gemini_machdep.c revision 1.4 1 /* $NetBSD: gemini_machdep.c,v 1.4 2008/11/01 07:58:33 cliff Exp $ */
2
3 /* adapted from:
4 * NetBSD: sdp24xx_machdep.c,v 1.4 2008/08/27 11:03:10 matt Exp
5 */
6
7 /*
8 * Machine dependent functions for kernel setup for TI OSK5912 board.
9 * Based on lubbock_machdep.c which in turn was based on iq80310_machhdep.c
10 *
11 * Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
12 * Written by Hiroyuki Bessho for Genetec Corporation.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. The name of Genetec Corporation may not be used to endorse or
23 * promote products derived from this software without specific prior
24 * written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 *
38 * Copyright (c) 2001 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 *
71 * Copyright (c) 1997,1998 Mark Brinicombe.
72 * Copyright (c) 1997,1998 Causality Limited.
73 * All rights reserved.
74 *
75 * Redistribution and use in source and binary forms, with or without
76 * modification, are permitted provided that the following conditions
77 * are met:
78 * 1. Redistributions of source code must retain the above copyright
79 * notice, this list of conditions and the following disclaimer.
80 * 2. Redistributions in binary form must reproduce the above copyright
81 * notice, this list of conditions and the following disclaimer in the
82 * documentation and/or other materials provided with the distribution.
83 * 3. All advertising materials mentioning features or use of this software
84 * must display the following acknowledgement:
85 * This product includes software developed by Mark Brinicombe
86 * for the NetBSD Project.
87 * 4. The name of the company nor the name of the author may be used to
88 * endorse or promote products derived from this software without specific
89 * prior written permission.
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
92 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
93 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
94 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
95 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
96 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
97 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
98 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
99 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
100 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
101 * SUCH DAMAGE.
102 *
103 * Copyright (c) 2007 Microsoft
104 * All rights reserved.
105 *
106 * Redistribution and use in source and binary forms, with or without
107 * modification, are permitted provided that the following conditions
108 * are met:
109 * 1. Redistributions of source code must retain the above copyright
110 * notice, this list of conditions and the following disclaimer.
111 * 2. Redistributions in binary form must reproduce the above copyright
112 * notice, this list of conditions and the following disclaimer in the
113 * documentation and/or other materials provided with the distribution.
114 * 3. All advertising materials mentioning features or use of this software
115 * must display the following acknowledgement:
116 * This product includes software developed by Microsoft
117 *
118 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
119 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
120 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
121 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
122 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
123 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
124 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
125 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
126 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
127 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
128 * SUCH DAMAGE.
129 */
130
131 #include <sys/cdefs.h>
132 __KERNEL_RCSID(0, "$NetBSD: gemini_machdep.c,v 1.4 2008/11/01 07:58:33 cliff Exp $");
133
134 #include "opt_machdep.h"
135 #include "opt_ddb.h"
136 #include "opt_kgdb.h"
137 #include "opt_ipkdb.h"
138 #include "opt_md.h"
139 #include "opt_com.h"
140 #include "opt_gemini.h"
141 #include "geminiwdt.h"
142 #include "md.h"
143
144 #include <sys/param.h>
145 #include <sys/device.h>
146 #include <sys/systm.h>
147 #include <sys/kernel.h>
148 #include <sys/exec.h>
149 #include <sys/proc.h>
150 #include <sys/msgbuf.h>
151 #include <sys/reboot.h>
152 #include <sys/termios.h>
153 #include <sys/ksyms.h>
154
155 #include <uvm/uvm_extern.h>
156
157 #include <sys/conf.h>
158 #include <dev/cons.h>
159 #include <dev/md.h>
160
161 #include <machine/db_machdep.h>
162 #include <ddb/db_sym.h>
163 #include <ddb/db_extern.h>
164 #ifdef KGDB
165 #include <sys/kgdb.h>
166 #endif
167
168 #include <machine/bootconfig.h>
169 #include <machine/bus.h>
170 #include <machine/cpu.h>
171 #include <machine/frame.h>
172 #include <arm/armreg.h>
173 #include <arm/undefined.h>
174
175 #include <arm/arm32/machdep.h>
176
177 #include <arm/gemini/gemini_reg.h>
178 #include <arm/gemini/gemini_var.h>
179 #include <arm/gemini/gemini_wdtvar.h>
180 #include <arm/gemini/gemini_com.h>
181
182 #include <evbarm/gemini/gemini.h>
183
184 /*
185 * Address to call from cpu_reset() to reset the machine.
186 * This is machine architecture dependant as it varies depending
187 * on where the ROM appears when you turn the MMU off.
188 */
189
190 u_int cpu_reset_address = 0;
191
192 /* Define various stack sizes in pages */
193 #define IRQ_STACK_SIZE 1
194 #define FIQ_STACK_SIZE 1
195 #define ABT_STACK_SIZE 1
196 #ifdef IPKDB
197 #define UND_STACK_SIZE 2
198 #else
199 #define UND_STACK_SIZE 1
200 #endif
201
202 BootConfig bootconfig; /* Boot config storage */
203 char *boot_args = NULL;
204 char *boot_file = NULL;
205
206 /* Physical address of the beginning of SDRAM. */
207 paddr_t physical_start;
208 /* Physical address of the first byte after the end of SDRAM. */
209 paddr_t physical_end;
210 /* Number of pages of memory. */
211 int physmem = 0;
212
213 /* Same things, but for the free (unused by the kernel) memory. */
214 static paddr_t physical_freestart, physical_freeend;
215 static u_int free_pages;
216
217 /* Physical and virtual addresses for some global pages */
218 pv_addr_t fiqstack;
219 pv_addr_t irqstack;
220 pv_addr_t undstack;
221 pv_addr_t abtstack;
222 pv_addr_t kernelstack; /* stack for SVC mode */
223
224 /* Physical address of the message buffer. */
225 paddr_t msgbufphys;
226
227 extern u_int data_abort_handler_address;
228 extern u_int prefetch_abort_handler_address;
229 extern u_int undefined_handler_address;
230 extern char KERNEL_BASE_phys[];
231 extern char KERNEL_BASE_virt[];
232 extern char etext[], __data_start[], _edata[], __bss_start[], __bss_end__[];
233 extern char _end[];
234
235 #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
236 #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
237 #define KERNEL_PT_KERNEL_NUM 4
238 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
239 /* Page tables for mapping kernel VM */
240 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
241 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
242
243 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
244
245 extern struct user *proc0paddr;
246
247 /*
248 * Macros to translate between physical and virtual for a subset of the
249 * kernel address space. *Not* for general use.
250 */
251 #define KERNEL_BASE_PHYS ((paddr_t)&KERNEL_BASE_phys)
252
253 #define KERN_VTOPHYS(va) \
254 ((paddr_t)((vaddr_t)va - KERNEL_BASE + GEMINI_DRAM_BASE))
255 #define KERN_PHYSTOV(pa) \
256 ((vaddr_t)((paddr_t)pa - GEMINI_DRAM_BASE + KERNEL_BASE))
257
258 /* Prototypes */
259
260 void gemini_intr_init(bus_space_tag_t);
261 void consinit(void);
262 #ifdef KGDB
263 static void kgdb_port_init(void);
264 #endif
265
266 static void setup_real_page_tables(void);
267 static void init_clocks(void);
268
269 bs_protos(bs_notimpl);
270
271 #include "com.h"
272 #if NCOM > 0
273 #include <dev/ic/comreg.h>
274 #include <dev/ic/comvar.h>
275 #endif
276
277
278 static void gemini_global_reset(void) __attribute__ ((noreturn));
279
280 static void
281 gemini_global_reset(void)
282 {
283 volatile uint32_t *rp;
284 uint32_t r;
285
286 rp = (volatile uint32_t *)
287 (GEMINI_GLOBAL_VBASE + GEMINI_GLOBAL_RESET_CTL);
288 r = *rp;
289 r |= GLOBAL_RESET_GLOBAL;
290 *rp = r;
291 for(;;);
292 /* NOTREACHED */
293 }
294
295 /*
296 * void cpu_reboot(int howto, char *bootstr)
297 *
298 * Reboots the system
299 *
300 * Deal with any syncing, unmounting, dumping and shutdown hooks,
301 * then reset the CPU.
302 */
303 void
304 cpu_reboot(int howto, char *bootstr)
305 {
306 #ifdef DIAGNOSTIC
307 /* info */
308 printf("boot: howto=%08x curproc=%p\n", howto, curproc);
309 #endif
310
311 /*
312 * If we are still cold then hit the air brakes
313 * and crash to earth fast
314 */
315 if (cold) {
316 doshutdownhooks();
317 printf("The operating system has halted.\n");
318 printf("Please press any key to reboot.\n\n");
319 cngetc();
320 printf("rebooting...\n");
321 delay(2000); /* cnflush(); */
322 gemini_global_reset();
323 /*NOTREACHED*/
324 }
325
326 /* Disable console buffering */
327 /* cnpollc(1);*/
328
329 /*
330 * If RB_NOSYNC was not specified sync the discs.
331 * Note: Unless cold is set to 1 here, syslogd will die during the
332 * unmount. It looks like syslogd is getting woken up only to find
333 * that it cannot page part of the binary in as the filesystem has
334 * been unmounted.
335 */
336 if (!(howto & RB_NOSYNC))
337 bootsync();
338
339 /* Say NO to interrupts */
340 splhigh();
341
342 /* Do a dump if requested. */
343 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
344 dumpsys();
345
346 /* Run any shutdown hooks */
347 doshutdownhooks();
348
349 /* Make sure IRQ's are disabled */
350 IRQdisable;
351
352 if (howto & RB_HALT) {
353 printf("The operating system has halted.\n");
354 printf("Please press any key to reboot.\n\n");
355 cngetc();
356 }
357
358 printf("rebooting...\n");
359 delay(2000); /* cnflush(); */
360 gemini_global_reset();
361 /*NOTREACHED*/
362 }
363
364 /*
365 * Static device mappings. These peripheral registers are mapped at
366 * fixed virtual addresses very early in initarm() so that we can use
367 * them while booting the kernel, and stay at the same address
368 * throughout whole kernel's life time.
369 *
370 * We use this table twice; once with bootstrap page table, and once
371 * with kernel's page table which we build up in initarm().
372 *
373 * Since we map these registers into the bootstrap page table using
374 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
375 * registers segment-aligned and segment-rounded in order to avoid
376 * using the 2nd page tables.
377 */
378
379 #define _A(a) ((a) & ~L1_S_OFFSET)
380 #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
381
382 static const struct pmap_devmap devmap[] = {
383 /* Global regs */
384 {
385 .pd_va = _A(GEMINI_GLOBAL_VBASE),
386 .pd_pa = _A(GEMINI_GLOBAL_BASE),
387 .pd_size = _S(L1_S_SIZE),
388 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
389 .pd_cache = PTE_NOCACHE
390 },
391
392 /* Watchdog */
393 {
394 .pd_va = _A(GEMINI_WATCHDOG_VBASE),
395 .pd_pa = _A(GEMINI_WATCHDOG_BASE),
396 .pd_size = _S(L1_S_SIZE),
397 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
398 .pd_cache = PTE_NOCACHE
399 },
400
401 /* UART */
402 {
403 .pd_va = _A(GEMINI_CONSOLE_VBASE),
404 .pd_pa = _A(CONSADDR),
405 .pd_size = _S(L1_S_SIZE),
406 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
407 .pd_cache = PTE_NOCACHE
408 },
409
410 /* Timers */
411 {
412 .pd_va = _A(GEMINI_TIMER_VBASE),
413 .pd_pa = _A(GEMINI_TIMER_BASE),
414 .pd_size = _S(L1_S_SIZE),
415 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
416 .pd_cache = PTE_NOCACHE
417 },
418
419 {0} /* list terminator */
420 };
421
422 #undef _A
423 #undef _S
424
425 #ifdef DDB
426 static void gemini_db_trap(int where)
427 {
428 #if NGEMINIWDT > 0
429 static int oldwatchdogstate;
430
431 if (where) {
432 oldwatchdogstate = geminiwdt_enable(0);
433 } else {
434 geminiwdt_enable(oldwatchdogstate);
435 }
436 #endif
437 }
438 #endif
439
440 void gemini_putchar(char c);
441 void
442 gemini_putchar(char c)
443 {
444 unsigned char *com0addr = (char *)GEMINI_CONSOLE_VBASE;
445 int timo = 150000;
446
447 while ((com0addr[COM_REG_LSR * 4] & LSR_TXRDY) == 0)
448 if (--timo == 0)
449 break;
450
451 com0addr[COM_REG_TXDATA] = c;
452
453 while ((com0addr[COM_REG_LSR * 4] & LSR_TSRE) == 0)
454 if (--timo == 0)
455 break;
456 }
457
458 void gemini_puthex(unsigned int);
459 void
460 gemini_puthex(unsigned int val)
461 {
462 char hexc[] = "0123456789abcdef";
463
464 gemini_putchar('0');
465 gemini_putchar('x');
466 gemini_putchar(hexc[(val >> 28) & 0xf]);
467 gemini_putchar(hexc[(val >> 24) & 0xf]);
468 gemini_putchar(hexc[(val >> 20) & 0xf]);
469 gemini_putchar(hexc[(val >> 16) & 0xf]);
470 gemini_putchar(hexc[(val >> 12) & 0xf]);
471 gemini_putchar(hexc[(val >> 8) & 0xf]);
472 gemini_putchar(hexc[(val >> 4) & 0xf]);
473 gemini_putchar(hexc[(val >> 0) & 0xf]);
474 }
475
476 /*
477 * u_int initarm(...)
478 *
479 * Initial entry point on startup. This gets called before main() is
480 * entered.
481 * It should be responsible for setting up everything that must be
482 * in place when main is called.
483 * This includes
484 * Taking a copy of the boot configuration structure.
485 * Initialising the physical console so characters can be printed.
486 * Setting up page tables for the kernel
487 * Relocating the kernel to the bottom of physical memory
488 */
489 u_int
490 initarm(void *arg)
491 {
492 gemini_putchar('0');
493
494 /*
495 * When we enter here, we are using a temporary first level
496 * translation table with section entries in it to cover the OBIO
497 * peripherals and SDRAM. The temporary first level translation table
498 * is at the end of SDRAM.
499 */
500
501 /* Heads up ... Setup the CPU / MMU / TLB functions. */
502 gemini_putchar('1');
503 if (set_cpufuncs())
504 panic("cpu not recognized!");
505
506 gemini_putchar('2');
507 init_clocks();
508 gemini_putchar('3');
509
510 /* The console is going to try to map things. Give pmap a devmap. */
511 pmap_devmap_register(devmap);
512 gemini_putchar('4');
513 consinit();
514 gemini_putchar('5');
515 #ifdef KGDB
516 kgdb_port_init();
517 #endif
518
519 #ifdef VERBOSE_INIT_ARM
520 /* Talk to the user */
521 printf("\nNetBSD/evbarm (gemini) booting ...\n");
522 #endif
523
524 #ifdef BOOT_ARGS
525 char mi_bootargs[] = BOOT_ARGS;
526 parse_mi_bootargs(mi_bootargs);
527 #endif
528
529 #ifdef VERBOSE_INIT_ARM
530 printf("initarm: Configuring system ...\n");
531 #endif
532
533 /*
534 * Set up the variables that define the availability of physical
535 * memory.
536 */
537 physical_start = GEMINI_DRAM_BASE;
538 #define MEMSIZE_BYTES (MEMSIZE * 1024 * 1024)
539 physical_end = (physical_start & ~(0x400000-1)) + MEMSIZE_BYTES;
540 physmem = (physical_end - physical_start) / PAGE_SIZE;
541
542 /* Fake bootconfig structure for the benefit of pmap.c. */
543 bootconfig.dramblocks = 1;
544 bootconfig.dram[0].address = physical_start;
545 bootconfig.dram[0].pages = physmem;
546
547 /*
548 * Our kernel is at the beginning of memory, so set our free space to
549 * all the memory after the kernel.
550 */
551 physical_freestart = KERN_VTOPHYS(round_page((vaddr_t) _end));
552 physical_freeend = physical_end;
553 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
554
555 /*
556 * This is going to do all the hard work of setting up the first and
557 * and second level page tables. Pages of memory will be allocated
558 * and mapped for other structures that are required for system
559 * operation. When it returns, physical_freestart and free_pages will
560 * have been updated to reflect the allocations that were made. In
561 * addition, kernel_l1pt, kernel_pt_table[], systempage, irqstack,
562 * abtstack, undstack, kernelstack, msgbufphys will be set to point to
563 * the memory that was allocated for them.
564 */
565 setup_real_page_tables();
566
567 /*
568 * Moved from cpu_startup() as data_abort_handler() references
569 * this during uvm init.
570 */
571 proc0paddr = (struct user *)kernelstack.pv_va;
572 lwp0.l_addr = proc0paddr;
573
574 #ifdef VERBOSE_INIT_ARM
575 printf("bootstrap done.\n");
576 #endif
577
578 arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
579
580 /*
581 * Pages were allocated during the secondary bootstrap for the
582 * stacks for different CPU modes.
583 * We must now set the r13 registers in the different CPU modes to
584 * point to these stacks.
585 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
586 * of the stack memory.
587 */
588 #ifdef VERBOSE_INIT_ARM
589 printf("init subsystems: stacks ");
590 #endif
591
592 set_stackptr(PSR_FIQ32_MODE, fiqstack.pv_va + FIQ_STACK_SIZE * PAGE_SIZE);
593 set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
594 set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
595 set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
596
597 /*
598 * Well we should set a data abort handler.
599 * Once things get going this will change as we will need a proper
600 * handler.
601 * Until then we will use a handler that just panics but tells us
602 * why.
603 * Initialisation of the vectors will just panic on a data abort.
604 * This just fills in a slightly better one.
605 */
606 #ifdef VERBOSE_INIT_ARM
607 printf("vectors ");
608 #endif
609 data_abort_handler_address = (u_int)data_abort_handler;
610 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
611 undefined_handler_address = (u_int)undefinedinstruction_bounce;
612
613 /* Initialise the undefined instruction handlers */
614 #ifdef VERBOSE_INIT_ARM
615 printf("undefined ");
616 #endif
617 undefined_init();
618
619 /* Load memory into UVM. */
620 #ifdef VERBOSE_INIT_ARM
621 printf("page ");
622 #endif
623 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
624 uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
625 atop(physical_freestart), atop(physical_freeend),
626 VM_FREELIST_DEFAULT);
627 uvm_page_physload(atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys),
628 atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys),
629 VM_FREELIST_DEFAULT);
630
631 /* Boot strap pmap telling it where the kernel page table is */
632 #ifdef VERBOSE_INIT_ARM
633 printf("pmap ");
634 #endif
635 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
636
637 #ifdef VERBOSE_INIT_ARM
638 printf("done.\n");
639 #endif
640
641 #ifdef IPKDB
642 /* Initialise ipkdb */
643 ipkdb_init();
644 if (boothowto & RB_KDB)
645 ipkdb_connect(0);
646 #endif
647
648 #ifdef KGDB
649 if (boothowto & RB_KDB) {
650 kgdb_debug_init = 1;
651 kgdb_connect(1);
652 }
653 #endif
654
655 #ifdef DDB
656 db_trap_callback = gemini_db_trap;
657 db_machine_init();
658
659 /* Firmware doesn't load symbols. */
660 ddb_init(0, NULL, NULL);
661
662 if (boothowto & RB_KDB)
663 Debugger();
664 #endif
665 printf("initarm done.\n");
666
667 /* We return the new stack pointer address */
668 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
669 }
670
671 static void
672 init_clocks(void)
673 {
674 }
675
676 #ifndef CONSADDR
677 #error Specify the address of the console UART with the CONSADDR option.
678 #endif
679 #ifndef CONSPEED
680 #define CONSPEED 19200
681 #endif
682 #ifndef CONMODE
683 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
684 #endif
685
686 static const bus_addr_t consaddr = CONSADDR;
687 static const int conspeed = CONSPEED;
688 static const int conmode = CONMODE;
689
690 void
691 consinit(void)
692 {
693 bus_space_handle_t bh;
694 static int consinit_called = 0;
695
696 if (consinit_called != 0)
697 return;
698 consinit_called = 1;
699
700 if (bus_space_map(&gemini_a4x_bs_tag, consaddr,
701 GEMINI_UART_SIZE, 0, &bh))
702 panic("Serial console can not be mapped.");
703
704 if (comcnattach(&gemini_a4x_bs_tag, consaddr, conspeed,
705 GEMINI_COM_FREQ, COM_TYPE_16550_NOERS, conmode))
706 panic("Serial console can not be initialized.");
707
708 bus_space_unmap(&gemini_a4x_bs_tag, bh, GEMINI_UART_SIZE);
709 }
710
711 #ifdef KGDB
712 #ifndef KGDB_DEVADDR
713 #error Specify the address of the kgdb UART with the KGDB_DEVADDR option.
714 #endif
715 #ifndef KGDB_DEVRATE
716 #define KGDB_DEVRATE 19200
717 #endif
718
719 #ifndef KGDB_DEVMODE
720 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
721 #endif
722 static const vaddr_t comkgdbaddr = KGDB_DEVADDR;
723 static const int comkgdbspeed = KGDB_DEVRATE;
724 static const int comkgdbmode = KGDB_DEVMODE;
725
726 void
727 static kgdb_port_init(void)
728 {
729 static int kgdbsinit_called = 0;
730
731 if (kgdbsinit_called != 0)
732 return;
733
734 kgdbsinit_called = 1;
735
736 bus_space_handle_t bh;
737 if (bus_space_map(&gemini_a4x_bs_tag, comkgdbaddr,
738 GEMINI_UART_SIZE, 0, &bh))
739 panic("kgdb port can not be mapped.");
740
741 if (com_kgdb_attach(&gemini_a4x_bs_tag, comkgdbaddr, comkgdbspeed,
742 GEMINI_UART_SIZE, COM_TYPE_16550_NOERS, comkgdbmode))
743 panic("KGDB uart can not be initialized.");
744
745 bus_space_unmap(&gemini_a4x_bs_tag, bh, GEMINI_UART_SIZE);
746 }
747 #endif
748
749 static void
750 setup_real_page_tables(void)
751 {
752 /*
753 * We need to allocate some fixed page tables to get the kernel going.
754 *
755 * We are going to allocate our bootstrap pages from the beginning of
756 * the free space that we just calculated. We allocate one page
757 * directory and a number of page tables and store the physical
758 * addresses in the kernel_pt_table array.
759 *
760 * The kernel page directory must be on a 16K boundary. The page
761 * tables must be on 4K boundaries. What we do is allocate the
762 * page directory on the first 16K boundary that we encounter, and
763 * the page tables on 4K boundaries otherwise. Since we allocate
764 * at least 3 L2 page tables, we are guaranteed to encounter at
765 * least one 16K aligned region.
766 */
767
768 #ifdef VERBOSE_INIT_ARM
769 printf("Allocating page tables\n");
770 #endif
771
772 /*
773 * Define a macro to simplify memory allocation. As we allocate the
774 * memory, make sure that we don't walk over our temporary first level
775 * translation table.
776 */
777 #define valloc_pages(var, np) \
778 (var).pv_pa = physical_freestart; \
779 physical_freestart += ((np) * PAGE_SIZE); \
780 if (physical_freestart > (physical_freeend - L1_TABLE_SIZE)) \
781 panic("initarm: out of memory"); \
782 free_pages -= (np); \
783 (var).pv_va = KERN_PHYSTOV((var).pv_pa); \
784 memset((char *)(var).pv_va, 0, ((np) * PAGE_SIZE));
785
786 int loop, pt_index;
787
788 pt_index = 0;
789 kernel_l1pt.pv_pa = 0;
790 kernel_l1pt.pv_va = 0;
791 printf("%s: physical_freestart %#lx\n", __func__, physical_freestart);
792 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
793 /* Are we 16KB aligned for an L1 ? */
794 if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0
795 && kernel_l1pt.pv_pa == 0) {
796 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
797 } else {
798 valloc_pages(kernel_pt_table[pt_index],
799 L2_TABLE_SIZE / PAGE_SIZE);
800 ++pt_index;
801 }
802 }
803 pt_index=0;
804 printf("%s: kernel_l1pt: %#lx:%#lx\n", __func__, kernel_l1pt.pv_va, kernel_l1pt.pv_pa);
805 printf("%s: kernel_pt_table:\n", __func__);
806 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
807 printf("\t%#lx:%#lx\n", kernel_pt_table[pt_index].pv_va, kernel_pt_table[pt_index].pv_pa);
808 ++pt_index;
809 }
810
811 /* This should never be able to happen but better confirm that. */
812 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
813 panic("initarm: Failed to align the kernel page directory");
814
815 /*
816 * Allocate a page for the system page mapped to V0x00000000
817 * This page will just contain the system vectors and can be
818 * shared by all processes.
819 */
820 valloc_pages(systempage, 1);
821 systempage.pv_va = ARM_VECTORS_HIGH;
822
823 /* Allocate stacks for all modes */
824 valloc_pages(fiqstack, FIQ_STACK_SIZE);
825 valloc_pages(irqstack, IRQ_STACK_SIZE);
826 valloc_pages(abtstack, ABT_STACK_SIZE);
827 valloc_pages(undstack, UND_STACK_SIZE);
828 valloc_pages(kernelstack, UPAGES);
829
830 /* Allocate the message buffer. */
831 pv_addr_t msgbuf;
832 int msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
833 valloc_pages(msgbuf, msgbuf_pgs);
834 msgbufphys = msgbuf.pv_pa;
835
836 /*
837 * Ok we have allocated physical pages for the primary kernel
838 * page tables
839 */
840
841 #ifdef VERBOSE_INIT_ARM
842 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
843 #endif
844
845 /*
846 * Now we start construction of the L1 page table
847 * We start by mapping the L2 page tables into the L1.
848 * This means that we can replace L1 mappings later on if necessary
849 */
850 vaddr_t l1_va = kernel_l1pt.pv_va;
851 paddr_t l1_pa = kernel_l1pt.pv_pa;
852
853 /* Map the L2 pages tables in the L1 page table */
854 pmap_link_l2pt(l1_va, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
855 &kernel_pt_table[KERNEL_PT_SYS]);
856 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
857 pmap_link_l2pt(l1_va, KERNEL_BASE + loop * 0x00400000,
858 &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
859 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
860 pmap_link_l2pt(l1_va, KERNEL_VM_BASE + loop * 0x00400000,
861 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
862
863 /* update the top of the kernel VM */
864 pmap_curmaxkvaddr =
865 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
866
867 #ifdef VERBOSE_INIT_ARM
868 printf("Mapping kernel\n");
869 #endif
870
871 /* Now we fill in the L2 pagetable for the kernel static code/data */
872 #define round_L_page(x) (((x) + L2_L_OFFSET) & L2_L_FRAME)
873 size_t textsize = round_L_page(etext - KERNEL_BASE_virt);
874 size_t totalsize = round_L_page(_end - KERNEL_BASE_virt);
875 /* offset of kernel in RAM */
876 u_int offset = (u_int)KERNEL_BASE_virt - KERNEL_BASE;
877
878 /* Map text section read-only. */
879 offset += pmap_map_chunk(l1_va,
880 (vaddr_t)KERNEL_BASE + offset,
881 physical_start + offset, textsize,
882 VM_PROT_READ|VM_PROT_EXECUTE, PTE_CACHE);
883 /* Map data and bss sections read-write. */
884 offset += pmap_map_chunk(l1_va,
885 (vaddr_t)KERNEL_BASE + offset,
886 physical_start + offset, totalsize - textsize,
887 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
888
889 #ifdef VERBOSE_INIT_ARM
890 printf("Constructing L2 page tables\n");
891 #endif
892
893 /* Map the stack pages */
894 pmap_map_chunk(l1_va, fiqstack.pv_va, fiqstack.pv_pa,
895 FIQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
896 pmap_map_chunk(l1_va, irqstack.pv_va, irqstack.pv_pa,
897 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
898 pmap_map_chunk(l1_va, abtstack.pv_va, abtstack.pv_pa,
899 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
900 pmap_map_chunk(l1_va, undstack.pv_va, undstack.pv_pa,
901 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
902 pmap_map_chunk(l1_va, kernelstack.pv_va, kernelstack.pv_pa,
903 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
904
905 pmap_map_chunk(l1_va, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
906 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
907
908 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
909 pmap_map_chunk(l1_va, kernel_pt_table[loop].pv_va,
910 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
911 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
912 }
913
914 /* Map the vector page. */
915 pmap_map_entry(l1_va, ARM_VECTORS_HIGH, systempage.pv_pa,
916 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
917
918 /*
919 * Map integrated peripherals at same address in first level page
920 * table so that we can continue to use console.
921 */
922 pmap_devmap_bootstrap(l1_va, devmap);
923
924
925 #ifdef VERBOSE_INIT_ARM
926 /* Tell the user about where all the bits and pieces live. */
927 printf("%22s Physical Virtual Num\n", " ");
928 printf("%22s Starting Ending Starting Ending Pages\n", " ");
929
930 static const char mem_fmt[] =
931 "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %d\n";
932 static const char mem_fmt_nov[] =
933 "%20s: 0x%08lx 0x%08lx %d\n";
934
935 printf(mem_fmt, "SDRAM", physical_start, physical_end-1,
936 KERN_PHYSTOV(physical_start), KERN_PHYSTOV(physical_end-1),
937 physmem);
938 printf(mem_fmt, "text section",
939 KERN_VTOPHYS(KERNEL_BASE_virt), KERN_VTOPHYS(etext-1),
940 (vaddr_t)KERNEL_BASE_virt, (vaddr_t)etext-1,
941 (int)(textsize / PAGE_SIZE));
942 printf(mem_fmt, "data section",
943 KERN_VTOPHYS(__data_start), KERN_VTOPHYS(_edata),
944 (vaddr_t)__data_start, (vaddr_t)_edata,
945 (int)((round_page((vaddr_t)_edata)
946 - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
947 printf(mem_fmt, "bss section",
948 KERN_VTOPHYS(__bss_start), KERN_VTOPHYS(__bss_end__),
949 (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
950 (int)((round_page((vaddr_t)__bss_end__)
951 - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
952 printf(mem_fmt, "L1 page directory",
953 kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
954 kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
955 L1_TABLE_SIZE / PAGE_SIZE);
956 printf(mem_fmt, "Exception Vectors",
957 systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
958 (vaddr_t)ARM_VECTORS_HIGH, (vaddr_t)ARM_VECTORS_HIGH + PAGE_SIZE - 1,
959 1);
960 printf(mem_fmt, "FIQ stack",
961 fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
962 fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
963 FIQ_STACK_SIZE);
964 printf(mem_fmt, "IRQ stack",
965 irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
966 irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
967 IRQ_STACK_SIZE);
968 printf(mem_fmt, "ABT stack",
969 abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
970 abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
971 ABT_STACK_SIZE);
972 printf(mem_fmt, "UND stack",
973 undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
974 undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
975 UND_STACK_SIZE);
976 printf(mem_fmt, "SVC stack",
977 kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
978 kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
979 UPAGES);
980 printf(mem_fmt_nov, "Message Buffer",
981 msgbufphys, msgbufphys + msgbuf_pgs * PAGE_SIZE - 1, msgbuf_pgs);
982 printf(mem_fmt, "Free Memory", physical_freestart, physical_freeend-1,
983 KERN_PHYSTOV(physical_freestart), KERN_PHYSTOV(physical_freeend-1),
984 free_pages);
985 #endif
986
987 /*
988 * Now we have the real page tables in place so we can switch to them.
989 * Once this is done we will be running with the REAL kernel page
990 * tables.
991 */
992
993 /* Switch tables */
994 #ifdef VERBOSE_INIT_ARM
995 printf("switching to new L1 page table @%#lx...", l1_pa);
996 #endif
997
998 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
999 setttb(l1_pa);
1000 cpu_tlb_flushID();
1001 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
1002
1003 #ifdef VERBOSE_INIT_ARM
1004 printf("OK.\n");
1005 #endif
1006 }
1007