1 1.35 skrll /* $NetBSD: hdlg_machdep.c,v 1.35 2023/10/12 11:33:38 skrll Exp $ */ 2 1.1 nonaka 3 1.1 nonaka /* 4 1.1 nonaka * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc. 5 1.1 nonaka * All rights reserved. 6 1.1 nonaka * 7 1.1 nonaka * Written by Jason R. Thorpe and Steve C. Woodford for Wasabi Systems, Inc. 8 1.1 nonaka * 9 1.1 nonaka * Redistribution and use in source and binary forms, with or without 10 1.1 nonaka * modification, are permitted provided that the following conditions 11 1.1 nonaka * are met: 12 1.1 nonaka * 1. Redistributions of source code must retain the above copyright 13 1.1 nonaka * notice, this list of conditions and the following disclaimer. 14 1.1 nonaka * 2. Redistributions in binary form must reproduce the above copyright 15 1.1 nonaka * notice, this list of conditions and the following disclaimer in the 16 1.1 nonaka * documentation and/or other materials provided with the distribution. 17 1.1 nonaka * 3. All advertising materials mentioning features or use of this software 18 1.1 nonaka * must display the following acknowledgement: 19 1.1 nonaka * This product includes software developed for the NetBSD Project by 20 1.1 nonaka * Wasabi Systems, Inc. 21 1.1 nonaka * 4. The name of Wasabi Systems, Inc. may not be used to endorse 22 1.1 nonaka * or promote products derived from this software without specific prior 23 1.1 nonaka * written permission. 24 1.1 nonaka * 25 1.1 nonaka * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 26 1.1 nonaka * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 27 1.1 nonaka * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 1.1 nonaka * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 29 1.1 nonaka * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 1.1 nonaka * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 1.1 nonaka * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 32 1.1 nonaka * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 33 1.1 nonaka * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 34 1.1 nonaka * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 1.1 nonaka * POSSIBILITY OF SUCH DAMAGE. 36 1.1 nonaka */ 37 1.1 nonaka 38 1.1 nonaka /* 39 1.1 nonaka * Copyright (c) 1997,1998 Mark Brinicombe. 40 1.1 nonaka * Copyright (c) 1997,1998 Causality Limited. 41 1.1 nonaka * All rights reserved. 42 1.1 nonaka * 43 1.1 nonaka * Redistribution and use in source and binary forms, with or without 44 1.1 nonaka * modification, are permitted provided that the following conditions 45 1.1 nonaka * are met: 46 1.1 nonaka * 1. Redistributions of source code must retain the above copyright 47 1.1 nonaka * notice, this list of conditions and the following disclaimer. 48 1.1 nonaka * 2. Redistributions in binary form must reproduce the above copyright 49 1.1 nonaka * notice, this list of conditions and the following disclaimer in the 50 1.1 nonaka * documentation and/or other materials provided with the distribution. 51 1.1 nonaka * 3. All advertising materials mentioning features or use of this software 52 1.1 nonaka * must display the following acknowledgement: 53 1.1 nonaka * This product includes software developed by Mark Brinicombe 54 1.1 nonaka * for the NetBSD Project. 55 1.1 nonaka * 4. The name of the company nor the name of the author may be used to 56 1.1 nonaka * endorse or promote products derived from this software without specific 57 1.1 nonaka * prior written permission. 58 1.1 nonaka * 59 1.1 nonaka * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 60 1.1 nonaka * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 61 1.1 nonaka * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 62 1.1 nonaka * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 63 1.1 nonaka * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 64 1.1 nonaka * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 65 1.1 nonaka * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 66 1.1 nonaka * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 67 1.1 nonaka * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 68 1.1 nonaka * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 69 1.1 nonaka * SUCH DAMAGE. 70 1.1 nonaka * 71 1.15 wiz * Machine dependent functions for kernel setup for GigaLANDISK 72 1.1 nonaka * using RedBoot firmware. 73 1.1 nonaka */ 74 1.1 nonaka 75 1.1 nonaka #include <sys/cdefs.h> 76 1.35 skrll __KERNEL_RCSID(0, "$NetBSD: hdlg_machdep.c,v 1.35 2023/10/12 11:33:38 skrll Exp $"); 77 1.1 nonaka 78 1.24 skrll #include "opt_arm_debug.h" 79 1.25 skrll #include "opt_console.h" 80 1.1 nonaka #include "opt_ddb.h" 81 1.1 nonaka #include "opt_kgdb.h" 82 1.1 nonaka 83 1.1 nonaka #include <sys/param.h> 84 1.1 nonaka #include <sys/device.h> 85 1.1 nonaka #include <sys/systm.h> 86 1.1 nonaka #include <sys/kernel.h> 87 1.1 nonaka #include <sys/exec.h> 88 1.1 nonaka #include <sys/proc.h> 89 1.1 nonaka #include <sys/msgbuf.h> 90 1.1 nonaka #include <sys/reboot.h> 91 1.1 nonaka #include <sys/termios.h> 92 1.1 nonaka #include <sys/ksyms.h> 93 1.21 matt #include <sys/bus.h> 94 1.21 matt #include <sys/cpu.h> 95 1.1 nonaka 96 1.1 nonaka #include <uvm/uvm_extern.h> 97 1.1 nonaka 98 1.1 nonaka #include <dev/cons.h> 99 1.1 nonaka 100 1.1 nonaka #include <machine/db_machdep.h> 101 1.1 nonaka #include <ddb/db_sym.h> 102 1.1 nonaka #include <ddb/db_extern.h> 103 1.1 nonaka 104 1.1 nonaka #include <machine/bootconfig.h> 105 1.21 matt #include <arm/locore.h> 106 1.1 nonaka #include <arm/undefined.h> 107 1.1 nonaka 108 1.1 nonaka #include <arm/arm32/machdep.h> 109 1.1 nonaka 110 1.1 nonaka #include <arm/xscale/i80321reg.h> 111 1.1 nonaka #include <arm/xscale/i80321var.h> 112 1.1 nonaka 113 1.1 nonaka #include <dev/pci/ppbreg.h> 114 1.1 nonaka 115 1.1 nonaka #include <evbarm/hdl_g/hdlgreg.h> 116 1.1 nonaka #include <evbarm/hdl_g/hdlgvar.h> 117 1.1 nonaka #include <evbarm/hdl_g/obiovar.h> 118 1.1 nonaka 119 1.1 nonaka #include "ksyms.h" 120 1.1 nonaka 121 1.1 nonaka /* Kernel text starts 2MB in from the bottom of the kernel address space. */ 122 1.1 nonaka #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000) 123 1.1 nonaka #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000) 124 1.1 nonaka 125 1.1 nonaka /* 126 1.1 nonaka * The range 0xc1000000 - 0xccffffff is available for kernel VM space 127 1.1 nonaka * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff 128 1.1 nonaka */ 129 1.1 nonaka #define KERNEL_VM_SIZE 0x0C000000 130 1.1 nonaka 131 1.1 nonaka BootConfig bootconfig; /* Boot config storage */ 132 1.1 nonaka char *boot_args = NULL; 133 1.1 nonaka char *boot_file = NULL; 134 1.1 nonaka 135 1.22 matt vaddr_t physical_start; 136 1.22 matt vaddr_t physical_freestart; 137 1.22 matt vaddr_t physical_freeend; 138 1.22 matt vaddr_t physical_end; 139 1.1 nonaka u_int free_pages; 140 1.1 nonaka 141 1.1 nonaka /*int debug_flags;*/ 142 1.1 nonaka #ifndef PMAP_STATIC_L1S 143 1.1 nonaka int max_processes = 64; /* Default number */ 144 1.1 nonaka #endif /* !PMAP_STATIC_L1S */ 145 1.1 nonaka 146 1.18 matt pv_addr_t minidataclean; 147 1.18 matt 148 1.22 matt paddr_t msgbufphys; 149 1.1 nonaka 150 1.1 nonaka #define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */ 151 1.1 nonaka 152 1.1 nonaka #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */ 153 1.1 nonaka #define KERNEL_PT_KERNEL_NUM 4 154 1.1 nonaka 155 1.1 nonaka /* L2 table for mapping i80321 */ 156 1.1 nonaka #define KERNEL_PT_IOPXS (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM) 157 1.1 nonaka 158 1.29 skrll /* L2 tables for mapping kernel VM */ 159 1.1 nonaka #define KERNEL_PT_VMDATA (KERNEL_PT_IOPXS + 1) 160 1.1 nonaka #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */ 161 1.1 nonaka #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) 162 1.1 nonaka 163 1.1 nonaka pv_addr_t kernel_pt_table[NUM_KERNEL_PTS]; 164 1.1 nonaka 165 1.1 nonaka /* Prototypes */ 166 1.1 nonaka void consinit(void); 167 1.1 nonaka 168 1.1 nonaka /* Static device mappings. */ 169 1.1 nonaka static const struct pmap_devmap hdlg_devmap[] = { 170 1.1 nonaka /* 171 1.1 nonaka * Map the on-board devices VA == PA so that we can access them 172 1.1 nonaka * with the MMU on or off. 173 1.1 nonaka */ 174 1.34 skrll DEVMAP_ENTRY( 175 1.1 nonaka HDLG_OBIO_BASE, 176 1.1 nonaka HDLG_OBIO_BASE, 177 1.34 skrll HDLG_OBIO_SIZE 178 1.34 skrll ), 179 1.1 nonaka 180 1.34 skrll DEVMAP_ENTRY( 181 1.1 nonaka HDLG_IOW_VBASE, 182 1.1 nonaka VERDE_OUT_XLATE_IO_WIN0_BASE, 183 1.34 skrll VERDE_OUT_XLATE_IO_WIN_SIZE 184 1.34 skrll ), 185 1.1 nonaka 186 1.34 skrll DEVMAP_ENTRY( 187 1.1 nonaka HDLG_80321_VBASE, 188 1.1 nonaka VERDE_PMMR_BASE, 189 1.34 skrll VERDE_PMMR_SIZE 190 1.34 skrll ), 191 1.34 skrll 192 1.34 skrll DEVMAP_ENTRY_END 193 1.1 nonaka }; 194 1.1 nonaka 195 1.1 nonaka static void 196 1.1 nonaka hardclock_hook(void) 197 1.1 nonaka { 198 1.1 nonaka 199 1.1 nonaka /* Nothing to do */ 200 1.1 nonaka } 201 1.1 nonaka 202 1.1 nonaka /* 203 1.28 skrll * vaddr_t initarm(...) 204 1.1 nonaka * 205 1.1 nonaka * Initial entry point on startup. This gets called before main() is 206 1.1 nonaka * entered. 207 1.1 nonaka * It should be responsible for setting up everything that must be 208 1.1 nonaka * in place when main is called. 209 1.1 nonaka * This includes 210 1.1 nonaka * Taking a copy of the boot configuration structure. 211 1.1 nonaka * Initialising the physical console so characters can be printed. 212 1.1 nonaka * Setting up page tables for the kernel 213 1.1 nonaka * Relocating the kernel to the bottom of physical memory 214 1.1 nonaka */ 215 1.28 skrll vaddr_t 216 1.1 nonaka initarm(void *arg) 217 1.1 nonaka { 218 1.1 nonaka int loop; 219 1.1 nonaka int loop1; 220 1.1 nonaka u_int l1pagetable; 221 1.1 nonaka paddr_t memstart; 222 1.1 nonaka psize_t memsize; 223 1.1 nonaka 224 1.1 nonaka /* Calibrate the delay loop. */ 225 1.1 nonaka i80321_calibrate_delay(); 226 1.1 nonaka i80321_hardclock_hook = hardclock_hook; 227 1.1 nonaka 228 1.1 nonaka /* 229 1.1 nonaka * Since we map the on-board devices VA==PA, and the kernel 230 1.1 nonaka * is running VA==PA, it's possible for us to initialize 231 1.1 nonaka * the console now. 232 1.1 nonaka */ 233 1.1 nonaka consinit(); 234 1.1 nonaka 235 1.1 nonaka #ifdef VERBOSE_INIT_ARM 236 1.1 nonaka /* Talk to the user */ 237 1.4 nonaka printf("\nNetBSD/evbarm (HDL-G) booting ...\n"); 238 1.1 nonaka #endif 239 1.1 nonaka 240 1.1 nonaka /* 241 1.1 nonaka * Heads up ... Setup the CPU / MMU / TLB functions 242 1.1 nonaka */ 243 1.1 nonaka if (set_cpufuncs()) 244 1.1 nonaka panic("CPU not recognized!"); 245 1.1 nonaka 246 1.1 nonaka /* 247 1.1 nonaka * We are currently running with the MMU enabled and the 248 1.1 nonaka * entire address space mapped VA==PA, except for the 249 1.1 nonaka * first 64M of RAM is also double-mapped at 0xc0000000. 250 1.1 nonaka * There is an L1 page table at 0xa0004000. 251 1.1 nonaka */ 252 1.1 nonaka 253 1.1 nonaka /* 254 1.1 nonaka * Fetch the SDRAM start/size from the i80321 SDRAM configuration 255 1.1 nonaka * registers. 256 1.1 nonaka */ 257 1.1 nonaka i80321_sdram_bounds(&obio_bs_tag, VERDE_PMMR_BASE + VERDE_MCU_BASE, 258 1.1 nonaka &memstart, &memsize); 259 1.1 nonaka 260 1.1 nonaka #ifdef VERBOSE_INIT_ARM 261 1.1 nonaka printf("initarm: Configuring system ...\n"); 262 1.1 nonaka #endif 263 1.1 nonaka 264 1.1 nonaka /* Fake bootconfig structure for the benefit of pmap.c */ 265 1.3 wiz /* XXX must make the memory description h/w independent */ 266 1.1 nonaka bootconfig.dramblocks = 1; 267 1.1 nonaka bootconfig.dram[0].address = memstart; 268 1.1 nonaka bootconfig.dram[0].pages = memsize / PAGE_SIZE; 269 1.1 nonaka 270 1.1 nonaka /* 271 1.31 andvar * Set up the variables that define the availability of 272 1.1 nonaka * physical memory. For now, we're going to set 273 1.1 nonaka * physical_freestart to 0xa0200000 (where the kernel 274 1.1 nonaka * was loaded), and allocate the memory we need downwards. 275 1.1 nonaka * If we get too close to the L1 table that we set up, we 276 1.1 nonaka * will panic. We will update physical_freestart and 277 1.1 nonaka * physical_freeend later to reflect what pmap_bootstrap() 278 1.1 nonaka * wants to see. 279 1.1 nonaka * 280 1.1 nonaka * XXX pmap_bootstrap() needs an enema. 281 1.1 nonaka */ 282 1.1 nonaka physical_start = bootconfig.dram[0].address; 283 1.1 nonaka physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE); 284 1.1 nonaka 285 1.1 nonaka physical_freestart = 0xa0009000UL; 286 1.1 nonaka physical_freeend = 0xa0200000UL; 287 1.1 nonaka 288 1.1 nonaka physmem = (physical_end - physical_start) / PAGE_SIZE; 289 1.1 nonaka 290 1.1 nonaka #ifdef VERBOSE_INIT_ARM 291 1.1 nonaka /* Tell the user about the memory */ 292 1.32 rin printf("physmemory: %ld pages at 0x%08lx -> 0x%08lx\n", physmem, 293 1.1 nonaka physical_start, physical_end - 1); 294 1.1 nonaka #endif 295 1.1 nonaka 296 1.1 nonaka /* 297 1.1 nonaka * Okay, the kernel starts 2MB in from the bottom of physical 298 1.1 nonaka * memory. We are going to allocate our bootstrap pages downwards 299 1.1 nonaka * from there. 300 1.1 nonaka * 301 1.1 nonaka * We need to allocate some fixed page tables to get the kernel 302 1.1 nonaka * going. We allocate one page directory and a number of page 303 1.1 nonaka * tables and store the physical addresses in the kernel_pt_table 304 1.1 nonaka * array. 305 1.1 nonaka * 306 1.1 nonaka * The kernel page directory must be on a 16K boundary. The page 307 1.1 nonaka * tables must be on 4K boundaries. What we do is allocate the 308 1.1 nonaka * page directory on the first 16K boundary that we encounter, and 309 1.1 nonaka * the page tables on 4K boundaries otherwise. Since we allocate 310 1.1 nonaka * at least 3 L2 page tables, we are guaranteed to encounter at 311 1.1 nonaka * least one 16K aligned region. 312 1.1 nonaka */ 313 1.1 nonaka 314 1.1 nonaka #ifdef VERBOSE_INIT_ARM 315 1.1 nonaka printf("Allocating page tables\n"); 316 1.1 nonaka #endif 317 1.1 nonaka 318 1.1 nonaka free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; 319 1.1 nonaka 320 1.1 nonaka #ifdef VERBOSE_INIT_ARM 321 1.1 nonaka printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n", 322 1.1 nonaka physical_freestart, free_pages, free_pages); 323 1.1 nonaka #endif 324 1.1 nonaka 325 1.1 nonaka /* Define a macro to simplify memory allocation */ 326 1.1 nonaka #define valloc_pages(var, np) \ 327 1.1 nonaka alloc_pages((var).pv_pa, (np)); \ 328 1.1 nonaka (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; 329 1.1 nonaka 330 1.1 nonaka #define alloc_pages(var, np) \ 331 1.1 nonaka physical_freeend -= ((np) * PAGE_SIZE); \ 332 1.1 nonaka if (physical_freeend < physical_freestart) \ 333 1.1 nonaka panic("initarm: out of memory"); \ 334 1.1 nonaka (var) = physical_freeend; \ 335 1.1 nonaka free_pages -= (np); \ 336 1.1 nonaka memset((char *)(var), 0, ((np) * PAGE_SIZE)); 337 1.1 nonaka 338 1.1 nonaka loop1 = 0; 339 1.1 nonaka for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { 340 1.1 nonaka /* Are we 16KB aligned for an L1 ? */ 341 1.1 nonaka if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 342 1.1 nonaka && kernel_l1pt.pv_pa == 0) { 343 1.1 nonaka valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); 344 1.1 nonaka } else { 345 1.1 nonaka valloc_pages(kernel_pt_table[loop1], 346 1.1 nonaka L2_TABLE_SIZE / PAGE_SIZE); 347 1.1 nonaka ++loop1; 348 1.1 nonaka } 349 1.1 nonaka } 350 1.1 nonaka 351 1.1 nonaka /* This should never be able to happen but better confirm that. */ 352 1.1 nonaka if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) 353 1.1 nonaka panic("initarm: Failed to align the kernel page directory"); 354 1.1 nonaka 355 1.1 nonaka /* 356 1.1 nonaka * Allocate a page for the system page mapped to V0x00000000 357 1.1 nonaka * This page will just contain the system vectors and can be 358 1.1 nonaka * shared by all processes. 359 1.1 nonaka */ 360 1.1 nonaka alloc_pages(systempage.pv_pa, 1); 361 1.1 nonaka 362 1.1 nonaka /* Allocate stacks for all modes */ 363 1.1 nonaka valloc_pages(irqstack, IRQ_STACK_SIZE); 364 1.1 nonaka valloc_pages(abtstack, ABT_STACK_SIZE); 365 1.1 nonaka valloc_pages(undstack, UND_STACK_SIZE); 366 1.1 nonaka valloc_pages(kernelstack, UPAGES); 367 1.1 nonaka 368 1.1 nonaka /* Allocate enough pages for cleaning the Mini-Data cache. */ 369 1.1 nonaka KASSERT(xscale_minidata_clean_size <= PAGE_SIZE); 370 1.1 nonaka valloc_pages(minidataclean, 1); 371 1.1 nonaka 372 1.1 nonaka #ifdef VERBOSE_INIT_ARM 373 1.1 nonaka printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, 374 1.29 skrll irqstack.pv_va); 375 1.1 nonaka printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, 376 1.29 skrll abtstack.pv_va); 377 1.1 nonaka printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, 378 1.29 skrll undstack.pv_va); 379 1.1 nonaka printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, 380 1.29 skrll kernelstack.pv_va); 381 1.1 nonaka #endif 382 1.1 nonaka 383 1.1 nonaka /* 384 1.1 nonaka * XXX Defer this to later so that we can reclaim the memory 385 1.1 nonaka * XXX used by the RedBoot page tables. 386 1.1 nonaka */ 387 1.1 nonaka alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); 388 1.1 nonaka 389 1.1 nonaka /* 390 1.1 nonaka * Ok we have allocated physical pages for the primary kernel 391 1.1 nonaka * page tables 392 1.1 nonaka */ 393 1.1 nonaka 394 1.1 nonaka #ifdef VERBOSE_INIT_ARM 395 1.1 nonaka printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); 396 1.1 nonaka #endif 397 1.1 nonaka 398 1.1 nonaka /* 399 1.1 nonaka * Now we start construction of the L1 page table 400 1.1 nonaka * We start by mapping the L2 page tables into the L1. 401 1.1 nonaka * This means that we can replace L1 mappings later on if necessary 402 1.1 nonaka */ 403 1.1 nonaka l1pagetable = kernel_l1pt.pv_pa; 404 1.1 nonaka 405 1.1 nonaka /* Map the L2 pages tables in the L1 page table */ 406 1.1 nonaka pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1), 407 1.1 nonaka &kernel_pt_table[KERNEL_PT_SYS]); 408 1.1 nonaka for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) 409 1.1 nonaka pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, 410 1.1 nonaka &kernel_pt_table[KERNEL_PT_KERNEL + loop]); 411 1.1 nonaka pmap_link_l2pt(l1pagetable, HDLG_IOPXS_VBASE, 412 1.1 nonaka &kernel_pt_table[KERNEL_PT_IOPXS]); 413 1.1 nonaka for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) 414 1.1 nonaka pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, 415 1.1 nonaka &kernel_pt_table[KERNEL_PT_VMDATA + loop]); 416 1.1 nonaka 417 1.1 nonaka /* update the top of the kernel VM */ 418 1.1 nonaka pmap_curmaxkvaddr = 419 1.1 nonaka KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); 420 1.1 nonaka 421 1.1 nonaka #ifdef VERBOSE_INIT_ARM 422 1.1 nonaka printf("Mapping kernel\n"); 423 1.1 nonaka #endif 424 1.1 nonaka 425 1.1 nonaka /* Now we fill in the L2 pagetable for the kernel static code/data */ 426 1.1 nonaka { 427 1.1 nonaka extern char etext[], _end[]; 428 1.1 nonaka size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE; 429 1.1 nonaka size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE; 430 1.1 nonaka u_int logical; 431 1.1 nonaka 432 1.1 nonaka textsize = (textsize + PGOFSET) & ~PGOFSET; 433 1.1 nonaka totalsize = (totalsize + PGOFSET) & ~PGOFSET; 434 1.29 skrll 435 1.1 nonaka logical = 0x00200000; /* offset of kernel in RAM */ 436 1.1 nonaka 437 1.1 nonaka logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, 438 1.1 nonaka physical_start + logical, textsize, 439 1.1 nonaka VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 440 1.1 nonaka logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, 441 1.1 nonaka physical_start + logical, totalsize - textsize, 442 1.1 nonaka VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 443 1.1 nonaka } 444 1.1 nonaka 445 1.1 nonaka #ifdef VERBOSE_INIT_ARM 446 1.1 nonaka printf("Constructing L2 page tables\n"); 447 1.1 nonaka #endif 448 1.1 nonaka 449 1.1 nonaka /* Map the stack pages */ 450 1.1 nonaka pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, 451 1.1 nonaka IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 452 1.1 nonaka pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, 453 1.1 nonaka ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 454 1.1 nonaka pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, 455 1.1 nonaka UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 456 1.1 nonaka pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, 457 1.1 nonaka UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 458 1.1 nonaka 459 1.1 nonaka pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, 460 1.1 nonaka L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); 461 1.1 nonaka 462 1.1 nonaka for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { 463 1.1 nonaka pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, 464 1.1 nonaka kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, 465 1.1 nonaka VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); 466 1.1 nonaka } 467 1.1 nonaka 468 1.1 nonaka /* Map the Mini-Data cache clean area. */ 469 1.1 nonaka xscale_setup_minidata(l1pagetable, minidataclean.pv_va, 470 1.1 nonaka minidataclean.pv_pa); 471 1.1 nonaka 472 1.1 nonaka /* Map the vector page. */ 473 1.1 nonaka pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa, 474 1.1 nonaka VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 475 1.1 nonaka 476 1.1 nonaka /* Map the statically mapped devices. */ 477 1.1 nonaka pmap_devmap_bootstrap(l1pagetable, hdlg_devmap); 478 1.1 nonaka 479 1.1 nonaka /* 480 1.1 nonaka * Give the XScale global cache clean code an appropriately 481 1.1 nonaka * sized chunk of unmapped VA space starting at 0xff000000 482 1.1 nonaka * (our device mappings end before this address). 483 1.1 nonaka */ 484 1.1 nonaka xscale_cache_clean_addr = 0xff000000U; 485 1.1 nonaka 486 1.1 nonaka /* 487 1.1 nonaka * Now we have the real page tables in place so we can switch to them. 488 1.1 nonaka * Once this is done we will be running with the REAL kernel page 489 1.1 nonaka * tables. 490 1.1 nonaka */ 491 1.1 nonaka 492 1.1 nonaka /* 493 1.1 nonaka * Update the physical_freestart/physical_freeend/free_pages 494 1.1 nonaka * variables. 495 1.1 nonaka */ 496 1.1 nonaka { 497 1.1 nonaka extern char _end[]; 498 1.1 nonaka 499 1.1 nonaka physical_freestart = physical_start + 500 1.1 nonaka (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) - 501 1.1 nonaka KERNEL_BASE); 502 1.1 nonaka physical_freeend = physical_end; 503 1.1 nonaka free_pages = 504 1.1 nonaka (physical_freeend - physical_freestart) / PAGE_SIZE; 505 1.1 nonaka } 506 1.1 nonaka 507 1.1 nonaka /* Switch tables */ 508 1.1 nonaka #ifdef VERBOSE_INIT_ARM 509 1.1 nonaka printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", 510 1.1 nonaka physical_freestart, free_pages, free_pages); 511 1.1 nonaka printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); 512 1.1 nonaka #endif 513 1.1 nonaka cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); 514 1.20 matt cpu_setttb(kernel_l1pt.pv_pa, true); 515 1.1 nonaka cpu_tlb_flushID(); 516 1.1 nonaka cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); 517 1.1 nonaka 518 1.1 nonaka /* 519 1.1 nonaka * Moved from cpu_startup() as data_abort_handler() references 520 1.1 nonaka * this during uvm init 521 1.1 nonaka */ 522 1.12 rmind uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); 523 1.1 nonaka 524 1.1 nonaka #ifdef VERBOSE_INIT_ARM 525 1.1 nonaka printf("done!\n"); 526 1.1 nonaka #endif 527 1.1 nonaka 528 1.1 nonaka #ifdef VERBOSE_INIT_ARM 529 1.1 nonaka printf("bootstrap done.\n"); 530 1.1 nonaka #endif 531 1.1 nonaka 532 1.1 nonaka arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL); 533 1.1 nonaka 534 1.1 nonaka /* 535 1.1 nonaka * Pages were allocated during the secondary bootstrap for the 536 1.1 nonaka * stacks for different CPU modes. 537 1.1 nonaka * We must now set the r13 registers in the different CPU modes to 538 1.1 nonaka * point to these stacks. 539 1.1 nonaka * Since the ARM stacks use STMFD etc. we must set r13 to the top end 540 1.1 nonaka * of the stack memory. 541 1.1 nonaka */ 542 1.1 nonaka #ifdef VERBOSE_INIT_ARM 543 1.1 nonaka printf("init subsystems: stacks "); 544 1.1 nonaka #endif 545 1.1 nonaka 546 1.1 nonaka set_stackptr(PSR_IRQ32_MODE, 547 1.1 nonaka irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); 548 1.1 nonaka set_stackptr(PSR_ABT32_MODE, 549 1.1 nonaka abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); 550 1.1 nonaka set_stackptr(PSR_UND32_MODE, 551 1.1 nonaka undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); 552 1.1 nonaka 553 1.1 nonaka /* 554 1.1 nonaka * Well we should set a data abort handler. 555 1.1 nonaka * Once things get going this will change as we will need a proper 556 1.1 nonaka * handler. 557 1.1 nonaka * Until then we will use a handler that just panics but tells us 558 1.1 nonaka * why. 559 1.1 nonaka * Initialisation of the vectors will just panic on a data abort. 560 1.1 nonaka * This just fills in a slightly better one. 561 1.1 nonaka */ 562 1.1 nonaka #ifdef VERBOSE_INIT_ARM 563 1.1 nonaka printf("vectors "); 564 1.1 nonaka #endif 565 1.1 nonaka data_abort_handler_address = (u_int)data_abort_handler; 566 1.1 nonaka prefetch_abort_handler_address = (u_int)prefetch_abort_handler; 567 1.1 nonaka undefined_handler_address = (u_int)undefinedinstruction_bounce; 568 1.1 nonaka 569 1.1 nonaka /* Initialise the undefined instruction handlers */ 570 1.1 nonaka #ifdef VERBOSE_INIT_ARM 571 1.1 nonaka printf("undefined "); 572 1.1 nonaka #endif 573 1.1 nonaka undefined_init(); 574 1.1 nonaka 575 1.1 nonaka /* Load memory into UVM. */ 576 1.1 nonaka #ifdef VERBOSE_INIT_ARM 577 1.1 nonaka printf("page "); 578 1.1 nonaka #endif 579 1.23 cherry uvm_md_init(); 580 1.1 nonaka uvm_page_physload(atop(physical_freestart), atop(physical_freeend), 581 1.1 nonaka atop(physical_freestart), atop(physical_freeend), 582 1.1 nonaka VM_FREELIST_DEFAULT); 583 1.1 nonaka 584 1.26 skrll /* Boot strap pmap telling it where managed kernel virtual memory is */ 585 1.1 nonaka #ifdef VERBOSE_INIT_ARM 586 1.1 nonaka printf("pmap "); 587 1.1 nonaka #endif 588 1.6 matt pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); 589 1.1 nonaka 590 1.1 nonaka /* Setup the IRQ system */ 591 1.1 nonaka #ifdef VERBOSE_INIT_ARM 592 1.1 nonaka printf("irq "); 593 1.1 nonaka #endif 594 1.1 nonaka i80321_intr_init(); 595 1.1 nonaka 596 1.1 nonaka #ifdef VERBOSE_INIT_ARM 597 1.1 nonaka printf("done.\n"); 598 1.1 nonaka #endif 599 1.1 nonaka 600 1.1 nonaka #ifdef BOOTHOWTO 601 1.1 nonaka boothowto = BOOTHOWTO; 602 1.1 nonaka #endif 603 1.1 nonaka 604 1.1 nonaka #ifdef DDB 605 1.1 nonaka db_machine_init(); 606 1.1 nonaka if (boothowto & RB_KDB) 607 1.1 nonaka Debugger(); 608 1.1 nonaka #endif 609 1.1 nonaka 610 1.1 nonaka /* We return the new stack pointer address */ 611 1.27 skrll return kernelstack.pv_va + USPACE_SVC_STACK_TOP; 612 1.1 nonaka } 613 1.1 nonaka 614 1.1 nonaka /* 615 1.1 nonaka * void cpu_reboot(int howto, char *bootstr) 616 1.1 nonaka * 617 1.1 nonaka * Reboots the system 618 1.1 nonaka * 619 1.1 nonaka * Deal with any syncing, unmounting, dumping and shutdown hooks, 620 1.1 nonaka * then reset the CPU. 621 1.1 nonaka */ 622 1.1 nonaka void 623 1.1 nonaka cpu_reboot(int howto, char *bootstr) 624 1.1 nonaka { 625 1.1 nonaka 626 1.1 nonaka /* 627 1.1 nonaka * If we are still cold then hit the air brakes 628 1.1 nonaka * and crash to earth fast 629 1.1 nonaka */ 630 1.1 nonaka if (cold) { 631 1.1 nonaka *(volatile uint8_t *)HDLG_LEDCTRL |= LEDCTRL_STAT_RED; 632 1.1 nonaka howto |= RB_HALT; 633 1.1 nonaka goto haltsys; 634 1.1 nonaka } 635 1.1 nonaka 636 1.1 nonaka /* Disable console buffering */ 637 1.1 nonaka 638 1.1 nonaka /* 639 1.1 nonaka * If RB_NOSYNC was not specified sync the discs. 640 1.1 nonaka * Note: Unless cold is set to 1 here, syslogd will die during the 641 1.1 nonaka * unmount. It looks like syslogd is getting woken up only to find 642 1.1 nonaka * that it cannot page part of the binary in as the filesystem has 643 1.1 nonaka * been unmounted. 644 1.1 nonaka */ 645 1.1 nonaka if ((howto & RB_NOSYNC) == 0) { 646 1.1 nonaka bootsync(); 647 1.1 nonaka /*resettodr();*/ 648 1.1 nonaka } 649 1.1 nonaka 650 1.1 nonaka /* wait 1s */ 651 1.1 nonaka delay(1 * 1000 * 1000); 652 1.1 nonaka 653 1.1 nonaka /* Say NO to interrupts */ 654 1.1 nonaka splhigh(); 655 1.1 nonaka 656 1.1 nonaka /* Do a dump if requested. */ 657 1.1 nonaka if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) { 658 1.1 nonaka dumpsys(); 659 1.1 nonaka } 660 1.1 nonaka 661 1.1 nonaka haltsys: 662 1.1 nonaka /* Run any shutdown hooks */ 663 1.1 nonaka doshutdownhooks(); 664 1.1 nonaka 665 1.7 dyoung pmf_system_shutdown(boothowto); 666 1.7 dyoung 667 1.1 nonaka /* Make sure IRQ's are disabled */ 668 1.1 nonaka IRQdisable; 669 1.1 nonaka 670 1.1 nonaka if (howto & RB_HALT) { 671 1.1 nonaka *(volatile uint8_t *)HDLG_PWRMNG = PWRMNG_POWOFF; 672 1.1 nonaka delay(3 * 1000 * 1000); /* wait 3s */ 673 1.1 nonaka 674 1.1 nonaka printf("SHUTDOWN FAILED!\n"); 675 1.1 nonaka printf("The operating system has halted.\n"); 676 1.1 nonaka printf("Please press any key to reboot.\n\n"); 677 1.1 nonaka cngetc(); 678 1.1 nonaka } 679 1.1 nonaka 680 1.1 nonaka printf("rebooting...\n\r"); 681 1.1 nonaka 682 1.1 nonaka (void)disable_interrupts(I32_bit|F32_bit); 683 1.1 nonaka cpu_idcache_wbinv_all(); 684 1.1 nonaka cpu_drain_writebuf(); 685 1.1 nonaka 686 1.1 nonaka *(volatile uint8_t *)HDLG_PWRMNG = PWRMNG_RESET; 687 1.1 nonaka delay(1 * 1000 * 1000); /* wait 1s */ 688 1.1 nonaka 689 1.1 nonaka /* ...and if that didn't work, just croak. */ 690 1.1 nonaka printf("RESET FAILED!\n"); 691 1.1 nonaka for (;;) { 692 1.1 nonaka continue; 693 1.1 nonaka } 694 1.1 nonaka } 695 1.1 nonaka 696 1.1 nonaka /* 697 1.1 nonaka * console 698 1.1 nonaka */ 699 1.1 nonaka #include "com.h" 700 1.1 nonaka #if NCOM > 0 701 1.1 nonaka #include <dev/ic/comreg.h> 702 1.1 nonaka #include <dev/ic/comvar.h> 703 1.1 nonaka #endif 704 1.1 nonaka 705 1.1 nonaka /* 706 1.1 nonaka * Define the default console speed for the board. This is generally 707 1.1 nonaka * what the firmware provided with the board defaults to. 708 1.1 nonaka */ 709 1.1 nonaka #ifndef CONSPEED 710 1.1 nonaka #define CONSPEED B115200 711 1.1 nonaka #endif /* ! CONSPEED */ 712 1.1 nonaka 713 1.1 nonaka #ifndef CONUNIT 714 1.1 nonaka #define CONUNIT 0 715 1.1 nonaka #endif 716 1.1 nonaka 717 1.1 nonaka #ifndef CONMODE 718 1.1 nonaka #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ 719 1.1 nonaka #endif 720 1.1 nonaka 721 1.1 nonaka int comcnspeed = CONSPEED; 722 1.1 nonaka int comcnmode = CONMODE; 723 1.1 nonaka int comcnunit = CONUNIT; 724 1.1 nonaka 725 1.1 nonaka #if KGDB 726 1.1 nonaka #ifndef KGDB_DEVNAME 727 1.1 nonaka #error Must define KGDB_DEVNAME 728 1.1 nonaka #endif 729 1.1 nonaka const char kgdb_devname[] = KGDB_DEVNAME; 730 1.1 nonaka 731 1.1 nonaka #ifndef KGDB_DEVADDR 732 1.1 nonaka #error Must define KGDB_DEVADDR 733 1.1 nonaka #endif 734 1.1 nonaka unsigned long kgdb_devaddr = KGDB_DEVADDR; 735 1.1 nonaka 736 1.1 nonaka #ifndef KGDB_DEVRATE 737 1.1 nonaka #define KGDB_DEVRATE CONSPEED 738 1.1 nonaka #endif 739 1.1 nonaka int kgdb_devrate = KGDB_DEVRATE; 740 1.1 nonaka 741 1.1 nonaka #ifndef KGDB_DEVMODE 742 1.1 nonaka #define KGDB_DEVMODE CONMODE 743 1.1 nonaka #endif 744 1.1 nonaka int kgdb_devmode = KGDB_DEVMODE; 745 1.1 nonaka #endif /* KGDB */ 746 1.1 nonaka 747 1.1 nonaka void 748 1.1 nonaka consinit(void) 749 1.1 nonaka { 750 1.1 nonaka static const bus_addr_t comcnaddrs[] = { 751 1.1 nonaka HDLG_UART1, /* com0 */ 752 1.1 nonaka }; 753 1.1 nonaka static int consinit_called; 754 1.1 nonaka 755 1.1 nonaka if (consinit_called) 756 1.1 nonaka return; 757 1.1 nonaka consinit_called = 1; 758 1.1 nonaka 759 1.1 nonaka /* 760 1.1 nonaka * Console devices are mapped VA==PA. Our devmap reflects 761 1.1 nonaka * this, so register it now so drivers can map the console 762 1.1 nonaka * device. 763 1.1 nonaka */ 764 1.1 nonaka pmap_devmap_register(hdlg_devmap); 765 1.1 nonaka 766 1.1 nonaka #if NCOM > 0 767 1.1 nonaka if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed, 768 1.1 nonaka COM_FREQ, COM_TYPE_NORMAL, comcnmode)) 769 1.1 nonaka panic("can't init serial console @%lx", comcnaddrs[comcnunit]); 770 1.1 nonaka #else 771 1.1 nonaka panic("serial console @%lx not configured", comcnaddrs[comcnunit]); 772 1.1 nonaka #endif 773 1.1 nonaka #if KGDB 774 1.1 nonaka #if NCOM > 0 775 1.1 nonaka if (strcmp(kgdb_devname, "com") == 0) { 776 1.1 nonaka com_kgdb_attach(&obio_bs_tag, kgdb_devaddr, kgdb_devrate, 777 1.1 nonaka COM_FREQ, COM_TYPE_NORMAL, kgdb_devmode); 778 1.1 nonaka } 779 1.1 nonaka #endif /* NCOM > 0 */ 780 1.1 nonaka #endif /* KGDB */ 781 1.1 nonaka } 782