gemini_machdep.c revision 1.8 1 /* $NetBSD: gemini_machdep.c,v 1.8 2008/11/13 01:32:48 cliff Exp $ */
2
3 /* adapted from:
4 * NetBSD: sdp24xx_machdep.c,v 1.4 2008/08/27 11:03:10 matt Exp
5 */
6
7 /*
8 * Machine dependent functions for kernel setup for TI OSK5912 board.
9 * Based on lubbock_machdep.c which in turn was based on iq80310_machhdep.c
10 *
11 * Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
12 * Written by Hiroyuki Bessho for Genetec Corporation.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. The name of Genetec Corporation may not be used to endorse or
23 * promote products derived from this software without specific prior
24 * written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 *
38 * Copyright (c) 2001 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 *
71 * Copyright (c) 1997,1998 Mark Brinicombe.
72 * Copyright (c) 1997,1998 Causality Limited.
73 * All rights reserved.
74 *
75 * Redistribution and use in source and binary forms, with or without
76 * modification, are permitted provided that the following conditions
77 * are met:
78 * 1. Redistributions of source code must retain the above copyright
79 * notice, this list of conditions and the following disclaimer.
80 * 2. Redistributions in binary form must reproduce the above copyright
81 * notice, this list of conditions and the following disclaimer in the
82 * documentation and/or other materials provided with the distribution.
83 * 3. All advertising materials mentioning features or use of this software
84 * must display the following acknowledgement:
85 * This product includes software developed by Mark Brinicombe
86 * for the NetBSD Project.
87 * 4. The name of the company nor the name of the author may be used to
88 * endorse or promote products derived from this software without specific
89 * prior written permission.
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
92 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
93 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
94 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
95 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
96 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
97 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
98 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
99 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
100 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
101 * SUCH DAMAGE.
102 *
103 * Copyright (c) 2007 Microsoft
104 * All rights reserved.
105 *
106 * Redistribution and use in source and binary forms, with or without
107 * modification, are permitted provided that the following conditions
108 * are met:
109 * 1. Redistributions of source code must retain the above copyright
110 * notice, this list of conditions and the following disclaimer.
111 * 2. Redistributions in binary form must reproduce the above copyright
112 * notice, this list of conditions and the following disclaimer in the
113 * documentation and/or other materials provided with the distribution.
114 * 3. All advertising materials mentioning features or use of this software
115 * must display the following acknowledgement:
116 * This product includes software developed by Microsoft
117 *
118 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
119 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
120 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
121 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
122 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
123 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
124 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
125 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
126 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
127 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
128 * SUCH DAMAGE.
129 */
130
131 #include <sys/cdefs.h>
132 __KERNEL_RCSID(0, "$NetBSD: gemini_machdep.c,v 1.8 2008/11/13 01:32:48 cliff Exp $");
133
134 #include "opt_machdep.h"
135 #include "opt_ddb.h"
136 #include "opt_kgdb.h"
137 #include "opt_ipkdb.h"
138 #include "opt_md.h"
139 #include "opt_com.h"
140 #include "opt_gemini.h"
141 #include "geminiwdt.h"
142 #include "md.h"
143
144 #include <sys/param.h>
145 #include <sys/device.h>
146 #include <sys/systm.h>
147 #include <sys/kernel.h>
148 #include <sys/exec.h>
149 #include <sys/proc.h>
150 #include <sys/msgbuf.h>
151 #include <sys/reboot.h>
152 #include <sys/termios.h>
153 #include <sys/ksyms.h>
154
155 #include <uvm/uvm_extern.h>
156
157 #include <sys/conf.h>
158 #include <dev/cons.h>
159 #include <dev/md.h>
160
161 #include <machine/db_machdep.h>
162 #include <ddb/db_sym.h>
163 #include <ddb/db_extern.h>
164 #ifdef KGDB
165 #include <sys/kgdb.h>
166 #endif
167
168 #include <machine/bootconfig.h>
169 #include <machine/bus.h>
170 #include <machine/cpu.h>
171 #include <machine/frame.h>
172 #include <arm/armreg.h>
173 #include <arm/undefined.h>
174
175 #include <arm/arm32/machdep.h>
176
177 #include <arm/gemini/gemini_reg.h>
178 #include <arm/gemini/gemini_var.h>
179 #include <arm/gemini/gemini_wdtvar.h>
180 #include <arm/gemini/gemini_com.h>
181 #include <arm/gemini/lpc_com.h>
182
183 #include <evbarm/gemini/gemini.h>
184
185 #if defined(VERBOSE_INIT_ARM)
186 # define GEMINI_PUTCHAR(c) gemini_putchar(c)
187 # define GEMINI_PUTHEX(n) gemini_puthex(n)
188 #else /* VERBOSE_INIT_ARM */
189 # define GEMINI_PUTCHAR(c)
190 # define GEMINI_PUTHEX(n)
191 #endif /* VERBOSE_INIT_ARM */
192
193 /*
194 * Address to call from cpu_reset() to reset the machine.
195 * This is machine architecture dependant as it varies depending
196 * on where the ROM appears when you turn the MMU off.
197 */
198
199 u_int cpu_reset_address = 0;
200
201 /* Define various stack sizes in pages */
202 #define IRQ_STACK_SIZE 1
203 #define FIQ_STACK_SIZE 1
204 #define ABT_STACK_SIZE 1
205 #ifdef IPKDB
206 #define UND_STACK_SIZE 2
207 #else
208 #define UND_STACK_SIZE 1
209 #endif
210
211 BootConfig bootconfig; /* Boot config storage */
212 char *boot_args = NULL;
213 char *boot_file = NULL;
214
215 /* Physical address of the beginning of SDRAM. */
216 paddr_t physical_start;
217 /* Physical address of the first byte after the end of SDRAM. */
218 paddr_t physical_end;
219 /* Number of pages of memory. */
220 int physmem = 0;
221
222 /* Same things, but for the free (unused by the kernel) memory. */
223 static paddr_t physical_freestart, physical_freeend;
224 static u_int free_pages;
225
226 /* Physical and virtual addresses for some global pages */
227 pv_addr_t fiqstack;
228 pv_addr_t irqstack;
229 pv_addr_t undstack;
230 pv_addr_t abtstack;
231 pv_addr_t kernelstack; /* stack for SVC mode */
232
233 /* Physical address of the message buffer. */
234 paddr_t msgbufphys;
235
236 extern u_int data_abort_handler_address;
237 extern u_int prefetch_abort_handler_address;
238 extern u_int undefined_handler_address;
239 extern char KERNEL_BASE_phys[];
240 extern char KERNEL_BASE_virt[];
241 extern char etext[], __data_start[], _edata[], __bss_start[], __bss_end__[];
242 extern char _end[];
243
244 #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
245 #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
246 #define KERNEL_PT_KERNEL_NUM 4
247 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
248 /* Page tables for mapping kernel VM */
249 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
250 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
251
252 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
253
254 extern struct user *proc0paddr;
255
256 /*
257 * Macros to translate between physical and virtual for a subset of the
258 * kernel address space. *Not* for general use.
259 */
260 #define KERNEL_BASE_PHYS ((paddr_t)&KERNEL_BASE_phys)
261
262 #define KERN_VTOPHYS(va) \
263 ((paddr_t)((vaddr_t)va - KERNEL_BASE + GEMINI_DRAM_BASE))
264 #define KERN_PHYSTOV(pa) \
265 ((vaddr_t)((paddr_t)pa - GEMINI_DRAM_BASE + KERNEL_BASE))
266
267 /* Prototypes */
268
269 void gemini_intr_init(bus_space_tag_t);
270 void consinit(void);
271 #ifdef KGDB
272 static void kgdb_port_init(void);
273 #endif
274
275 static void setup_real_page_tables(void);
276 static void init_clocks(void);
277
278 bs_protos(bs_notimpl);
279
280 #include "com.h"
281 #if NCOM > 0
282 #include <dev/ic/comreg.h>
283 #include <dev/ic/comvar.h>
284 #endif
285
286
287 static void gemini_global_reset(void) __attribute__ ((noreturn));
288 static void gemini_cpu1_start(void);
289
290 static void
291 gemini_global_reset(void)
292 {
293 #if defined(GEMINI_MASTER) || defined(GEMINI_SINGLE)
294 volatile uint32_t *rp;
295 uint32_t r;
296
297 rp = (volatile uint32_t *)
298 (GEMINI_GLOBAL_VBASE + GEMINI_GLOBAL_RESET_CTL);
299 r = *rp;
300 r |= GLOBAL_RESET_GLOBAL;
301 *rp = r;
302 #endif
303 for(;;);
304 /* NOTREACHED */
305 }
306
307 static void
308 gemini_cpu1_start(void)
309 {
310 #ifdef GEMINI_MASTER
311 volatile uint32_t *rp;
312 uint32_t r;
313
314 rp = (volatile uint32_t *)
315 (GEMINI_GLOBAL_VBASE + GEMINI_GLOBAL_RESET_CTL);
316 r = *rp;
317 r &= ~GLOBAL_RESET_CPU1;
318 *rp = r;
319 #endif
320 }
321
322 /*
323 * void cpu_reboot(int howto, char *bootstr)
324 *
325 * Reboots the system
326 *
327 * Deal with any syncing, unmounting, dumping and shutdown hooks,
328 * then reset the CPU.
329 */
330 void
331 cpu_reboot(int howto, char *bootstr)
332 {
333 extern struct geminitmr_softc *ref_sc;
334
335 #ifdef DIAGNOSTIC
336 /* info */
337 printf("boot: howto=%08x curproc=%p\n", howto, curproc);
338 #endif
339
340 /*
341 * If we are still cold then hit the air brakes
342 * and crash to earth fast
343 */
344 if (cold) {
345 doshutdownhooks();
346 pmf_system_shutdown(boothowto);
347 printf("The operating system has halted.\n");
348 printf("Please press any key to reboot.\n\n");
349 cngetc();
350 printf("rebooting...\n");
351 if (ref_sc != NULL)
352 delay(2000); /* cnflush(); */
353 gemini_global_reset();
354 /*NOTREACHED*/
355 }
356
357 /* Disable console buffering */
358 cnpollc(1);
359
360 /*
361 * If RB_NOSYNC was not specified sync the discs.
362 * Note: Unless cold is set to 1 here, syslogd will die during the
363 * unmount. It looks like syslogd is getting woken up only to find
364 * that it cannot page part of the binary in as the filesystem has
365 * been unmounted.
366 */
367 if (!(howto & RB_NOSYNC))
368 bootsync();
369
370 /* Say NO to interrupts */
371 splhigh();
372
373 /* Do a dump if requested. */
374 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
375 dumpsys();
376
377 /* Run any shutdown hooks */
378 doshutdownhooks();
379
380 pmf_system_shutdown(boothowto);
381
382 /* Make sure IRQ's are disabled */
383 IRQdisable;
384
385 if (howto & RB_HALT) {
386 printf("The operating system has halted.\n");
387 printf("Please press any key to reboot.\n\n");
388 cngetc();
389 }
390
391 printf("rebooting...\n");
392 if (ref_sc != NULL)
393 delay(2000); /* cnflush(); */
394 gemini_global_reset();
395 /*NOTREACHED*/
396 }
397
398 /*
399 * Static device mappings. These peripheral registers are mapped at
400 * fixed virtual addresses very early in initarm() so that we can use
401 * them while booting the kernel, and stay at the same address
402 * throughout whole kernel's life time.
403 *
404 * We use this table twice; once with bootstrap page table, and once
405 * with kernel's page table which we build up in initarm().
406 *
407 * Since we map these registers into the bootstrap page table using
408 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
409 * registers segment-aligned and segment-rounded in order to avoid
410 * using the 2nd page tables.
411 */
412
413 #define _A(a) ((a) & ~L1_S_OFFSET)
414 #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
415
416 static const struct pmap_devmap devmap[] = {
417 /* Global regs */
418 {
419 .pd_va = _A(GEMINI_GLOBAL_VBASE),
420 .pd_pa = _A(GEMINI_GLOBAL_BASE),
421 .pd_size = _S(L1_S_SIZE),
422 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
423 .pd_cache = PTE_NOCACHE
424 },
425
426 /* Watchdog */
427 {
428 .pd_va = _A(GEMINI_WATCHDOG_VBASE),
429 .pd_pa = _A(GEMINI_WATCHDOG_BASE),
430 .pd_size = _S(L1_S_SIZE),
431 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
432 .pd_cache = PTE_NOCACHE
433 },
434
435 /* UART */
436 {
437 .pd_va = _A(GEMINI_UART_VBASE),
438 .pd_pa = _A(GEMINI_UART_BASE),
439 .pd_size = _S(L1_S_SIZE),
440 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
441 .pd_cache = PTE_NOCACHE
442 },
443
444 /* LPCHC */
445 {
446 .pd_va = _A(GEMINI_LPCHC_VBASE),
447 .pd_pa = _A(GEMINI_LPCHC_BASE),
448 .pd_size = _S(L1_S_SIZE),
449 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
450 .pd_cache = PTE_NOCACHE
451 },
452
453 /* LPCIO */
454 {
455 .pd_va = _A(GEMINI_LPCIO_VBASE),
456 .pd_pa = _A(GEMINI_LPCIO_BASE),
457 .pd_size = _S(L1_S_SIZE),
458 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
459 .pd_cache = PTE_NOCACHE
460 },
461
462 /* Timers */
463 {
464 .pd_va = _A(GEMINI_TIMER_VBASE),
465 .pd_pa = _A(GEMINI_TIMER_BASE),
466 .pd_size = _S(L1_S_SIZE),
467 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
468 .pd_cache = PTE_NOCACHE
469 },
470
471 #if defined(MEMORY_DISK_DYNAMIC)
472 /* Ramdisk */
473 {
474 .pd_va = _A(GEMINI_RAMDISK_VBASE),
475 .pd_pa = _A(GEMINI_RAMDISK_PBASE),
476 .pd_size = _S(GEMINI_RAMDISK_SIZE),
477 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
478 .pd_cache = PTE_NOCACHE
479 },
480 #endif
481
482 {0} /* list terminator */
483 };
484
485 #undef _A
486 #undef _S
487
488 #ifdef DDB
489 static void gemini_db_trap(int where)
490 {
491 #if NGEMINIWDT > 0
492 static int oldwatchdogstate;
493
494 if (where) {
495 oldwatchdogstate = geminiwdt_enable(0);
496 } else {
497 geminiwdt_enable(oldwatchdogstate);
498 }
499 #endif
500 }
501 #endif
502
503 #if defined(VERBOSE_INIT_ARM) || 1
504 void gemini_putchar(char c);
505 void
506 gemini_putchar(char c)
507 {
508 unsigned char *com0addr = (unsigned char *)GEMINI_UART_VBASE;
509 int timo = 150000;
510
511 while ((com0addr[COM_REG_LSR * 4] & LSR_TXRDY) == 0)
512 if (--timo == 0)
513 break;
514
515 com0addr[COM_REG_TXDATA] = c;
516
517 while ((com0addr[COM_REG_LSR * 4] & LSR_TSRE) == 0)
518 if (--timo == 0)
519 break;
520 }
521
522 void gemini_puthex(unsigned int);
523 void
524 gemini_puthex(unsigned int val)
525 {
526 char hexc[] = "0123456789abcdef";
527
528 gemini_putchar('0');
529 gemini_putchar('x');
530 gemini_putchar(hexc[(val >> 28) & 0xf]);
531 gemini_putchar(hexc[(val >> 24) & 0xf]);
532 gemini_putchar(hexc[(val >> 20) & 0xf]);
533 gemini_putchar(hexc[(val >> 16) & 0xf]);
534 gemini_putchar(hexc[(val >> 12) & 0xf]);
535 gemini_putchar(hexc[(val >> 8) & 0xf]);
536 gemini_putchar(hexc[(val >> 4) & 0xf]);
537 gemini_putchar(hexc[(val >> 0) & 0xf]);
538 }
539 #endif /* VERBOSE_INIT_ARM */
540
541 /*
542 * u_int initarm(...)
543 *
544 * Initial entry point on startup. This gets called before main() is
545 * entered.
546 * It should be responsible for setting up everything that must be
547 * in place when main is called.
548 * This includes
549 * Taking a copy of the boot configuration structure.
550 * Initialising the physical console so characters can be printed.
551 * Setting up page tables for the kernel
552 * Relocating the kernel to the bottom of physical memory
553 */
554 u_int
555 initarm(void *arg)
556 {
557 GEMINI_PUTCHAR('0');
558
559 /*
560 * start cpu#1 now
561 */
562 gemini_cpu1_start();
563
564 /*
565 * When we enter here, we are using a temporary first level
566 * translation table with section entries in it to cover the OBIO
567 * peripherals and SDRAM. The temporary first level translation table
568 * is at the end of SDRAM.
569 */
570
571 /* Heads up ... Setup the CPU / MMU / TLB functions. */
572 GEMINI_PUTCHAR('1');
573 if (set_cpufuncs())
574 panic("cpu not recognized!");
575
576 GEMINI_PUTCHAR('2');
577 init_clocks();
578 GEMINI_PUTCHAR('3');
579
580 /* The console is going to try to map things. Give pmap a devmap. */
581 pmap_devmap_register(devmap);
582 GEMINI_PUTCHAR('4');
583 consinit();
584 GEMINI_PUTCHAR('5');
585 #ifdef KGDB
586 kgdb_port_init();
587 #endif
588
589 #ifdef VERBOSE_INIT_ARM
590 /* Talk to the user */
591 printf("\nNetBSD/evbarm (gemini) booting ...\n");
592 #endif
593
594 #ifdef BOOT_ARGS
595 char mi_bootargs[] = BOOT_ARGS;
596 parse_mi_bootargs(mi_bootargs);
597 #endif
598
599 #ifdef VERBOSE_INIT_ARM
600 printf("initarm: Configuring system ...\n");
601 #endif
602
603 /*
604 * Set up the variables that define the availability of physical
605 * memory.
606 */
607 physical_start = GEMINI_DRAM_BASE;
608 #define MEMSIZE_BYTES (MEMSIZE * 1024 * 1024)
609 physical_end = (physical_start & ~(0x400000-1)) + MEMSIZE_BYTES;
610 physmem = (physical_end - physical_start) / PAGE_SIZE;
611
612 /* Fake bootconfig structure for the benefit of pmap.c. */
613 bootconfig.dramblocks = 1;
614 bootconfig.dram[0].address = physical_start;
615 bootconfig.dram[0].pages = physmem;
616
617 /*
618 * Our kernel is at the beginning of memory, so set our free space to
619 * all the memory after the kernel.
620 */
621 physical_freestart = KERN_VTOPHYS(round_page((vaddr_t) _end));
622 physical_freeend = physical_end;
623 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
624
625 /*
626 * This is going to do all the hard work of setting up the first and
627 * and second level page tables. Pages of memory will be allocated
628 * and mapped for other structures that are required for system
629 * operation. When it returns, physical_freestart and free_pages will
630 * have been updated to reflect the allocations that were made. In
631 * addition, kernel_l1pt, kernel_pt_table[], systempage, irqstack,
632 * abtstack, undstack, kernelstack, msgbufphys will be set to point to
633 * the memory that was allocated for them.
634 */
635 setup_real_page_tables();
636
637 /*
638 * Moved from cpu_startup() as data_abort_handler() references
639 * this during uvm init.
640 */
641 proc0paddr = (struct user *)kernelstack.pv_va;
642 lwp0.l_addr = proc0paddr;
643
644 #ifdef VERBOSE_INIT_ARM
645 printf("bootstrap done.\n");
646 #endif
647
648 arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
649
650 /*
651 * Pages were allocated during the secondary bootstrap for the
652 * stacks for different CPU modes.
653 * We must now set the r13 registers in the different CPU modes to
654 * point to these stacks.
655 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
656 * of the stack memory.
657 */
658 #ifdef VERBOSE_INIT_ARM
659 printf("init subsystems: stacks ");
660 #endif
661
662 set_stackptr(PSR_FIQ32_MODE, fiqstack.pv_va + FIQ_STACK_SIZE * PAGE_SIZE);
663 set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
664 set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
665 set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
666
667 /*
668 * Well we should set a data abort handler.
669 * Once things get going this will change as we will need a proper
670 * handler.
671 * Until then we will use a handler that just panics but tells us
672 * why.
673 * Initialisation of the vectors will just panic on a data abort.
674 * This just fills in a slightly better one.
675 */
676 #ifdef VERBOSE_INIT_ARM
677 printf("vectors ");
678 #endif
679 data_abort_handler_address = (u_int)data_abort_handler;
680 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
681 undefined_handler_address = (u_int)undefinedinstruction_bounce;
682
683 /* Initialise the undefined instruction handlers */
684 #ifdef VERBOSE_INIT_ARM
685 printf("undefined ");
686 #endif
687 undefined_init();
688
689 /* Load memory into UVM. */
690 #ifdef VERBOSE_INIT_ARM
691 printf("page ");
692 #endif
693 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
694
695 #if defined(MEMORY_DISK_DYNAMIC)
696 uvm_page_physload(atop(physical_freestart), atop(GEMINI_RAMDISK_PBASE),
697 atop(physical_freestart), atop(GEMINI_RAMDISK_PBASE),
698 VM_FREELIST_DEFAULT);
699 uvm_page_physload(atop(GEMINI_RAMDISK_PEND), atop(physical_freeend),
700 atop(GEMINI_RAMDISK_PEND), atop(physical_freeend),
701 VM_FREELIST_DEFAULT);
702 #else
703 uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
704 atop(physical_freestart), atop(physical_freeend),
705 VM_FREELIST_DEFAULT);
706 #endif
707 uvm_page_physload(atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys),
708 atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys),
709 VM_FREELIST_DEFAULT);
710
711 /* Boot strap pmap telling it where the kernel page table is */
712 #ifdef VERBOSE_INIT_ARM
713 printf("pmap ");
714 #endif
715 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
716
717 #ifdef VERBOSE_INIT_ARM
718 printf("done.\n");
719 #endif
720
721 #ifdef IPKDB
722 /* Initialise ipkdb */
723 ipkdb_init();
724 if (boothowto & RB_KDB)
725 ipkdb_connect(0);
726 #endif
727
728 #if defined(MEMORY_DISK_DYNAMIC)
729 md_root_setconf((char *)GEMINI_RAMDISK_VBASE, GEMINI_RAMDISK_SIZE);
730 #endif
731
732 #ifdef KGDB
733 if (boothowto & RB_KDB) {
734 kgdb_debug_init = 1;
735 kgdb_connect(1);
736 }
737 #endif
738
739 #ifdef DDB
740 db_trap_callback = gemini_db_trap;
741 db_machine_init();
742
743 /* Firmware doesn't load symbols. */
744 ddb_init(0, NULL, NULL);
745
746 if (boothowto & RB_KDB)
747 Debugger();
748 #endif
749 printf("initarm done.\n");
750
751 /* We return the new stack pointer address */
752 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
753 }
754
755 static void
756 init_clocks(void)
757 {
758 }
759
760 #ifndef CONSADDR
761 #error Specify the address of the console UART with the CONSADDR option.
762 #endif
763 #ifndef CONSPEED
764 #define CONSPEED 19200
765 #endif
766 #ifndef CONMODE
767 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
768 #endif
769
770 static const bus_addr_t consaddr = CONSADDR;
771 static const int conspeed = CONSPEED;
772 static const int conmode = CONMODE;
773
774 #if CONSADDR==0x42000000
775 /*
776 * console initialization for obio com console
777 */
778 void
779 consinit(void)
780 {
781 static int consinit_called = 0;
782
783 if (consinit_called != 0)
784 return;
785 consinit_called = 1;
786
787 if (comcnattach(&gemini_a4x_bs_tag, consaddr, conspeed,
788 GEMINI_COM_FREQ, COM_TYPE_16550_NOERS, conmode))
789 panic("Serial console can not be initialized.");
790 }
791
792 #elif CONSADDR==0x478003f8
793 # include <arm/gemini/gemini_lpcvar.h>
794 /*
795 * console initialization for lpc com console
796 */
797 void
798 consinit(void)
799 {
800 static int consinit_called = 0;
801 bus_space_tag_t iot = &gemini_bs_tag;
802 bus_space_handle_t lpchc_ioh;
803 bus_space_handle_t lpcio_ioh;
804 bus_size_t sz = L1_S_SIZE;
805 gemini_lpc_softc_t lpcsoftc;
806 gemini_lpc_bus_ops_t *ops;
807 void *lpctag = &lpcsoftc;
808 uint32_t r;
809 extern gemini_lpc_bus_ops_t gemini_lpc_bus_ops;
810
811 ops = &gemini_lpc_bus_ops;
812
813 if (consinit_called != 0)
814 return;
815 consinit_called = 1;
816
817 if (bus_space_map(iot, GEMINI_LPCHC_BASE, sz, 0, &lpchc_ioh))
818 panic("consinit: LPCHC can not be mapped.");
819
820 if (bus_space_map(iot, GEMINI_LPCIO_BASE, sz, 0, &lpcio_ioh))
821 panic("consinit: LPCIO can not be mapped.");
822
823 /* enable the LPC bus */
824 r = bus_space_read_4(iot, lpchc_ioh, GEMINI_LPCHC_CSR);
825 r |= LPCHC_CSR_BEN;
826 bus_space_write_4(iot, lpchc_ioh, GEMINI_LPCHC_CSR, r);
827
828 memset(&lpcsoftc, 0, sizeof(lpcsoftc));
829 lpcsoftc.sc_iot = iot;
830 lpcsoftc.sc_ioh = lpcio_ioh;
831
832 /* activate Serial Port 1 */
833 (*ops->lpc_pnp_enter)(lpctag);
834 (*ops->lpc_pnp_write)(lpctag, 1, 0x30, 0x01);
835 (*ops->lpc_pnp_exit)(lpctag);
836
837 if (comcnattach(iot, consaddr, conspeed,
838 IT8712F_COM_FREQ, COM_TYPE_NORMAL, conmode)) {
839 panic("Serial console can not be initialized.");
840 }
841
842 bus_space_unmap(iot, lpcio_ioh, sz);
843 bus_space_unmap(iot, lpchc_ioh, sz);
844 }
845 #else
846 # error unknown console
847 #endif
848
849 #ifdef KGDB
850 #ifndef KGDB_DEVADDR
851 #error Specify the address of the kgdb UART with the KGDB_DEVADDR option.
852 #endif
853 #ifndef KGDB_DEVRATE
854 #define KGDB_DEVRATE 19200
855 #endif
856
857 #ifndef KGDB_DEVMODE
858 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
859 #endif
860 static const vaddr_t comkgdbaddr = KGDB_DEVADDR;
861 static const int comkgdbspeed = KGDB_DEVRATE;
862 static const int comkgdbmode = KGDB_DEVMODE;
863
864 void
865 static kgdb_port_init(void)
866 {
867 static int kgdbsinit_called = 0;
868
869 if (kgdbsinit_called != 0)
870 return;
871
872 kgdbsinit_called = 1;
873
874 bus_space_handle_t bh;
875 if (bus_space_map(&gemini_a4x_bs_tag, comkgdbaddr,
876 GEMINI_UART_SIZE, 0, &bh))
877 panic("kgdb port can not be mapped.");
878
879 if (com_kgdb_attach(&gemini_a4x_bs_tag, comkgdbaddr, comkgdbspeed,
880 GEMINI_UART_SIZE, COM_TYPE_16550_NOERS, comkgdbmode))
881 panic("KGDB uart can not be initialized.");
882
883 bus_space_unmap(&gemini_a4x_bs_tag, bh, GEMINI_UART_SIZE);
884 }
885 #endif
886
887 static void
888 setup_real_page_tables(void)
889 {
890 /*
891 * We need to allocate some fixed page tables to get the kernel going.
892 *
893 * We are going to allocate our bootstrap pages from the beginning of
894 * the free space that we just calculated. We allocate one page
895 * directory and a number of page tables and store the physical
896 * addresses in the kernel_pt_table array.
897 *
898 * The kernel page directory must be on a 16K boundary. The page
899 * tables must be on 4K boundaries. What we do is allocate the
900 * page directory on the first 16K boundary that we encounter, and
901 * the page tables on 4K boundaries otherwise. Since we allocate
902 * at least 3 L2 page tables, we are guaranteed to encounter at
903 * least one 16K aligned region.
904 */
905
906 #ifdef VERBOSE_INIT_ARM
907 printf("Allocating page tables\n");
908 #endif
909
910 /*
911 * Define a macro to simplify memory allocation. As we allocate the
912 * memory, make sure that we don't walk over our temporary first level
913 * translation table.
914 */
915 #define valloc_pages(var, np) \
916 (var).pv_pa = physical_freestart; \
917 physical_freestart += ((np) * PAGE_SIZE); \
918 if (physical_freestart > (physical_freeend - L1_TABLE_SIZE)) \
919 panic("initarm: out of memory"); \
920 free_pages -= (np); \
921 (var).pv_va = KERN_PHYSTOV((var).pv_pa); \
922 memset((char *)(var).pv_va, 0, ((np) * PAGE_SIZE));
923
924 int loop, pt_index;
925
926 pt_index = 0;
927 kernel_l1pt.pv_pa = 0;
928 kernel_l1pt.pv_va = 0;
929 #ifdef VERBOSE_INIT_ARM
930 printf("%s: physical_freestart %#lx\n", __func__, physical_freestart);
931 #endif
932 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
933 /* Are we 16KB aligned for an L1 ? */
934 if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0
935 && kernel_l1pt.pv_pa == 0) {
936 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
937 } else {
938 valloc_pages(kernel_pt_table[pt_index],
939 L2_TABLE_SIZE / PAGE_SIZE);
940 ++pt_index;
941 }
942 }
943
944 #ifdef VERBOSE_INIT_ARM
945 pt_index=0;
946 printf("%s: kernel_l1pt: %#lx:%#lx\n",
947 __func__, kernel_l1pt.pv_va, kernel_l1pt.pv_pa);
948 printf("%s: kernel_pt_table:\n", __func__);
949 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
950 printf("\t%#lx:%#lx\n", kernel_pt_table[pt_index].pv_va,
951 kernel_pt_table[pt_index].pv_pa);
952 ++pt_index;
953 }
954 #endif
955
956 /* This should never be able to happen but better confirm that. */
957 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
958 panic("initarm: Failed to align the kernel page directory");
959
960 /*
961 * Allocate a page for the system page mapped to V0x00000000
962 * This page will just contain the system vectors and can be
963 * shared by all processes.
964 */
965 valloc_pages(systempage, 1);
966 systempage.pv_va = ARM_VECTORS_HIGH;
967
968 /* Allocate stacks for all modes */
969 valloc_pages(fiqstack, FIQ_STACK_SIZE);
970 valloc_pages(irqstack, IRQ_STACK_SIZE);
971 valloc_pages(abtstack, ABT_STACK_SIZE);
972 valloc_pages(undstack, UND_STACK_SIZE);
973 valloc_pages(kernelstack, UPAGES);
974
975 /* Allocate the message buffer. */
976 pv_addr_t msgbuf;
977 int msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
978 valloc_pages(msgbuf, msgbuf_pgs);
979 msgbufphys = msgbuf.pv_pa;
980
981 /*
982 * Ok we have allocated physical pages for the primary kernel
983 * page tables
984 */
985
986 #ifdef VERBOSE_INIT_ARM
987 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
988 #endif
989
990 /*
991 * Now we start construction of the L1 page table
992 * We start by mapping the L2 page tables into the L1.
993 * This means that we can replace L1 mappings later on if necessary
994 */
995 vaddr_t l1_va = kernel_l1pt.pv_va;
996 paddr_t l1_pa = kernel_l1pt.pv_pa;
997
998 /* Map the L2 pages tables in the L1 page table */
999 pmap_link_l2pt(l1_va, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
1000 &kernel_pt_table[KERNEL_PT_SYS]);
1001 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
1002 pmap_link_l2pt(l1_va, KERNEL_BASE + loop * 0x00400000,
1003 &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
1004 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
1005 pmap_link_l2pt(l1_va, KERNEL_VM_BASE + loop * 0x00400000,
1006 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
1007
1008 /* update the top of the kernel VM */
1009 pmap_curmaxkvaddr =
1010 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
1011
1012 #ifdef VERBOSE_INIT_ARM
1013 printf("Mapping kernel\n");
1014 #endif
1015
1016 /* Now we fill in the L2 pagetable for the kernel static code/data */
1017 #define round_L_page(x) (((x) + L2_L_OFFSET) & L2_L_FRAME)
1018 size_t textsize = round_L_page(etext - KERNEL_BASE_virt);
1019 size_t totalsize = round_L_page(_end - KERNEL_BASE_virt);
1020 /* offset of kernel in RAM */
1021 u_int offset = (u_int)KERNEL_BASE_virt - KERNEL_BASE;
1022
1023 /* Map text section read-only. */
1024 offset += pmap_map_chunk(l1_va,
1025 (vaddr_t)KERNEL_BASE + offset,
1026 physical_start + offset, textsize,
1027 VM_PROT_READ|VM_PROT_EXECUTE, PTE_CACHE);
1028 /* Map data and bss sections read-write. */
1029 offset += pmap_map_chunk(l1_va,
1030 (vaddr_t)KERNEL_BASE + offset,
1031 physical_start + offset, totalsize - textsize,
1032 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1033
1034 #ifdef VERBOSE_INIT_ARM
1035 printf("Constructing L2 page tables\n");
1036 #endif
1037
1038 /* Map the stack pages */
1039 pmap_map_chunk(l1_va, fiqstack.pv_va, fiqstack.pv_pa,
1040 FIQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1041 pmap_map_chunk(l1_va, irqstack.pv_va, irqstack.pv_pa,
1042 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1043 pmap_map_chunk(l1_va, abtstack.pv_va, abtstack.pv_pa,
1044 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1045 pmap_map_chunk(l1_va, undstack.pv_va, undstack.pv_pa,
1046 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1047 pmap_map_chunk(l1_va, kernelstack.pv_va, kernelstack.pv_pa,
1048 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
1049
1050 pmap_map_chunk(l1_va, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
1051 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
1052
1053 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
1054 pmap_map_chunk(l1_va, kernel_pt_table[loop].pv_va,
1055 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
1056 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
1057 }
1058
1059 /* Map the vector page. */
1060 pmap_map_entry(l1_va, ARM_VECTORS_HIGH, systempage.pv_pa,
1061 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1062
1063 /*
1064 * Map integrated peripherals at same address in first level page
1065 * table so that we can continue to use console.
1066 */
1067 pmap_devmap_bootstrap(l1_va, devmap);
1068
1069
1070 #ifdef VERBOSE_INIT_ARM
1071 /* Tell the user about where all the bits and pieces live. */
1072 printf("%22s Physical Virtual Num\n", " ");
1073 printf("%22s Starting Ending Starting Ending Pages\n", " ");
1074
1075 static const char mem_fmt[] =
1076 "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %d\n";
1077 static const char mem_fmt_nov[] =
1078 "%20s: 0x%08lx 0x%08lx %d\n";
1079
1080 printf(mem_fmt, "SDRAM", physical_start, physical_end-1,
1081 KERN_PHYSTOV(physical_start), KERN_PHYSTOV(physical_end-1),
1082 physmem);
1083 printf(mem_fmt, "text section",
1084 KERN_VTOPHYS(KERNEL_BASE_virt), KERN_VTOPHYS(etext-1),
1085 (vaddr_t)KERNEL_BASE_virt, (vaddr_t)etext-1,
1086 (int)(textsize / PAGE_SIZE));
1087 printf(mem_fmt, "data section",
1088 KERN_VTOPHYS(__data_start), KERN_VTOPHYS(_edata),
1089 (vaddr_t)__data_start, (vaddr_t)_edata,
1090 (int)((round_page((vaddr_t)_edata)
1091 - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
1092 printf(mem_fmt, "bss section",
1093 KERN_VTOPHYS(__bss_start), KERN_VTOPHYS(__bss_end__),
1094 (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
1095 (int)((round_page((vaddr_t)__bss_end__)
1096 - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
1097 printf(mem_fmt, "L1 page directory",
1098 kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
1099 kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
1100 L1_TABLE_SIZE / PAGE_SIZE);
1101 printf(mem_fmt, "Exception Vectors",
1102 systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
1103 (vaddr_t)ARM_VECTORS_HIGH, (vaddr_t)ARM_VECTORS_HIGH + PAGE_SIZE - 1,
1104 1);
1105 printf(mem_fmt, "FIQ stack",
1106 fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
1107 fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
1108 FIQ_STACK_SIZE);
1109 printf(mem_fmt, "IRQ stack",
1110 irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
1111 irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
1112 IRQ_STACK_SIZE);
1113 printf(mem_fmt, "ABT stack",
1114 abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
1115 abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
1116 ABT_STACK_SIZE);
1117 printf(mem_fmt, "UND stack",
1118 undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
1119 undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
1120 UND_STACK_SIZE);
1121 printf(mem_fmt, "SVC stack",
1122 kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
1123 kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
1124 UPAGES);
1125 printf(mem_fmt_nov, "Message Buffer",
1126 msgbufphys, msgbufphys + msgbuf_pgs * PAGE_SIZE - 1, msgbuf_pgs);
1127 printf(mem_fmt, "Free Memory", physical_freestart, physical_freeend-1,
1128 KERN_PHYSTOV(physical_freestart), KERN_PHYSTOV(physical_freeend-1),
1129 free_pages);
1130 #endif
1131
1132 /*
1133 * Now we have the real page tables in place so we can switch to them.
1134 * Once this is done we will be running with the REAL kernel page
1135 * tables.
1136 */
1137
1138 /* Switch tables */
1139 #ifdef VERBOSE_INIT_ARM
1140 printf("switching to new L1 page table @%#lx...", l1_pa);
1141 #endif
1142
1143 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
1144 setttb(l1_pa);
1145 cpu_tlb_flushID();
1146 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
1147
1148 #ifdef VERBOSE_INIT_ARM
1149 printf("OK.\n");
1150 #endif
1151 }
1152