include <dev/md.h>
    160 
    161 #include <machine/db_machdep.h>
    162 #include <ddb/db_sym.h>
    163 #include <ddb/db_extern.h>
    164 #ifdef KGDB
    165 #include <sys/kgdb.h>
    166 #endif
    167 
    168 #include <machine/bootconfig.h>
    169 #include <machine/bus.h>
    170 #include <machine/cpu.h>
    171 #include <machine/frame.h>
    172 #include <arm/armreg.h>
    173 #include <arm/undefined.h>
    174 
    175 #include <arm/arm32/machdep.h>
    176 
    177 #include <arm/gemini/gemini_reg.h>
    178 #include <arm/gemini/gemini_var.h>
    179 #include <arm/gemini/gemini_wdtvar.h>
    180 #include <arm/gemini/gemini_com.h>
    181 #include <arm/gemini/lpc_com.h>
    182 
    183 #include <evbarm/gemini/gemini.h>
    184 
    185 #if defined(VERBOSE_INIT_ARM)
    186 # define GEMINI_PUTCHAR(c)	gemini_putchar(c)
    187 # define GEMINI_PUTHEX(n)	gemini_puthex(n)
    188 #else	/* VERBOSE_INIT_ARM */
    189 # define GEMINI_PUTCHAR(c)
    190 # define GEMINI_PUTHEX(n)
    191 #endif	/* VERBOSE_INIT_ARM */
    192 
    193 /*
    194  * Address to call from cpu_reset() to reset the machine.
    195  * This is machine architecture dependant as it varies depending
    196  * on where the ROM appears when you turn the MMU off.
    197  */
    198 
    199 u_int cpu_reset_address = 0;
    200 
    201 /* Define various stack sizes in pages */
    202 #define IRQ_STACK_SIZE	1
    203 #define FIQ_STACK_SIZE	1
    204 #define ABT_STACK_SIZE	1
    205 #ifdef IPKDB
    206 #define UND_STACK_SIZE	2
    207 #else
    208 #define UND_STACK_SIZE	1
    209 #endif
    210 
    211 BootConfig bootconfig;		/* Boot config storage */
    212 char *boot_args = NULL;
    213 char *boot_file = NULL;
    214 
    215 /* Physical address of the beginning of SDRAM. */
    216 paddr_t physical_start;
    217 /* Physical address of the first byte after the end of SDRAM. */
    218 paddr_t physical_end;
    219 
    220 /* Same things, but for the free (unused by the kernel) memory. */
    221 static paddr_t physical_freestart, physical_freeend;
    222 static u_int free_pages;
    223 
    224 /* Physical and virtual addresses for some global pages */
    225 pv_addr_t fiqstack;
    226 pv_addr_t irqstack;
    227 pv_addr_t undstack;
    228 pv_addr_t abtstack;
    229 pv_addr_t kernelstack;	/* stack for SVC mode */
    230 
    231 /* Physical address of the message buffer. */
    232 paddr_t msgbufphys;
    233 
    234 extern u_int data_abort_handler_address;
    235 extern u_int prefetch_abort_handler_address;
    236 extern u_int undefined_handler_address;
    237 extern char KERNEL_BASE_phys[];
    238 extern char KERNEL_BASE_virt[];
    239 extern char etext[], __data_start[], _edata[], __bss_start[], __bss_end__[];
    240 extern char _end[];
    241 
    242 #define KERNEL_PT_SYS		0	/* Page table for mapping proc0 zero page */
    243 #define KERNEL_PT_KERNEL	1	/* Page table for mapping kernel */
    244 #define	KERNEL_PT_KERNEL_NUM	4
    245 #define KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
    246 				        /* Page tables for mapping kernel VM */
    247 #define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
    248 #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
    249 
    250 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
    251 
    252 
    253 #if (NGEMINIIPM > 0)
    254 pv_addr_t ipmq_pt;		/* L2 Page table for mapping IPM queues */
    255 #if defined(DEBUG) || 1
    256 unsigned long gemini_ipmq_pbase = GEMINI_IPMQ_PBASE;
    257 unsigned long gemini_ipmq_vbase = GEMINI_IPMQ_VBASE;
    258 #endif	/* DEBUG */
    259 #endif	/* NGEMINIIPM > 0 */
    260 
    261 
    262 /*
    263  * Macros to translate between physical and virtual for a subset of the
    264  * kernel address space.  *Not* for general use.
    265  */
    266 #define KERNEL_BASE_PHYS ((paddr_t)&KERNEL_BASE_phys)
    267 
    268 #define KERN_VTOPHYS(va) \
    269 	((paddr_t)((vaddr_t)va - KERNEL_BASE + GEMINI_DRAM_BASE))
    270 #define KERN_PHYSTOV(pa) \
    271 	((vaddr_t)((paddr_t)pa - GEMINI_DRAM_BASE + KERNEL_BASE))
    272 
    273 /* Prototypes */
    274 
    275 void gemini_intr_init(bus_space_tag_t);
    276 void consinit(void);
    277 #ifdef KGDB
    278 static void kgdb_port_init(void);
    279 #endif
    280 
    281 static void setup_real_page_tables(void);
    282 static void init_clocks(void);
    283 
    284 bs_protos(bs_notimpl);
    285 
    286 #include "com.h"
    287 #if NCOM > 0
    288 #include <dev/ic/comreg.h>
    289 #include <dev/ic/comvar.h>
    290 #endif
    291 
    292 
    293 static void gemini_global_reset(void) __attribute__ ((noreturn));
    294 static void gemini_cpu1_start(void);
    295 static void gemini_memchk(void);
    296 
    297 static void
    298 gemini_global_reset(void)
    299 {
    300 #if defined(GEMINI_MASTER) || defined(GEMINI_SINGLE)
    301 	volatile uint32_t *rp;
    302 	uint32_t r;
    303 
    304 	rp = (volatile uint32_t *)
    305 		(GEMINI_GLOBAL_VBASE + GEMINI_GLOBAL_RESET_CTL);
    306 	r = *rp;
    307 	r |= GLOBAL_RESET_GLOBAL;
    308 	*rp = r;
    309 #endif
    310 	for(;;);
    311 	/* NOTREACHED */
    312 }
    313 
    314 static void
    315 gemini_cpu1_start(void)
    316 {
    317 #ifdef GEMINI_MASTER
    318 	volatile uint32_t *rp;
    319 	uint32_t r;
    320 
    321 	rp = (volatile uint32_t *)
    322 		(GEMINI_GLOBAL_VBASE + GEMINI_GLOBAL_RESET_CTL);
    323 	r = *rp;
    324 	r &= ~GLOBAL_RESET_CPU1;
    325 	*rp = r;
    326 #endif
    327 }
    328 
    329 static void
    330 gemini_memchk(void)
    331 {
    332 	volatile uint32_t *rp;
    333 	uint32_t r;
    334 	uint32_t base;
    335 	uint32_t size;
    336 
    337 	rp = (volatile uint32_t *)
    338 		(GEMINI_DRAMC_VBASE + GEMINI_DRAMC_RMCR);
    339 	r = *rp;
    340 	base = (r & DRAMC_RMCR_RMBAR) >> DRAMC_RMCR_RMBAR_SHFT;
    341 	size = (r & DRAMC_RMCR_RMSZR) >> DRAMC_RMCR_RMSZR_SHFT;
    342 #if defined(GEMINI_SINGLE)
    343 	if (r != 0)
    344 		panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
    345 			__FUNCTION__, r, MEMSIZE);
    346 #elif defined(GEMINI_MASTER)
    347 	if (base != MEMSIZE)
    348 		panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
    349 			__FUNCTION__, r, MEMSIZE);
    350 #elif defined(GEMINI_SLAVE)
    351 	if (size != MEMSIZE)
    352 		panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
    353 			__FUNCTION__, r, MEMSIZE);
    354 #endif
    355 #if defined(VERBOSE_INIT_ARM) || 1
    356 	printf("DRAM Remap: base=%dMB, size=%dMB\n", base, size);
    357 #endif
    358 }
    359 
    360 /*
    361  * void cpu_reboot(int howto, char *bootstr)
    362  *
    363  * Reboots the system
    364  *
    365  * Deal with any syncing, unmounting, dumping and shutdown hooks,
    366  * then reset the CPU.
    367  */
    368 void
    369 cpu_reboot(int howto, char *bootstr)
    370 {
    371 	extern struct geminitmr_softc *ref_sc;
    372 
    373 #ifdef DIAGNOSTIC
    374 	/* info */
    375 	printf("boot: howto=%08x curproc=%p\n", howto, curproc);
    376 #endif
    377 
    378 	/*
    379 	 * If we are still cold then hit the air brakes
    380 	 * and crash to earth fast
    381 	 */
    382 	if (cold) {
    383 		doshutdownhooks();
    384 		pmf_system_shutdown(boothowto);
    385 		printf("The operating system has halted.\n");
    386 		printf("Please press any key to reboot.\n\n");
    387 		cngetc();
    388 		printf("rebooting...\n");
    389 		if (ref_sc != NULL)
    390 			delay(2000);			/* cnflush(); */
    391 		gemini_global_reset();
    392 		/*NOTREACHED*/
    393 	}
    394 
    395 	/* Disable console buffering */
    396 	cnpollc(1);
    397 
    398 	/*
    399 	 * If RB_NOSYNC was not specified sync the discs.
    400 	 * Note: Unless cold is set to 1 here, syslogd will die during the
    401 	 * unmount.  It looks like syslogd is getting woken up only to find
    402 	 * that it cannot page part of the binary in as the filesystem has
    403 	 * been unmounted.
    404 	 */
    405 	if (!(howto & RB_NOSYNC))
    406 		bootsync();
    407 
    408 	/* Say NO to interrupts */
    409 	splhigh();
    410 
    411 	/* Do a dump if requested. */
    412 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
    413 		dumpsys();
    414 
    415 	/* Run any shutdown hooks */
    416 	doshutdownhooks();
    417 
    418 	pmf_system_shutdown(boothowto);
    419 
    420 	/* Make sure IRQ's are disabled */
    421 	IRQdisable;
    422 
    423 	if (howto & RB_HALT) {
    424 		printf("The operating system has halted.\n");
    425 		printf("Please press any key to reboot.\n\n");
    426 		cngetc();
    427 	}
    428 
    429 	printf("rebooting...\n");
    430 	if (ref_sc != NULL)
    431 		delay(2000);			/* cnflush(); */
    432 	gemini_global_reset();
    433 	/*NOTREACHED*/
    434 }
    435 
    436 /*
    437  * Static device mappings. These peripheral registers are mapped at
    438  * fixed virtual addresses very early in initarm() so that we can use
    439  * them while booting the kernel, and stay at the same address
    440  * throughout whole kernel's life time.
    441  *
    442  * We use this table twice; once with bootstrap page table, and once
    443  * with kernel's page table which we build up in initarm().
    444  *
    445  * Since we map these registers into the bootstrap page table using
    446  * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
    447  * registers segment-aligned and segment-rounded in order to avoid
    448  * using the 2nd page tables.
    449  */
    450 
    451 #define	_A(a)	((a) & ~L1_S_OFFSET)
    452 #define	_S(s)	(((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
    453 
    454 static const struct pmap_devmap devmap[] = {
    455 	/* Global regs */
    456 	{
    457 		.pd_va = _A(GEMINI_GLOBAL_VBASE),
    458 		.pd_pa = _A(GEMINI_GLOBAL_BASE),
    459 		.pd_size = _S(L1_S_SIZE),
    460 		.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
    461 		.pd_cache = PTE_NOCACHE
    462 	},
    463 
    464 	/* Watchdog */
    465 	{
    466 		.pd_va = _A(GEMINI_WATCHDOG_VBASE),
    467 		.pd_pa = _A(GEMINI_WATCHDOG_BASE),
    468 		.pd_size = _S(L1_S_SIZE),
    469 		.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
    470 		.pd_cache = PTE_NOCACHE
    471 	},
    472 
    473 	/* UART */
    474 	{
    475 		.pd_va = _A(GEMINI_UART_VBASE),
    476 		.pd_pa = _A(GEMINI_UART_BASE),
    477 		.pd_size = _S(L1_S_SIZE),
    478 		.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
    479 		.pd_cache = PTE_NOCACHE
    480 	},
    481 
    482 	/* LPCHC */
    483 	{
    484 		.pd_va = _A(GEMINI_LPCHC_VBASE),
    485 		.pd_pa = _A(GEMINI_LPCHC_BASE),
    486 		.pd_size = _S(L1_S_SIZE),
    487 		.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
    488 		.pd_cache = PTE_NOCACHE
    489 	},
    490 
    491 	/* LPCIO */
    492 	{
    493 		.pd_va = _A(GEMINI_LPCIO_VBASE),
    494 		.pd_pa = _A(GEMINI_LPCIO_BASE),
    495 		.pd_size = _S(L1_S_SIZE),
    496 		.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
    497 		.pd_cache = PTE_NOCACHE
    498 	},
    499 
    500 	/* Timers */
    501 	{
    502 		.pd_va = _A(GEMINI_TIMER_VBASE),
    503 		.pd_pa = _A(GEMINI_TIMER_BASE),
    504 		.pd_size = _S(L1_S_SIZE),
    505 		.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
    506 		.pd_cache = PTE_NOCACHE
    507 	},
    508 
    509 	/* DRAM Controller */
    510 	{
    511 		.pd_va = _A(GEMINI_DRAMC_VBASE),
    512 		.pd_pa = _A(GEMINI_DRAMC_BASE),
    513 		.pd_size = _S(L1_S_SIZE),
    514 		.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
    515 		.pd_cache = PTE_NOCACHE
    516 	},
    517 
    518 #if defined(MEMORY_DISK_DYNAMIC)
    519 	/* Ramdisk */
    520 	{
    521 		.pd_va = _A(GEMINI_RAMDISK_VBASE),
    522 		.pd_pa = _A(GEMINI_RAMDISK_PBASE),
    523 		.pd_size = _S(GEMINI_RAMDISK_SIZE),
    524 		.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
    525 		.pd_cache = PTE_NOCACHE
    526 	},
    527 #endif
    528 
    529 	{0}	/* list terminator */
    530 };
    531 
    532 #undef	_A
    533 #undef	_S
    534 
    535 #ifdef DDB
    536 static void gemini_db_trap(int where)
    537 {
    538 #if  NGEMINIWDT > 0
    539 	static int oldwatchdogstate;
    540 
    541 	if (where) {
    542 		oldwatchdogstate = geminiwdt_enable(0);
    543 	} else {
    544 		geminiwdt_enable(oldwatchdogstate);
    545 	}
    546 #endif
    547 }
    548 #endif
    549 
    550 #if defined(VERBOSE_INIT_ARM) || 1
    551 void gemini_putchar(char c);
    552 void
    553 gemini_putchar(char c)
    554 {
    555 	unsigned char *com0addr = (unsigned char *)GEMINI_UART_VBASE;
    556 	int timo = 150000;
    557 
    558 	while ((com0addr[COM_REG_LSR * 4] & LSR_TXRDY) == 0)
    559 		if (--timo == 0)
    560 			break;
    561 
    562 	com0addr[COM_REG_TXDATA] = c;
    563 
    564 	while ((com0addr[COM_REG_LSR * 4] & LSR_TSRE) == 0)
    565 		if (--timo == 0)
    566 			break;
    567 }
    568 
    569 void gemini_puthex(unsigned int);
    570 void
    571 gemini_puthex(unsigned int val)
    572 {
    573 	char hexc[] = "0123456789abcdef";
    574 
    575 	gemini_putchar('0');
    576 	gemini_putchar('x');
    577 	gemini_putchar(hexc[(val >> 28) & 0xf]);
    578 	gemini_putchar(hexc[(val >> 24) & 0xf]);
    579 	gemini_putchar(hexc[(val >> 20) & 0xf]);
    580 	gemini_putchar(hexc[(val >> 16) & 0xf]);
    581 	gemini_putchar(hexc[(val >> 12) & 0xf]);
    582 	gemini_putchar(hexc[(val >> 8) & 0xf]);
    583 	gemini_putchar(hexc[(val >> 4) & 0xf]);
    584 	gemini_putchar(hexc[(val >> 0) & 0xf]);
    585 }
    586 #endif	/* VERBOSE_INIT_ARM */
    587 
    588 /*
    589  * u_int initarm(...)
    590  *
    591  * Initial entry point on startup. This gets called before main() is
    592  * entered.
    593  * It should be responsible for setting up everything that must be
    594  * in place when main is called.
    595  * This includes
    596  *   Taking a copy of the boot configuration structure.
    597  *   Initialising the physical console so characters can be printed.
    598  *   Setting up page tables for the kernel
    599  *   Relocating the kernel to the bottom of physical memory
    600  */
    601 u_int
    602 initarm(void *arg)
    603 {
    604 	GEMINI_PUTCHAR('0');
    605 
    606 	/*
    607 	 * start cpu#1 now
    608 	 */
    609 	gemini_cpu1_start();
    610 
    611 	/*
    612 	 * When we enter here, we are using a temporary first level
    613 	 * translation table with section entries in it to cover the OBIO
    614 	 * peripherals and SDRAM.  The temporary first level translation table
    615 	 * is at the end of SDRAM.
    616 	 */
    617 
    618 	/* Heads up ... Setup the CPU / MMU / TLB functions. */
    619 	GEMINI_PUTCHAR('1');
    620 	if (set_cpufuncs())
    621 		panic("cpu not recognized!");
    622 
    623 	GEMINI_PUTCHAR('2');
    624 	init_clocks();
    625 	GEMINI_PUTCHAR('3');
    626 
    627 	/* The console is going to try to map things.  Give pmap a devmap. */
    628 	pmap_devmap_register(devmap);
    629 	GEMINI_PUTCHAR('4');
    630 	consinit();
    631 	GEMINI_PUTCHAR('5');
    632 #ifdef KGDB
    633 	kgdb_port_init();
    634 #endif
    635 
    636 	/* Talk to the user */
    637 	printf("\nNetBSD/evbarm (gemini) booting ...\n");
    638 
    639 #ifdef BOOT_ARGS
    640 	char mi_bootargs[] = BOOT_ARGS;
    641 	parse_mi_bootargs(mi_bootargs);
    642 #endif
    643 
    644 #ifdef VERBOSE_INIT_ARM
    645 	printf("initarm: Configuring system ...\n");
    646 #endif
    647 
    648 	/*
    649 	 * Set up the variables that define the availability of physical
    650 	 * memory.
    651 	 */
    652 	gemini_memchk();
    653 	physical_start = GEMINI_DRAM_BASE;
    654 #define	MEMSIZE_BYTES 	(MEMSIZE * 1024 * 1024)
    655 	physical_end = (physical_start & ~(0x400000-1)) + MEMSIZE_BYTES;
    656 	physmem = (physical_end - physical_start) / PAGE_SIZE;
    657 
    658 	/* Fake bootconfig structure for the benefit of pmap.c. */
    659 	bootconfig.dramblocks = 1;
    660 	bootconfig.dram[0].address = physical_start;
    661 	bootconfig.dram[0].pages = physmem;
    662 
    663 	/*
    664 	 * Our kernel is at the beginning of memory, so set our free space to
    665 	 * all the memory after the kernel.
    666 	 */
    667 	physical_freestart = KERN_VTOPHYS(round_page((vaddr_t) _end));
    668 	physical_freeend = physical_end;
    669 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
    670 
    671 	/*
    672 	 * This is going to do all the hard work of setting up the first and
    673 	 * and second level page tables.  Pages of memory will be allocated
    674 	 * and mapped for other structures that are required for system
    675 	 * operation.  When it returns, physical_freestart and free_pages will
    676 	 * have been updated to reflect the allocations that were made.  In
    677 	 * addition, kernel_l1pt, kernel_pt_table[], systempage, irqstack,
    678 	 * abtstack, undstack, kernelstack, msgbufphys will be set to point to
    679 	 * the memory that was allocated for them.
    680 	 */
    681 	setup_real_page_tables();
    682 
    683 	/*
    684 	 * Moved from cpu_startup() as data_abort_handler() references
    685 	 * this during uvm init.
    686 	 */
    687 	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
    688 
    689 #ifdef VERBOSE_INIT_ARM
    690 	printf("bootstrap done.\n");
    691 #endif
    692 
    693 	arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
    694 
    695 	/*
    696 	 * Pages were allocated during the secondary bootstrap for the
    697 	 * stacks for different CPU modes.
    698 	 * We must now set the r13 registers in the different CPU modes to
    699 	 * point to these stacks.
    700 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
    701 	 * of the stack memory.
    702 	 */
    703 #ifdef VERBOSE_INIT_ARM
    704 	printf("init subsystems: stacks ");
    705 #endif
    706 
    707 	set_stackptr(PSR_FIQ32_MODE, fiqstack.pv_va + FIQ_STACK_SIZE * PAGE_SIZE);
    708 	set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
    709 	set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
    710 	set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
    711 
    712 	/*
    713 	 * Well we should set a data abort handler.
    714 	 * Once things get going this will change as we will need a proper
    715 	 * handler.
    716 	 * Until then we will use a handler that just panics but tells us
    717 	 * why.
    718 	 * Initialisation of the vectors will just panic on a data abort.
    719 	 * This just fills in a slightly better one.
    720 	 */
    721 #ifdef VERBOSE_INIT_ARM
    722 	printf("vectors ");
    723 #endif
    724 	data_abort_handler_address = (u_int)data_abort_handler;
    725 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
    726 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
    727 
    728 	/* Initialise the undefined instruction handlers */
    729 #ifdef VERBOSE_INIT_ARM
    730 	printf("undefined ");
    731 #endif
    732 	undefined_init();
    733 
    734 	/* Load memory into UVM. */
    735 #ifdef VERBOSE_INIT_ARM
    736 	printf("page ");
    737 #endif
    738 	uvm_setpagesize();        /* initialize PAGE_SIZE-dependent variables */
    739 
    740 #if (GEMINI_RAM_RESV_PBASE != 0)
    741 	uvm_page_physload(atop(physical_freestart), atop(GEMINI_RAM_RESV_PBASE),
    742 	    atop(physical_freestart), atop(GEMINI_RAM_RESV_PBASE),
    743 	    VM_FREELIST_DEFAULT);
    744 	uvm_page_physload(atop(GEMINI_RAM_RESV_PEND), atop(physical_freeend),
    745 	    atop(GEMINI_RAM_RESV_PEND), atop(physical_freeend),
    746 	    VM_FREELIST_DEFAULT);
    747 #else
    748 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
    749 	    atop(physical_freestart), atop(physical_freeend),
    750 	    VM_FREELIST_DEFAULT);
    751 #endif
    752 	uvm_page_physload(atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys),
    753 	    atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys),
    754 	    VM_FREELIST_DEFAULT);
    755 
    756 	/* Boot strap pmap telling it where the kernel page table is */
    757 #ifdef VERBOSE_INIT_ARM
    758 	printf("pmap ");
    759 #endif
    760 	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
    761 
    762 #ifdef VERBOSE_INIT_ARM
    763 	printf("done.\n");
    764 #endif
    765 
    766 #ifdef IPKDB
    767 	/* Initialise ipkdb */
    768 	ipkdb_init();
    769 	if (boothowto & RB_KDB)
    770 		ipkdb_connect(0);
    771 #endif
    772 
    773 #if defined(MEMORY_DISK_DYNAMIC)
    774 	md_root_setconf((char *)GEMINI_RAMDISK_VBASE, GEMINI_RAMDISK_SIZE);
    775 #endif
    776 
    777 #ifdef KGDB
    778 	if (boothowto & RB_KDB) {
    779 		kgdb_debug_init = 1;
    780 		kgdb_connect(1);
    781 	}
    782 #endif
    783 
    784 #ifdef DDB
    785 	db_trap_callback = gemini_db_trap;
    786 	db_machine_init();
    787 
    788 	/* Firmware doesn't load symbols. */
    789 	ddb_init(0, NULL, NULL);
    790 
    791 	if (boothowto & RB_KDB)
    792 		Debugger();
    793 #endif
    794 	printf("initarm done.\n");
    795 
    796 	/* We return the new stack pointer address */
    797 	return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
    798 }
    799 
    800 static void
    801 init_clocks(void)
    802 {
    803 }
    804 
    805 #ifndef CONSADDR
    806 #error Specify the address of the console UART with the CONSADDR option.
    807 #endif
    808 #ifndef CONSPEED
    809 #define CONSPEED 19200
    810 #endif
    811 #ifndef CONMODE
    812 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
    813 #endif
    814 
    815 static const bus_addr_t consaddr = CONSADDR;
    816 static const int conspeed = CONSPEED;
    817 static const int conmode = CONMODE;
    818 
    819 #if CONSADDR==0x42000000
    820 /*
    821  * console initialization for obio com console
    822  */
    823 void
    824 consinit(void)
    825 {
    826 	static int consinit_called = 0;
    827 
    828 	if (consinit_called != 0)
    829 		return;
    830 	consinit_called = 1;
    831 
    832 	if (comcnattach(&gemini_a4x_bs_tag, consaddr, conspeed,
    833 		GEMINI_COM_FREQ, COM_TYPE_16550_NOERS, conmode))
    834 			panic("Serial console can not be initialized.");
    835 }
    836 
    837 #elif CONSADDR==0x478003f8
    838 # include <arm/gemini/gemini_lpcvar.h>
    839 /*
    840  * console initialization for lpc com console
    841  */
    842 void
    843 consinit(void)
    844 {
    845 	static int consinit_called = 0;
    846 	bus_space_tag_t iot = &gemini_bs_tag;
    847 	bus_space_handle_t lpchc_ioh;
    848 	bus_space_handle_t lpcio_ioh;
    849 	bus_size_t sz = L1_S_SIZE;
    850 	gemini_lpc_softc_t lpcsoftc;
    851 	gemini_lpc_bus_ops_t *ops;
    852 	void *lpctag = &lpcsoftc;
    853 	uint32_t r;
    854 	extern gemini_lpc_bus_ops_t gemini_lpc_bus_ops;
    855 
    856 	ops = &gemini_lpc_bus_ops;
    857 
    858 	if (consinit_called != 0)
    859 		return;
    860 	consinit_called = 1;
    861 
    862 	if (bus_space_map(iot, GEMINI_LPCHC_BASE, sz, 0, &lpchc_ioh))
    863 		panic("consinit: LPCHC can not be mapped.");
    864 
    865 	if (bus_space_map(iot, GEMINI_LPCIO_BASE, sz, 0, &lpcio_ioh))
    866 		panic("consinit: LPCIO can not be mapped.");
    867 
    868 	/* enable the LPC bus */
    869 	r = bus_space_read_4(iot, lpchc_ioh, GEMINI_LPCHC_CSR);
    870 	r |= LPCHC_CSR_BEN;
    871 	bus_space_write_4(iot, lpchc_ioh, GEMINI_LPCHC_CSR, r);
    872 
    873 	memset(&lpcsoftc, 0, sizeof(lpcsoftc));
    874 	lpcsoftc.sc_iot = iot;
    875 	lpcsoftc.sc_ioh = lpcio_ioh;
    876 
    877 	/* activate Serial Port 1 */
    878 	(*ops->lpc_pnp_enter)(lpctag);
    879 	(*ops->lpc_pnp_write)(lpctag, 1, 0x30, 0x01);
    880 	(*ops->lpc_pnp_exit)(lpctag);
    881 
    882 	if (comcnattach(iot, consaddr, conspeed,
    883 		IT8712F_COM_FREQ, COM_TYPE_NORMAL, conmode)) {
    884 			panic("Serial console can not be initialized.");
    885 	}
    886 
    887 	bus_space_unmap(iot, lpcio_ioh, sz);
    888 	bus_space_unmap(iot, lpchc_ioh, sz);
    889 }
    890 #else
    891 # error unknown console
    892 #endif
    893 
    894 #ifdef KGDB
    895 #ifndef KGDB_DEVADDR
    896 #error Specify the address of the kgdb UART with the KGDB_DEVADDR option.
    897 #endif
    898 #ifndef KGDB_DEVRATE
    899 #define KGDB_DEVRATE 19200
    900 #endif
    901 
    902 #ifndef KGDB_DEVMODE
    903 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
    904 #endif
    905 static const vaddr_t comkgdbaddr = KGDB_DEVADDR;
    906 static const int comkgdbspeed = KGDB_DEVRATE;
    907 static const int comkgdbmode = KGDB_DEVMODE;
    908 
    909 void
    910 static kgdb_port_init(void)
    911 {
    912 	static int kgdbsinit_called = 0;
    913 
    914 	if (kgdbsinit_called != 0)
    915 		return;
    916 
    917 	kgdbsinit_called = 1;
    918 
    919 	bus_space_handle_t bh;
    920 	if (bus_space_map(&gemini_a4x_bs_tag, comkgdbaddr,
    921 		GEMINI_UART_SIZE, 0, &bh))
    922 			panic("kgdb port can not be mapped.");
    923 
    924 	if (com_kgdb_attach(&gemini_a4x_bs_tag, comkgdbaddr, comkgdbspeed,
    925 		GEMINI_UART_SIZE, COM_TYPE_16550_NOERS, comkgdbmode))
    926 			panic("KGDB uart can not be initialized.");
    927 
    928 	bus_space_unmap(&gemini_a4x_bs_tag, bh, GEMINI_UART_SIZE);
    929 }
    930 #endif
    931 
    932 static void
    933 setup_real_page_tables(void)
    934 {
    935 	/*
    936 	 * We need to allocate some fixed page tables to get the kernel going.
    937 	 *
    938 	 * We are going to allocate our bootstrap pages from the beginning of
    939 	 * the free space that we just calculated.  We allocate one page
    940 	 * directory and a number of page tables and store the physical
    941 	 * addresses in the kernel_pt_table array.
    942 	 *
    943 	 * The kernel page directory must be on a 16K boundary.  The page
    944 	 * tables must be on 4K boundaries.  What we do is allocate the
    945 	 * page directory on the first 16K boundary that we encounter, and
    946 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    947 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    948 	 * least one 16K aligned region.
    949 	 */
    950 
    951 #ifdef VERBOSE_INIT_ARM
    952 	printf("Allocating page tables\n");
    953 #endif
    954 
    955 	/*
    956 	 * Define a macro to simplify memory allocation.  As we allocate the
    957 	 * memory, make sure that we don't walk over our temporary first level
    958 	 * translation table.
    959 	 */
    960 #define valloc_pages(var, np)						\
    961 	(var).pv_pa = physical_freestart;				\
    962 	physical_freestart += ((np) * PAGE_SIZE);			\
    963 	if (physical_freestart > (physical_freeend - L1_TABLE_SIZE))	\
    964 		panic("initarm: out of memory");			\
    965 	free_pages -= (np);						\
    966 	(var).pv_va = KERN_PHYSTOV((var).pv_pa);			\
    967 	memset((char *)(var).pv_va, 0, ((np) * PAGE_SIZE));
    968 
    969 	int loop, pt_index;
    970 
    971 	pt_index = 0;
    972 	kernel_l1pt.pv_pa = 0;
    973 	kernel_l1pt.pv_va = 0;
    974 #ifdef VERBOSE_INIT_ARM
    975 	printf("%s: physical_freestart %#lx\n", __func__, physical_freestart);
    976 #endif
    977 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
    978 		/* Are we 16KB aligned for an L1 ? */
    979 		if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0
    980 		    && kernel_l1pt.pv_pa == 0) {
    981 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
    982 		} else {
    983 			valloc_pages(kernel_pt_table[pt_index],
    984 			    L2_TABLE_SIZE / PAGE_SIZE);
    985 			++pt_index;
    986 		}
    987 	}
    988 
    989 #if (NGEMINIIPM > 0)
    990 	valloc_pages(ipmq_pt, L2_TABLE_SIZE / PAGE_SIZE);
    991 #endif
    992 
    993 #ifdef VERBOSE_INIT_ARM
    994 	pt_index=0;
    995 	printf("%s: kernel_l1pt: %#lx:%#lx\n",
    996 		__func__, kernel_l1pt.pv_va, kernel_l1pt.pv_pa);
    997 	printf("%s: kernel_pt_table:\n", __func__);
    998 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
    999 		printf("\t%#lx:%#lx\n", kernel_pt_table[pt_index].pv_va,
   1000 			kernel_pt_table[pt_index].pv_pa);
   1001 		++pt_index;
   1002 	}
   1003 #if (NGEMINIIPM > 0)
   1004 	printf("%s: ipmq_pt:\n", __func__);
   1005 	printf("\t%#lx:%#lx\n", ipmq_pt.pv_va, ipmq_pt.pv_pa);
   1006 #endif
   1007 #endif
   1008 
   1009 	/* This should never be able to happen but better confirm that. */
   1010 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
   1011 		panic("initarm: Failed to align the kernel page directory");
   1012 
   1013 	/*
   1014 	 * Allocate a page for the system page mapped to V0x00000000
   1015 	 * This page will just contain the system vectors and can be
   1016 	 * shared by all processes.
   1017 	 */
   1018 	valloc_pages(systempage, 1);
   1019 	systempage.pv_va = ARM_VECTORS_HIGH;
   1020 
   1021 	/* Allocate stacks for all modes */
   1022 	valloc_pages(fiqstack, FIQ_STACK_SIZE);
   1023 	valloc_pages(irqstack, IRQ_STACK_SIZE);
   1024 	valloc_pages(abtstack, ABT_STACK_SIZE);
   1025 	valloc_pages(undstack, UND_STACK_SIZE);
   1026 	valloc_pages(kernelstack, UPAGES);
   1027 
   1028 	/* Allocate the message buffer. */
   1029 	pv_addr_t msgbuf;
   1030 	int msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
   1031 	valloc_pages(msgbuf, msgbuf_pgs);
   1032 	msgbufphys = msgbuf.pv_pa;
   1033 
   1034 	/*
   1035 	 * Ok we have allocated physical pages for the primary kernel
   1036 	 * page tables
   1037 	 */
   1038 
   1039 #ifdef VERBOSE_INIT_ARM
   1040 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
   1041 #endif
   1042 
   1043 	/*
   1044 	 * Now we start construction of the L1 page table
   1045 	 * We start by mapping the L2 page tables into the L1.
   1046 	 * This means that we can replace L1 mappings later on if necessary
   1047 	 */
   1048 	vaddr_t l1_va = kernel_l1pt.pv_va;
   1049 	paddr_t l1_pa = kernel_l1pt.pv_pa;
   1050 
   1051 	/* Map the L2 pages tables in the L1 page table */
   1052 	pmap_link_l2pt(l1_va, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
   1053 		       &kernel_pt_table[KERNEL_PT_SYS]);
   1054 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
   1055 		pmap_link_l2pt(l1_va, KERNEL_BASE + loop * 0x00400000,
   1056 			       &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
   1057 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
   1058 		pmap_link_l2pt(l1_va, KERNEL_VM_BASE + loop * 0x00400000,
   1059 			       &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
   1060 
   1061 	/* update the top of the kernel VM */
   1062 	pmap_curmaxkvaddr =
   1063 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
   1064 
   1065 #if (NGEMINIIPM > 0)
   1066 printf("%s:%d: pmap_link_l2pt ipmq_pt\n", __FUNCTION__, __LINE__);
   1067 	pmap_link_l2pt(l1_va, GEMINI_IPMQ_VBASE, &ipmq_pt);
   1068 #endif
   1069 
   1070 #ifdef VERBOSE_INIT_ARM
   1071 	printf("Mapping kernel\n");
   1072 #endif
   1073 
   1074 	/* Now we fill in the L2 pagetable for the kernel static code/data */
   1075 #define round_L_page(x) (((x) + L2_L_OFFSET) & L2_L_FRAME)
   1076 	size_t textsize = round_L_page(etext - KERNEL_BASE_virt);
   1077 	size_t totalsize = round_L_page(_end - KERNEL_BASE_virt);
   1078 	/* offset of kernel in RAM */
   1079 	u_int offset = (u_int)KERNEL_BASE_virt - KERNEL_BASE;
   1080 
   1081 #ifdef DDB
   1082 	/* Map text section read-write. */
   1083 	offset += pmap_map_chunk(l1_va,
   1084 				(vaddr_t)KERNEL_BASE + offset,
   1085 				 physical_start + offset, textsize,
   1086 				 VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE,
   1087 				 PTE_CACHE);
   1088 #else
   1089 	/* Map text section read-only. */
   1090 	offset += pmap_map_chunk(l1_va,
   1091 				(vaddr_t)KERNEL_BASE + offset,
   1092 				 physical_start + offset, textsize,
   1093 				 VM_PROT_READ|VM_PROT_EXECUTE, PTE_CACHE);
   1094 #endif
   1095 	/* Map data and bss sections read-write. */
   1096 	offset += pmap_map_chunk(l1_va,
   1097 				(vaddr_t)KERNEL_BASE + offset,
   1098 				 physical_start + offset, totalsize - textsize,
   1099 				 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
   1100 
   1101 #ifdef VERBOSE_INIT_ARM
   1102 	printf("Constructing L2 page tables\n");
   1103 #endif
   1104 
   1105 	/* Map the stack pages */
   1106 	pmap_map_chunk(l1_va, fiqstack.pv_va, fiqstack.pv_pa,
   1107 	    FIQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
   1108 	pmap_map_chunk(l1_va, irqstack.pv_va, irqstack.pv_pa,
   1109 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
   1110 	pmap_map_chunk(l1_va, abtstack.pv_va, abtstack.pv_pa,
   1111 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
   1112 	pmap_map_chunk(l1_va, undstack.pv_va, undstack.pv_pa,
   1113 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
   1114 	pmap_map_chunk(l1_va, kernelstack.pv_va, kernelstack.pv_pa,
   1115 	    UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
   1116 
   1117 	pmap_map_chunk(l1_va, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
   1118 	    L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
   1119 
   1120 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
   1121 		pmap_map_chunk(l1_va, kernel_pt_table[loop].pv_va,
   1122 			       kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
   1123 			       VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
   1124 	}
   1125 
   1126 	/* Map the vector page. */
   1127 	pmap_map_entry(l1_va, ARM_VECTORS_HIGH, systempage.pv_pa,
   1128 		       VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
   1129 
   1130 #if (NGEMINIIPM > 0)
   1131 	/* Map the IPM queue l2pt */
   1132 	pmap_map_chunk(l1_va, ipmq_pt.pv_va, ipmq_pt.pv_pa,
   1133 		L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
   1134 
   1135 	/* Map the IPM queue pages */
   1136 	pmap_map_chunk(l1_va, GEMINI_IPMQ_VBASE, GEMINI_IPMQ_PBASE,
   1137 	    GEMINI_IPMQ_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
   1138 
   1139 #ifdef GEMINI_SLAVE
   1140 	/*
   1141 	 * Map all memory, incluuding that owned by other core
   1142 	 * take into account the RAM remap, so view in this region
   1143 	 * is consistent with MASTER
   1144 	 */
   1145 	pmap_map_chunk(l1_va,
   1146 	    GEMINI_ALLMEM_VBASE,
   1147 	    GEMINI_ALLMEM_PBASE + ((GEMINI_ALLMEM_SIZE - MEMSIZE) * 1024 * 1024),
   1148 	    (GEMINI_ALLMEM_SIZE - MEMSIZE) * 1024 * 1024,
   1149 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
   1150 	pmap_map_chunk(l1_va,
   1151 	    GEMINI_ALLMEM_VBASE + GEMINI_BUSBASE * 1024 * 1024,
   1152 	    GEMINI_ALLMEM_PBASE,
   1153 	    (MEMSIZE * 1024 * 1024),
   1154 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
   1155 #else
   1156 	/* Map all memory, incluuding that owned by other core */
   1157 	pmap_map_chunk(l1_va, GEMINI_ALLMEM_VBASE, GEMINI_ALLMEM_PBASE,
   1158 	    GEMINI_ALLMEM_SIZE * 1024 * 1024, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
   1159 #endif	/* GEMINI_SLAVE */
   1160 #endif	/* NGEMINIIPM */
   1161 
   1162 	/*
   1163 	 * Map integrated peripherals at same address in first level page
   1164 	 * table so that we can continue to use console.
   1165 	 */
   1166 	pmap_devmap_bootstrap(l1_va, devmap);
   1167 
   1168 
   1169 #ifdef VERBOSE_INIT_ARM
   1170 	/* Tell the user about where all the bits and pieces live. */
   1171 	printf("%22s       Physical              Virtual        Num\n", " ");
   1172 	printf("%22s Starting    Ending    Starting    Ending   Pages\n", " ");
   1173 
   1174 	static const char mem_fmt[] =
   1175 	    "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %d\n";
   1176 	static const char mem_fmt_nov[] =
   1177 	    "%20s: 0x%08lx 0x%08lx                       %d\n";
   1178 
   1179 	printf(mem_fmt, "SDRAM", physical_start, physical_end-1,
   1180 	    KERN_PHYSTOV(physical_start), KERN_PHYSTOV(physical_end-1),
   1181 	    physmem);
   1182 	printf(mem_fmt, "text section",
   1183 	       KERN_VTOPHYS(KERNEL_BASE_virt), KERN_VTOPHYS(etext-1),
   1184 	       (vaddr_t)KERNEL_BASE_virt, (vaddr_t)etext-1,
   1185 	       (int)(textsize / PAGE_SIZE));
   1186 	printf(mem_fmt, "data section",
   1187 	       KERN_VTOPHYS(__data_start), KERN_VTOPHYS(_edata),
   1188 	       (vaddr_t)__data_start, (vaddr_t)_edata,
   1189 	       (int)((round_page((vaddr_t)_edata)
   1190 		      - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
   1191 	printf(mem_fmt, "bss section",
   1192 	       KERN_VTOPHYS(__bss_start), KERN_VTOPHYS(__bss_end__),
   1193 	       (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
   1194 	       (int)((round_page((vaddr_t)__bss_end__)
   1195 		      - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
   1196 	printf(mem_fmt, "L1 page directory",
   1197 	    kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
   1198 	    kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
   1199 	    L1_TABLE_SIZE / PAGE_SIZE);
   1200 	printf(mem_fmt, "Exception Vectors",
   1201 	    systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
   1202 	    (vaddr_t)ARM_VECTORS_HIGH, (vaddr_t)ARM_VECTORS_HIGH + PAGE_SIZE - 1,
   1203 	    1);
   1204 	printf(mem_fmt, "FIQ stack",
   1205 	    fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
   1206 	    fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
   1207 	    FIQ_STACK_SIZE);
   1208 	printf(mem_fmt, "IRQ stack",
   1209 	    irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
   1210 	    irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
   1211 	    IRQ_STACK_SIZE);
   1212 	printf(mem_fmt, "ABT stack",
   1213 	    abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
   1214 	    abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
   1215 	    ABT_STACK_SIZE);
   1216 	printf(mem_fmt, "UND stack",
   1217 	    undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
   1218 	    undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
   1219 	    UND_STACK_SIZE);
   1220 	printf(mem_fmt, "SVC stack",
   1221 	    kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
   1222 	    kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
   1223 	    UPAGES);
   1224 	printf(mem_fmt_nov, "Message Buffer",
   1225 	    msgbufphys, msgbufphys + msgbuf_pgs * PAGE_SIZE - 1, msgbuf_pgs);
   1226 	printf(mem_fmt, "Free Memory", physical_freestart, physical_freeend-1,
   1227 	    KERN_PHYSTOV(physical_freestart), KERN_PHYSTOV(physical_freeend-1),
   1228 	    free_pages);
   1229 #endif
   1230 
   1231 	/*
   1232 	 * Now we have the real page tables in place so we can switch to them.
   1233 	 * Once this is done we will be running with the REAL kernel page
   1234 	 * tables.
   1235 	 */
   1236 
   1237 	/* Switch tables */
   1238 #ifdef VERBOSE_INIT_ARM
   1239 	printf("switching to new L1 page table  @%#lx...", l1_pa);
   1240 #endif
   1241 
   1242 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
   1243 	cpu_setttb(l1_pa);
   1244 	cpu_tlb_flushID();
   1245 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
   1246 
   1247 #ifdef VERBOSE_INIT_ARM
   1248 	printf("OK.\n");
   1249 #endif
   1250 }
   1251