gemini_machdep.c revision 1.20.2.3 1 /* $NetBSD: gemini_machdep.c,v 1.20.2.3 2017/12/03 11:36:04 jdolecek Exp $ */
2
3 /* adapted from:
4 * NetBSD: sdp24xx_machdep.c,v 1.4 2008/08/27 11:03:10 matt Exp
5 */
6
7 /*
8 * Machine dependent functions for kernel setup for TI OSK5912 board.
9 * Based on lubbock_machdep.c which in turn was based on iq80310_machhdep.c
10 *
11 * Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
12 * Written by Hiroyuki Bessho for Genetec Corporation.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. The name of Genetec Corporation may not be used to endorse or
23 * promote products derived from this software without specific prior
24 * written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 *
38 * Copyright (c) 2001 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 *
71 * Copyright (c) 1997,1998 Mark Brinicombe.
72 * Copyright (c) 1997,1998 Causality Limited.
73 * All rights reserved.
74 *
75 * Redistribution and use in source and binary forms, with or without
76 * modification, are permitted provided that the following conditions
77 * are met:
78 * 1. Redistributions of source code must retain the above copyright
79 * notice, this list of conditions and the following disclaimer.
80 * 2. Redistributions in binary form must reproduce the above copyright
81 * notice, this list of conditions and the following disclaimer in the
82 * documentation and/or other materials provided with the distribution.
83 * 3. All advertising materials mentioning features or use of this software
84 * must display the following acknowledgement:
85 * This product includes software developed by Mark Brinicombe
86 * for the NetBSD Project.
87 * 4. The name of the company nor the name of the author may be used to
88 * endorse or promote products derived from this software without specific
89 * prior written permission.
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
92 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
93 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
94 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
95 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
96 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
97 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
98 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
99 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
100 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
101 * SUCH DAMAGE.
102 *
103 * Copyright (c) 2007 Microsoft
104 * All rights reserved.
105 *
106 * Redistribution and use in source and binary forms, with or without
107 * modification, are permitted provided that the following conditions
108 * are met:
109 * 1. Redistributions of source code must retain the above copyright
110 * notice, this list of conditions and the following disclaimer.
111 * 2. Redistributions in binary form must reproduce the above copyright
112 * notice, this list of conditions and the following disclaimer in the
113 * documentation and/or other materials provided with the distribution.
114 * 3. All advertising materials mentioning features or use of this software
115 * must display the following acknowledgement:
116 * This product includes software developed by Microsoft
117 *
118 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
119 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
120 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
121 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
122 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
123 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
124 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
125 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
126 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
127 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
128 * SUCH DAMAGE.
129 */
130
131 #include <sys/cdefs.h>
132 __KERNEL_RCSID(0, "$NetBSD: gemini_machdep.c,v 1.20.2.3 2017/12/03 11:36:04 jdolecek Exp $");
133
134 #include "opt_machdep.h"
135 #include "opt_ddb.h"
136 #include "opt_kgdb.h"
137 #include "opt_ipkdb.h"
138 #include "opt_md.h"
139 #include "opt_com.h"
140 #include "opt_gemini.h"
141 #include "geminiwdt.h"
142 #include "geminiipm.h"
143
144 #include <sys/param.h>
145 #include <sys/device.h>
146 #include <sys/systm.h>
147 #include <sys/kernel.h>
148 #include <sys/exec.h>
149 #include <sys/proc.h>
150 #include <sys/msgbuf.h>
151 #include <sys/reboot.h>
152 #include <sys/termios.h>
153 #include <sys/ksyms.h>
154 #include <sys/bus.h>
155 #include <sys/cpu.h>
156 #include <sys/conf.h>
157
158 #include <uvm/uvm_extern.h>
159
160 #include <dev/cons.h>
161 #include <dev/md.h>
162
163 #include <machine/db_machdep.h>
164 #include <ddb/db_sym.h>
165 #include <ddb/db_extern.h>
166 #ifdef KGDB
167 #include <sys/kgdb.h>
168 #endif
169
170 #include <arm/locore.h>
171 #include <arm/undefined.h>
172
173 #include <arm/arm32/machdep.h>
174
175 #include <machine/bootconfig.h>
176
177 #include <arm/gemini/gemini_reg.h>
178 #include <arm/gemini/gemini_var.h>
179 #include <arm/gemini/gemini_wdtvar.h>
180 #include <arm/gemini/gemini_com.h>
181 #include <arm/gemini/lpc_com.h>
182
183 #include <evbarm/gemini/gemini.h>
184
185 #if defined(VERBOSE_INIT_ARM)
186 # define GEMINI_PUTCHAR(c) gemini_putchar(c)
187 # define GEMINI_PUTHEX(n) gemini_puthex(n)
188 #else /* VERBOSE_INIT_ARM */
189 # define GEMINI_PUTCHAR(c)
190 # define GEMINI_PUTHEX(n)
191 #endif /* VERBOSE_INIT_ARM */
192
193 BootConfig bootconfig; /* Boot config storage */
194 char *boot_args = NULL;
195 char *boot_file = NULL;
196
197 /* Physical address of the beginning of SDRAM. */
198 paddr_t physical_start;
199 /* Physical address of the first byte after the end of SDRAM. */
200 paddr_t physical_end;
201
202 /* Same things, but for the free (unused by the kernel) memory. */
203 static paddr_t physical_freestart, physical_freeend;
204 static u_int free_pages;
205
206 /* Physical address of the message buffer. */
207 paddr_t msgbufphys;
208
209 extern char KERNEL_BASE_phys[];
210 extern char KERNEL_BASE_virt[];
211 extern char etext[], __data_start[], _edata[], __bss_start[], __bss_end__[];
212 extern char _end[];
213
214 #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
215 #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
216 #define KERNEL_PT_KERNEL_NUM 4
217 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
218 /* Page tables for mapping kernel VM */
219 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
220 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
221
222 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
223
224
225 #if (NGEMINIIPM > 0)
226 pv_addr_t ipmq_pt; /* L2 Page table for mapping IPM queues */
227 #if defined(DEBUG) || 1
228 unsigned long gemini_ipmq_pbase = GEMINI_IPMQ_PBASE;
229 unsigned long gemini_ipmq_vbase = GEMINI_IPMQ_VBASE;
230 #endif /* DEBUG */
231 #endif /* NGEMINIIPM > 0 */
232
233
234 /*
235 * Macros to translate between physical and virtual for a subset of the
236 * kernel address space. *Not* for general use.
237 */
238 #define KERNEL_BASE_PHYS ((paddr_t)&KERNEL_BASE_phys)
239
240 #define KERN_VTOPHYS(va) \
241 ((paddr_t)((vaddr_t)va - KERNEL_BASE + GEMINI_DRAM_BASE))
242 #define KERN_PHYSTOV(pa) \
243 ((vaddr_t)((paddr_t)pa - GEMINI_DRAM_BASE + KERNEL_BASE))
244
245 /* Prototypes */
246
247 void gemini_intr_init(bus_space_tag_t);
248 void consinit(void);
249 #ifdef KGDB
250 static void kgdb_port_init(void);
251 #endif
252
253 static void setup_real_page_tables(void);
254 static void init_clocks(void);
255
256 bs_protos(bs_notimpl);
257
258 #include "com.h"
259 #if NCOM > 0
260 #include <dev/ic/comreg.h>
261 #include <dev/ic/comvar.h>
262 #endif
263
264
265 static void gemini_global_reset(void) __attribute__ ((noreturn));
266 static void gemini_cpu1_start(void);
267 static void gemini_memchk(void);
268
269 static void
270 gemini_global_reset(void)
271 {
272 #if defined(GEMINI_MASTER) || defined(GEMINI_SINGLE)
273 volatile uint32_t *rp;
274 uint32_t r;
275
276 rp = (volatile uint32_t *)
277 (GEMINI_GLOBAL_VBASE + GEMINI_GLOBAL_RESET_CTL);
278 r = *rp;
279 r |= GLOBAL_RESET_GLOBAL;
280 *rp = r;
281 #endif
282 for(;;);
283 /* NOTREACHED */
284 }
285
286 static void
287 gemini_cpu1_start(void)
288 {
289 #ifdef GEMINI_MASTER
290 volatile uint32_t *rp;
291 uint32_t r;
292
293 rp = (volatile uint32_t *)
294 (GEMINI_GLOBAL_VBASE + GEMINI_GLOBAL_RESET_CTL);
295 r = *rp;
296 r &= ~GLOBAL_RESET_CPU1;
297 *rp = r;
298 #endif
299 }
300
301 static void
302 gemini_memchk(void)
303 {
304 volatile uint32_t *rp;
305 uint32_t r;
306 uint32_t base;
307 uint32_t size;
308
309 rp = (volatile uint32_t *)
310 (GEMINI_DRAMC_VBASE + GEMINI_DRAMC_RMCR);
311 r = *rp;
312 base = (r & DRAMC_RMCR_RMBAR) >> DRAMC_RMCR_RMBAR_SHFT;
313 size = (r & DRAMC_RMCR_RMSZR) >> DRAMC_RMCR_RMSZR_SHFT;
314 #if defined(GEMINI_SINGLE)
315 if (r != 0)
316 panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
317 __FUNCTION__, r, MEMSIZE);
318 #elif defined(GEMINI_MASTER)
319 if (base != MEMSIZE)
320 panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
321 __FUNCTION__, r, MEMSIZE);
322 #elif defined(GEMINI_SLAVE)
323 if (size != MEMSIZE)
324 panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
325 __FUNCTION__, r, MEMSIZE);
326 #endif
327 #if defined(VERBOSE_INIT_ARM) || 1
328 printf("DRAM Remap: base=%dMB, size=%dMB\n", base, size);
329 #endif
330 }
331
332 /*
333 * void cpu_reboot(int howto, char *bootstr)
334 *
335 * Reboots the system
336 *
337 * Deal with any syncing, unmounting, dumping and shutdown hooks,
338 * then reset the CPU.
339 */
340 void
341 cpu_reboot(int howto, char *bootstr)
342 {
343 extern struct geminitmr_softc *ref_sc;
344
345 #ifdef DIAGNOSTIC
346 /* info */
347 printf("boot: howto=%08x curproc=%p\n", howto, curproc);
348 #endif
349
350 /*
351 * If we are still cold then hit the air brakes
352 * and crash to earth fast
353 */
354 if (cold) {
355 doshutdownhooks();
356 pmf_system_shutdown(boothowto);
357 printf("The operating system has halted.\n");
358 printf("Please press any key to reboot.\n\n");
359 cngetc();
360 printf("rebooting...\n");
361 if (ref_sc != NULL)
362 delay(2000); /* cnflush(); */
363 gemini_global_reset();
364 /*NOTREACHED*/
365 }
366
367 /* Disable console buffering */
368 cnpollc(1);
369
370 /*
371 * If RB_NOSYNC was not specified sync the discs.
372 * Note: Unless cold is set to 1 here, syslogd will die during the
373 * unmount. It looks like syslogd is getting woken up only to find
374 * that it cannot page part of the binary in as the filesystem has
375 * been unmounted.
376 */
377 if (!(howto & RB_NOSYNC))
378 bootsync();
379
380 /* Say NO to interrupts */
381 splhigh();
382
383 /* Do a dump if requested. */
384 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
385 dumpsys();
386
387 /* Run any shutdown hooks */
388 doshutdownhooks();
389
390 pmf_system_shutdown(boothowto);
391
392 /* Make sure IRQ's are disabled */
393 IRQdisable;
394
395 if (howto & RB_HALT) {
396 printf("The operating system has halted.\n");
397 printf("Please press any key to reboot.\n\n");
398 cngetc();
399 }
400
401 printf("rebooting...\n");
402 if (ref_sc != NULL)
403 delay(2000); /* cnflush(); */
404 gemini_global_reset();
405 /*NOTREACHED*/
406 }
407
408 /*
409 * Static device mappings. These peripheral registers are mapped at
410 * fixed virtual addresses very early in initarm() so that we can use
411 * them while booting the kernel, and stay at the same address
412 * throughout whole kernel's life time.
413 *
414 * We use this table twice; once with bootstrap page table, and once
415 * with kernel's page table which we build up in initarm().
416 *
417 * Since we map these registers into the bootstrap page table using
418 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
419 * registers segment-aligned and segment-rounded in order to avoid
420 * using the 2nd page tables.
421 */
422
423 #define _A(a) ((a) & ~L1_S_OFFSET)
424 #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
425
426 static const struct pmap_devmap devmap[] = {
427 /* Global regs */
428 {
429 .pd_va = _A(GEMINI_GLOBAL_VBASE),
430 .pd_pa = _A(GEMINI_GLOBAL_BASE),
431 .pd_size = _S(L1_S_SIZE),
432 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
433 .pd_cache = PTE_NOCACHE
434 },
435
436 /* Watchdog */
437 {
438 .pd_va = _A(GEMINI_WATCHDOG_VBASE),
439 .pd_pa = _A(GEMINI_WATCHDOG_BASE),
440 .pd_size = _S(L1_S_SIZE),
441 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
442 .pd_cache = PTE_NOCACHE
443 },
444
445 /* UART */
446 {
447 .pd_va = _A(GEMINI_UART_VBASE),
448 .pd_pa = _A(GEMINI_UART_BASE),
449 .pd_size = _S(L1_S_SIZE),
450 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
451 .pd_cache = PTE_NOCACHE
452 },
453
454 /* LPCHC */
455 {
456 .pd_va = _A(GEMINI_LPCHC_VBASE),
457 .pd_pa = _A(GEMINI_LPCHC_BASE),
458 .pd_size = _S(L1_S_SIZE),
459 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
460 .pd_cache = PTE_NOCACHE
461 },
462
463 /* LPCIO */
464 {
465 .pd_va = _A(GEMINI_LPCIO_VBASE),
466 .pd_pa = _A(GEMINI_LPCIO_BASE),
467 .pd_size = _S(L1_S_SIZE),
468 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
469 .pd_cache = PTE_NOCACHE
470 },
471
472 /* Timers */
473 {
474 .pd_va = _A(GEMINI_TIMER_VBASE),
475 .pd_pa = _A(GEMINI_TIMER_BASE),
476 .pd_size = _S(L1_S_SIZE),
477 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
478 .pd_cache = PTE_NOCACHE
479 },
480
481 /* DRAM Controller */
482 {
483 .pd_va = _A(GEMINI_DRAMC_VBASE),
484 .pd_pa = _A(GEMINI_DRAMC_BASE),
485 .pd_size = _S(L1_S_SIZE),
486 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
487 .pd_cache = PTE_NOCACHE
488 },
489
490 #if defined(MEMORY_DISK_DYNAMIC)
491 /* Ramdisk */
492 {
493 .pd_va = _A(GEMINI_RAMDISK_VBASE),
494 .pd_pa = _A(GEMINI_RAMDISK_PBASE),
495 .pd_size = _S(GEMINI_RAMDISK_SIZE),
496 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
497 .pd_cache = PTE_NOCACHE
498 },
499 #endif
500
501 {0} /* list terminator */
502 };
503
504 #undef _A
505 #undef _S
506
507 #ifdef DDB
508 static void gemini_db_trap(int where)
509 {
510 #if NGEMINIWDT > 0
511 static int oldwatchdogstate;
512
513 if (where) {
514 oldwatchdogstate = geminiwdt_enable(0);
515 } else {
516 geminiwdt_enable(oldwatchdogstate);
517 }
518 #endif
519 }
520 #endif
521
522 #if defined(VERBOSE_INIT_ARM) || 1
523 void gemini_putchar(char c);
524 void
525 gemini_putchar(char c)
526 {
527 unsigned char *com0addr = (unsigned char *)GEMINI_UART_VBASE;
528 int timo = 150000;
529
530 while ((com0addr[COM_REG_LSR * 4] & LSR_TXRDY) == 0)
531 if (--timo == 0)
532 break;
533
534 com0addr[COM_REG_TXDATA] = c;
535
536 while ((com0addr[COM_REG_LSR * 4] & LSR_TSRE) == 0)
537 if (--timo == 0)
538 break;
539 }
540
541 void gemini_puthex(unsigned int);
542 void
543 gemini_puthex(unsigned int val)
544 {
545 char hexc[] = "0123456789abcdef";
546
547 gemini_putchar('0');
548 gemini_putchar('x');
549 gemini_putchar(hexc[(val >> 28) & 0xf]);
550 gemini_putchar(hexc[(val >> 24) & 0xf]);
551 gemini_putchar(hexc[(val >> 20) & 0xf]);
552 gemini_putchar(hexc[(val >> 16) & 0xf]);
553 gemini_putchar(hexc[(val >> 12) & 0xf]);
554 gemini_putchar(hexc[(val >> 8) & 0xf]);
555 gemini_putchar(hexc[(val >> 4) & 0xf]);
556 gemini_putchar(hexc[(val >> 0) & 0xf]);
557 }
558 #endif /* VERBOSE_INIT_ARM */
559
560 /*
561 * u_int initarm(...)
562 *
563 * Initial entry point on startup. This gets called before main() is
564 * entered.
565 * It should be responsible for setting up everything that must be
566 * in place when main is called.
567 * This includes
568 * Taking a copy of the boot configuration structure.
569 * Initialising the physical console so characters can be printed.
570 * Setting up page tables for the kernel
571 * Relocating the kernel to the bottom of physical memory
572 */
573 u_int
574 initarm(void *arg)
575 {
576 GEMINI_PUTCHAR('0');
577
578 /*
579 * start cpu#1 now
580 */
581 gemini_cpu1_start();
582
583 /*
584 * When we enter here, we are using a temporary first level
585 * translation table with section entries in it to cover the OBIO
586 * peripherals and SDRAM. The temporary first level translation table
587 * is at the end of SDRAM.
588 */
589
590 /* Heads up ... Setup the CPU / MMU / TLB functions. */
591 GEMINI_PUTCHAR('1');
592 if (set_cpufuncs())
593 panic("cpu not recognized!");
594
595 GEMINI_PUTCHAR('2');
596 init_clocks();
597 GEMINI_PUTCHAR('3');
598
599 /* The console is going to try to map things. Give pmap a devmap. */
600 pmap_devmap_register(devmap);
601 GEMINI_PUTCHAR('4');
602 consinit();
603 GEMINI_PUTCHAR('5');
604 #ifdef KGDB
605 kgdb_port_init();
606 #endif
607
608 /* Talk to the user */
609 printf("\nNetBSD/evbarm (gemini) booting ...\n");
610
611 #ifdef BOOT_ARGS
612 char mi_bootargs[] = BOOT_ARGS;
613 parse_mi_bootargs(mi_bootargs);
614 #endif
615
616 #ifdef VERBOSE_INIT_ARM
617 printf("initarm: Configuring system ...\n");
618 #endif
619
620 /*
621 * Set up the variables that define the availability of physical
622 * memory.
623 */
624 gemini_memchk();
625 physical_start = GEMINI_DRAM_BASE;
626 #define MEMSIZE_BYTES (MEMSIZE * 1024 * 1024)
627 physical_end = (physical_start & ~(0x400000-1)) + MEMSIZE_BYTES;
628 physmem = (physical_end - physical_start) / PAGE_SIZE;
629
630 /* Fake bootconfig structure for the benefit of pmap.c. */
631 bootconfig.dramblocks = 1;
632 bootconfig.dram[0].address = physical_start;
633 bootconfig.dram[0].pages = physmem;
634
635 /*
636 * Our kernel is at the beginning of memory, so set our free space to
637 * all the memory after the kernel.
638 */
639 physical_freestart = KERN_VTOPHYS(round_page((vaddr_t) _end));
640 physical_freeend = physical_end;
641 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
642
643 /*
644 * This is going to do all the hard work of setting up the first and
645 * and second level page tables. Pages of memory will be allocated
646 * and mapped for other structures that are required for system
647 * operation. When it returns, physical_freestart and free_pages will
648 * have been updated to reflect the allocations that were made. In
649 * addition, kernel_l1pt, kernel_pt_table[], systempage, irqstack,
650 * abtstack, undstack, kernelstack, msgbufphys will be set to point to
651 * the memory that was allocated for them.
652 */
653 setup_real_page_tables();
654
655 /*
656 * Moved from cpu_startup() as data_abort_handler() references
657 * this during uvm init.
658 */
659 uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
660
661 #ifdef VERBOSE_INIT_ARM
662 printf("bootstrap done.\n");
663 #endif
664
665 arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
666
667 /*
668 * Pages were allocated during the secondary bootstrap for the
669 * stacks for different CPU modes.
670 * We must now set the r13 registers in the different CPU modes to
671 * point to these stacks.
672 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
673 * of the stack memory.
674 */
675 #ifdef VERBOSE_INIT_ARM
676 printf("init subsystems: stacks ");
677 #endif
678
679 set_stackptr(PSR_FIQ32_MODE, fiqstack.pv_va + FIQ_STACK_SIZE * PAGE_SIZE);
680 set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
681 set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
682 set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
683
684 /*
685 * Well we should set a data abort handler.
686 * Once things get going this will change as we will need a proper
687 * handler.
688 * Until then we will use a handler that just panics but tells us
689 * why.
690 * Initialisation of the vectors will just panic on a data abort.
691 * This just fills in a slightly better one.
692 */
693 #ifdef VERBOSE_INIT_ARM
694 printf("vectors ");
695 #endif
696 data_abort_handler_address = (u_int)data_abort_handler;
697 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
698 undefined_handler_address = (u_int)undefinedinstruction_bounce;
699
700 /* Initialise the undefined instruction handlers */
701 #ifdef VERBOSE_INIT_ARM
702 printf("undefined ");
703 #endif
704 undefined_init();
705
706 /* Load memory into UVM. */
707 #ifdef VERBOSE_INIT_ARM
708 printf("page ");
709 #endif
710 uvm_md_init();
711
712 #if (GEMINI_RAM_RESV_PBASE != 0)
713 uvm_page_physload(atop(physical_freestart), atop(GEMINI_RAM_RESV_PBASE),
714 atop(physical_freestart), atop(GEMINI_RAM_RESV_PBASE),
715 VM_FREELIST_DEFAULT);
716 uvm_page_physload(atop(GEMINI_RAM_RESV_PEND), atop(physical_freeend),
717 atop(GEMINI_RAM_RESV_PEND), atop(physical_freeend),
718 VM_FREELIST_DEFAULT);
719 #else
720 uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
721 atop(physical_freestart), atop(physical_freeend),
722 VM_FREELIST_DEFAULT);
723 #endif
724 uvm_page_physload(atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys),
725 atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys),
726 VM_FREELIST_DEFAULT);
727
728 /* Boot strap pmap telling it where the kernel page table is */
729 #ifdef VERBOSE_INIT_ARM
730 printf("pmap ");
731 #endif
732 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
733
734 #ifdef VERBOSE_INIT_ARM
735 printf("done.\n");
736 #endif
737
738 #ifdef IPKDB
739 /* Initialise ipkdb */
740 ipkdb_init();
741 if (boothowto & RB_KDB)
742 ipkdb_connect(0);
743 #endif
744
745 #if defined(MEMORY_DISK_DYNAMIC)
746 md_root_setconf((char *)GEMINI_RAMDISK_VBASE, GEMINI_RAMDISK_SIZE);
747 #endif
748
749 #ifdef KGDB
750 if (boothowto & RB_KDB) {
751 kgdb_debug_init = 1;
752 kgdb_connect(1);
753 }
754 #endif
755
756 #ifdef DDB
757 db_trap_callback = gemini_db_trap;
758 db_machine_init();
759
760 /* Firmware doesn't load symbols. */
761 ddb_init(0, NULL, NULL);
762
763 if (boothowto & RB_KDB)
764 Debugger();
765 #endif
766 printf("initarm done.\n");
767
768 /* We return the new stack pointer address */
769 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
770 }
771
772 static void
773 init_clocks(void)
774 {
775 }
776
777 #ifndef CONSADDR
778 #error Specify the address of the console UART with the CONSADDR option.
779 #endif
780 #ifndef CONSPEED
781 #define CONSPEED 19200
782 #endif
783 #ifndef CONMODE
784 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
785 #endif
786
787 static const bus_addr_t consaddr = CONSADDR;
788 static const int conspeed = CONSPEED;
789 static const int conmode = CONMODE;
790
791 #if CONSADDR==0x42000000
792 /*
793 * console initialization for obio com console
794 */
795 void
796 consinit(void)
797 {
798 static int consinit_called = 0;
799
800 if (consinit_called != 0)
801 return;
802 consinit_called = 1;
803
804 if (comcnattach(&gemini_a4x_bs_tag, consaddr, conspeed,
805 GEMINI_COM_FREQ, COM_TYPE_16550_NOERS, conmode))
806 panic("Serial console can not be initialized.");
807 }
808
809 #elif CONSADDR==0x478003f8
810 # include <arm/gemini/gemini_lpcvar.h>
811 /*
812 * console initialization for lpc com console
813 */
814 void
815 consinit(void)
816 {
817 static int consinit_called = 0;
818 bus_space_tag_t iot = &gemini_bs_tag;
819 bus_space_handle_t lpchc_ioh;
820 bus_space_handle_t lpcio_ioh;
821 bus_size_t sz = L1_S_SIZE;
822 gemini_lpc_softc_t lpcsoftc;
823 gemini_lpc_bus_ops_t *ops;
824 void *lpctag = &lpcsoftc;
825 uint32_t r;
826 extern gemini_lpc_bus_ops_t gemini_lpc_bus_ops;
827
828 ops = &gemini_lpc_bus_ops;
829
830 if (consinit_called != 0)
831 return;
832 consinit_called = 1;
833
834 if (bus_space_map(iot, GEMINI_LPCHC_BASE, sz, 0, &lpchc_ioh))
835 panic("consinit: LPCHC can not be mapped.");
836
837 if (bus_space_map(iot, GEMINI_LPCIO_BASE, sz, 0, &lpcio_ioh))
838 panic("consinit: LPCIO can not be mapped.");
839
840 /* enable the LPC bus */
841 r = bus_space_read_4(iot, lpchc_ioh, GEMINI_LPCHC_CSR);
842 r |= LPCHC_CSR_BEN;
843 bus_space_write_4(iot, lpchc_ioh, GEMINI_LPCHC_CSR, r);
844
845 memset(&lpcsoftc, 0, sizeof(lpcsoftc));
846 lpcsoftc.sc_iot = iot;
847 lpcsoftc.sc_ioh = lpcio_ioh;
848
849 /* activate Serial Port 1 */
850 (*ops->lpc_pnp_enter)(lpctag);
851 (*ops->lpc_pnp_write)(lpctag, 1, 0x30, 0x01);
852 (*ops->lpc_pnp_exit)(lpctag);
853
854 if (comcnattach(iot, consaddr, conspeed,
855 IT8712F_COM_FREQ, COM_TYPE_NORMAL, conmode)) {
856 panic("Serial console can not be initialized.");
857 }
858
859 bus_space_unmap(iot, lpcio_ioh, sz);
860 bus_space_unmap(iot, lpchc_ioh, sz);
861 }
862 #else
863 # error unknown console
864 #endif
865
866 #ifdef KGDB
867 #ifndef KGDB_DEVADDR
868 #error Specify the address of the kgdb UART with the KGDB_DEVADDR option.
869 #endif
870 #ifndef KGDB_DEVRATE
871 #define KGDB_DEVRATE 19200
872 #endif
873
874 #ifndef KGDB_DEVMODE
875 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
876 #endif
877 static const vaddr_t comkgdbaddr = KGDB_DEVADDR;
878 static const int comkgdbspeed = KGDB_DEVRATE;
879 static const int comkgdbmode = KGDB_DEVMODE;
880
881 void
882 static kgdb_port_init(void)
883 {
884 static int kgdbsinit_called = 0;
885
886 if (kgdbsinit_called != 0)
887 return;
888
889 kgdbsinit_called = 1;
890
891 bus_space_handle_t bh;
892 if (bus_space_map(&gemini_a4x_bs_tag, comkgdbaddr,
893 GEMINI_UART_SIZE, 0, &bh))
894 panic("kgdb port can not be mapped.");
895
896 if (com_kgdb_attach(&gemini_a4x_bs_tag, comkgdbaddr, comkgdbspeed,
897 GEMINI_UART_SIZE, COM_TYPE_16550_NOERS, comkgdbmode))
898 panic("KGDB uart can not be initialized.");
899
900 bus_space_unmap(&gemini_a4x_bs_tag, bh, GEMINI_UART_SIZE);
901 }
902 #endif
903
904 static void
905 setup_real_page_tables(void)
906 {
907 /*
908 * We need to allocate some fixed page tables to get the kernel going.
909 *
910 * We are going to allocate our bootstrap pages from the beginning of
911 * the free space that we just calculated. We allocate one page
912 * directory and a number of page tables and store the physical
913 * addresses in the kernel_pt_table array.
914 *
915 * The kernel page directory must be on a 16K boundary. The page
916 * tables must be on 4K boundaries. What we do is allocate the
917 * page directory on the first 16K boundary that we encounter, and
918 * the page tables on 4K boundaries otherwise. Since we allocate
919 * at least 3 L2 page tables, we are guaranteed to encounter at
920 * least one 16K aligned region.
921 */
922
923 #ifdef VERBOSE_INIT_ARM
924 printf("Allocating page tables\n");
925 #endif
926
927 /*
928 * Define a macro to simplify memory allocation. As we allocate the
929 * memory, make sure that we don't walk over our temporary first level
930 * translation table.
931 */
932 #define valloc_pages(var, np) \
933 (var).pv_pa = physical_freestart; \
934 physical_freestart += ((np) * PAGE_SIZE); \
935 if (physical_freestart > (physical_freeend - L1_TABLE_SIZE)) \
936 panic("initarm: out of memory"); \
937 free_pages -= (np); \
938 (var).pv_va = KERN_PHYSTOV((var).pv_pa); \
939 memset((char *)(var).pv_va, 0, ((np) * PAGE_SIZE));
940
941 int loop, pt_index;
942
943 pt_index = 0;
944 kernel_l1pt.pv_pa = 0;
945 kernel_l1pt.pv_va = 0;
946 #ifdef VERBOSE_INIT_ARM
947 printf("%s: physical_freestart %#lx\n", __func__, physical_freestart);
948 #endif
949 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
950 /* Are we 16KB aligned for an L1 ? */
951 if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0
952 && kernel_l1pt.pv_pa == 0) {
953 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
954 } else {
955 valloc_pages(kernel_pt_table[pt_index],
956 L2_TABLE_SIZE / PAGE_SIZE);
957 ++pt_index;
958 }
959 }
960
961 #if (NGEMINIIPM > 0)
962 valloc_pages(ipmq_pt, L2_TABLE_SIZE / PAGE_SIZE);
963 #endif
964
965 #ifdef VERBOSE_INIT_ARM
966 pt_index=0;
967 printf("%s: kernel_l1pt: %#lx:%#lx\n",
968 __func__, kernel_l1pt.pv_va, kernel_l1pt.pv_pa);
969 printf("%s: kernel_pt_table:\n", __func__);
970 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
971 printf("\t%#lx:%#lx\n", kernel_pt_table[pt_index].pv_va,
972 kernel_pt_table[pt_index].pv_pa);
973 ++pt_index;
974 }
975 #if (NGEMINIIPM > 0)
976 printf("%s: ipmq_pt:\n", __func__);
977 printf("\t%#lx:%#lx\n", ipmq_pt.pv_va, ipmq_pt.pv_pa);
978 #endif
979 #endif
980
981 /* This should never be able to happen but better confirm that. */
982 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
983 panic("initarm: Failed to align the kernel page directory");
984
985 /*
986 * Allocate a page for the system page mapped to V0x00000000
987 * This page will just contain the system vectors and can be
988 * shared by all processes.
989 */
990 valloc_pages(systempage, 1);
991 systempage.pv_va = ARM_VECTORS_HIGH;
992
993 /* Allocate stacks for all modes */
994 valloc_pages(fiqstack, FIQ_STACK_SIZE);
995 valloc_pages(irqstack, IRQ_STACK_SIZE);
996 valloc_pages(abtstack, ABT_STACK_SIZE);
997 valloc_pages(undstack, UND_STACK_SIZE);
998 valloc_pages(kernelstack, UPAGES);
999
1000 /* Allocate the message buffer. */
1001 pv_addr_t msgbuf;
1002 int msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
1003 valloc_pages(msgbuf, msgbuf_pgs);
1004 msgbufphys = msgbuf.pv_pa;
1005
1006 /*
1007 * Ok we have allocated physical pages for the primary kernel
1008 * page tables
1009 */
1010
1011 #ifdef VERBOSE_INIT_ARM
1012 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
1013 #endif
1014
1015 /*
1016 * Now we start construction of the L1 page table
1017 * We start by mapping the L2 page tables into the L1.
1018 * This means that we can replace L1 mappings later on if necessary
1019 */
1020 vaddr_t l1_va = kernel_l1pt.pv_va;
1021 paddr_t l1_pa = kernel_l1pt.pv_pa;
1022
1023 /* Map the L2 pages tables in the L1 page table */
1024 pmap_link_l2pt(l1_va, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
1025 &kernel_pt_table[KERNEL_PT_SYS]);
1026 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
1027 pmap_link_l2pt(l1_va, KERNEL_BASE + loop * 0x00400000,
1028 &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
1029 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
1030 pmap_link_l2pt(l1_va, KERNEL_VM_BASE + loop * 0x00400000,
1031 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
1032
1033 /* update the top of the kernel VM */
1034 pmap_curmaxkvaddr =
1035 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
1036
1037 #if (NGEMINIIPM > 0)
1038 printf("%s:%d: pmap_link_l2pt ipmq_pt\n", __FUNCTION__, __LINE__);
1039 pmap_link_l2pt(l1_va, GEMINI_IPMQ_VBASE, &ipmq_pt);
1040 #endif
1041
1042 #ifdef VERBOSE_INIT_ARM
1043 printf("Mapping kernel\n");
1044 #endif
1045
1046 /* Now we fill in the L2 pagetable for the kernel static code/data */
1047 #define round_L_page(x) (((x) + L2_L_OFFSET) & L2_L_FRAME)
1048 size_t textsize = round_L_page(etext - KERNEL_BASE_virt);
1049 size_t totalsize = round_L_page(_end - KERNEL_BASE_virt);
1050 /* offset of kernel in RAM */
1051 u_int offset = (u_int)KERNEL_BASE_virt - KERNEL_BASE;
1052
1053 #ifdef DDB
1054 /* Map text section read-write. */
1055 offset += pmap_map_chunk(l1_va,
1056 (vaddr_t)KERNEL_BASE + offset,
1057 physical_start + offset, textsize,
1058 VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE,
1059 PTE_CACHE);
1060 #else
1061 /* Map text section read-only. */
1062 offset += pmap_map_chunk(l1_va,
1063 (vaddr_t)KERNEL_BASE + offset,
1064 physical_start + offset, textsize,
1065 VM_PROT_READ|VM_PROT_EXECUTE, PTE_CACHE);
1066 #endif
1067 /* Map data and bss sections read-write. */
1068 offset += pmap_map_chunk(l1_va,
1069 (vaddr_t)KERNEL_BASE + offset,
1070 physical_start + offset, totalsize - textsize,
1071 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1072
1073 #ifdef VERBOSE_INIT_ARM
1074 printf("Constructing L2 page tables\n");
1075 #endif
1076
1077 /* Map the stack pages */
1078 pmap_map_chunk(l1_va, fiqstack.pv_va, fiqstack.pv_pa,
1079 FIQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1080 pmap_map_chunk(l1_va, irqstack.pv_va, irqstack.pv_pa,
1081 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1082 pmap_map_chunk(l1_va, abtstack.pv_va, abtstack.pv_pa,
1083 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1084 pmap_map_chunk(l1_va, undstack.pv_va, undstack.pv_pa,
1085 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1086 pmap_map_chunk(l1_va, kernelstack.pv_va, kernelstack.pv_pa,
1087 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
1088
1089 pmap_map_chunk(l1_va, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
1090 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
1091
1092 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
1093 pmap_map_chunk(l1_va, kernel_pt_table[loop].pv_va,
1094 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
1095 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
1096 }
1097
1098 /* Map the vector page. */
1099 pmap_map_entry(l1_va, ARM_VECTORS_HIGH, systempage.pv_pa,
1100 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1101
1102 #if (NGEMINIIPM > 0)
1103 /* Map the IPM queue l2pt */
1104 pmap_map_chunk(l1_va, ipmq_pt.pv_va, ipmq_pt.pv_pa,
1105 L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
1106
1107 /* Map the IPM queue pages */
1108 pmap_map_chunk(l1_va, GEMINI_IPMQ_VBASE, GEMINI_IPMQ_PBASE,
1109 GEMINI_IPMQ_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1110
1111 #ifdef GEMINI_SLAVE
1112 /*
1113 * Map all memory, incluuding that owned by other core
1114 * take into account the RAM remap, so view in this region
1115 * is consistent with MASTER
1116 */
1117 pmap_map_chunk(l1_va,
1118 GEMINI_ALLMEM_VBASE,
1119 GEMINI_ALLMEM_PBASE + ((GEMINI_ALLMEM_SIZE - MEMSIZE) * 1024 * 1024),
1120 (GEMINI_ALLMEM_SIZE - MEMSIZE) * 1024 * 1024,
1121 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1122 pmap_map_chunk(l1_va,
1123 GEMINI_ALLMEM_VBASE + GEMINI_BUSBASE * 1024 * 1024,
1124 GEMINI_ALLMEM_PBASE,
1125 (MEMSIZE * 1024 * 1024),
1126 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1127 #else
1128 /* Map all memory, incluuding that owned by other core */
1129 pmap_map_chunk(l1_va, GEMINI_ALLMEM_VBASE, GEMINI_ALLMEM_PBASE,
1130 GEMINI_ALLMEM_SIZE * 1024 * 1024, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1131 #endif /* GEMINI_SLAVE */
1132 #endif /* NGEMINIIPM */
1133
1134 /*
1135 * Map integrated peripherals at same address in first level page
1136 * table so that we can continue to use console.
1137 */
1138 pmap_devmap_bootstrap(l1_va, devmap);
1139
1140
1141 #ifdef VERBOSE_INIT_ARM
1142 /* Tell the user about where all the bits and pieces live. */
1143 printf("%22s Physical Virtual Num\n", " ");
1144 printf("%22s Starting Ending Starting Ending Pages\n", " ");
1145
1146 static const char mem_fmt[] =
1147 "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %d\n";
1148 static const char mem_fmt_nov[] =
1149 "%20s: 0x%08lx 0x%08lx %d\n";
1150
1151 printf(mem_fmt, "SDRAM", physical_start, physical_end-1,
1152 KERN_PHYSTOV(physical_start), KERN_PHYSTOV(physical_end-1),
1153 (int)physmem);
1154 printf(mem_fmt, "text section",
1155 KERN_VTOPHYS(KERNEL_BASE_virt), KERN_VTOPHYS(etext-1),
1156 (vaddr_t)KERNEL_BASE_virt, (vaddr_t)etext-1,
1157 (int)(textsize / PAGE_SIZE));
1158 printf(mem_fmt, "data section",
1159 KERN_VTOPHYS(__data_start), KERN_VTOPHYS(_edata),
1160 (vaddr_t)__data_start, (vaddr_t)_edata,
1161 (int)((round_page((vaddr_t)_edata)
1162 - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
1163 printf(mem_fmt, "bss section",
1164 KERN_VTOPHYS(__bss_start), KERN_VTOPHYS(__bss_end__),
1165 (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
1166 (int)((round_page((vaddr_t)__bss_end__)
1167 - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
1168 printf(mem_fmt, "L1 page directory",
1169 kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
1170 kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
1171 L1_TABLE_SIZE / PAGE_SIZE);
1172 printf(mem_fmt, "Exception Vectors",
1173 systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
1174 (vaddr_t)ARM_VECTORS_HIGH, (vaddr_t)ARM_VECTORS_HIGH + PAGE_SIZE - 1,
1175 1);
1176 printf(mem_fmt, "FIQ stack",
1177 fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
1178 fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
1179 FIQ_STACK_SIZE);
1180 printf(mem_fmt, "IRQ stack",
1181 irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
1182 irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
1183 IRQ_STACK_SIZE);
1184 printf(mem_fmt, "ABT stack",
1185 abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
1186 abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
1187 ABT_STACK_SIZE);
1188 printf(mem_fmt, "UND stack",
1189 undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
1190 undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
1191 UND_STACK_SIZE);
1192 printf(mem_fmt, "SVC stack",
1193 kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
1194 kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
1195 UPAGES);
1196 printf(mem_fmt_nov, "Message Buffer",
1197 msgbufphys, msgbufphys + msgbuf_pgs * PAGE_SIZE - 1, msgbuf_pgs);
1198 printf(mem_fmt, "Free Memory", physical_freestart, physical_freeend-1,
1199 KERN_PHYSTOV(physical_freestart), KERN_PHYSTOV(physical_freeend-1),
1200 free_pages);
1201 #endif
1202
1203 /*
1204 * Now we have the real page tables in place so we can switch to them.
1205 * Once this is done we will be running with the REAL kernel page
1206 * tables.
1207 */
1208
1209 /* Switch tables */
1210 #ifdef VERBOSE_INIT_ARM
1211 printf("switching to new L1 page table @%#lx...", l1_pa);
1212 #endif
1213
1214 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
1215 cpu_setttb(l1_pa, true);
1216 cpu_tlb_flushID();
1217 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
1218
1219 #ifdef VERBOSE_INIT_ARM
1220 printf("OK.\n");
1221 #endif
1222 }
1223