hdlg_machdep.c revision 1.18 1 1.18 matt /* $NetBSD: hdlg_machdep.c,v 1.18 2012/07/30 23:36:00 matt Exp $ */
2 1.1 nonaka
3 1.1 nonaka /*
4 1.1 nonaka * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
5 1.1 nonaka * All rights reserved.
6 1.1 nonaka *
7 1.1 nonaka * Written by Jason R. Thorpe and Steve C. Woodford for Wasabi Systems, Inc.
8 1.1 nonaka *
9 1.1 nonaka * Redistribution and use in source and binary forms, with or without
10 1.1 nonaka * modification, are permitted provided that the following conditions
11 1.1 nonaka * are met:
12 1.1 nonaka * 1. Redistributions of source code must retain the above copyright
13 1.1 nonaka * notice, this list of conditions and the following disclaimer.
14 1.1 nonaka * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 nonaka * notice, this list of conditions and the following disclaimer in the
16 1.1 nonaka * documentation and/or other materials provided with the distribution.
17 1.1 nonaka * 3. All advertising materials mentioning features or use of this software
18 1.1 nonaka * must display the following acknowledgement:
19 1.1 nonaka * This product includes software developed for the NetBSD Project by
20 1.1 nonaka * Wasabi Systems, Inc.
21 1.1 nonaka * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 1.1 nonaka * or promote products derived from this software without specific prior
23 1.1 nonaka * written permission.
24 1.1 nonaka *
25 1.1 nonaka * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 1.1 nonaka * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.1 nonaka * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.1 nonaka * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 1.1 nonaka * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.1 nonaka * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.1 nonaka * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.1 nonaka * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.1 nonaka * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.1 nonaka * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.1 nonaka * POSSIBILITY OF SUCH DAMAGE.
36 1.1 nonaka */
37 1.1 nonaka
38 1.1 nonaka /*
39 1.1 nonaka * Copyright (c) 1997,1998 Mark Brinicombe.
40 1.1 nonaka * Copyright (c) 1997,1998 Causality Limited.
41 1.1 nonaka * All rights reserved.
42 1.1 nonaka *
43 1.1 nonaka * Redistribution and use in source and binary forms, with or without
44 1.1 nonaka * modification, are permitted provided that the following conditions
45 1.1 nonaka * are met:
46 1.1 nonaka * 1. Redistributions of source code must retain the above copyright
47 1.1 nonaka * notice, this list of conditions and the following disclaimer.
48 1.1 nonaka * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 nonaka * notice, this list of conditions and the following disclaimer in the
50 1.1 nonaka * documentation and/or other materials provided with the distribution.
51 1.1 nonaka * 3. All advertising materials mentioning features or use of this software
52 1.1 nonaka * must display the following acknowledgement:
53 1.1 nonaka * This product includes software developed by Mark Brinicombe
54 1.1 nonaka * for the NetBSD Project.
55 1.1 nonaka * 4. The name of the company nor the name of the author may be used to
56 1.1 nonaka * endorse or promote products derived from this software without specific
57 1.1 nonaka * prior written permission.
58 1.1 nonaka *
59 1.1 nonaka * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
60 1.1 nonaka * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61 1.1 nonaka * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 1.1 nonaka * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63 1.1 nonaka * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64 1.1 nonaka * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65 1.1 nonaka * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 1.1 nonaka * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 1.1 nonaka * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 1.1 nonaka * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 1.1 nonaka * SUCH DAMAGE.
70 1.1 nonaka *
71 1.15 wiz * Machine dependent functions for kernel setup for GigaLANDISK
72 1.1 nonaka * using RedBoot firmware.
73 1.1 nonaka */
74 1.1 nonaka
75 1.1 nonaka #include <sys/cdefs.h>
76 1.18 matt __KERNEL_RCSID(0, "$NetBSD: hdlg_machdep.c,v 1.18 2012/07/30 23:36:00 matt Exp $");
77 1.1 nonaka
78 1.1 nonaka #include "opt_ddb.h"
79 1.1 nonaka #include "opt_kgdb.h"
80 1.1 nonaka #include "opt_pmap_debug.h"
81 1.1 nonaka
82 1.1 nonaka #include <sys/param.h>
83 1.1 nonaka #include <sys/device.h>
84 1.1 nonaka #include <sys/systm.h>
85 1.1 nonaka #include <sys/kernel.h>
86 1.1 nonaka #include <sys/exec.h>
87 1.1 nonaka #include <sys/proc.h>
88 1.1 nonaka #include <sys/msgbuf.h>
89 1.1 nonaka #include <sys/reboot.h>
90 1.1 nonaka #include <sys/termios.h>
91 1.1 nonaka #include <sys/ksyms.h>
92 1.1 nonaka
93 1.1 nonaka #include <uvm/uvm_extern.h>
94 1.1 nonaka
95 1.1 nonaka #include <dev/cons.h>
96 1.1 nonaka
97 1.1 nonaka #include <machine/db_machdep.h>
98 1.1 nonaka #include <ddb/db_sym.h>
99 1.1 nonaka #include <ddb/db_extern.h>
100 1.1 nonaka
101 1.1 nonaka #include <machine/bootconfig.h>
102 1.16 dyoung #include <sys/bus.h>
103 1.1 nonaka #include <machine/cpu.h>
104 1.1 nonaka #include <machine/frame.h>
105 1.1 nonaka #include <arm/undefined.h>
106 1.1 nonaka
107 1.1 nonaka #include <arm/arm32/machdep.h>
108 1.1 nonaka
109 1.1 nonaka #include <arm/xscale/i80321reg.h>
110 1.1 nonaka #include <arm/xscale/i80321var.h>
111 1.1 nonaka
112 1.1 nonaka #include <dev/pci/ppbreg.h>
113 1.1 nonaka
114 1.1 nonaka #include <evbarm/hdl_g/hdlgreg.h>
115 1.1 nonaka #include <evbarm/hdl_g/hdlgvar.h>
116 1.1 nonaka #include <evbarm/hdl_g/obiovar.h>
117 1.1 nonaka
118 1.1 nonaka #include "ksyms.h"
119 1.1 nonaka
120 1.1 nonaka /* Kernel text starts 2MB in from the bottom of the kernel address space. */
121 1.1 nonaka #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
122 1.1 nonaka #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
123 1.1 nonaka
124 1.1 nonaka /*
125 1.1 nonaka * The range 0xc1000000 - 0xccffffff is available for kernel VM space
126 1.1 nonaka * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
127 1.1 nonaka */
128 1.1 nonaka #define KERNEL_VM_SIZE 0x0C000000
129 1.1 nonaka
130 1.1 nonaka /*
131 1.1 nonaka * Address to call from cpu_reset() to reset the machine.
132 1.15 wiz * This is machine architecture dependent as it varies depending
133 1.1 nonaka * on where the ROM appears when you turn the MMU off.
134 1.1 nonaka *
135 1.1 nonaka * XXX Not actually used on hdlg -- clean up the generic
136 1.1 nonaka * ARM code.
137 1.1 nonaka */
138 1.1 nonaka u_int cpu_reset_address = 0x00000000;
139 1.1 nonaka
140 1.1 nonaka /* Define various stack sizes in pages */
141 1.1 nonaka #define IRQ_STACK_SIZE 1
142 1.1 nonaka #define ABT_STACK_SIZE 1
143 1.1 nonaka #define UND_STACK_SIZE 1
144 1.1 nonaka
145 1.1 nonaka BootConfig bootconfig; /* Boot config storage */
146 1.1 nonaka char *boot_args = NULL;
147 1.1 nonaka char *boot_file = NULL;
148 1.1 nonaka
149 1.1 nonaka vm_offset_t physical_start;
150 1.1 nonaka vm_offset_t physical_freestart;
151 1.1 nonaka vm_offset_t physical_freeend;
152 1.1 nonaka vm_offset_t physical_end;
153 1.1 nonaka u_int free_pages;
154 1.1 nonaka
155 1.1 nonaka /*int debug_flags;*/
156 1.1 nonaka #ifndef PMAP_STATIC_L1S
157 1.1 nonaka int max_processes = 64; /* Default number */
158 1.1 nonaka #endif /* !PMAP_STATIC_L1S */
159 1.1 nonaka
160 1.18 matt pv_addr_t minidataclean;
161 1.18 matt
162 1.1 nonaka vm_offset_t msgbufphys;
163 1.1 nonaka
164 1.1 nonaka #ifdef PMAP_DEBUG
165 1.1 nonaka extern int pmap_debug_level;
166 1.1 nonaka #endif
167 1.1 nonaka
168 1.1 nonaka #define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */
169 1.1 nonaka
170 1.1 nonaka #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */
171 1.1 nonaka #define KERNEL_PT_KERNEL_NUM 4
172 1.1 nonaka
173 1.1 nonaka /* L2 table for mapping i80321 */
174 1.1 nonaka #define KERNEL_PT_IOPXS (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
175 1.1 nonaka
176 1.1 nonaka /* L2 tables for mapping kernel VM */
177 1.1 nonaka #define KERNEL_PT_VMDATA (KERNEL_PT_IOPXS + 1)
178 1.1 nonaka #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
179 1.1 nonaka #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
180 1.1 nonaka
181 1.1 nonaka pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
182 1.1 nonaka
183 1.1 nonaka /* Prototypes */
184 1.1 nonaka void consinit(void);
185 1.1 nonaka
186 1.1 nonaka /* Static device mappings. */
187 1.1 nonaka static const struct pmap_devmap hdlg_devmap[] = {
188 1.1 nonaka /*
189 1.1 nonaka * Map the on-board devices VA == PA so that we can access them
190 1.1 nonaka * with the MMU on or off.
191 1.1 nonaka */
192 1.1 nonaka {
193 1.1 nonaka HDLG_OBIO_BASE,
194 1.1 nonaka HDLG_OBIO_BASE,
195 1.1 nonaka HDLG_OBIO_SIZE,
196 1.1 nonaka VM_PROT_READ|VM_PROT_WRITE,
197 1.1 nonaka PTE_NOCACHE,
198 1.1 nonaka },
199 1.1 nonaka
200 1.1 nonaka {
201 1.1 nonaka HDLG_IOW_VBASE,
202 1.1 nonaka VERDE_OUT_XLATE_IO_WIN0_BASE,
203 1.1 nonaka VERDE_OUT_XLATE_IO_WIN_SIZE,
204 1.1 nonaka VM_PROT_READ|VM_PROT_WRITE,
205 1.1 nonaka PTE_NOCACHE,
206 1.1 nonaka },
207 1.1 nonaka
208 1.1 nonaka {
209 1.1 nonaka HDLG_80321_VBASE,
210 1.1 nonaka VERDE_PMMR_BASE,
211 1.1 nonaka VERDE_PMMR_SIZE,
212 1.1 nonaka VM_PROT_READ|VM_PROT_WRITE,
213 1.1 nonaka PTE_NOCACHE,
214 1.1 nonaka },
215 1.1 nonaka
216 1.1 nonaka {
217 1.1 nonaka 0,
218 1.1 nonaka 0,
219 1.1 nonaka 0,
220 1.1 nonaka 0,
221 1.1 nonaka 0,
222 1.1 nonaka }
223 1.1 nonaka };
224 1.1 nonaka
225 1.1 nonaka static void
226 1.1 nonaka hardclock_hook(void)
227 1.1 nonaka {
228 1.1 nonaka
229 1.1 nonaka /* Nothing to do */
230 1.1 nonaka }
231 1.1 nonaka
232 1.1 nonaka /*
233 1.1 nonaka * u_int initarm(...)
234 1.1 nonaka *
235 1.1 nonaka * Initial entry point on startup. This gets called before main() is
236 1.1 nonaka * entered.
237 1.1 nonaka * It should be responsible for setting up everything that must be
238 1.1 nonaka * in place when main is called.
239 1.1 nonaka * This includes
240 1.1 nonaka * Taking a copy of the boot configuration structure.
241 1.1 nonaka * Initialising the physical console so characters can be printed.
242 1.1 nonaka * Setting up page tables for the kernel
243 1.1 nonaka * Relocating the kernel to the bottom of physical memory
244 1.1 nonaka */
245 1.1 nonaka u_int
246 1.1 nonaka initarm(void *arg)
247 1.1 nonaka {
248 1.1 nonaka extern vaddr_t xscale_cache_clean_addr;
249 1.1 nonaka #ifdef DIAGNOSTIC
250 1.1 nonaka extern vsize_t xscale_minidata_clean_size;
251 1.1 nonaka #endif
252 1.1 nonaka int loop;
253 1.1 nonaka int loop1;
254 1.1 nonaka u_int l1pagetable;
255 1.1 nonaka paddr_t memstart;
256 1.1 nonaka psize_t memsize;
257 1.1 nonaka
258 1.1 nonaka /* Calibrate the delay loop. */
259 1.1 nonaka i80321_calibrate_delay();
260 1.1 nonaka i80321_hardclock_hook = hardclock_hook;
261 1.1 nonaka
262 1.1 nonaka /*
263 1.1 nonaka * Since we map the on-board devices VA==PA, and the kernel
264 1.1 nonaka * is running VA==PA, it's possible for us to initialize
265 1.1 nonaka * the console now.
266 1.1 nonaka */
267 1.1 nonaka consinit();
268 1.1 nonaka
269 1.1 nonaka #ifdef VERBOSE_INIT_ARM
270 1.1 nonaka /* Talk to the user */
271 1.4 nonaka printf("\nNetBSD/evbarm (HDL-G) booting ...\n");
272 1.1 nonaka #endif
273 1.1 nonaka
274 1.1 nonaka /*
275 1.1 nonaka * Heads up ... Setup the CPU / MMU / TLB functions
276 1.1 nonaka */
277 1.1 nonaka if (set_cpufuncs())
278 1.1 nonaka panic("CPU not recognized!");
279 1.1 nonaka
280 1.1 nonaka /*
281 1.1 nonaka * We are currently running with the MMU enabled and the
282 1.1 nonaka * entire address space mapped VA==PA, except for the
283 1.1 nonaka * first 64M of RAM is also double-mapped at 0xc0000000.
284 1.1 nonaka * There is an L1 page table at 0xa0004000.
285 1.1 nonaka */
286 1.1 nonaka
287 1.1 nonaka /*
288 1.1 nonaka * Fetch the SDRAM start/size from the i80321 SDRAM configuration
289 1.1 nonaka * registers.
290 1.1 nonaka */
291 1.1 nonaka i80321_sdram_bounds(&obio_bs_tag, VERDE_PMMR_BASE + VERDE_MCU_BASE,
292 1.1 nonaka &memstart, &memsize);
293 1.1 nonaka
294 1.1 nonaka #ifdef VERBOSE_INIT_ARM
295 1.1 nonaka printf("initarm: Configuring system ...\n");
296 1.1 nonaka #endif
297 1.1 nonaka
298 1.1 nonaka /* Fake bootconfig structure for the benefit of pmap.c */
299 1.3 wiz /* XXX must make the memory description h/w independent */
300 1.1 nonaka bootconfig.dramblocks = 1;
301 1.1 nonaka bootconfig.dram[0].address = memstart;
302 1.1 nonaka bootconfig.dram[0].pages = memsize / PAGE_SIZE;
303 1.1 nonaka
304 1.1 nonaka /*
305 1.1 nonaka * Set up the variables that define the availablilty of
306 1.1 nonaka * physical memory. For now, we're going to set
307 1.1 nonaka * physical_freestart to 0xa0200000 (where the kernel
308 1.1 nonaka * was loaded), and allocate the memory we need downwards.
309 1.1 nonaka * If we get too close to the L1 table that we set up, we
310 1.1 nonaka * will panic. We will update physical_freestart and
311 1.1 nonaka * physical_freeend later to reflect what pmap_bootstrap()
312 1.1 nonaka * wants to see.
313 1.1 nonaka *
314 1.1 nonaka * XXX pmap_bootstrap() needs an enema.
315 1.1 nonaka */
316 1.1 nonaka physical_start = bootconfig.dram[0].address;
317 1.1 nonaka physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
318 1.1 nonaka
319 1.1 nonaka physical_freestart = 0xa0009000UL;
320 1.1 nonaka physical_freeend = 0xa0200000UL;
321 1.1 nonaka
322 1.1 nonaka physmem = (physical_end - physical_start) / PAGE_SIZE;
323 1.1 nonaka
324 1.1 nonaka #ifdef VERBOSE_INIT_ARM
325 1.1 nonaka /* Tell the user about the memory */
326 1.1 nonaka printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
327 1.1 nonaka physical_start, physical_end - 1);
328 1.1 nonaka #endif
329 1.1 nonaka
330 1.1 nonaka /*
331 1.1 nonaka * Okay, the kernel starts 2MB in from the bottom of physical
332 1.1 nonaka * memory. We are going to allocate our bootstrap pages downwards
333 1.1 nonaka * from there.
334 1.1 nonaka *
335 1.1 nonaka * We need to allocate some fixed page tables to get the kernel
336 1.1 nonaka * going. We allocate one page directory and a number of page
337 1.1 nonaka * tables and store the physical addresses in the kernel_pt_table
338 1.1 nonaka * array.
339 1.1 nonaka *
340 1.1 nonaka * The kernel page directory must be on a 16K boundary. The page
341 1.1 nonaka * tables must be on 4K boundaries. What we do is allocate the
342 1.1 nonaka * page directory on the first 16K boundary that we encounter, and
343 1.1 nonaka * the page tables on 4K boundaries otherwise. Since we allocate
344 1.1 nonaka * at least 3 L2 page tables, we are guaranteed to encounter at
345 1.1 nonaka * least one 16K aligned region.
346 1.1 nonaka */
347 1.1 nonaka
348 1.1 nonaka #ifdef VERBOSE_INIT_ARM
349 1.1 nonaka printf("Allocating page tables\n");
350 1.1 nonaka #endif
351 1.1 nonaka
352 1.1 nonaka free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
353 1.1 nonaka
354 1.1 nonaka #ifdef VERBOSE_INIT_ARM
355 1.1 nonaka printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
356 1.1 nonaka physical_freestart, free_pages, free_pages);
357 1.1 nonaka #endif
358 1.1 nonaka
359 1.1 nonaka /* Define a macro to simplify memory allocation */
360 1.1 nonaka #define valloc_pages(var, np) \
361 1.1 nonaka alloc_pages((var).pv_pa, (np)); \
362 1.1 nonaka (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
363 1.1 nonaka
364 1.1 nonaka #define alloc_pages(var, np) \
365 1.1 nonaka physical_freeend -= ((np) * PAGE_SIZE); \
366 1.1 nonaka if (physical_freeend < physical_freestart) \
367 1.1 nonaka panic("initarm: out of memory"); \
368 1.1 nonaka (var) = physical_freeend; \
369 1.1 nonaka free_pages -= (np); \
370 1.1 nonaka memset((char *)(var), 0, ((np) * PAGE_SIZE));
371 1.1 nonaka
372 1.1 nonaka loop1 = 0;
373 1.1 nonaka for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
374 1.1 nonaka /* Are we 16KB aligned for an L1 ? */
375 1.1 nonaka if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
376 1.1 nonaka && kernel_l1pt.pv_pa == 0) {
377 1.1 nonaka valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
378 1.1 nonaka } else {
379 1.1 nonaka valloc_pages(kernel_pt_table[loop1],
380 1.1 nonaka L2_TABLE_SIZE / PAGE_SIZE);
381 1.1 nonaka ++loop1;
382 1.1 nonaka }
383 1.1 nonaka }
384 1.1 nonaka
385 1.1 nonaka /* This should never be able to happen but better confirm that. */
386 1.1 nonaka if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
387 1.1 nonaka panic("initarm: Failed to align the kernel page directory");
388 1.1 nonaka
389 1.1 nonaka /*
390 1.1 nonaka * Allocate a page for the system page mapped to V0x00000000
391 1.1 nonaka * This page will just contain the system vectors and can be
392 1.1 nonaka * shared by all processes.
393 1.1 nonaka */
394 1.1 nonaka alloc_pages(systempage.pv_pa, 1);
395 1.1 nonaka
396 1.1 nonaka /* Allocate stacks for all modes */
397 1.1 nonaka valloc_pages(irqstack, IRQ_STACK_SIZE);
398 1.1 nonaka valloc_pages(abtstack, ABT_STACK_SIZE);
399 1.1 nonaka valloc_pages(undstack, UND_STACK_SIZE);
400 1.1 nonaka valloc_pages(kernelstack, UPAGES);
401 1.1 nonaka
402 1.1 nonaka /* Allocate enough pages for cleaning the Mini-Data cache. */
403 1.1 nonaka KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
404 1.1 nonaka valloc_pages(minidataclean, 1);
405 1.1 nonaka
406 1.1 nonaka #ifdef VERBOSE_INIT_ARM
407 1.1 nonaka printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
408 1.1 nonaka irqstack.pv_va);
409 1.1 nonaka printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
410 1.1 nonaka abtstack.pv_va);
411 1.1 nonaka printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
412 1.1 nonaka undstack.pv_va);
413 1.1 nonaka printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
414 1.1 nonaka kernelstack.pv_va);
415 1.1 nonaka #endif
416 1.1 nonaka
417 1.1 nonaka /*
418 1.1 nonaka * XXX Defer this to later so that we can reclaim the memory
419 1.1 nonaka * XXX used by the RedBoot page tables.
420 1.1 nonaka */
421 1.1 nonaka alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
422 1.1 nonaka
423 1.1 nonaka /*
424 1.1 nonaka * Ok we have allocated physical pages for the primary kernel
425 1.1 nonaka * page tables
426 1.1 nonaka */
427 1.1 nonaka
428 1.1 nonaka #ifdef VERBOSE_INIT_ARM
429 1.1 nonaka printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
430 1.1 nonaka #endif
431 1.1 nonaka
432 1.1 nonaka /*
433 1.1 nonaka * Now we start construction of the L1 page table
434 1.1 nonaka * We start by mapping the L2 page tables into the L1.
435 1.1 nonaka * This means that we can replace L1 mappings later on if necessary
436 1.1 nonaka */
437 1.1 nonaka l1pagetable = kernel_l1pt.pv_pa;
438 1.1 nonaka
439 1.1 nonaka /* Map the L2 pages tables in the L1 page table */
440 1.1 nonaka pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
441 1.1 nonaka &kernel_pt_table[KERNEL_PT_SYS]);
442 1.1 nonaka for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
443 1.1 nonaka pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
444 1.1 nonaka &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
445 1.1 nonaka pmap_link_l2pt(l1pagetable, HDLG_IOPXS_VBASE,
446 1.1 nonaka &kernel_pt_table[KERNEL_PT_IOPXS]);
447 1.1 nonaka for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
448 1.1 nonaka pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
449 1.1 nonaka &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
450 1.1 nonaka
451 1.1 nonaka /* update the top of the kernel VM */
452 1.1 nonaka pmap_curmaxkvaddr =
453 1.1 nonaka KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
454 1.1 nonaka
455 1.1 nonaka #ifdef VERBOSE_INIT_ARM
456 1.1 nonaka printf("Mapping kernel\n");
457 1.1 nonaka #endif
458 1.1 nonaka
459 1.1 nonaka /* Now we fill in the L2 pagetable for the kernel static code/data */
460 1.1 nonaka {
461 1.1 nonaka extern char etext[], _end[];
462 1.1 nonaka size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
463 1.1 nonaka size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
464 1.1 nonaka u_int logical;
465 1.1 nonaka
466 1.1 nonaka textsize = (textsize + PGOFSET) & ~PGOFSET;
467 1.1 nonaka totalsize = (totalsize + PGOFSET) & ~PGOFSET;
468 1.1 nonaka
469 1.1 nonaka logical = 0x00200000; /* offset of kernel in RAM */
470 1.1 nonaka
471 1.1 nonaka logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
472 1.1 nonaka physical_start + logical, textsize,
473 1.1 nonaka VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
474 1.1 nonaka logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
475 1.1 nonaka physical_start + logical, totalsize - textsize,
476 1.1 nonaka VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
477 1.1 nonaka }
478 1.1 nonaka
479 1.1 nonaka #ifdef VERBOSE_INIT_ARM
480 1.1 nonaka printf("Constructing L2 page tables\n");
481 1.1 nonaka #endif
482 1.1 nonaka
483 1.1 nonaka /* Map the stack pages */
484 1.1 nonaka pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
485 1.1 nonaka IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
486 1.1 nonaka pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
487 1.1 nonaka ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
488 1.1 nonaka pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
489 1.1 nonaka UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
490 1.1 nonaka pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
491 1.1 nonaka UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
492 1.1 nonaka
493 1.1 nonaka pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
494 1.1 nonaka L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
495 1.1 nonaka
496 1.1 nonaka for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
497 1.1 nonaka pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
498 1.1 nonaka kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
499 1.1 nonaka VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
500 1.1 nonaka }
501 1.1 nonaka
502 1.1 nonaka /* Map the Mini-Data cache clean area. */
503 1.1 nonaka xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
504 1.1 nonaka minidataclean.pv_pa);
505 1.1 nonaka
506 1.1 nonaka /* Map the vector page. */
507 1.1 nonaka pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
508 1.1 nonaka VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
509 1.1 nonaka
510 1.1 nonaka /* Map the statically mapped devices. */
511 1.1 nonaka pmap_devmap_bootstrap(l1pagetable, hdlg_devmap);
512 1.1 nonaka
513 1.1 nonaka /*
514 1.1 nonaka * Give the XScale global cache clean code an appropriately
515 1.1 nonaka * sized chunk of unmapped VA space starting at 0xff000000
516 1.1 nonaka * (our device mappings end before this address).
517 1.1 nonaka */
518 1.1 nonaka xscale_cache_clean_addr = 0xff000000U;
519 1.1 nonaka
520 1.1 nonaka /*
521 1.1 nonaka * Now we have the real page tables in place so we can switch to them.
522 1.1 nonaka * Once this is done we will be running with the REAL kernel page
523 1.1 nonaka * tables.
524 1.1 nonaka */
525 1.1 nonaka
526 1.1 nonaka /*
527 1.1 nonaka * Update the physical_freestart/physical_freeend/free_pages
528 1.1 nonaka * variables.
529 1.1 nonaka */
530 1.1 nonaka {
531 1.1 nonaka extern char _end[];
532 1.1 nonaka
533 1.1 nonaka physical_freestart = physical_start +
534 1.1 nonaka (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
535 1.1 nonaka KERNEL_BASE);
536 1.1 nonaka physical_freeend = physical_end;
537 1.1 nonaka free_pages =
538 1.1 nonaka (physical_freeend - physical_freestart) / PAGE_SIZE;
539 1.1 nonaka }
540 1.1 nonaka
541 1.1 nonaka /* Switch tables */
542 1.1 nonaka #ifdef VERBOSE_INIT_ARM
543 1.1 nonaka printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
544 1.1 nonaka physical_freestart, free_pages, free_pages);
545 1.1 nonaka printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
546 1.1 nonaka #endif
547 1.1 nonaka cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
548 1.14 uebayasi cpu_setttb(kernel_l1pt.pv_pa);
549 1.1 nonaka cpu_tlb_flushID();
550 1.1 nonaka cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
551 1.1 nonaka
552 1.1 nonaka /*
553 1.1 nonaka * Moved from cpu_startup() as data_abort_handler() references
554 1.1 nonaka * this during uvm init
555 1.1 nonaka */
556 1.12 rmind uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
557 1.1 nonaka
558 1.1 nonaka #ifdef VERBOSE_INIT_ARM
559 1.1 nonaka printf("done!\n");
560 1.1 nonaka #endif
561 1.1 nonaka
562 1.1 nonaka #ifdef VERBOSE_INIT_ARM
563 1.1 nonaka printf("bootstrap done.\n");
564 1.1 nonaka #endif
565 1.1 nonaka
566 1.1 nonaka arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
567 1.1 nonaka
568 1.1 nonaka /*
569 1.1 nonaka * Pages were allocated during the secondary bootstrap for the
570 1.1 nonaka * stacks for different CPU modes.
571 1.1 nonaka * We must now set the r13 registers in the different CPU modes to
572 1.1 nonaka * point to these stacks.
573 1.1 nonaka * Since the ARM stacks use STMFD etc. we must set r13 to the top end
574 1.1 nonaka * of the stack memory.
575 1.1 nonaka */
576 1.1 nonaka #ifdef VERBOSE_INIT_ARM
577 1.1 nonaka printf("init subsystems: stacks ");
578 1.1 nonaka #endif
579 1.1 nonaka
580 1.1 nonaka set_stackptr(PSR_IRQ32_MODE,
581 1.1 nonaka irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
582 1.1 nonaka set_stackptr(PSR_ABT32_MODE,
583 1.1 nonaka abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
584 1.1 nonaka set_stackptr(PSR_UND32_MODE,
585 1.1 nonaka undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
586 1.1 nonaka
587 1.1 nonaka /*
588 1.1 nonaka * Well we should set a data abort handler.
589 1.1 nonaka * Once things get going this will change as we will need a proper
590 1.1 nonaka * handler.
591 1.1 nonaka * Until then we will use a handler that just panics but tells us
592 1.1 nonaka * why.
593 1.1 nonaka * Initialisation of the vectors will just panic on a data abort.
594 1.1 nonaka * This just fills in a slightly better one.
595 1.1 nonaka */
596 1.1 nonaka #ifdef VERBOSE_INIT_ARM
597 1.1 nonaka printf("vectors ");
598 1.1 nonaka #endif
599 1.1 nonaka data_abort_handler_address = (u_int)data_abort_handler;
600 1.1 nonaka prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
601 1.1 nonaka undefined_handler_address = (u_int)undefinedinstruction_bounce;
602 1.1 nonaka
603 1.1 nonaka /* Initialise the undefined instruction handlers */
604 1.1 nonaka #ifdef VERBOSE_INIT_ARM
605 1.1 nonaka printf("undefined ");
606 1.1 nonaka #endif
607 1.1 nonaka undefined_init();
608 1.1 nonaka
609 1.1 nonaka /* Load memory into UVM. */
610 1.1 nonaka #ifdef VERBOSE_INIT_ARM
611 1.1 nonaka printf("page ");
612 1.1 nonaka #endif
613 1.1 nonaka uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
614 1.1 nonaka uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
615 1.1 nonaka atop(physical_freestart), atop(physical_freeend),
616 1.1 nonaka VM_FREELIST_DEFAULT);
617 1.1 nonaka
618 1.1 nonaka /* Boot strap pmap telling it where the kernel page table is */
619 1.1 nonaka #ifdef VERBOSE_INIT_ARM
620 1.1 nonaka printf("pmap ");
621 1.1 nonaka #endif
622 1.6 matt pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
623 1.1 nonaka
624 1.1 nonaka /* Setup the IRQ system */
625 1.1 nonaka #ifdef VERBOSE_INIT_ARM
626 1.1 nonaka printf("irq ");
627 1.1 nonaka #endif
628 1.1 nonaka i80321_intr_init();
629 1.1 nonaka
630 1.1 nonaka #ifdef VERBOSE_INIT_ARM
631 1.1 nonaka printf("done.\n");
632 1.1 nonaka #endif
633 1.1 nonaka
634 1.1 nonaka #ifdef BOOTHOWTO
635 1.1 nonaka boothowto = BOOTHOWTO;
636 1.1 nonaka #endif
637 1.1 nonaka
638 1.1 nonaka #ifdef DDB
639 1.1 nonaka db_machine_init();
640 1.1 nonaka if (boothowto & RB_KDB)
641 1.1 nonaka Debugger();
642 1.1 nonaka #endif
643 1.1 nonaka
644 1.1 nonaka /* We return the new stack pointer address */
645 1.1 nonaka return (kernelstack.pv_va + USPACE_SVC_STACK_TOP);
646 1.1 nonaka }
647 1.1 nonaka
648 1.1 nonaka /*
649 1.1 nonaka * void cpu_reboot(int howto, char *bootstr)
650 1.1 nonaka *
651 1.1 nonaka * Reboots the system
652 1.1 nonaka *
653 1.1 nonaka * Deal with any syncing, unmounting, dumping and shutdown hooks,
654 1.1 nonaka * then reset the CPU.
655 1.1 nonaka */
656 1.1 nonaka void
657 1.1 nonaka cpu_reboot(int howto, char *bootstr)
658 1.1 nonaka {
659 1.1 nonaka
660 1.1 nonaka /*
661 1.1 nonaka * If we are still cold then hit the air brakes
662 1.1 nonaka * and crash to earth fast
663 1.1 nonaka */
664 1.1 nonaka if (cold) {
665 1.1 nonaka *(volatile uint8_t *)HDLG_LEDCTRL |= LEDCTRL_STAT_RED;
666 1.1 nonaka howto |= RB_HALT;
667 1.1 nonaka goto haltsys;
668 1.1 nonaka }
669 1.1 nonaka
670 1.1 nonaka /* Disable console buffering */
671 1.1 nonaka
672 1.1 nonaka /*
673 1.1 nonaka * If RB_NOSYNC was not specified sync the discs.
674 1.1 nonaka * Note: Unless cold is set to 1 here, syslogd will die during the
675 1.1 nonaka * unmount. It looks like syslogd is getting woken up only to find
676 1.1 nonaka * that it cannot page part of the binary in as the filesystem has
677 1.1 nonaka * been unmounted.
678 1.1 nonaka */
679 1.1 nonaka if ((howto & RB_NOSYNC) == 0) {
680 1.1 nonaka bootsync();
681 1.1 nonaka /*resettodr();*/
682 1.1 nonaka }
683 1.1 nonaka
684 1.1 nonaka /* wait 1s */
685 1.1 nonaka delay(1 * 1000 * 1000);
686 1.1 nonaka
687 1.1 nonaka /* Say NO to interrupts */
688 1.1 nonaka splhigh();
689 1.1 nonaka
690 1.1 nonaka /* Do a dump if requested. */
691 1.1 nonaka if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) {
692 1.1 nonaka dumpsys();
693 1.1 nonaka }
694 1.1 nonaka
695 1.1 nonaka haltsys:
696 1.1 nonaka /* Run any shutdown hooks */
697 1.1 nonaka doshutdownhooks();
698 1.1 nonaka
699 1.7 dyoung pmf_system_shutdown(boothowto);
700 1.7 dyoung
701 1.1 nonaka /* Make sure IRQ's are disabled */
702 1.1 nonaka IRQdisable;
703 1.1 nonaka
704 1.1 nonaka if (howto & RB_HALT) {
705 1.1 nonaka *(volatile uint8_t *)HDLG_PWRMNG = PWRMNG_POWOFF;
706 1.1 nonaka delay(3 * 1000 * 1000); /* wait 3s */
707 1.1 nonaka
708 1.1 nonaka printf("SHUTDOWN FAILED!\n");
709 1.1 nonaka printf("The operating system has halted.\n");
710 1.1 nonaka printf("Please press any key to reboot.\n\n");
711 1.1 nonaka cngetc();
712 1.1 nonaka }
713 1.1 nonaka
714 1.1 nonaka printf("rebooting...\n\r");
715 1.1 nonaka
716 1.1 nonaka (void)disable_interrupts(I32_bit|F32_bit);
717 1.1 nonaka cpu_idcache_wbinv_all();
718 1.1 nonaka cpu_drain_writebuf();
719 1.1 nonaka
720 1.1 nonaka *(volatile uint8_t *)HDLG_PWRMNG = PWRMNG_RESET;
721 1.1 nonaka delay(1 * 1000 * 1000); /* wait 1s */
722 1.1 nonaka
723 1.1 nonaka /* ...and if that didn't work, just croak. */
724 1.1 nonaka printf("RESET FAILED!\n");
725 1.1 nonaka for (;;) {
726 1.1 nonaka continue;
727 1.1 nonaka }
728 1.1 nonaka }
729 1.1 nonaka
730 1.1 nonaka /*
731 1.1 nonaka * console
732 1.1 nonaka */
733 1.1 nonaka #include "com.h"
734 1.1 nonaka #if NCOM > 0
735 1.1 nonaka #include <dev/ic/comreg.h>
736 1.1 nonaka #include <dev/ic/comvar.h>
737 1.1 nonaka #endif
738 1.1 nonaka
739 1.1 nonaka /*
740 1.1 nonaka * Define the default console speed for the board. This is generally
741 1.1 nonaka * what the firmware provided with the board defaults to.
742 1.1 nonaka */
743 1.1 nonaka #ifndef CONSPEED
744 1.1 nonaka #define CONSPEED B115200
745 1.1 nonaka #endif /* ! CONSPEED */
746 1.1 nonaka
747 1.1 nonaka #ifndef CONUNIT
748 1.1 nonaka #define CONUNIT 0
749 1.1 nonaka #endif
750 1.1 nonaka
751 1.1 nonaka #ifndef CONMODE
752 1.1 nonaka #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
753 1.1 nonaka #endif
754 1.1 nonaka
755 1.1 nonaka int comcnspeed = CONSPEED;
756 1.1 nonaka int comcnmode = CONMODE;
757 1.1 nonaka int comcnunit = CONUNIT;
758 1.1 nonaka
759 1.1 nonaka #if KGDB
760 1.1 nonaka #ifndef KGDB_DEVNAME
761 1.1 nonaka #error Must define KGDB_DEVNAME
762 1.1 nonaka #endif
763 1.1 nonaka const char kgdb_devname[] = KGDB_DEVNAME;
764 1.1 nonaka
765 1.1 nonaka #ifndef KGDB_DEVADDR
766 1.1 nonaka #error Must define KGDB_DEVADDR
767 1.1 nonaka #endif
768 1.1 nonaka unsigned long kgdb_devaddr = KGDB_DEVADDR;
769 1.1 nonaka
770 1.1 nonaka #ifndef KGDB_DEVRATE
771 1.1 nonaka #define KGDB_DEVRATE CONSPEED
772 1.1 nonaka #endif
773 1.1 nonaka int kgdb_devrate = KGDB_DEVRATE;
774 1.1 nonaka
775 1.1 nonaka #ifndef KGDB_DEVMODE
776 1.1 nonaka #define KGDB_DEVMODE CONMODE
777 1.1 nonaka #endif
778 1.1 nonaka int kgdb_devmode = KGDB_DEVMODE;
779 1.1 nonaka #endif /* KGDB */
780 1.1 nonaka
781 1.1 nonaka void
782 1.1 nonaka consinit(void)
783 1.1 nonaka {
784 1.1 nonaka static const bus_addr_t comcnaddrs[] = {
785 1.1 nonaka HDLG_UART1, /* com0 */
786 1.1 nonaka };
787 1.1 nonaka static int consinit_called;
788 1.1 nonaka
789 1.1 nonaka if (consinit_called)
790 1.1 nonaka return;
791 1.1 nonaka consinit_called = 1;
792 1.1 nonaka
793 1.1 nonaka /*
794 1.1 nonaka * Console devices are mapped VA==PA. Our devmap reflects
795 1.1 nonaka * this, so register it now so drivers can map the console
796 1.1 nonaka * device.
797 1.1 nonaka */
798 1.1 nonaka pmap_devmap_register(hdlg_devmap);
799 1.1 nonaka
800 1.1 nonaka #if NCOM > 0
801 1.1 nonaka if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed,
802 1.1 nonaka COM_FREQ, COM_TYPE_NORMAL, comcnmode))
803 1.1 nonaka panic("can't init serial console @%lx", comcnaddrs[comcnunit]);
804 1.1 nonaka #else
805 1.1 nonaka panic("serial console @%lx not configured", comcnaddrs[comcnunit]);
806 1.1 nonaka #endif
807 1.1 nonaka #if KGDB
808 1.1 nonaka #if NCOM > 0
809 1.1 nonaka if (strcmp(kgdb_devname, "com") == 0) {
810 1.1 nonaka com_kgdb_attach(&obio_bs_tag, kgdb_devaddr, kgdb_devrate,
811 1.1 nonaka COM_FREQ, COM_TYPE_NORMAL, kgdb_devmode);
812 1.1 nonaka }
813 1.1 nonaka #endif /* NCOM > 0 */
814 1.1 nonaka #endif /* KGDB */
815 1.1 nonaka }
816