Home | History | Annotate | Line # | Download | only in hdl_g
hdlg_machdep.c revision 1.28.8.1
      1  1.28.8.1  bouyer /*	$NetBSD: hdlg_machdep.c,v 1.28.8.1 2020/04/20 11:28:54 bouyer Exp $	*/
      2       1.1  nonaka 
      3       1.1  nonaka /*
      4       1.1  nonaka  * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
      5       1.1  nonaka  * All rights reserved.
      6       1.1  nonaka  *
      7       1.1  nonaka  * Written by Jason R. Thorpe and Steve C. Woodford for Wasabi Systems, Inc.
      8       1.1  nonaka  *
      9       1.1  nonaka  * Redistribution and use in source and binary forms, with or without
     10       1.1  nonaka  * modification, are permitted provided that the following conditions
     11       1.1  nonaka  * are met:
     12       1.1  nonaka  * 1. Redistributions of source code must retain the above copyright
     13       1.1  nonaka  *    notice, this list of conditions and the following disclaimer.
     14       1.1  nonaka  * 2. Redistributions in binary form must reproduce the above copyright
     15       1.1  nonaka  *    notice, this list of conditions and the following disclaimer in the
     16       1.1  nonaka  *    documentation and/or other materials provided with the distribution.
     17       1.1  nonaka  * 3. All advertising materials mentioning features or use of this software
     18       1.1  nonaka  *    must display the following acknowledgement:
     19       1.1  nonaka  *	This product includes software developed for the NetBSD Project by
     20       1.1  nonaka  *	Wasabi Systems, Inc.
     21       1.1  nonaka  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22       1.1  nonaka  *    or promote products derived from this software without specific prior
     23       1.1  nonaka  *    written permission.
     24       1.1  nonaka  *
     25       1.1  nonaka  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26       1.1  nonaka  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27       1.1  nonaka  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28       1.1  nonaka  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29       1.1  nonaka  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30       1.1  nonaka  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31       1.1  nonaka  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32       1.1  nonaka  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33       1.1  nonaka  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34       1.1  nonaka  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35       1.1  nonaka  * POSSIBILITY OF SUCH DAMAGE.
     36       1.1  nonaka  */
     37       1.1  nonaka 
     38       1.1  nonaka /*
     39       1.1  nonaka  * Copyright (c) 1997,1998 Mark Brinicombe.
     40       1.1  nonaka  * Copyright (c) 1997,1998 Causality Limited.
     41       1.1  nonaka  * All rights reserved.
     42       1.1  nonaka  *
     43       1.1  nonaka  * Redistribution and use in source and binary forms, with or without
     44       1.1  nonaka  * modification, are permitted provided that the following conditions
     45       1.1  nonaka  * are met:
     46       1.1  nonaka  * 1. Redistributions of source code must retain the above copyright
     47       1.1  nonaka  *    notice, this list of conditions and the following disclaimer.
     48       1.1  nonaka  * 2. Redistributions in binary form must reproduce the above copyright
     49       1.1  nonaka  *    notice, this list of conditions and the following disclaimer in the
     50       1.1  nonaka  *    documentation and/or other materials provided with the distribution.
     51       1.1  nonaka  * 3. All advertising materials mentioning features or use of this software
     52       1.1  nonaka  *    must display the following acknowledgement:
     53       1.1  nonaka  *	This product includes software developed by Mark Brinicombe
     54       1.1  nonaka  *	for the NetBSD Project.
     55       1.1  nonaka  * 4. The name of the company nor the name of the author may be used to
     56       1.1  nonaka  *    endorse or promote products derived from this software without specific
     57       1.1  nonaka  *    prior written permission.
     58       1.1  nonaka  *
     59       1.1  nonaka  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     60       1.1  nonaka  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     61       1.1  nonaka  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     62       1.1  nonaka  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     63       1.1  nonaka  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     64       1.1  nonaka  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     65       1.1  nonaka  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66       1.1  nonaka  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67       1.1  nonaka  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68       1.1  nonaka  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69       1.1  nonaka  * SUCH DAMAGE.
     70       1.1  nonaka  *
     71      1.15     wiz  * Machine dependent functions for kernel setup for GigaLANDISK
     72       1.1  nonaka  * using RedBoot firmware.
     73       1.1  nonaka  */
     74       1.1  nonaka 
     75       1.1  nonaka #include <sys/cdefs.h>
     76  1.28.8.1  bouyer __KERNEL_RCSID(0, "$NetBSD: hdlg_machdep.c,v 1.28.8.1 2020/04/20 11:28:54 bouyer Exp $");
     77       1.1  nonaka 
     78      1.24   skrll #include "opt_arm_debug.h"
     79      1.25   skrll #include "opt_console.h"
     80       1.1  nonaka #include "opt_ddb.h"
     81       1.1  nonaka #include "opt_kgdb.h"
     82       1.1  nonaka 
     83       1.1  nonaka #include <sys/param.h>
     84       1.1  nonaka #include <sys/device.h>
     85       1.1  nonaka #include <sys/systm.h>
     86       1.1  nonaka #include <sys/kernel.h>
     87       1.1  nonaka #include <sys/exec.h>
     88       1.1  nonaka #include <sys/proc.h>
     89       1.1  nonaka #include <sys/msgbuf.h>
     90       1.1  nonaka #include <sys/reboot.h>
     91       1.1  nonaka #include <sys/termios.h>
     92       1.1  nonaka #include <sys/ksyms.h>
     93      1.21    matt #include <sys/bus.h>
     94      1.21    matt #include <sys/cpu.h>
     95       1.1  nonaka 
     96       1.1  nonaka #include <uvm/uvm_extern.h>
     97       1.1  nonaka 
     98       1.1  nonaka #include <dev/cons.h>
     99       1.1  nonaka 
    100       1.1  nonaka #include <machine/db_machdep.h>
    101       1.1  nonaka #include <ddb/db_sym.h>
    102       1.1  nonaka #include <ddb/db_extern.h>
    103       1.1  nonaka 
    104       1.1  nonaka #include <machine/bootconfig.h>
    105      1.21    matt #include <arm/locore.h>
    106       1.1  nonaka #include <arm/undefined.h>
    107       1.1  nonaka 
    108       1.1  nonaka #include <arm/arm32/machdep.h>
    109       1.1  nonaka 
    110       1.1  nonaka #include <arm/xscale/i80321reg.h>
    111       1.1  nonaka #include <arm/xscale/i80321var.h>
    112       1.1  nonaka 
    113       1.1  nonaka #include <dev/pci/ppbreg.h>
    114       1.1  nonaka 
    115       1.1  nonaka #include <evbarm/hdl_g/hdlgreg.h>
    116       1.1  nonaka #include <evbarm/hdl_g/hdlgvar.h>
    117       1.1  nonaka #include <evbarm/hdl_g/obiovar.h>
    118       1.1  nonaka 
    119       1.1  nonaka #include "ksyms.h"
    120       1.1  nonaka 
    121       1.1  nonaka /* Kernel text starts 2MB in from the bottom of the kernel address space. */
    122       1.1  nonaka #define	KERNEL_TEXT_BASE	(KERNEL_BASE + 0x00200000)
    123       1.1  nonaka #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
    124       1.1  nonaka 
    125       1.1  nonaka /*
    126       1.1  nonaka  * The range 0xc1000000 - 0xccffffff is available for kernel VM space
    127       1.1  nonaka  * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
    128       1.1  nonaka  */
    129       1.1  nonaka #define KERNEL_VM_SIZE		0x0C000000
    130       1.1  nonaka 
    131       1.1  nonaka BootConfig bootconfig;		/* Boot config storage */
    132       1.1  nonaka char *boot_args = NULL;
    133       1.1  nonaka char *boot_file = NULL;
    134       1.1  nonaka 
    135      1.22    matt vaddr_t physical_start;
    136      1.22    matt vaddr_t physical_freestart;
    137      1.22    matt vaddr_t physical_freeend;
    138      1.22    matt vaddr_t physical_end;
    139       1.1  nonaka u_int free_pages;
    140       1.1  nonaka 
    141       1.1  nonaka /*int debug_flags;*/
    142       1.1  nonaka #ifndef PMAP_STATIC_L1S
    143       1.1  nonaka int max_processes = 64;			/* Default number */
    144       1.1  nonaka #endif	/* !PMAP_STATIC_L1S */
    145       1.1  nonaka 
    146      1.18    matt pv_addr_t minidataclean;
    147      1.18    matt 
    148      1.22    matt paddr_t msgbufphys;
    149       1.1  nonaka 
    150       1.1  nonaka #define KERNEL_PT_SYS		0	/* L2 table for mapping zero page */
    151       1.1  nonaka 
    152       1.1  nonaka #define KERNEL_PT_KERNEL	1	/* L2 table for mapping kernel */
    153       1.1  nonaka #define	KERNEL_PT_KERNEL_NUM	4
    154       1.1  nonaka 
    155       1.1  nonaka 					/* L2 table for mapping i80321 */
    156       1.1  nonaka #define	KERNEL_PT_IOPXS		(KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
    157       1.1  nonaka 
    158  1.28.8.1  bouyer 					/* L2 tables for mapping kernel VM */
    159       1.1  nonaka #define KERNEL_PT_VMDATA	(KERNEL_PT_IOPXS + 1)
    160       1.1  nonaka #define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
    161       1.1  nonaka #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
    162       1.1  nonaka 
    163       1.1  nonaka pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
    164       1.1  nonaka 
    165       1.1  nonaka /* Prototypes */
    166       1.1  nonaka void consinit(void);
    167       1.1  nonaka 
    168       1.1  nonaka /* Static device mappings. */
    169       1.1  nonaka static const struct pmap_devmap hdlg_devmap[] = {
    170       1.1  nonaka     /*
    171       1.1  nonaka      * Map the on-board devices VA == PA so that we can access them
    172       1.1  nonaka      * with the MMU on or off.
    173       1.1  nonaka      */
    174       1.1  nonaka     {
    175       1.1  nonaka 	HDLG_OBIO_BASE,
    176       1.1  nonaka 	HDLG_OBIO_BASE,
    177       1.1  nonaka 	HDLG_OBIO_SIZE,
    178       1.1  nonaka 	VM_PROT_READ|VM_PROT_WRITE,
    179       1.1  nonaka 	PTE_NOCACHE,
    180       1.1  nonaka     },
    181       1.1  nonaka 
    182       1.1  nonaka     {
    183       1.1  nonaka 	HDLG_IOW_VBASE,
    184       1.1  nonaka 	VERDE_OUT_XLATE_IO_WIN0_BASE,
    185       1.1  nonaka 	VERDE_OUT_XLATE_IO_WIN_SIZE,
    186       1.1  nonaka 	VM_PROT_READ|VM_PROT_WRITE,
    187       1.1  nonaka 	PTE_NOCACHE,
    188       1.1  nonaka    },
    189       1.1  nonaka 
    190       1.1  nonaka    {
    191       1.1  nonaka 	HDLG_80321_VBASE,
    192       1.1  nonaka 	VERDE_PMMR_BASE,
    193       1.1  nonaka 	VERDE_PMMR_SIZE,
    194       1.1  nonaka 	VM_PROT_READ|VM_PROT_WRITE,
    195       1.1  nonaka 	PTE_NOCACHE,
    196       1.1  nonaka    },
    197       1.1  nonaka 
    198       1.1  nonaka    {
    199       1.1  nonaka 	0,
    200       1.1  nonaka 	0,
    201       1.1  nonaka 	0,
    202       1.1  nonaka 	0,
    203       1.1  nonaka 	0,
    204       1.1  nonaka     }
    205       1.1  nonaka };
    206       1.1  nonaka 
    207       1.1  nonaka static void
    208       1.1  nonaka hardclock_hook(void)
    209       1.1  nonaka {
    210       1.1  nonaka 
    211       1.1  nonaka 	/* Nothing to do */
    212       1.1  nonaka }
    213       1.1  nonaka 
    214       1.1  nonaka /*
    215      1.28   skrll  * vaddr_t initarm(...)
    216       1.1  nonaka  *
    217       1.1  nonaka  * Initial entry point on startup. This gets called before main() is
    218       1.1  nonaka  * entered.
    219       1.1  nonaka  * It should be responsible for setting up everything that must be
    220       1.1  nonaka  * in place when main is called.
    221       1.1  nonaka  * This includes
    222       1.1  nonaka  *   Taking a copy of the boot configuration structure.
    223       1.1  nonaka  *   Initialising the physical console so characters can be printed.
    224       1.1  nonaka  *   Setting up page tables for the kernel
    225       1.1  nonaka  *   Relocating the kernel to the bottom of physical memory
    226       1.1  nonaka  */
    227      1.28   skrll vaddr_t
    228       1.1  nonaka initarm(void *arg)
    229       1.1  nonaka {
    230       1.1  nonaka 	extern vaddr_t xscale_cache_clean_addr;
    231       1.1  nonaka #ifdef DIAGNOSTIC
    232       1.1  nonaka 	extern vsize_t xscale_minidata_clean_size;
    233       1.1  nonaka #endif
    234       1.1  nonaka 	int loop;
    235       1.1  nonaka 	int loop1;
    236       1.1  nonaka 	u_int l1pagetable;
    237       1.1  nonaka 	paddr_t memstart;
    238       1.1  nonaka 	psize_t memsize;
    239       1.1  nonaka 
    240       1.1  nonaka 	/* Calibrate the delay loop. */
    241       1.1  nonaka 	i80321_calibrate_delay();
    242       1.1  nonaka 	i80321_hardclock_hook = hardclock_hook;
    243       1.1  nonaka 
    244       1.1  nonaka 	/*
    245       1.1  nonaka 	 * Since we map the on-board devices VA==PA, and the kernel
    246       1.1  nonaka 	 * is running VA==PA, it's possible for us to initialize
    247       1.1  nonaka 	 * the console now.
    248       1.1  nonaka 	 */
    249       1.1  nonaka 	consinit();
    250       1.1  nonaka 
    251       1.1  nonaka #ifdef VERBOSE_INIT_ARM
    252       1.1  nonaka 	/* Talk to the user */
    253       1.4  nonaka 	printf("\nNetBSD/evbarm (HDL-G) booting ...\n");
    254       1.1  nonaka #endif
    255       1.1  nonaka 
    256       1.1  nonaka 	/*
    257       1.1  nonaka 	 * Heads up ... Setup the CPU / MMU / TLB functions
    258       1.1  nonaka 	 */
    259       1.1  nonaka 	if (set_cpufuncs())
    260       1.1  nonaka 		panic("CPU not recognized!");
    261       1.1  nonaka 
    262       1.1  nonaka 	/*
    263       1.1  nonaka 	 * We are currently running with the MMU enabled and the
    264       1.1  nonaka 	 * entire address space mapped VA==PA, except for the
    265       1.1  nonaka 	 * first 64M of RAM is also double-mapped at 0xc0000000.
    266       1.1  nonaka 	 * There is an L1 page table at 0xa0004000.
    267       1.1  nonaka 	 */
    268       1.1  nonaka 
    269       1.1  nonaka 	/*
    270       1.1  nonaka 	 * Fetch the SDRAM start/size from the i80321 SDRAM configuration
    271       1.1  nonaka 	 * registers.
    272       1.1  nonaka 	 */
    273       1.1  nonaka 	i80321_sdram_bounds(&obio_bs_tag, VERDE_PMMR_BASE + VERDE_MCU_BASE,
    274       1.1  nonaka 	    &memstart, &memsize);
    275       1.1  nonaka 
    276       1.1  nonaka #ifdef VERBOSE_INIT_ARM
    277       1.1  nonaka 	printf("initarm: Configuring system ...\n");
    278       1.1  nonaka #endif
    279       1.1  nonaka 
    280       1.1  nonaka 	/* Fake bootconfig structure for the benefit of pmap.c */
    281       1.3     wiz 	/* XXX must make the memory description h/w independent */
    282       1.1  nonaka 	bootconfig.dramblocks = 1;
    283       1.1  nonaka 	bootconfig.dram[0].address = memstart;
    284       1.1  nonaka 	bootconfig.dram[0].pages = memsize / PAGE_SIZE;
    285       1.1  nonaka 
    286       1.1  nonaka 	/*
    287       1.1  nonaka 	 * Set up the variables that define the availablilty of
    288       1.1  nonaka 	 * physical memory.  For now, we're going to set
    289       1.1  nonaka 	 * physical_freestart to 0xa0200000 (where the kernel
    290       1.1  nonaka 	 * was loaded), and allocate the memory we need downwards.
    291       1.1  nonaka 	 * If we get too close to the L1 table that we set up, we
    292       1.1  nonaka 	 * will panic.  We will update physical_freestart and
    293       1.1  nonaka 	 * physical_freeend later to reflect what pmap_bootstrap()
    294       1.1  nonaka 	 * wants to see.
    295       1.1  nonaka 	 *
    296       1.1  nonaka 	 * XXX pmap_bootstrap() needs an enema.
    297       1.1  nonaka 	 */
    298       1.1  nonaka 	physical_start = bootconfig.dram[0].address;
    299       1.1  nonaka 	physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
    300       1.1  nonaka 
    301       1.1  nonaka 	physical_freestart = 0xa0009000UL;
    302       1.1  nonaka 	physical_freeend = 0xa0200000UL;
    303       1.1  nonaka 
    304       1.1  nonaka 	physmem = (physical_end - physical_start) / PAGE_SIZE;
    305       1.1  nonaka 
    306       1.1  nonaka #ifdef VERBOSE_INIT_ARM
    307       1.1  nonaka 	/* Tell the user about the memory */
    308       1.1  nonaka 	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
    309       1.1  nonaka 	    physical_start, physical_end - 1);
    310       1.1  nonaka #endif
    311       1.1  nonaka 
    312       1.1  nonaka 	/*
    313       1.1  nonaka 	 * Okay, the kernel starts 2MB in from the bottom of physical
    314       1.1  nonaka 	 * memory.  We are going to allocate our bootstrap pages downwards
    315       1.1  nonaka 	 * from there.
    316       1.1  nonaka 	 *
    317       1.1  nonaka 	 * We need to allocate some fixed page tables to get the kernel
    318       1.1  nonaka 	 * going.  We allocate one page directory and a number of page
    319       1.1  nonaka 	 * tables and store the physical addresses in the kernel_pt_table
    320       1.1  nonaka 	 * array.
    321       1.1  nonaka 	 *
    322       1.1  nonaka 	 * The kernel page directory must be on a 16K boundary.  The page
    323       1.1  nonaka 	 * tables must be on 4K boundaries.  What we do is allocate the
    324       1.1  nonaka 	 * page directory on the first 16K boundary that we encounter, and
    325       1.1  nonaka 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    326       1.1  nonaka 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    327       1.1  nonaka 	 * least one 16K aligned region.
    328       1.1  nonaka 	 */
    329       1.1  nonaka 
    330       1.1  nonaka #ifdef VERBOSE_INIT_ARM
    331       1.1  nonaka 	printf("Allocating page tables\n");
    332       1.1  nonaka #endif
    333       1.1  nonaka 
    334       1.1  nonaka 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
    335       1.1  nonaka 
    336       1.1  nonaka #ifdef VERBOSE_INIT_ARM
    337       1.1  nonaka 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
    338       1.1  nonaka 	       physical_freestart, free_pages, free_pages);
    339       1.1  nonaka #endif
    340       1.1  nonaka 
    341       1.1  nonaka 	/* Define a macro to simplify memory allocation */
    342       1.1  nonaka #define	valloc_pages(var, np)				\
    343       1.1  nonaka 	alloc_pages((var).pv_pa, (np));			\
    344       1.1  nonaka 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
    345       1.1  nonaka 
    346       1.1  nonaka #define alloc_pages(var, np)				\
    347       1.1  nonaka 	physical_freeend -= ((np) * PAGE_SIZE);		\
    348       1.1  nonaka 	if (physical_freeend < physical_freestart)	\
    349       1.1  nonaka 		panic("initarm: out of memory");	\
    350       1.1  nonaka 	(var) = physical_freeend;			\
    351       1.1  nonaka 	free_pages -= (np);				\
    352       1.1  nonaka 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
    353       1.1  nonaka 
    354       1.1  nonaka 	loop1 = 0;
    355       1.1  nonaka 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
    356       1.1  nonaka 		/* Are we 16KB aligned for an L1 ? */
    357       1.1  nonaka 		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
    358       1.1  nonaka 		    && kernel_l1pt.pv_pa == 0) {
    359       1.1  nonaka 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
    360       1.1  nonaka 		} else {
    361       1.1  nonaka 			valloc_pages(kernel_pt_table[loop1],
    362       1.1  nonaka 			    L2_TABLE_SIZE / PAGE_SIZE);
    363       1.1  nonaka 			++loop1;
    364       1.1  nonaka 		}
    365       1.1  nonaka 	}
    366       1.1  nonaka 
    367       1.1  nonaka 	/* This should never be able to happen but better confirm that. */
    368       1.1  nonaka 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
    369       1.1  nonaka 		panic("initarm: Failed to align the kernel page directory");
    370       1.1  nonaka 
    371       1.1  nonaka 	/*
    372       1.1  nonaka 	 * Allocate a page for the system page mapped to V0x00000000
    373       1.1  nonaka 	 * This page will just contain the system vectors and can be
    374       1.1  nonaka 	 * shared by all processes.
    375       1.1  nonaka 	 */
    376       1.1  nonaka 	alloc_pages(systempage.pv_pa, 1);
    377       1.1  nonaka 
    378       1.1  nonaka 	/* Allocate stacks for all modes */
    379       1.1  nonaka 	valloc_pages(irqstack, IRQ_STACK_SIZE);
    380       1.1  nonaka 	valloc_pages(abtstack, ABT_STACK_SIZE);
    381       1.1  nonaka 	valloc_pages(undstack, UND_STACK_SIZE);
    382       1.1  nonaka 	valloc_pages(kernelstack, UPAGES);
    383       1.1  nonaka 
    384       1.1  nonaka 	/* Allocate enough pages for cleaning the Mini-Data cache. */
    385       1.1  nonaka 	KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
    386       1.1  nonaka 	valloc_pages(minidataclean, 1);
    387       1.1  nonaka 
    388       1.1  nonaka #ifdef VERBOSE_INIT_ARM
    389       1.1  nonaka 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
    390  1.28.8.1  bouyer 	    irqstack.pv_va);
    391       1.1  nonaka 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
    392  1.28.8.1  bouyer 	    abtstack.pv_va);
    393       1.1  nonaka 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
    394  1.28.8.1  bouyer 	    undstack.pv_va);
    395       1.1  nonaka 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
    396  1.28.8.1  bouyer 	    kernelstack.pv_va);
    397       1.1  nonaka #endif
    398       1.1  nonaka 
    399       1.1  nonaka 	/*
    400       1.1  nonaka 	 * XXX Defer this to later so that we can reclaim the memory
    401       1.1  nonaka 	 * XXX used by the RedBoot page tables.
    402       1.1  nonaka 	 */
    403       1.1  nonaka 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
    404       1.1  nonaka 
    405       1.1  nonaka 	/*
    406       1.1  nonaka 	 * Ok we have allocated physical pages for the primary kernel
    407       1.1  nonaka 	 * page tables
    408       1.1  nonaka 	 */
    409       1.1  nonaka 
    410       1.1  nonaka #ifdef VERBOSE_INIT_ARM
    411       1.1  nonaka 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    412       1.1  nonaka #endif
    413       1.1  nonaka 
    414       1.1  nonaka 	/*
    415       1.1  nonaka 	 * Now we start construction of the L1 page table
    416       1.1  nonaka 	 * We start by mapping the L2 page tables into the L1.
    417       1.1  nonaka 	 * This means that we can replace L1 mappings later on if necessary
    418       1.1  nonaka 	 */
    419       1.1  nonaka 	l1pagetable = kernel_l1pt.pv_pa;
    420       1.1  nonaka 
    421       1.1  nonaka 	/* Map the L2 pages tables in the L1 page table */
    422       1.1  nonaka 	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
    423       1.1  nonaka 	    &kernel_pt_table[KERNEL_PT_SYS]);
    424       1.1  nonaka 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
    425       1.1  nonaka 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
    426       1.1  nonaka 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
    427       1.1  nonaka 	pmap_link_l2pt(l1pagetable, HDLG_IOPXS_VBASE,
    428       1.1  nonaka 	    &kernel_pt_table[KERNEL_PT_IOPXS]);
    429       1.1  nonaka 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
    430       1.1  nonaka 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
    431       1.1  nonaka 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
    432       1.1  nonaka 
    433       1.1  nonaka 	/* update the top of the kernel VM */
    434       1.1  nonaka 	pmap_curmaxkvaddr =
    435       1.1  nonaka 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
    436       1.1  nonaka 
    437       1.1  nonaka #ifdef VERBOSE_INIT_ARM
    438       1.1  nonaka 	printf("Mapping kernel\n");
    439       1.1  nonaka #endif
    440       1.1  nonaka 
    441       1.1  nonaka 	/* Now we fill in the L2 pagetable for the kernel static code/data */
    442       1.1  nonaka 	{
    443       1.1  nonaka 		extern char etext[], _end[];
    444       1.1  nonaka 		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
    445       1.1  nonaka 		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
    446       1.1  nonaka 		u_int logical;
    447       1.1  nonaka 
    448       1.1  nonaka 		textsize = (textsize + PGOFSET) & ~PGOFSET;
    449       1.1  nonaka 		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
    450  1.28.8.1  bouyer 
    451       1.1  nonaka 		logical = 0x00200000;	/* offset of kernel in RAM */
    452       1.1  nonaka 
    453       1.1  nonaka 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    454       1.1  nonaka 		    physical_start + logical, textsize,
    455       1.1  nonaka 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    456       1.1  nonaka 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    457       1.1  nonaka 		    physical_start + logical, totalsize - textsize,
    458       1.1  nonaka 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    459       1.1  nonaka 	}
    460       1.1  nonaka 
    461       1.1  nonaka #ifdef VERBOSE_INIT_ARM
    462       1.1  nonaka 	printf("Constructing L2 page tables\n");
    463       1.1  nonaka #endif
    464       1.1  nonaka 
    465       1.1  nonaka 	/* Map the stack pages */
    466       1.1  nonaka 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
    467       1.1  nonaka 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    468       1.1  nonaka 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
    469       1.1  nonaka 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    470       1.1  nonaka 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
    471       1.1  nonaka 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    472       1.1  nonaka 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
    473       1.1  nonaka 	    UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    474       1.1  nonaka 
    475       1.1  nonaka 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
    476       1.1  nonaka 	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    477       1.1  nonaka 
    478       1.1  nonaka 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
    479       1.1  nonaka 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
    480       1.1  nonaka 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
    481       1.1  nonaka 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    482       1.1  nonaka 	}
    483       1.1  nonaka 
    484       1.1  nonaka 	/* Map the Mini-Data cache clean area. */
    485       1.1  nonaka 	xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
    486       1.1  nonaka 	    minidataclean.pv_pa);
    487       1.1  nonaka 
    488       1.1  nonaka 	/* Map the vector page. */
    489       1.1  nonaka 	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
    490       1.1  nonaka 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    491       1.1  nonaka 
    492       1.1  nonaka 	/* Map the statically mapped devices. */
    493       1.1  nonaka 	pmap_devmap_bootstrap(l1pagetable, hdlg_devmap);
    494       1.1  nonaka 
    495       1.1  nonaka 	/*
    496       1.1  nonaka 	 * Give the XScale global cache clean code an appropriately
    497       1.1  nonaka 	 * sized chunk of unmapped VA space starting at 0xff000000
    498       1.1  nonaka 	 * (our device mappings end before this address).
    499       1.1  nonaka 	 */
    500       1.1  nonaka 	xscale_cache_clean_addr = 0xff000000U;
    501       1.1  nonaka 
    502       1.1  nonaka 	/*
    503       1.1  nonaka 	 * Now we have the real page tables in place so we can switch to them.
    504       1.1  nonaka 	 * Once this is done we will be running with the REAL kernel page
    505       1.1  nonaka 	 * tables.
    506       1.1  nonaka 	 */
    507       1.1  nonaka 
    508       1.1  nonaka 	/*
    509       1.1  nonaka 	 * Update the physical_freestart/physical_freeend/free_pages
    510       1.1  nonaka 	 * variables.
    511       1.1  nonaka 	 */
    512       1.1  nonaka 	{
    513       1.1  nonaka 		extern char _end[];
    514       1.1  nonaka 
    515       1.1  nonaka 		physical_freestart = physical_start +
    516       1.1  nonaka 		    (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
    517       1.1  nonaka 		     KERNEL_BASE);
    518       1.1  nonaka 		physical_freeend = physical_end;
    519       1.1  nonaka 		free_pages =
    520       1.1  nonaka 		    (physical_freeend - physical_freestart) / PAGE_SIZE;
    521       1.1  nonaka 	}
    522       1.1  nonaka 
    523       1.1  nonaka 	/* Switch tables */
    524       1.1  nonaka #ifdef VERBOSE_INIT_ARM
    525       1.1  nonaka 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
    526       1.1  nonaka 	       physical_freestart, free_pages, free_pages);
    527       1.1  nonaka 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
    528       1.1  nonaka #endif
    529       1.1  nonaka 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    530      1.20    matt 	cpu_setttb(kernel_l1pt.pv_pa, true);
    531       1.1  nonaka 	cpu_tlb_flushID();
    532       1.1  nonaka 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
    533       1.1  nonaka 
    534       1.1  nonaka 	/*
    535       1.1  nonaka 	 * Moved from cpu_startup() as data_abort_handler() references
    536       1.1  nonaka 	 * this during uvm init
    537       1.1  nonaka 	 */
    538      1.12   rmind 	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
    539       1.1  nonaka 
    540       1.1  nonaka #ifdef VERBOSE_INIT_ARM
    541       1.1  nonaka 	printf("done!\n");
    542       1.1  nonaka #endif
    543       1.1  nonaka 
    544       1.1  nonaka #ifdef VERBOSE_INIT_ARM
    545       1.1  nonaka 	printf("bootstrap done.\n");
    546       1.1  nonaka #endif
    547       1.1  nonaka 
    548       1.1  nonaka 	arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
    549       1.1  nonaka 
    550       1.1  nonaka 	/*
    551       1.1  nonaka 	 * Pages were allocated during the secondary bootstrap for the
    552       1.1  nonaka 	 * stacks for different CPU modes.
    553       1.1  nonaka 	 * We must now set the r13 registers in the different CPU modes to
    554       1.1  nonaka 	 * point to these stacks.
    555       1.1  nonaka 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
    556       1.1  nonaka 	 * of the stack memory.
    557       1.1  nonaka 	 */
    558       1.1  nonaka #ifdef VERBOSE_INIT_ARM
    559       1.1  nonaka 	printf("init subsystems: stacks ");
    560       1.1  nonaka #endif
    561       1.1  nonaka 
    562       1.1  nonaka 	set_stackptr(PSR_IRQ32_MODE,
    563       1.1  nonaka 	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
    564       1.1  nonaka 	set_stackptr(PSR_ABT32_MODE,
    565       1.1  nonaka 	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
    566       1.1  nonaka 	set_stackptr(PSR_UND32_MODE,
    567       1.1  nonaka 	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
    568       1.1  nonaka 
    569       1.1  nonaka 	/*
    570       1.1  nonaka 	 * Well we should set a data abort handler.
    571       1.1  nonaka 	 * Once things get going this will change as we will need a proper
    572       1.1  nonaka 	 * handler.
    573       1.1  nonaka 	 * Until then we will use a handler that just panics but tells us
    574       1.1  nonaka 	 * why.
    575       1.1  nonaka 	 * Initialisation of the vectors will just panic on a data abort.
    576       1.1  nonaka 	 * This just fills in a slightly better one.
    577       1.1  nonaka 	 */
    578       1.1  nonaka #ifdef VERBOSE_INIT_ARM
    579       1.1  nonaka 	printf("vectors ");
    580       1.1  nonaka #endif
    581       1.1  nonaka 	data_abort_handler_address = (u_int)data_abort_handler;
    582       1.1  nonaka 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
    583       1.1  nonaka 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
    584       1.1  nonaka 
    585       1.1  nonaka 	/* Initialise the undefined instruction handlers */
    586       1.1  nonaka #ifdef VERBOSE_INIT_ARM
    587       1.1  nonaka 	printf("undefined ");
    588       1.1  nonaka #endif
    589       1.1  nonaka 	undefined_init();
    590       1.1  nonaka 
    591       1.1  nonaka 	/* Load memory into UVM. */
    592       1.1  nonaka #ifdef VERBOSE_INIT_ARM
    593       1.1  nonaka 	printf("page ");
    594       1.1  nonaka #endif
    595      1.23  cherry 	uvm_md_init();
    596       1.1  nonaka 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
    597       1.1  nonaka 	    atop(physical_freestart), atop(physical_freeend),
    598       1.1  nonaka 	    VM_FREELIST_DEFAULT);
    599       1.1  nonaka 
    600      1.26   skrll 	/* Boot strap pmap telling it where managed kernel virtual memory is */
    601       1.1  nonaka #ifdef VERBOSE_INIT_ARM
    602       1.1  nonaka 	printf("pmap ");
    603       1.1  nonaka #endif
    604       1.6    matt 	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
    605       1.1  nonaka 
    606       1.1  nonaka 	/* Setup the IRQ system */
    607       1.1  nonaka #ifdef VERBOSE_INIT_ARM
    608       1.1  nonaka 	printf("irq ");
    609       1.1  nonaka #endif
    610       1.1  nonaka 	i80321_intr_init();
    611       1.1  nonaka 
    612       1.1  nonaka #ifdef VERBOSE_INIT_ARM
    613       1.1  nonaka 	printf("done.\n");
    614       1.1  nonaka #endif
    615       1.1  nonaka 
    616       1.1  nonaka #ifdef BOOTHOWTO
    617       1.1  nonaka 	boothowto = BOOTHOWTO;
    618       1.1  nonaka #endif
    619       1.1  nonaka 
    620       1.1  nonaka #ifdef DDB
    621       1.1  nonaka 	db_machine_init();
    622       1.1  nonaka 	if (boothowto & RB_KDB)
    623       1.1  nonaka 		Debugger();
    624       1.1  nonaka #endif
    625       1.1  nonaka 
    626       1.1  nonaka 	/* We return the new stack pointer address */
    627      1.27   skrll 	return kernelstack.pv_va + USPACE_SVC_STACK_TOP;
    628       1.1  nonaka }
    629       1.1  nonaka 
    630       1.1  nonaka /*
    631       1.1  nonaka  * void cpu_reboot(int howto, char *bootstr)
    632       1.1  nonaka  *
    633       1.1  nonaka  * Reboots the system
    634       1.1  nonaka  *
    635       1.1  nonaka  * Deal with any syncing, unmounting, dumping and shutdown hooks,
    636       1.1  nonaka  * then reset the CPU.
    637       1.1  nonaka  */
    638       1.1  nonaka void
    639       1.1  nonaka cpu_reboot(int howto, char *bootstr)
    640       1.1  nonaka {
    641       1.1  nonaka 
    642       1.1  nonaka 	/*
    643       1.1  nonaka 	 * If we are still cold then hit the air brakes
    644       1.1  nonaka 	 * and crash to earth fast
    645       1.1  nonaka 	 */
    646       1.1  nonaka 	if (cold) {
    647       1.1  nonaka 		*(volatile uint8_t *)HDLG_LEDCTRL |= LEDCTRL_STAT_RED;
    648       1.1  nonaka 		howto |= RB_HALT;
    649       1.1  nonaka 		goto haltsys;
    650       1.1  nonaka 	}
    651       1.1  nonaka 
    652       1.1  nonaka 	/* Disable console buffering */
    653       1.1  nonaka 
    654       1.1  nonaka 	/*
    655       1.1  nonaka 	 * If RB_NOSYNC was not specified sync the discs.
    656       1.1  nonaka 	 * Note: Unless cold is set to 1 here, syslogd will die during the
    657       1.1  nonaka 	 * unmount.  It looks like syslogd is getting woken up only to find
    658       1.1  nonaka 	 * that it cannot page part of the binary in as the filesystem has
    659       1.1  nonaka 	 * been unmounted.
    660       1.1  nonaka 	 */
    661       1.1  nonaka 	if ((howto & RB_NOSYNC) == 0) {
    662       1.1  nonaka 		bootsync();
    663       1.1  nonaka 		/*resettodr();*/
    664       1.1  nonaka 	}
    665       1.1  nonaka 
    666       1.1  nonaka 	/* wait 1s */
    667       1.1  nonaka 	delay(1 * 1000 * 1000);
    668       1.1  nonaka 
    669       1.1  nonaka 	/* Say NO to interrupts */
    670       1.1  nonaka 	splhigh();
    671       1.1  nonaka 
    672       1.1  nonaka 	/* Do a dump if requested. */
    673       1.1  nonaka 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) {
    674       1.1  nonaka 		dumpsys();
    675       1.1  nonaka 	}
    676       1.1  nonaka 
    677       1.1  nonaka haltsys:
    678       1.1  nonaka 	/* Run any shutdown hooks */
    679       1.1  nonaka 	doshutdownhooks();
    680       1.1  nonaka 
    681       1.7  dyoung 	pmf_system_shutdown(boothowto);
    682       1.7  dyoung 
    683       1.1  nonaka 	/* Make sure IRQ's are disabled */
    684       1.1  nonaka 	IRQdisable;
    685       1.1  nonaka 
    686       1.1  nonaka 	if (howto & RB_HALT) {
    687       1.1  nonaka 		*(volatile uint8_t *)HDLG_PWRMNG = PWRMNG_POWOFF;
    688       1.1  nonaka 		delay(3 * 1000 * 1000);	/* wait 3s */
    689       1.1  nonaka 
    690       1.1  nonaka 		printf("SHUTDOWN FAILED!\n");
    691       1.1  nonaka 		printf("The operating system has halted.\n");
    692       1.1  nonaka 		printf("Please press any key to reboot.\n\n");
    693       1.1  nonaka 		cngetc();
    694       1.1  nonaka 	}
    695       1.1  nonaka 
    696       1.1  nonaka 	printf("rebooting...\n\r");
    697       1.1  nonaka 
    698       1.1  nonaka 	(void)disable_interrupts(I32_bit|F32_bit);
    699       1.1  nonaka 	cpu_idcache_wbinv_all();
    700       1.1  nonaka 	cpu_drain_writebuf();
    701       1.1  nonaka 
    702       1.1  nonaka 	*(volatile uint8_t *)HDLG_PWRMNG = PWRMNG_RESET;
    703       1.1  nonaka 	delay(1 * 1000 * 1000);	/* wait 1s */
    704       1.1  nonaka 
    705       1.1  nonaka 	/* ...and if that didn't work, just croak. */
    706       1.1  nonaka 	printf("RESET FAILED!\n");
    707       1.1  nonaka 	for (;;) {
    708       1.1  nonaka 		continue;
    709       1.1  nonaka 	}
    710       1.1  nonaka }
    711       1.1  nonaka 
    712       1.1  nonaka /*
    713       1.1  nonaka  * console
    714       1.1  nonaka  */
    715       1.1  nonaka #include "com.h"
    716       1.1  nonaka #if NCOM > 0
    717       1.1  nonaka #include <dev/ic/comreg.h>
    718       1.1  nonaka #include <dev/ic/comvar.h>
    719       1.1  nonaka #endif
    720       1.1  nonaka 
    721       1.1  nonaka /*
    722       1.1  nonaka  * Define the default console speed for the board.  This is generally
    723       1.1  nonaka  * what the firmware provided with the board defaults to.
    724       1.1  nonaka  */
    725       1.1  nonaka #ifndef CONSPEED
    726       1.1  nonaka #define CONSPEED B115200
    727       1.1  nonaka #endif /* ! CONSPEED */
    728       1.1  nonaka 
    729       1.1  nonaka #ifndef CONUNIT
    730       1.1  nonaka #define	CONUNIT	0
    731       1.1  nonaka #endif
    732       1.1  nonaka 
    733       1.1  nonaka #ifndef CONMODE
    734       1.1  nonaka #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
    735       1.1  nonaka #endif
    736       1.1  nonaka 
    737       1.1  nonaka int comcnspeed = CONSPEED;
    738       1.1  nonaka int comcnmode = CONMODE;
    739       1.1  nonaka int comcnunit = CONUNIT;
    740       1.1  nonaka 
    741       1.1  nonaka #if KGDB
    742       1.1  nonaka #ifndef KGDB_DEVNAME
    743       1.1  nonaka #error Must define KGDB_DEVNAME
    744       1.1  nonaka #endif
    745       1.1  nonaka const char kgdb_devname[] = KGDB_DEVNAME;
    746       1.1  nonaka 
    747       1.1  nonaka #ifndef KGDB_DEVADDR
    748       1.1  nonaka #error Must define KGDB_DEVADDR
    749       1.1  nonaka #endif
    750       1.1  nonaka unsigned long kgdb_devaddr = KGDB_DEVADDR;
    751       1.1  nonaka 
    752       1.1  nonaka #ifndef KGDB_DEVRATE
    753       1.1  nonaka #define KGDB_DEVRATE	CONSPEED
    754       1.1  nonaka #endif
    755       1.1  nonaka int kgdb_devrate = KGDB_DEVRATE;
    756       1.1  nonaka 
    757       1.1  nonaka #ifndef KGDB_DEVMODE
    758       1.1  nonaka #define KGDB_DEVMODE	CONMODE
    759       1.1  nonaka #endif
    760       1.1  nonaka int kgdb_devmode = KGDB_DEVMODE;
    761       1.1  nonaka #endif /* KGDB */
    762       1.1  nonaka 
    763       1.1  nonaka void
    764       1.1  nonaka consinit(void)
    765       1.1  nonaka {
    766       1.1  nonaka 	static const bus_addr_t comcnaddrs[] = {
    767       1.1  nonaka 		HDLG_UART1,		/* com0 */
    768       1.1  nonaka 	};
    769       1.1  nonaka 	static int consinit_called;
    770       1.1  nonaka 
    771       1.1  nonaka 	if (consinit_called)
    772       1.1  nonaka 		return;
    773       1.1  nonaka 	consinit_called = 1;
    774       1.1  nonaka 
    775       1.1  nonaka 	/*
    776       1.1  nonaka 	 * Console devices are mapped VA==PA.  Our devmap reflects
    777       1.1  nonaka 	 * this, so register it now so drivers can map the console
    778       1.1  nonaka 	 * device.
    779       1.1  nonaka 	 */
    780       1.1  nonaka 	pmap_devmap_register(hdlg_devmap);
    781       1.1  nonaka 
    782       1.1  nonaka #if NCOM > 0
    783       1.1  nonaka 	if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed,
    784       1.1  nonaka 	    COM_FREQ, COM_TYPE_NORMAL, comcnmode))
    785       1.1  nonaka 		panic("can't init serial console @%lx", comcnaddrs[comcnunit]);
    786       1.1  nonaka #else
    787       1.1  nonaka 	panic("serial console @%lx not configured", comcnaddrs[comcnunit]);
    788       1.1  nonaka #endif
    789       1.1  nonaka #if KGDB
    790       1.1  nonaka #if NCOM > 0
    791       1.1  nonaka 	if (strcmp(kgdb_devname, "com") == 0) {
    792       1.1  nonaka 		com_kgdb_attach(&obio_bs_tag, kgdb_devaddr, kgdb_devrate,
    793       1.1  nonaka 				COM_FREQ, COM_TYPE_NORMAL, kgdb_devmode);
    794       1.1  nonaka 	}
    795       1.1  nonaka #endif	/* NCOM > 0 */
    796       1.1  nonaka #endif	/* KGDB */
    797       1.1  nonaka }
    798