gemini_machdep.c revision 1.15.4.1 1 /* $NetBSD: gemini_machdep.c,v 1.15.4.1 2011/03/05 20:50:05 rmind Exp $ */
2
3 /* adapted from:
4 * NetBSD: sdp24xx_machdep.c,v 1.4 2008/08/27 11:03:10 matt Exp
5 */
6
7 /*
8 * Machine dependent functions for kernel setup for TI OSK5912 board.
9 * Based on lubbock_machdep.c which in turn was based on iq80310_machhdep.c
10 *
11 * Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
12 * Written by Hiroyuki Bessho for Genetec Corporation.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. The name of Genetec Corporation may not be used to endorse or
23 * promote products derived from this software without specific prior
24 * written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 *
38 * Copyright (c) 2001 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 *
71 * Copyright (c) 1997,1998 Mark Brinicombe.
72 * Copyright (c) 1997,1998 Causality Limited.
73 * All rights reserved.
74 *
75 * Redistribution and use in source and binary forms, with or without
76 * modification, are permitted provided that the following conditions
77 * are met:
78 * 1. Redistributions of source code must retain the above copyright
79 * notice, this list of conditions and the following disclaimer.
80 * 2. Redistributions in binary form must reproduce the above copyright
81 * notice, this list of conditions and the following disclaimer in the
82 * documentation and/or other materials provided with the distribution.
83 * 3. All advertising materials mentioning features or use of this software
84 * must display the following acknowledgement:
85 * This product includes software developed by Mark Brinicombe
86 * for the NetBSD Project.
87 * 4. The name of the company nor the name of the author may be used to
88 * endorse or promote products derived from this software without specific
89 * prior written permission.
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
92 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
93 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
94 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
95 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
96 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
97 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
98 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
99 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
100 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
101 * SUCH DAMAGE.
102 *
103 * Copyright (c) 2007 Microsoft
104 * All rights reserved.
105 *
106 * Redistribution and use in source and binary forms, with or without
107 * modification, are permitted provided that the following conditions
108 * are met:
109 * 1. Redistributions of source code must retain the above copyright
110 * notice, this list of conditions and the following disclaimer.
111 * 2. Redistributions in binary form must reproduce the above copyright
112 * notice, this list of conditions and the following disclaimer in the
113 * documentation and/or other materials provided with the distribution.
114 * 3. All advertising materials mentioning features or use of this software
115 * must display the following acknowledgement:
116 * This product includes software developed by Microsoft
117 *
118 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
119 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
120 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
121 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
122 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
123 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
124 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
125 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
126 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
127 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
128 * SUCH DAMAGE.
129 */
130
131 #include <sys/cdefs.h>
132 __KERNEL_RCSID(0, "$NetBSD: gemini_machdep.c,v 1.15.4.1 2011/03/05 20:50:05 rmind Exp $");
133
134 #include "opt_machdep.h"
135 #include "opt_ddb.h"
136 #include "opt_kgdb.h"
137 #include "opt_ipkdb.h"
138 #include "opt_md.h"
139 #include "opt_com.h"
140 #include "opt_gemini.h"
141 #include "geminiwdt.h"
142 #include "geminiipm.h"
143
144 #include <sys/param.h>
145 #include <sys/device.h>
146 #include <sys/systm.h>
147 #include <sys/kernel.h>
148 #include <sys/exec.h>
149 #include <sys/proc.h>
150 #include <sys/msgbuf.h>
151 #include <sys/reboot.h>
152 #include <sys/termios.h>
153 #include <sys/ksyms.h>
154
155 #include <uvm/uvm_extern.h>
156
157 #include <sys/conf.h>
158 #include <dev/cons.h>
159 #include <dev/md.h>
160
161 #include <machine/db_machdep.h>
162 #include <ddb/db_sym.h>
163 #include <ddb/db_extern.h>
164 #ifdef KGDB
165 #include <sys/kgdb.h>
166 #endif
167
168 #include <machine/bootconfig.h>
169 #include <machine/bus.h>
170 #include <machine/cpu.h>
171 #include <machine/frame.h>
172 #include <arm/armreg.h>
173 #include <arm/undefined.h>
174
175 #include <arm/arm32/machdep.h>
176
177 #include <arm/gemini/gemini_reg.h>
178 #include <arm/gemini/gemini_var.h>
179 #include <arm/gemini/gemini_wdtvar.h>
180 #include <arm/gemini/gemini_com.h>
181 #include <arm/gemini/lpc_com.h>
182
183 #include <evbarm/gemini/gemini.h>
184
185 #if defined(VERBOSE_INIT_ARM)
186 # define GEMINI_PUTCHAR(c) gemini_putchar(c)
187 # define GEMINI_PUTHEX(n) gemini_puthex(n)
188 #else /* VERBOSE_INIT_ARM */
189 # define GEMINI_PUTCHAR(c)
190 # define GEMINI_PUTHEX(n)
191 #endif /* VERBOSE_INIT_ARM */
192
193 /*
194 * Address to call from cpu_reset() to reset the machine.
195 * This is machine architecture dependant as it varies depending
196 * on where the ROM appears when you turn the MMU off.
197 */
198
199 u_int cpu_reset_address = 0;
200
201 /* Define various stack sizes in pages */
202 #define IRQ_STACK_SIZE 1
203 #define FIQ_STACK_SIZE 1
204 #define ABT_STACK_SIZE 1
205 #ifdef IPKDB
206 #define UND_STACK_SIZE 2
207 #else
208 #define UND_STACK_SIZE 1
209 #endif
210
211 BootConfig bootconfig; /* Boot config storage */
212 char *boot_args = NULL;
213 char *boot_file = NULL;
214
215 /* Physical address of the beginning of SDRAM. */
216 paddr_t physical_start;
217 /* Physical address of the first byte after the end of SDRAM. */
218 paddr_t physical_end;
219
220 /* Same things, but for the free (unused by the kernel) memory. */
221 static paddr_t physical_freestart, physical_freeend;
222 static u_int free_pages;
223
224 /* Physical and virtual addresses for some global pages */
225 pv_addr_t fiqstack;
226 pv_addr_t irqstack;
227 pv_addr_t undstack;
228 pv_addr_t abtstack;
229 pv_addr_t kernelstack; /* stack for SVC mode */
230
231 /* Physical address of the message buffer. */
232 paddr_t msgbufphys;
233
234 extern u_int data_abort_handler_address;
235 extern u_int prefetch_abort_handler_address;
236 extern u_int undefined_handler_address;
237 extern char KERNEL_BASE_phys[];
238 extern char KERNEL_BASE_virt[];
239 extern char etext[], __data_start[], _edata[], __bss_start[], __bss_end__[];
240 extern char _end[];
241
242 #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
243 #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
244 #define KERNEL_PT_KERNEL_NUM 4
245 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
246 /* Page tables for mapping kernel VM */
247 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
248 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
249
250 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
251
252
253 #if (NGEMINIIPM > 0)
254 pv_addr_t ipmq_pt; /* L2 Page table for mapping IPM queues */
255 #if defined(DEBUG) || 1
256 unsigned long gemini_ipmq_pbase = GEMINI_IPMQ_PBASE;
257 unsigned long gemini_ipmq_vbase = GEMINI_IPMQ_VBASE;
258 #endif /* DEBUG */
259 #endif /* NGEMINIIPM > 0 */
260
261
262 /*
263 * Macros to translate between physical and virtual for a subset of the
264 * kernel address space. *Not* for general use.
265 */
266 #define KERNEL_BASE_PHYS ((paddr_t)&KERNEL_BASE_phys)
267
268 #define KERN_VTOPHYS(va) \
269 ((paddr_t)((vaddr_t)va - KERNEL_BASE + GEMINI_DRAM_BASE))
270 #define KERN_PHYSTOV(pa) \
271 ((vaddr_t)((paddr_t)pa - GEMINI_DRAM_BASE + KERNEL_BASE))
272
273 /* Prototypes */
274
275 void gemini_intr_init(bus_space_tag_t);
276 void consinit(void);
277 #ifdef KGDB
278 static void kgdb_port_init(void);
279 #endif
280
281 static void setup_real_page_tables(void);
282 static void init_clocks(void);
283
284 bs_protos(bs_notimpl);
285
286 #include "com.h"
287 #if NCOM > 0
288 #include <dev/ic/comreg.h>
289 #include <dev/ic/comvar.h>
290 #endif
291
292
293 static void gemini_global_reset(void) __attribute__ ((noreturn));
294 static void gemini_cpu1_start(void);
295 static void gemini_memchk(void);
296
297 static void
298 gemini_global_reset(void)
299 {
300 #if defined(GEMINI_MASTER) || defined(GEMINI_SINGLE)
301 volatile uint32_t *rp;
302 uint32_t r;
303
304 rp = (volatile uint32_t *)
305 (GEMINI_GLOBAL_VBASE + GEMINI_GLOBAL_RESET_CTL);
306 r = *rp;
307 r |= GLOBAL_RESET_GLOBAL;
308 *rp = r;
309 #endif
310 for(;;);
311 /* NOTREACHED */
312 }
313
314 static void
315 gemini_cpu1_start(void)
316 {
317 #ifdef GEMINI_MASTER
318 volatile uint32_t *rp;
319 uint32_t r;
320
321 rp = (volatile uint32_t *)
322 (GEMINI_GLOBAL_VBASE + GEMINI_GLOBAL_RESET_CTL);
323 r = *rp;
324 r &= ~GLOBAL_RESET_CPU1;
325 *rp = r;
326 #endif
327 }
328
329 static void
330 gemini_memchk(void)
331 {
332 volatile uint32_t *rp;
333 uint32_t r;
334 uint32_t base;
335 uint32_t size;
336
337 rp = (volatile uint32_t *)
338 (GEMINI_DRAMC_VBASE + GEMINI_DRAMC_RMCR);
339 r = *rp;
340 base = (r & DRAMC_RMCR_RMBAR) >> DRAMC_RMCR_RMBAR_SHFT;
341 size = (r & DRAMC_RMCR_RMSZR) >> DRAMC_RMCR_RMSZR_SHFT;
342 #if defined(GEMINI_SINGLE)
343 if (r != 0)
344 panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
345 __FUNCTION__, r, MEMSIZE);
346 #elif defined(GEMINI_MASTER)
347 if (base != MEMSIZE)
348 panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
349 __FUNCTION__, r, MEMSIZE);
350 #elif defined(GEMINI_SLAVE)
351 if (size != MEMSIZE)
352 panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
353 __FUNCTION__, r, MEMSIZE);
354 #endif
355 #if defined(VERBOSE_INIT_ARM) || 1
356 printf("DRAM Remap: base=%dMB, size=%dMB\n", base, size);
357 #endif
358 }
359
360 /*
361 * void cpu_reboot(int howto, char *bootstr)
362 *
363 * Reboots the system
364 *
365 * Deal with any syncing, unmounting, dumping and shutdown hooks,
366 * then reset the CPU.
367 */
368 void
369 cpu_reboot(int howto, char *bootstr)
370 {
371 extern struct geminitmr_softc *ref_sc;
372
373 #ifdef DIAGNOSTIC
374 /* info */
375 printf("boot: howto=%08x curproc=%p\n", howto, curproc);
376 #endif
377
378 /*
379 * If we are still cold then hit the air brakes
380 * and crash to earth fast
381 */
382 if (cold) {
383 doshutdownhooks();
384 pmf_system_shutdown(boothowto);
385 printf("The operating system has halted.\n");
386 printf("Please press any key to reboot.\n\n");
387 cngetc();
388 printf("rebooting...\n");
389 if (ref_sc != NULL)
390 delay(2000); /* cnflush(); */
391 gemini_global_reset();
392 /*NOTREACHED*/
393 }
394
395 /* Disable console buffering */
396 cnpollc(1);
397
398 /*
399 * If RB_NOSYNC was not specified sync the discs.
400 * Note: Unless cold is set to 1 here, syslogd will die during the
401 * unmount. It looks like syslogd is getting woken up only to find
402 * that it cannot page part of the binary in as the filesystem has
403 * been unmounted.
404 */
405 if (!(howto & RB_NOSYNC))
406 bootsync();
407
408 /* Say NO to interrupts */
409 splhigh();
410
411 /* Do a dump if requested. */
412 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
413 dumpsys();
414
415 /* Run any shutdown hooks */
416 doshutdownhooks();
417
418 pmf_system_shutdown(boothowto);
419
420 /* Make sure IRQ's are disabled */
421 IRQdisable;
422
423 if (howto & RB_HALT) {
424 printf("The operating system has halted.\n");
425 printf("Please press any key to reboot.\n\n");
426 cngetc();
427 }
428
429 printf("rebooting...\n");
430 if (ref_sc != NULL)
431 delay(2000); /* cnflush(); */
432 gemini_global_reset();
433 /*NOTREACHED*/
434 }
435
436 /*
437 * Static device mappings. These peripheral registers are mapped at
438 * fixed virtual addresses very early in initarm() so that we can use
439 * them while booting the kernel, and stay at the same address
440 * throughout whole kernel's life time.
441 *
442 * We use this table twice; once with bootstrap page table, and once
443 * with kernel's page table which we build up in initarm().
444 *
445 * Since we map these registers into the bootstrap page table using
446 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
447 * registers segment-aligned and segment-rounded in order to avoid
448 * using the 2nd page tables.
449 */
450
451 #define _A(a) ((a) & ~L1_S_OFFSET)
452 #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
453
454 static const struct pmap_devmap devmap[] = {
455 /* Global regs */
456 {
457 .pd_va = _A(GEMINI_GLOBAL_VBASE),
458 .pd_pa = _A(GEMINI_GLOBAL_BASE),
459 .pd_size = _S(L1_S_SIZE),
460 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
461 .pd_cache = PTE_NOCACHE
462 },
463
464 /* Watchdog */
465 {
466 .pd_va = _A(GEMINI_WATCHDOG_VBASE),
467 .pd_pa = _A(GEMINI_WATCHDOG_BASE),
468 .pd_size = _S(L1_S_SIZE),
469 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
470 .pd_cache = PTE_NOCACHE
471 },
472
473 /* UART */
474 {
475 .pd_va = _A(GEMINI_UART_VBASE),
476 .pd_pa = _A(GEMINI_UART_BASE),
477 .pd_size = _S(L1_S_SIZE),
478 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
479 .pd_cache = PTE_NOCACHE
480 },
481
482 /* LPCHC */
483 {
484 .pd_va = _A(GEMINI_LPCHC_VBASE),
485 .pd_pa = _A(GEMINI_LPCHC_BASE),
486 .pd_size = _S(L1_S_SIZE),
487 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
488 .pd_cache = PTE_NOCACHE
489 },
490
491 /* LPCIO */
492 {
493 .pd_va = _A(GEMINI_LPCIO_VBASE),
494 .pd_pa = _A(GEMINI_LPCIO_BASE),
495 .pd_size = _S(L1_S_SIZE),
496 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
497 .pd_cache = PTE_NOCACHE
498 },
499
500 /* Timers */
501 {
502 .pd_va = _A(GEMINI_TIMER_VBASE),
503 .pd_pa = _A(GEMINI_TIMER_BASE),
504 .pd_size = _S(L1_S_SIZE),
505 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
506 .pd_cache = PTE_NOCACHE
507 },
508
509 /* DRAM Controller */
510 {
511 .pd_va = _A(GEMINI_DRAMC_VBASE),
512 .pd_pa = _A(GEMINI_DRAMC_BASE),
513 .pd_size = _S(L1_S_SIZE),
514 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
515 .pd_cache = PTE_NOCACHE
516 },
517
518 #if defined(MEMORY_DISK_DYNAMIC)
519 /* Ramdisk */
520 {
521 .pd_va = _A(GEMINI_RAMDISK_VBASE),
522 .pd_pa = _A(GEMINI_RAMDISK_PBASE),
523 .pd_size = _S(GEMINI_RAMDISK_SIZE),
524 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
525 .pd_cache = PTE_NOCACHE
526 },
527 #endif
528
529 {0} /* list terminator */
530 };
531
532 #undef _A
533 #undef _S
534
535 #ifdef DDB
536 static void gemini_db_trap(int where)
537 {
538 #if NGEMINIWDT > 0
539 static int oldwatchdogstate;
540
541 if (where) {
542 oldwatchdogstate = geminiwdt_enable(0);
543 } else {
544 geminiwdt_enable(oldwatchdogstate);
545 }
546 #endif
547 }
548 #endif
549
550 #if defined(VERBOSE_INIT_ARM) || 1
551 void gemini_putchar(char c);
552 void
553 gemini_putchar(char c)
554 {
555 unsigned char *com0addr = (unsigned char *)GEMINI_UART_VBASE;
556 int timo = 150000;
557
558 while ((com0addr[COM_REG_LSR * 4] & LSR_TXRDY) == 0)
559 if (--timo == 0)
560 break;
561
562 com0addr[COM_REG_TXDATA] = c;
563
564 while ((com0addr[COM_REG_LSR * 4] & LSR_TSRE) == 0)
565 if (--timo == 0)
566 break;
567 }
568
569 void gemini_puthex(unsigned int);
570 void
571 gemini_puthex(unsigned int val)
572 {
573 char hexc[] = "0123456789abcdef";
574
575 gemini_putchar('0');
576 gemini_putchar('x');
577 gemini_putchar(hexc[(val >> 28) & 0xf]);
578 gemini_putchar(hexc[(val >> 24) & 0xf]);
579 gemini_putchar(hexc[(val >> 20) & 0xf]);
580 gemini_putchar(hexc[(val >> 16) & 0xf]);
581 gemini_putchar(hexc[(val >> 12) & 0xf]);
582 gemini_putchar(hexc[(val >> 8) & 0xf]);
583 gemini_putchar(hexc[(val >> 4) & 0xf]);
584 gemini_putchar(hexc[(val >> 0) & 0xf]);
585 }
586 #endif /* VERBOSE_INIT_ARM */
587
588 /*
589 * u_int initarm(...)
590 *
591 * Initial entry point on startup. This gets called before main() is
592 * entered.
593 * It should be responsible for setting up everything that must be
594 * in place when main is called.
595 * This includes
596 * Taking a copy of the boot configuration structure.
597 * Initialising the physical console so characters can be printed.
598 * Setting up page tables for the kernel
599 * Relocating the kernel to the bottom of physical memory
600 */
601 u_int
602 initarm(void *arg)
603 {
604 GEMINI_PUTCHAR('0');
605
606 /*
607 * start cpu#1 now
608 */
609 gemini_cpu1_start();
610
611 /*
612 * When we enter here, we are using a temporary first level
613 * translation table with section entries in it to cover the OBIO
614 * peripherals and SDRAM. The temporary first level translation table
615 * is at the end of SDRAM.
616 */
617
618 /* Heads up ... Setup the CPU / MMU / TLB functions. */
619 GEMINI_PUTCHAR('1');
620 if (set_cpufuncs())
621 panic("cpu not recognized!");
622
623 GEMINI_PUTCHAR('2');
624 init_clocks();
625 GEMINI_PUTCHAR('3');
626
627 /* The console is going to try to map things. Give pmap a devmap. */
628 pmap_devmap_register(devmap);
629 GEMINI_PUTCHAR('4');
630 consinit();
631 GEMINI_PUTCHAR('5');
632 #ifdef KGDB
633 kgdb_port_init();
634 #endif
635
636 /* Talk to the user */
637 printf("\nNetBSD/evbarm (gemini) booting ...\n");
638
639 #ifdef BOOT_ARGS
640 char mi_bootargs[] = BOOT_ARGS;
641 parse_mi_bootargs(mi_bootargs);
642 #endif
643
644 #ifdef VERBOSE_INIT_ARM
645 printf("initarm: Configuring system ...\n");
646 #endif
647
648 /*
649 * Set up the variables that define the availability of physical
650 * memory.
651 */
652 gemini_memchk();
653 physical_start = GEMINI_DRAM_BASE;
654 #define MEMSIZE_BYTES (MEMSIZE * 1024 * 1024)
655 physical_end = (physical_start & ~(0x400000-1)) + MEMSIZE_BYTES;
656 physmem = (physical_end - physical_start) / PAGE_SIZE;
657
658 /* Fake bootconfig structure for the benefit of pmap.c. */
659 bootconfig.dramblocks = 1;
660 bootconfig.dram[0].address = physical_start;
661 bootconfig.dram[0].pages = physmem;
662
663 /*
664 * Our kernel is at the beginning of memory, so set our free space to
665 * all the memory after the kernel.
666 */
667 physical_freestart = KERN_VTOPHYS(round_page((vaddr_t) _end));
668 physical_freeend = physical_end;
669 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
670
671 /*
672 * This is going to do all the hard work of setting up the first and
673 * and second level page tables. Pages of memory will be allocated
674 * and mapped for other structures that are required for system
675 * operation. When it returns, physical_freestart and free_pages will
676 * have been updated to reflect the allocations that were made. In
677 * addition, kernel_l1pt, kernel_pt_table[], systempage, irqstack,
678 * abtstack, undstack, kernelstack, msgbufphys will be set to point to
679 * the memory that was allocated for them.
680 */
681 setup_real_page_tables();
682
683 /*
684 * Moved from cpu_startup() as data_abort_handler() references
685 * this during uvm init.
686 */
687 uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
688
689 #ifdef VERBOSE_INIT_ARM
690 printf("bootstrap done.\n");
691 #endif
692
693 arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
694
695 /*
696 * Pages were allocated during the secondary bootstrap for the
697 * stacks for different CPU modes.
698 * We must now set the r13 registers in the different CPU modes to
699 * point to these stacks.
700 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
701 * of the stack memory.
702 */
703 #ifdef VERBOSE_INIT_ARM
704 printf("init subsystems: stacks ");
705 #endif
706
707 set_stackptr(PSR_FIQ32_MODE, fiqstack.pv_va + FIQ_STACK_SIZE * PAGE_SIZE);
708 set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
709 set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
710 set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
711
712 /*
713 * Well we should set a data abort handler.
714 * Once things get going this will change as we will need a proper
715 * handler.
716 * Until then we will use a handler that just panics but tells us
717 * why.
718 * Initialisation of the vectors will just panic on a data abort.
719 * This just fills in a slightly better one.
720 */
721 #ifdef VERBOSE_INIT_ARM
722 printf("vectors ");
723 #endif
724 data_abort_handler_address = (u_int)data_abort_handler;
725 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
726 undefined_handler_address = (u_int)undefinedinstruction_bounce;
727
728 /* Initialise the undefined instruction handlers */
729 #ifdef VERBOSE_INIT_ARM
730 printf("undefined ");
731 #endif
732 undefined_init();
733
734 /* Load memory into UVM. */
735 #ifdef VERBOSE_INIT_ARM
736 printf("page ");
737 #endif
738 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
739
740 #if (GEMINI_RAM_RESV_PBASE != 0)
741 uvm_page_physload(atop(physical_freestart), atop(GEMINI_RAM_RESV_PBASE),
742 atop(physical_freestart), atop(GEMINI_RAM_RESV_PBASE),
743 VM_FREELIST_DEFAULT);
744 uvm_page_physload(atop(GEMINI_RAM_RESV_PEND), atop(physical_freeend),
745 atop(GEMINI_RAM_RESV_PEND), atop(physical_freeend),
746 VM_FREELIST_DEFAULT);
747 #else
748 uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
749 atop(physical_freestart), atop(physical_freeend),
750 VM_FREELIST_DEFAULT);
751 #endif
752 uvm_page_physload(atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys),
753 atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys),
754 VM_FREELIST_DEFAULT);
755
756 /* Boot strap pmap telling it where the kernel page table is */
757 #ifdef VERBOSE_INIT_ARM
758 printf("pmap ");
759 #endif
760 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
761
762 #ifdef VERBOSE_INIT_ARM
763 printf("done.\n");
764 #endif
765
766 #ifdef IPKDB
767 /* Initialise ipkdb */
768 ipkdb_init();
769 if (boothowto & RB_KDB)
770 ipkdb_connect(0);
771 #endif
772
773 #if defined(MEMORY_DISK_DYNAMIC)
774 md_root_setconf((char *)GEMINI_RAMDISK_VBASE, GEMINI_RAMDISK_SIZE);
775 #endif
776
777 #ifdef KGDB
778 if (boothowto & RB_KDB) {
779 kgdb_debug_init = 1;
780 kgdb_connect(1);
781 }
782 #endif
783
784 #ifdef DDB
785 db_trap_callback = gemini_db_trap;
786 db_machine_init();
787
788 /* Firmware doesn't load symbols. */
789 ddb_init(0, NULL, NULL);
790
791 if (boothowto & RB_KDB)
792 Debugger();
793 #endif
794 printf("initarm done.\n");
795
796 /* We return the new stack pointer address */
797 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
798 }
799
800 static void
801 init_clocks(void)
802 {
803 }
804
805 #ifndef CONSADDR
806 #error Specify the address of the console UART with the CONSADDR option.
807 #endif
808 #ifndef CONSPEED
809 #define CONSPEED 19200
810 #endif
811 #ifndef CONMODE
812 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
813 #endif
814
815 static const bus_addr_t consaddr = CONSADDR;
816 static const int conspeed = CONSPEED;
817 static const int conmode = CONMODE;
818
819 #if CONSADDR==0x42000000
820 /*
821 * console initialization for obio com console
822 */
823 void
824 consinit(void)
825 {
826 static int consinit_called = 0;
827
828 if (consinit_called != 0)
829 return;
830 consinit_called = 1;
831
832 if (comcnattach(&gemini_a4x_bs_tag, consaddr, conspeed,
833 GEMINI_COM_FREQ, COM_TYPE_16550_NOERS, conmode))
834 panic("Serial console can not be initialized.");
835 }
836
837 #elif CONSADDR==0x478003f8
838 # include <arm/gemini/gemini_lpcvar.h>
839 /*
840 * console initialization for lpc com console
841 */
842 void
843 consinit(void)
844 {
845 static int consinit_called = 0;
846 bus_space_tag_t iot = &gemini_bs_tag;
847 bus_space_handle_t lpchc_ioh;
848 bus_space_handle_t lpcio_ioh;
849 bus_size_t sz = L1_S_SIZE;
850 gemini_lpc_softc_t lpcsoftc;
851 gemini_lpc_bus_ops_t *ops;
852 void *lpctag = &lpcsoftc;
853 uint32_t r;
854 extern gemini_lpc_bus_ops_t gemini_lpc_bus_ops;
855
856 ops = &gemini_lpc_bus_ops;
857
858 if (consinit_called != 0)
859 return;
860 consinit_called = 1;
861
862 if (bus_space_map(iot, GEMINI_LPCHC_BASE, sz, 0, &lpchc_ioh))
863 panic("consinit: LPCHC can not be mapped.");
864
865 if (bus_space_map(iot, GEMINI_LPCIO_BASE, sz, 0, &lpcio_ioh))
866 panic("consinit: LPCIO can not be mapped.");
867
868 /* enable the LPC bus */
869 r = bus_space_read_4(iot, lpchc_ioh, GEMINI_LPCHC_CSR);
870 r |= LPCHC_CSR_BEN;
871 bus_space_write_4(iot, lpchc_ioh, GEMINI_LPCHC_CSR, r);
872
873 memset(&lpcsoftc, 0, sizeof(lpcsoftc));
874 lpcsoftc.sc_iot = iot;
875 lpcsoftc.sc_ioh = lpcio_ioh;
876
877 /* activate Serial Port 1 */
878 (*ops->lpc_pnp_enter)(lpctag);
879 (*ops->lpc_pnp_write)(lpctag, 1, 0x30, 0x01);
880 (*ops->lpc_pnp_exit)(lpctag);
881
882 if (comcnattach(iot, consaddr, conspeed,
883 IT8712F_COM_FREQ, COM_TYPE_NORMAL, conmode)) {
884 panic("Serial console can not be initialized.");
885 }
886
887 bus_space_unmap(iot, lpcio_ioh, sz);
888 bus_space_unmap(iot, lpchc_ioh, sz);
889 }
890 #else
891 # error unknown console
892 #endif
893
894 #ifdef KGDB
895 #ifndef KGDB_DEVADDR
896 #error Specify the address of the kgdb UART with the KGDB_DEVADDR option.
897 #endif
898 #ifndef KGDB_DEVRATE
899 #define KGDB_DEVRATE 19200
900 #endif
901
902 #ifndef KGDB_DEVMODE
903 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
904 #endif
905 static const vaddr_t comkgdbaddr = KGDB_DEVADDR;
906 static const int comkgdbspeed = KGDB_DEVRATE;
907 static const int comkgdbmode = KGDB_DEVMODE;
908
909 void
910 static kgdb_port_init(void)
911 {
912 static int kgdbsinit_called = 0;
913
914 if (kgdbsinit_called != 0)
915 return;
916
917 kgdbsinit_called = 1;
918
919 bus_space_handle_t bh;
920 if (bus_space_map(&gemini_a4x_bs_tag, comkgdbaddr,
921 GEMINI_UART_SIZE, 0, &bh))
922 panic("kgdb port can not be mapped.");
923
924 if (com_kgdb_attach(&gemini_a4x_bs_tag, comkgdbaddr, comkgdbspeed,
925 GEMINI_UART_SIZE, COM_TYPE_16550_NOERS, comkgdbmode))
926 panic("KGDB uart can not be initialized.");
927
928 bus_space_unmap(&gemini_a4x_bs_tag, bh, GEMINI_UART_SIZE);
929 }
930 #endif
931
932 static void
933 setup_real_page_tables(void)
934 {
935 /*
936 * We need to allocate some fixed page tables to get the kernel going.
937 *
938 * We are going to allocate our bootstrap pages from the beginning of
939 * the free space that we just calculated. We allocate one page
940 * directory and a number of page tables and store the physical
941 * addresses in the kernel_pt_table array.
942 *
943 * The kernel page directory must be on a 16K boundary. The page
944 * tables must be on 4K boundaries. What we do is allocate the
945 * page directory on the first 16K boundary that we encounter, and
946 * the page tables on 4K boundaries otherwise. Since we allocate
947 * at least 3 L2 page tables, we are guaranteed to encounter at
948 * least one 16K aligned region.
949 */
950
951 #ifdef VERBOSE_INIT_ARM
952 printf("Allocating page tables\n");
953 #endif
954
955 /*
956 * Define a macro to simplify memory allocation. As we allocate the
957 * memory, make sure that we don't walk over our temporary first level
958 * translation table.
959 */
960 #define valloc_pages(var, np) \
961 (var).pv_pa = physical_freestart; \
962 physical_freestart += ((np) * PAGE_SIZE); \
963 if (physical_freestart > (physical_freeend - L1_TABLE_SIZE)) \
964 panic("initarm: out of memory"); \
965 free_pages -= (np); \
966 (var).pv_va = KERN_PHYSTOV((var).pv_pa); \
967 memset((char *)(var).pv_va, 0, ((np) * PAGE_SIZE));
968
969 int loop, pt_index;
970
971 pt_index = 0;
972 kernel_l1pt.pv_pa = 0;
973 kernel_l1pt.pv_va = 0;
974 #ifdef VERBOSE_INIT_ARM
975 printf("%s: physical_freestart %#lx\n", __func__, physical_freestart);
976 #endif
977 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
978 /* Are we 16KB aligned for an L1 ? */
979 if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0
980 && kernel_l1pt.pv_pa == 0) {
981 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
982 } else {
983 valloc_pages(kernel_pt_table[pt_index],
984 L2_TABLE_SIZE / PAGE_SIZE);
985 ++pt_index;
986 }
987 }
988
989 #if (NGEMINIIPM > 0)
990 valloc_pages(ipmq_pt, L2_TABLE_SIZE / PAGE_SIZE);
991 #endif
992
993 #ifdef VERBOSE_INIT_ARM
994 pt_index=0;
995 printf("%s: kernel_l1pt: %#lx:%#lx\n",
996 __func__, kernel_l1pt.pv_va, kernel_l1pt.pv_pa);
997 printf("%s: kernel_pt_table:\n", __func__);
998 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
999 printf("\t%#lx:%#lx\n", kernel_pt_table[pt_index].pv_va,
1000 kernel_pt_table[pt_index].pv_pa);
1001 ++pt_index;
1002 }
1003 #if (NGEMINIIPM > 0)
1004 printf("%s: ipmq_pt:\n", __func__);
1005 printf("\t%#lx:%#lx\n", ipmq_pt.pv_va, ipmq_pt.pv_pa);
1006 #endif
1007 #endif
1008
1009 /* This should never be able to happen but better confirm that. */
1010 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
1011 panic("initarm: Failed to align the kernel page directory");
1012
1013 /*
1014 * Allocate a page for the system page mapped to V0x00000000
1015 * This page will just contain the system vectors and can be
1016 * shared by all processes.
1017 */
1018 valloc_pages(systempage, 1);
1019 systempage.pv_va = ARM_VECTORS_HIGH;
1020
1021 /* Allocate stacks for all modes */
1022 valloc_pages(fiqstack, FIQ_STACK_SIZE);
1023 valloc_pages(irqstack, IRQ_STACK_SIZE);
1024 valloc_pages(abtstack, ABT_STACK_SIZE);
1025 valloc_pages(undstack, UND_STACK_SIZE);
1026 valloc_pages(kernelstack, UPAGES);
1027
1028 /* Allocate the message buffer. */
1029 pv_addr_t msgbuf;
1030 int msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
1031 valloc_pages(msgbuf, msgbuf_pgs);
1032 msgbufphys = msgbuf.pv_pa;
1033
1034 /*
1035 * Ok we have allocated physical pages for the primary kernel
1036 * page tables
1037 */
1038
1039 #ifdef VERBOSE_INIT_ARM
1040 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
1041 #endif
1042
1043 /*
1044 * Now we start construction of the L1 page table
1045 * We start by mapping the L2 page tables into the L1.
1046 * This means that we can replace L1 mappings later on if necessary
1047 */
1048 vaddr_t l1_va = kernel_l1pt.pv_va;
1049 paddr_t l1_pa = kernel_l1pt.pv_pa;
1050
1051 /* Map the L2 pages tables in the L1 page table */
1052 pmap_link_l2pt(l1_va, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
1053 &kernel_pt_table[KERNEL_PT_SYS]);
1054 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
1055 pmap_link_l2pt(l1_va, KERNEL_BASE + loop * 0x00400000,
1056 &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
1057 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
1058 pmap_link_l2pt(l1_va, KERNEL_VM_BASE + loop * 0x00400000,
1059 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
1060
1061 /* update the top of the kernel VM */
1062 pmap_curmaxkvaddr =
1063 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
1064
1065 #if (NGEMINIIPM > 0)
1066 printf("%s:%d: pmap_link_l2pt ipmq_pt\n", __FUNCTION__, __LINE__);
1067 pmap_link_l2pt(l1_va, GEMINI_IPMQ_VBASE, &ipmq_pt);
1068 #endif
1069
1070 #ifdef VERBOSE_INIT_ARM
1071 printf("Mapping kernel\n");
1072 #endif
1073
1074 /* Now we fill in the L2 pagetable for the kernel static code/data */
1075 #define round_L_page(x) (((x) + L2_L_OFFSET) & L2_L_FRAME)
1076 size_t textsize = round_L_page(etext - KERNEL_BASE_virt);
1077 size_t totalsize = round_L_page(_end - KERNEL_BASE_virt);
1078 /* offset of kernel in RAM */
1079 u_int offset = (u_int)KERNEL_BASE_virt - KERNEL_BASE;
1080
1081 #ifdef DDB
1082 /* Map text section read-write. */
1083 offset += pmap_map_chunk(l1_va,
1084 (vaddr_t)KERNEL_BASE + offset,
1085 physical_start + offset, textsize,
1086 VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE,
1087 PTE_CACHE);
1088 #else
1089 /* Map text section read-only. */
1090 offset += pmap_map_chunk(l1_va,
1091 (vaddr_t)KERNEL_BASE + offset,
1092 physical_start + offset, textsize,
1093 VM_PROT_READ|VM_PROT_EXECUTE, PTE_CACHE);
1094 #endif
1095 /* Map data and bss sections read-write. */
1096 offset += pmap_map_chunk(l1_va,
1097 (vaddr_t)KERNEL_BASE + offset,
1098 physical_start + offset, totalsize - textsize,
1099 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1100
1101 #ifdef VERBOSE_INIT_ARM
1102 printf("Constructing L2 page tables\n");
1103 #endif
1104
1105 /* Map the stack pages */
1106 pmap_map_chunk(l1_va, fiqstack.pv_va, fiqstack.pv_pa,
1107 FIQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1108 pmap_map_chunk(l1_va, irqstack.pv_va, irqstack.pv_pa,
1109 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1110 pmap_map_chunk(l1_va, abtstack.pv_va, abtstack.pv_pa,
1111 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1112 pmap_map_chunk(l1_va, undstack.pv_va, undstack.pv_pa,
1113 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1114 pmap_map_chunk(l1_va, kernelstack.pv_va, kernelstack.pv_pa,
1115 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
1116
1117 pmap_map_chunk(l1_va, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
1118 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
1119
1120 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
1121 pmap_map_chunk(l1_va, kernel_pt_table[loop].pv_va,
1122 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
1123 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
1124 }
1125
1126 /* Map the vector page. */
1127 pmap_map_entry(l1_va, ARM_VECTORS_HIGH, systempage.pv_pa,
1128 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1129
1130 #if (NGEMINIIPM > 0)
1131 /* Map the IPM queue l2pt */
1132 pmap_map_chunk(l1_va, ipmq_pt.pv_va, ipmq_pt.pv_pa,
1133 L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
1134
1135 /* Map the IPM queue pages */
1136 pmap_map_chunk(l1_va, GEMINI_IPMQ_VBASE, GEMINI_IPMQ_PBASE,
1137 GEMINI_IPMQ_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1138
1139 #ifdef GEMINI_SLAVE
1140 /*
1141 * Map all memory, incluuding that owned by other core
1142 * take into account the RAM remap, so view in this region
1143 * is consistent with MASTER
1144 */
1145 pmap_map_chunk(l1_va,
1146 GEMINI_ALLMEM_VBASE,
1147 GEMINI_ALLMEM_PBASE + ((GEMINI_ALLMEM_SIZE - MEMSIZE) * 1024 * 1024),
1148 (GEMINI_ALLMEM_SIZE - MEMSIZE) * 1024 * 1024,
1149 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1150 pmap_map_chunk(l1_va,
1151 GEMINI_ALLMEM_VBASE + GEMINI_BUSBASE * 1024 * 1024,
1152 GEMINI_ALLMEM_PBASE,
1153 (MEMSIZE * 1024 * 1024),
1154 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1155 #else
1156 /* Map all memory, incluuding that owned by other core */
1157 pmap_map_chunk(l1_va, GEMINI_ALLMEM_VBASE, GEMINI_ALLMEM_PBASE,
1158 GEMINI_ALLMEM_SIZE * 1024 * 1024, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1159 #endif /* GEMINI_SLAVE */
1160 #endif /* NGEMINIIPM */
1161
1162 /*
1163 * Map integrated peripherals at same address in first level page
1164 * table so that we can continue to use console.
1165 */
1166 pmap_devmap_bootstrap(l1_va, devmap);
1167
1168
1169 #ifdef VERBOSE_INIT_ARM
1170 /* Tell the user about where all the bits and pieces live. */
1171 printf("%22s Physical Virtual Num\n", " ");
1172 printf("%22s Starting Ending Starting Ending Pages\n", " ");
1173
1174 static const char mem_fmt[] =
1175 "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %d\n";
1176 static const char mem_fmt_nov[] =
1177 "%20s: 0x%08lx 0x%08lx %d\n";
1178
1179 printf(mem_fmt, "SDRAM", physical_start, physical_end-1,
1180 KERN_PHYSTOV(physical_start), KERN_PHYSTOV(physical_end-1),
1181 physmem);
1182 printf(mem_fmt, "text section",
1183 KERN_VTOPHYS(KERNEL_BASE_virt), KERN_VTOPHYS(etext-1),
1184 (vaddr_t)KERNEL_BASE_virt, (vaddr_t)etext-1,
1185 (int)(textsize / PAGE_SIZE));
1186 printf(mem_fmt, "data section",
1187 KERN_VTOPHYS(__data_start), KERN_VTOPHYS(_edata),
1188 (vaddr_t)__data_start, (vaddr_t)_edata,
1189 (int)((round_page((vaddr_t)_edata)
1190 - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
1191 printf(mem_fmt, "bss section",
1192 KERN_VTOPHYS(__bss_start), KERN_VTOPHYS(__bss_end__),
1193 (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
1194 (int)((round_page((vaddr_t)__bss_end__)
1195 - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
1196 printf(mem_fmt, "L1 page directory",
1197 kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
1198 kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
1199 L1_TABLE_SIZE / PAGE_SIZE);
1200 printf(mem_fmt, "Exception Vectors",
1201 systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
1202 (vaddr_t)ARM_VECTORS_HIGH, (vaddr_t)ARM_VECTORS_HIGH + PAGE_SIZE - 1,
1203 1);
1204 printf(mem_fmt, "FIQ stack",
1205 fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
1206 fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
1207 FIQ_STACK_SIZE);
1208 printf(mem_fmt, "IRQ stack",
1209 irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
1210 irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
1211 IRQ_STACK_SIZE);
1212 printf(mem_fmt, "ABT stack",
1213 abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
1214 abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
1215 ABT_STACK_SIZE);
1216 printf(mem_fmt, "UND stack",
1217 undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
1218 undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
1219 UND_STACK_SIZE);
1220 printf(mem_fmt, "SVC stack",
1221 kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
1222 kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
1223 UPAGES);
1224 printf(mem_fmt_nov, "Message Buffer",
1225 msgbufphys, msgbufphys + msgbuf_pgs * PAGE_SIZE - 1, msgbuf_pgs);
1226 printf(mem_fmt, "Free Memory", physical_freestart, physical_freeend-1,
1227 KERN_PHYSTOV(physical_freestart), KERN_PHYSTOV(physical_freeend-1),
1228 free_pages);
1229 #endif
1230
1231 /*
1232 * Now we have the real page tables in place so we can switch to them.
1233 * Once this is done we will be running with the REAL kernel page
1234 * tables.
1235 */
1236
1237 /* Switch tables */
1238 #ifdef VERBOSE_INIT_ARM
1239 printf("switching to new L1 page table @%#lx...", l1_pa);
1240 #endif
1241
1242 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
1243 cpu_setttb(l1_pa);
1244 cpu_tlb_flushID();
1245 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
1246
1247 #ifdef VERBOSE_INIT_ARM
1248 printf("OK.\n");
1249 #endif
1250 }
1251